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Abstract

The use of Machine Learning (ML) techniques in the medical field is not a new
occurrence and several papers describing research in that direction have been pub-
lished. This research has helped in analysing medical images, creating responsive
cardiovascular models, and predicting outcomes for medical conditions among
many other applications. This Ph.D. aims to apply such ML techniques for the analy-
sis of Acute Respiratory Distress Syndrome (ARDS) which is a severe condition that
affects around 1 in 10.000 patients worldwide every year with life-threatening conse-
quences. We employ previously developed mechanistic modelling approaches such
as the “Nottingham Physiological Simulator,” through which better understanding
of ARDS progression can be gleaned, and take advantage of the growing volume of
medical datasets available for research (i.e., “big data”) and the advances in ML to
develop, train, and optimise the modelling approaches. Additionally, the onset of
the COVID-19 pandemic while this Ph.D. research was ongoing provided a similar
application field to ARDS, and made further ML research in medical diagnosis
applications possible. Finally, we leverage the available Modular Supercomputing
Architecture (MSA) developed as part of the Dynamical Exascale Entry Platform -
Extreme Scale Technologies (DEEP-EST) EU Project to scale up and speed up the
modelling processes. This Ph.D. Project is one element of the Smart Medical Infor-
mation Technology for Healthcare (SMITH) project wherein the thesis research can
be validated by clinical and medical experts (e.g. Uniklinik RWTH Aachen).
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Útdráttur

Notkun vélnámsaðferða (ML) í læknavísindum er ekki ný af nálinni og hafa nokkrar
greinar verið birtar um rannsóknir á því sviði. Þessar rannsóknir hafa hjálpað
til við að greina læknisfræðilegar myndir, búa til svörunarlíkön fyrir hjarta- og
æðakerfi og spá fyrir um útkomu sjúkdóma meðal margra annarra notkunarmöguleika.
Markmið þessarar doktorsrannsóknar er að beita slíkum ML aðferðum við greiningu
á bráðu andnauðarheilkenni (ARDS), alvarlegan sjúkdóm sem hrjáir um 1 af hverjum
10.000 sjúklingum á heimsvísu á ári hverju með lífshættulegum afleiðingum. Til að
framkvæma þessa greiningu notum við áður þróaðar aðferðir við líkanasmíði, s.s.
„Nottingham Physiological Simulator“, sem nota má til að auka skilning á framvindu
ARDS-sjúkdómsins. Við nýtum okkur vaxandi umfang læknisfræðilegra gagnasafna
sem eru aðgengileg til rannsókna (þ.e. „stórgögn“), framfarir í vélnámi til að þróa,
þjálfa og besta líkanaaðferðirnar. Þar að auki hófst COVID-19 faraldurinn þegar
doktorsrannsóknin var í vinnslu, sem setti svipað svið fram og ARDS og gerði frekari
rannsóknir á ML í læknisfræði mögulegar. Einnig nýtum við tiltæka einingaskipta
högun ofurtölva, „Modular Supercomputing Architecture“ (MSA), sem er þróuð sem
hluti af „Dynamical Exascale Entry Platform“ - Extreme Scale Technologies (DEEP-EST)
verkefnisáætlun ESB til að kvarða og hraða líkanasmíðinni. Þetta doktorsverkefni
er einn þáttur í SMITH-verkefninu (e. Smart Medical Information Technology for
Healthcare) þar sem sérfræðingar í klíník og læknisfræði geta staðfest rannsóknina
(t.d. Uniklinik RWTH Aachen).
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Chapter 1

Introduction

1.1 Motivation
The onset of respiratory disease can be caused either through direct injury to the
lungs (i.e. trauma, infection, toxic inhalations, etc.) or indirectly through the failure
of other organ systems [1]. Though the causes may differ, the outcome is one: a
reduced ability of the body to perform the gas exchanges necessary to maintain
homeostasis, and thus a major threat to the affected patient’s life. It has been shown
that early detection of the symptoms of respiratory disease leads, and accordingly
early treatment, is generally associated with positive outcomes for patients, which is
especially true for intensive care unit (ICU) patients who are often at greater risk
of developing these conditions than the general population [2, 3]. One common
condition that affects a large number of ICU patients is acute respiratory distress
syndrome (ARDS) [4]. Much research has been done in order to better understand
the mechanisms through which ARDS is manifested and the treatment methods that
produce the best outcomes, with no clear consensus [5, 6]. The ”Berlin Definition”
set down a number of markers for ARDS diagnosis and severity stratification and
has been widely adopted in ICUs, paving the way for improvements in treatment [7].

On the other hand, as the technology to collect, store, and manage medical
information becomes more accessible, large repositories of medical data become
more commonplace, setting up the groundwork for ”Medical Big Data” enabling
large-scale research but also sparking discussions of patient privacy [8, 9, 10].
The availability of data does however provide the opportunity to gain knowledge
concerning medical conditions and share it between different institutions and
populations, allowing medical personnel to develop novel treatment methods and to
discover underlying patterns that would have otherwise been difficult or impossible
to detect.

Moreover, as the COVID-19 pandemic threatened to overwhelm healthcare
institutions [11], it became evident that now more than ever there is a need for
algorithmic diagnosis support to help mitigate the effects of such large scale
contagion events which, research shows, are likely to become more common [12].
This culminated in several groups developing classification models with varying

1



1 Introduction

complexities and technologies for automating the COVID-19 diagnosis process [13,
14, 15, 16, 17].

Thus, there is a push from within medical centres towards improving their storage
and computing capacities where possible, and collaborating with research centres
in order to share expertise, while from the other side, researchers seek to use the
available medical data to develop algorithmic diagnosis support systems with the
aim of improving outcomes for patients and reducing stress on hospital staff [13,
18, 19, 20].

In one such attempt to build a diagnostic tool and to analyse the mechanisms
of pulmonary disease progression, researchers at the University of Nottingham,
namely Hardman et al., developed the Nottingham physiology simulator (NPS) [21].
This mechanistic model represented the lungs as a series of differential equations,
and was later expanded through the work of Das et al. to include a mathematical
representation of the cardiovascular system [22]. Further validation of its perfor-
mance in various applications were also done, which will further be discussed in
later sections of this manuscript [23, 24].

Furthermore, research centres have pre-established frameworks for big data
analytics within different domains that take advantage of high-performance comput-
ing (HPC) and efficient communications and storage hardware [25], which sheds
light on opportunities for research using the available medical big data especially
given promising results such as those presented by Kesselheim et al. [26]. Through
the use of these large-scale resources, medical data analysis as well as diagnostic
model development, training, and validation can be accelerated and scaled-up to
unprecedented levels as was shown in the work done by Baek et al. and Jumper et
al. [27, 28].

With the launch of the Smart Medical Information Technology for Healthcare
(SMITH) project, established in 2017 by the German Federal Ministry of Education
and Research (BMBF) to set up the communication framework between medical
institutions and to test out digital solutions for healthcare, and especially through the
use case algorithmic surveillance of intensive care unit patients (ASIC), the NPS is
made available to the participating project members and put to use in developing a
more portable version [29, 30]. Additionally, the COVID-19 pandemic offered a
similar application field to ARDS, and resulted in a wide range of artificial intelli-
gence (AI) tools for its detection becoming freely available for research purposes.
Thus, the Jülich Supercomputing Centre (JSC) makes its HPC resources available
within both of these use cases with the aim of setting up a data analysis and machine
learning (ML) platform specifically designed with medical diagnosis support in
mind.

Given the above, it is evident that there is a need for platforms through which
cooperation between the medical field and AI experts can be made possible. The
proposed platform would provide the necessary tools through which:

• data can be easily stored, cleaned, manipulated, and analysed.

• prospective diagnostic models can be developed, tested, and improved.

• data privacy aspects of dealing with medical information are taken into con-
sideration.

2



1.1 Motivation

• portability and interoperability with existing cloud computing (CC) frameworks
and data science libraries are maintained.

This thesis presents the collection of research and applications done towards
setting up the aforementioned platform, with special attention given to the knowledge
gained along the way. Work on the platform is validated through model reduction
performed on the NPS and experiments where the COVID-Net deep learning (DL)
model, developed by Wang et al. for COVID-19 diagnosis, is retrained on new
data. Additionally, cross-domain research is also described in this thesis through
which were developed the skills that made later work possible.

3



1 Introduction

1.2 Thesis Objectives
The main aim of this thesis is to study the implementation of HPC resources and
ML algorithms for use in biomedical application fields. However, in order to arrive
at the point where these algorithms and resources are implemented, a significant
amount of preparatory work was necessary, especially analysing existing work done
in the field and uncovering gaps within the research that need to be filled, picking
up the skills, techniques, and tools necessary for performing the tasks at hand, and
setting up the environments within which the work will need to be done. The end
goal of this research is to build and validate a data science platform for the analysis
of medical information and the development of ML-based diagnostic models that
takes advantage of HPC resources. In order to gauge the progress towards this
goal, a set of thesis objectives (TOs) are defined. This section provides an overview
of these TOs.

TO1 – Build a knowledge base concerning ARDS and machine learning in biomed-
ical applications

TO2 – Explore potential applications of machine learning algorithms in ARDS
understanding and diagnosis

TO3 – Explore model conversion techniques on the ARDS simulation using differ-
ent network architectures

TO4 – Perform retraining on the COVID-19 detection model using new data

TO5 – Speed up and scale up the developed techniques using the available HPC
resources

Figure 1.1 below illustrates the timeline of the TOs from the beginning of the Ph.D.
research until its end. The diagram highlights the steps taken towards achieving
each TO and includes the necessary techniques, software, and data. The relationship
between the TOs is given through the red horizontal arrows which represent the
knowledge gained in one step being applied directly into the next. Furthermore,
parallel research that does not directly fit into the presented TOs is represented
here as ”Transferable Knowledge from Cross-Domain Research”. This work was vital
to the completion of the later objectives, which justifies its inclusion in the Thesis
outline. Finally, the flow diagram also provides a graphical representation of the
TOs covered by each of the publications listed in Chapter 4.
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1.3 Outline

1.3 Outline
This thesis follows the cumulative format where it highlights the completion of the
TOs through the publications listed in the ”List of Original Publications”. A detailed
description of the structure of this manuscript is thus provided in Section 1.3.1,
followed by a list of the main publications relating to the objectives set out within this
Thesis in Section 1.3.2. A more in-depth look into these publications is provided in
Chapter 4 while the other publications not directly relating to the work done by the
Thesis author or where their participation was marginal are provided in the ”Other
Publications”.

1.3.1 Thesis Structure

This manuscript is organised as follows:

• Chapter 1 introduces the scope of this thesis, sets down the thesis objectives,
and describes the relationship between these objectives and the published
works mentioned in later sections of the thesis.

• Chapter 2 provides relevant information that sets the groundwork over which
the work described in this thesis is built. This information is also part of the
overall knowledge collected during work on TO1.

• Chapter 3 describes relevant research that highlights similar approaches
to the ones described in this thesis, and defines the state-of-the-art of the
technology and approaches within the field.

• Chapter 4 presents in-depth descriptions of the conference and journal
publications, including those that are currently pending submission.

• Chapter 5 summarises the manuscript and provides a brief outlook of future
work.

• Afterwards, The publications listed in Section 1.3.2 are presented in full.

• The thesis ends with the bibliography section listing all the relevant literature.

1.3.2 Publications

The publications listed in the ”List of Publications” are presented in full towards the
end of this Thesis. These publications are as follows:

• Paper I
C. Barakat, S. Fritsch, M. Riedel, and S. Brynjolfsson, ‘An HPC-Driven Data
Science Platform to Speed-up Time Series Data Analysis of Patients with the
Acute Respiratory Distress Syndrome’, in 2021 44th International Convention on
Information, Communication and Electronic Technology (MIPRO), Opatija, Croa-
tia, Sep. 2021, pp. 311–316. DOI: 10.23919/MIPRO52101.2021.9596840.

5



1 Introduction

• Paper II
C. Barakat, M. Riedel, S. Brynjolfsson, G. Cavallaro, J. Busch, and R. Sedona,
‘Design and Evaluation of an HPC-based Expert System to speed-up Retail Data
Analysis using Residual Networks Combined with Parallel Association Rule
Mining and Scalable Recommenders’, in 2021 44th International Convention on
Information, Communication and Electronic Technology (MIPRO), Opatija, Croa-
tia, Sep. 2021, pp. 248–253. DOI: 10.23919/MIPRO52101.2021.9596796.

• Paper III
C. Barakat, S. Fritsch, K. Sharafutdinov, G. Ingólfsson, A. Schuppert, S. Bryn-
jólfsson, M. Riedel, ‘Lessons learned on using High-Performance Computing
and Data Science Methods towards understanding the Acute Respiratory Dis-
tress Syndrome (ARDS)’, in 2022 45th Jubilee International Convention on Infor-
mation, Communication and Electronic Technology (MIPRO), Opatija, Croatia,
Jun. 2022, pp. 368–373. DOI: 10.23919/MIPRO55190.2022.9803320.

• Paper IV
C. Barakat, M. Aach, A. Schuppert, S. Brynjólfsson, S. Fritsch, and M.
Riedel, ‘Analysis of Chest X-ray for COVID-19 Diagnosis as a Use Case for
an HPC-Enabled Data Analysis and Machine Learning Platform for Medical
Diagnosis Support’, Diagnostics, vol. 13, no. 3, 2023, DOI: 10.3390/diag-
nostics13030391.

• Paper V
C. Barakat, K. Sharafutdinov, J. Busch, S. Saffaran, D.G. Bates, J.G. Hardman,
A. Schuppert, S. Brynjólfsson, S. Fritsch, and M. Riedel, ’Developing an
Artificial Intelligence-Based Representation of a Virtual Patient Model for Real-
Time Diagnosis of Acute Respiratory Distress Syndrome’, Diagnostics, Pending
publication, 2023.
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1.4 Contributions
As mentioned in Section 1.2, each publication relates directly to one or more TOs.
It is however necessary to note that these publications were only possible through
completion of literature reviews and coursework which were the central aspects
of TO1 and TO2. Additionally, knowledge gained through cross-domain research
that does not directly relate to the TOs, especially concerning applications of DL
and HPC in object detection from image data, was integral to the completion of
the Thesis and is therefore included in the body of work. The relation between
the publications and the TOs is presented in Table 1.1. In the remainder of this
section, an in-depth discussion of the main contributions of this Thesis is provided,
with emphasis on how the TOs were achieved and how they relate to the published
material. Additionally, the Thesis author’s contributions within each publication is
also highlighted.

In order to accomplish TO1, a survey of the existing literature, tools, and
approaches was done. As part of this step, several potential applications for ML
and HPC within the scope of the SMITH project were determined. As this step is
only concerned with understanding the use case and gaining knowledge of the
available techniques and their feasibility, TO1 is considered completed at the initial
application of pre-processing and ML techniques on the available data.

As part of TO2, a deeper understanding of the data was achieved through a more
thorough application of ML techniques and visualisation. At this step, it became
possible to determine which potential applications from TO1 were feasible. It was
decided at this point to perform a model conversion on the NPS using knowledge
with DL and CC methods acquired through coursework. This step also coincided
with the onset of the COVID-19 pandemic which provided an added opportunity to
test data processing and ML approaches. This in turn became TO4. The work done
within TO2, that is setting up the environments, tools, and techniques, became the
central aspect of the first publication provided below in Section 4.1.

Understanding the NPS was an integral part of successfully performing model
conversion on it and replacing it with a purely ML-based surrogate model. In parallel
to the work on model conversion, a second publication (presented in Section 4.2)
was completed that described the development of ML and DL methods for retail

Table 1.1. Relation of publications to the TOs.

Paper I Paper II Paper III Paper IV Paper V
TO1 × × × ×
TO2 × × × ×
TO3 × ×
TO4 × ×
TO5 × ×

Transferable
Knowledge × × × ×
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1 Introduction

applications. The knowledge gained during this work was an integral part of the
successful completion of TO3 and TO4, as it provided further use cases to test
out the available ML techniques, to become more aware of resource-efficient data-
processing algorithms, and to advance knowledge in setting up environments that
take advantage of parallel processing and graphical processing unit (GPU)-based
resources. Moreover, TO4 concerned the re-training of the COVID-Net model
developed by Wang et al. over new data as a second use case for the established ML
and data science platform. The publication presented in Section 4.3 thus concludes
TO3 and TO4.

Finally, an analysis of the potential speed-up and scale-up to improve the work
done towards TO3 and TO4 was performed. The completion of this work was
designated as TO5 and its completion is related to the two publications presented
in Sections 4.4 and 4.5 which describe the application of large-scale parallel
hyperparameter tuning towards improving the COVID-Net model and the surrogate
simulator, respectively.

8



1.4 Contributions

Figure 1.1. Flow diagram of the Thesis progression including the tasks performed
and tools employed within each objective as well as the related publications.
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Chapter 2

Background

2.1 Machine Learning: Theory and Application
By definition, computer programs are said to ”learn” when they are able to indepen-
dently improve their outputs with exposure to new inputs [31, 32]. Beyond this basic
consensus, there is some debate concerning whether ML falls completely within the
scope of AI or, as some argue, whether it has grown beyond these limits into a field
of its own, building on a base of statistics and probability, and aiming to provide
intelligent solutions for common problems rather than constructing intelligent ma-
chines with broad applications [33, 34]. Generally speaking, ML comprises many
techniques through which it attempts to generalise information from a given input
set [34]; these techniques can be divided into three main categories: unsupervised
learning (UL), supervised learning (SL), and reinforcement learning (RL), which
naturally also have some degree of overlap [35].

In UL, the algorithm explores the data and performs some calculations on it to
extract useful information from it [36]. In this case, the ”teacher” only participates
in the learning process by defining the parameters of the algorithm and the organi-
zation of the input data. This approach to learning has seen extensive commercial
applications for association rule mining tools and recommenders, among others [37].
On the other hand, in SL the ”teacher” needs to provide input data and the ex-
pected outcomes as well as define a certain loss metric and optimization function.
The combination of these parameters and curated data will allow the algorithm
to slowly and iteratively adapt its internal structure until its predictions approach
the expected outcomes [35]. artificial neural networks (ANNs) and support vector
machines (SVMs) are commonly used types of SL techniques. Finally, RL algorithms
perform their optimization task while trying to maximise a certain reward function.
This reward increase as the algorithm moves closer to a desired target and decrease
otherwise [38]. The key difference from SL is that RL does not require the inputs to
be labeled, making it ideal for situations where the expected outcome is unknown
and requires several steps to reach such as in robot motion.

The common aspect of all these approaches is the need for large amounts of
input data which is one of the main reasons why ML is closely associated with the

11



2 Background

field of data mining [37]. In fact, since data mining is the process through which
knowledge is extracted from databases, then it can be said that learning would be
difficult or close to impossible without it [39]. In fact, it is only through the collection,
curation, and analysis of large amounts of data that the major advancements in AI
in the 21st Century have been possible, such as AlphaGo, AlphaFold, RoseTTAFold,
and GPT-3, to name a few prime examples [40, 27, 28, 41].

2.2 High-Performance Computing
High-performance computing (HPC) is a term that describes the technological field
where supercomputers - specially designed machines taking advantage of state of
the art computation, storage, and communication hardware - are applied towards
the solution of complex problems [42]. This is different from high throughput
computing (HTC) where commonly available computing hardware is put to use
performing basic jobs over long periods of time. Within the last 25 years, the
HPC systems in operation have grown both in number and in power, leading to
the establishment of the TOP500 list 1 where the current leader is the Frontier
system at Oak Ridge National Laboratory. This system is the first to achieve 1018

floating point operations per second (FLOPS), and a clear marker of the direction in
which the industry is heading. HPC has been applied towards solving many of the
most computationally expensive tasks, including training AI models for biomedical
applications such as DeepMind’s AlphaFold [27], landcover classification [43],
computational fluid dynamics simulations [44], and processing large scale data for
particle physics experiments [45].

The basic principle of HPC builds on multi-core processors connected to a shared
memory, with each processor receiving a portion of the data and either the totality
of the program as is the case in single instruction - multiple data (SIMD), or only a
portion of the program as in multiple instruction - multiple data (MIMD) [46]. This was
adapted with the introduction of accelerators: hardware having a higher number of
cores than basic processors, suitable for applications with many small computations
in parallel. Eventually the modular supercomputing architecture (MSA) would be
introduced where the amount of storage, processors, and accelerators recruited
can be tuned depending on the task at hand [25]. In all the cases described above,
computational power could be increased by increasing the number of nodes or the
number of cores within each node, but this growth is limited by the communication
overhead between the components and the minimum size that the cores themselves
can physically be (i.e. towards the atomic scale). This is an active area of research
with many proposed innovations aimed at overcoming the foreseen bottlenecks [47,
48, 49].

1https://www.top500.org/
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2.3 Acute Respiratory Distress Syndrome

2.3 Acute Respiratory Distress Syndrome
As mentioned in the introduction of this Thesis, early detection of respiratory disease
onset is essential to improving outcomes for ICU patients [2, 3]. This is especially
true for ARDS which is a common condition that has a high mortality rate, which is
around 40% in the synopsis of the relevant studies [50]. This disease pattern was
first described by Ashbaugh et al. in 1967 [4]. Its definition evolved over the time
and is still under debate [51]. The current generally accepted and used definition
is the ”Berlin Definition”, which was developed by the ARDS Definition Task Force
in 2012 [7]. By these guidelines, patients with a ratio of partial pressure of arterial
oxygen (PaO2) to fraction of inspired oxygen (FiO2) (P/F ratio) below 300 mmHg,
bilateral opacities in chest x-ray (CXR) images, and an acute response following
the initial onset of respiratory symptoms are diagnosed with ARDS. Other reason
for hypoxemia like a cardiac failure or a hypervolemia have to be ruled out before.
Additionally, the severity of the condition increases as the P/F ratio decreases.

Much research has been done towards fine-tuning diagnosis and treatment of
ARDS with little consensus on the most effective method [5, 6, 52]. The most
widespread treatment methods include maintained prone positioning and lung-
protective ventilation, with the possibility of extracorporeal membrane oxygenation
(ECMO) in extreme cases [53, 54, 55]. However, as digitisation of medical records
grows, and as more data from ARDS cases becomes available for analysis, more
information can be gleaned about this condition, its mechanisms, and the means of
its prevention [6, 56].

2.4 COVID-19
At the time of writing this Thesis, almost all countries are still feeling the effect
of, or still actively fighting, the COVID-19 pandemic [11]. The earliest evidence
of the spread of this viral infection could be traced back to the wet markets of
the city of Wuhan, in the Hubei Province in China [57]. The virus at the center
of this global pandemic was the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) [58]. With the increased pressure on the medical infrastructure,
it became clear that quick diagnosis and triage of patients was necessary. These
approaches were especially needed since the most widely accepted means of
diagnosing the condition, reverse-transcription polymerase chain-reaction (RT-PCR),
was time-consuming, required staff to be specially trained for sample collection, and
was initially criticised for its heterogeneous performance [59, 60]. As COVID-19
predominantly manifested as pneumonia, it was expected that typical signs of the
disease would be visible in CXR, which are routinely available diagnostic tools, thus
leading to a breakthrough in diagnosis [61, 62].

Aside from CXRs, sonographic images were also used in COVID-19 diagnosis
as described by Lugara et al. [17], while Elshennawy et al. proposed a method to
predict COVID-19 patient mortality from routinely collected medical data [13]. At the
same time many of these approaches built on or took advantage of ML techniques
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to some success [14, 15, 16], highlighting an application field for this technology
that would simplify quick diagnosis and triaging of patients in the (likely) event of
future pandemics [12].
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Chapter 3

Related Work

3.1 HPC in Medicine
Given that electronic health records (EHRs) are a standard in the medical field, and
finding research groups working on extracting information from physical records
using natural language processing (NLP) [56], the amount of medical data that is
available for analysis is growing. This growth is met with an increase in the use
of HPC resources to process medical ”Big Data”. This is evident in the research
done by Kesselheim et al. who set up and re-trained the ResNet152 DL network on
the open-source COVIDx2 dataset using the Jülich wizard for European leadership
science (JUWELS)3 supercomputing cluster and booster [26].

Similarly, the prediction of protein structure has been the focus of the biannual
critical assessment of structure prediction (CASP) experiment. In the 2020 edition,
Jumper et al. from DeepMind4 implemented their two-stage DL network dubbed
”AlphaFold2” which achieved the highest accuracy on all structure predictions [27].
In order to perform the training of AlphaFold2, the team took advantage of tensor
processing units (TPUs), available through their parent company Google, to handle
the large number of matrix operations. Baek et al. also developed an accurate struc-
ture prediction DL network dubbed ”RoseTTAFold” with comparable performance to
Alphafold2 in some tasks and improved results in protein-protein compounds [28].
The training of RoseTTAFold also took advantage of HPC resources at the University
of Washington.

3.2 The Nottingham physiology simulator
The NPS was developed by Hardman et al. at the University of Nottingham in 1998
as a mathematical model of pulmonary function [21]. Later updates by Das et al.

2https://www.kaggle.com/datasets/andyczhao/covidx-cxr2
3https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels
4https://www.deepmind.com
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3 Related Work

introduced aspects of the cardiovascular system and modelled the gas exchange in
tissue, thus making the NPS a tool capable of simulating patients both under normal
conditions and, more importantly, in disease states [22, 23].

The simulator is built within MATLAB5 as a set of modular functions called by a
main script. The user inputs the number of breathing cycles, number of alveolar
compartments to model, some physiological initial values, and the duration of
the simulation into the main script which in turn initiates a loop and performs
iterative equilibration calculations for each compartment. The final output of the
simulation is a matrix describing the patient state (including parameters of each
alveolar compartment) at the end of every breathing cycle, allowing the use to
visualise the patient’s response. Additonally, the simulation also includes the option
of simulating the effect of medication during the simulation.

The availability of a mechanistic model that could relatively accurately represent
an ICU patient and highlight their response to different types of treatment is a
boon for researchers aiming to better understand the mechanisms of ARDS and to
experiment with novel treatment methods [24, 63].

3.3 ML and DL in Diagnosis Support
Lundervold and Lundervold conducted a survey of ML applications in the medical
field with emphasis on medical imaging [18]. Their list is far from exhaustive, but
the number of applications they highlight is indicative of the growth that this field
has seen. This is partly due to the availability of data for analysis, especially with
the advent of medical Big Data, and partly due to the ease with which models can
be built and trained. That is not to say that the growth of EHRs does not have its
drawbacks, especially in terms of threats to patient privacy [8, 10].

Shillan et al. provide a review of the current applications of machine learning
in the analysis of ICU data, mainly to predict mortality or to aid in diagnosis, and
highlight an increasing rate at which research in this field is being done [19]. One
such research was conducted by Sun et al., who developed a diagnostic model that
can extract information from medical images and clinical transcripts, thus aiding in
the analysis of medical Big Data and reducing workload on hospital staff [20].

This growth in medical ML applications has still not slowed down, especially with
the onset of the COVID-19 pandemic, where quick diagnosis was necessary both to
improve patient outcomes and to reduce the strain on the healthcare infrastructure.
Many of the models built to assess risk or provide diagnostic assistance took advan-
tage of ML and especially DL and trained on the large scale medical databases of
medical [13, 14]. Of these models we specifically highlight COVID-Net, developed
by Wang et al. in the next section.

5https://www.mathworks.com/products/matlab.html
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3.4 COVID-Net

3.4 COVID-Net
Wang et al. developed COVID-Net in 2020 at the height of the COVID-19 pandemic
with the intention of providing a portable and accessible diagnosis support model
for improved and accelerated patient screening [14]. Their approach builds on
the residual architecture which was central to the success of ResNets at image
recognition tasks [64], and leverages so-called projection-expansion-projection-
extension (PEPX) design. The team also curated COVIDx6: a database of CXR
images classified into healthy, COVID-19 Pneumonia, and non-COVID-19 Pneumonia
patients.

COVID-Net is built using TensorFlow7 version 1.13 and its build, training, and in-
ference scripts are available online8. After pre-training the model on the ImageNet9
dataset, the authors re-train on the COVIDx dataset and compare the performance to
that of ResNet-50 and VGG-19. Their results show a performance improvement com-
pared to the other networks in terms of accuracy, but also highlight the maintained
portability of their model.

6https://www.kaggle.com/datasets/andyczhao/covidx-cxr2
7https://www.tensorflow.org/
8https://github.com/lindawangg/COVID-Net
9https://image-net.org
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Chapter 4

Summary of Publications

In this section, a summary of the published papers relevant to the doctoral work
is provided. Additionally, the TO(s) they relate to and their main contributions are
described.

4.1 An HPC-Driven Data Science Platform to Speed-
up Time Series Data Analysis of Patients with the
Acute Respiratory Distress Syndrome

C. Barakat, S. Fritsch, M. Riedel, and S. Brynjolfsson, ‘An HPC-Driven Data Science
Platform to Speed-up Time Series Data Analysis of Patients with the Acute Respi-
ratory Distress Syndrome’, in 2021 44th International Convention on Information,
Communication and Electronic Technology (MIPRO), Opatija, Croatia, Sep. 2021,
pp. 311–316. DOI: 10.23919/MIPRO52101.2021.9596840.

This publication fulfills the requirements of TO2 concerning the analysis of poten-
tial applications of ML methods towards the understanding - and eventually diagnosis
- of ARDS. Additionally, the knowledge gained during the first TOs was integral to
the completion of the work done as part of this publication.

The paper describes the initial development of the HPC-enabled Machine Learn-
ing and Data Science Platform within which much of the remainder of the doctoral
work was done. This paper was presented at the 44th annual International Con-
vention on Information, Communication and Electronic Technology (MIPRO) held
remotely on September 27 to October 1, 2021.

Given the growth of EHR and the difficulty of analysing all the medical data
that is being stored [9, 10], researchers are looking towards automation to be able
to analyse and extract relevant information from these large databases in order
to advance the healthcare sector and improve outcomes for patients. However,
automation can not happen without the involvement of medical experts, who in turn
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can not be expected to become knowledgeable in data mining, ML, or HPC. For
these reasons, this paper presents an HPC-enabled data science platform where
data scientists can collaborate with medical personnel to store, manipulate, and
visualise data, develop diagnostic models, and potentially uncover new treatments.
The platform is validated through a comparative analysis of time-series prediction
ML models with the intention to assist in the diagnosis of ARDS.

The data storage and analysis aspect of this research begins with making the
medical information mart for intensive care - III (MIMIC-III) database available within
the dynamic exascale entry platform (DEEP) cluster at JSC. Given the number of
missing values in the data, it was necessary to apply some data manipulation steps
including re-sampling and interpolation. Additionally, and in order to set up the
ML part of the experiment, it was necessary to get acquainted with the proper
modules to load within the cluster implementation of a Jupyter10 Notebook. The
data from selected parameters was then fed into different ML model designs to
predict future values. The selected model designs were based on gated recurrent
units (GRUs), 1-dimensional convolutional neural networks (CNNs), and a hybrid
of both approaches. Figure 4.1 presents an outline of the different elements that
make up the developed platform as well as the applications where some of these
components were applied.

While setting up the platform, it was necessary to understand how to build and
customize a Jupyter kernel with a specific goal in mind. This step would prove
useful for later publications and their related TOs. Additionally, given the scale of
the MIMIC-III database, storing and manipulating the data was greatly simplified
through the use of a platform with access to HPC resources and online storage. The
platform also simplified training the ML models due to the availability of GPUs within
the compute nodes. The resulting models showed some predictive capabilities with
the 1-Dimensions CNN being the simplest to build and fastest to train.

The results above provide a proof of concept for a platform for developing
ML models for medical applications. Additionally, the use of GPU-enabled Jupyter
Notebooks makes parallel computing more accessible to researchers interested
in large scale medical data analysis without requiring them to gain knowledge in
parallel programming concepts.

10https://jupyter-jsc.fz-juelich.de
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4.2 Design and Evaluation of an HPC-based Expert
System to speed-up Retail Data Analysis using
Residual Networks Combined with Parallel Asso-
ciation RuleMining and Scalable Recommenders

C. Barakat, M. Riedel, S. Brynjolfsson, G. Cavallaro, J. Busch, and R. Sedona,
‘Design and Evaluation of an HPC-based Expert System to speed-up Retail Data
Analysis using Residual Networks Combined with Parallel Association Rule Mining
and Scalable Recommenders’, in 2021 44th International Convention on Information,
Communication and Electronic Technology (MIPRO), Opatija, Croatia, Sep. 2021,
pp. 248–253. DOI: 10.23919/MIPRO52101.2021.9596796.

This publication does not directly fulfill specific TOs, but rather provided the
practical experience necessary to perform efficient large scale data analysis, and to
build, train, and test DL models and other ML techniques.

In this paper, a platform is built in the same way as the data science platform
described in Section 4.1 above. The platform validation is done through analysis of
data obtained from retail partners within the ON4OFF project, extracting relevant
information to improve sales, and building models that would simplify the search
function within the partners’ websites. The results were presented at the 44th
International Convention on Information, Communication and Electronic Technology
(MIPRO).

The COVID-19 pandemic forced brick-and-mortar stores to shut their doors to
customers and bring their business onto the Internet or risk closing indefinitely. Thus
the ON4OFF project was established to set up platforms where online services could
be made available to previously offline stores include product recommendations
and improved search.

The data provided from retail partners included transaction data from their
stores over a given period of time from which sales information would need to be
extracted, and images of their products that would be used to improve their search
function. The proposed solutions were to generate product recommendations from
the transaction data using association rule mining algorithms while the image data
would undergo two different analyses in order to extract metadata concerning shape
and colour which would be used as tags for improved search functionality. In a
similar approach to that discussed in Section 4.1, a platform is set up with the
necessary hardware, storage space, and modules to perform the necessary tasks.
The mlxtend11 module is used to build frequent itemsets and perform the necessary
calculations to extract association rules from the 8 million transactions available.
Clustering is used to extract colour information from the product images while the
ResNet50 DL model is fed these images to generate predictions concerning shape
and recognisable features.

11http://rasbt.github.io/mlxtend/
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Generating association rules from the available data served the purpose of
highlighting efficient use of resources through the application of efficient data struc-
tures, namely sparse matrices. Given the task of finding association rules between
thousands of products over millions of transactions was experimentally shown to be
impossible without the use of the HPC infrastructure. It follows that the outputs from
this task were packaged and made available to the project partners. On the other
hand, applying clustering on the available image data was the best performing and
most resource-friendly approach for color information extraction. Additionally, the
pre-trained ResNet50 with a modified classification layer successfully generated
predictions of object shapes. These two approaches were lightweight enough to be
exported to the project partners and would not require further input from our side
beyond the initial development and/or training.

Figure 4.2 represents the workflow of the retail project, with added information
concerning the data received as input and how it was adapted at every step of the
analysis.

Through the results discussed above, the HPC-enabled platform for retail appli-
cations was validated; it provided the necessary infrastructure to extract information
and build models that would improve retail services. Additionally, this task was an ex-
ercise in resource-efficiency, organisation, collaboration, and proper programming
technique, all of which were useful for the remainder of the doctoral work.
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Figure 4.1. The structure of the developed machine learning and data science
platform.

23



4 Summary of Publications

Figure 4.2. Flow diagram of the service modules within the developed platform for
retail.
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4.3 Lessons learned on using High-Performance Com-
puting and Data Science Methods towards un-
derstanding the Acute Respiratory Distress Syn-
drome (ARDS)

C. Barakat, S. Fritsch, K. Sharafutdinov, G. Ingólfsson, A. Schuppert, S. Brynjólfs-
son, M. Riedel, ‘Lessons learned on using High-Performance Computing and Data
Science Methods towards understanding the Acute Respiratory Distress Syndrome
(ARDS)’, in 2022 45th Jubilee International Convention on Information, Communica-
tion and Electronic Technology (MIPRO), Opatija, Croatia, Jun. 2022, pp. 368–373.
DOI: 10.23919/MIPRO55190.2022.9803320.

The work described in this publication builds on the skills developed through
completion of TO1 and TO2, as well as the experimental approaches described in
Section 4.2 above. Through this research, TO3 and TO4 would be achieved where
an analysis of machine learning techniques for ARDS diagnosis is performed and
where an initial re-training of the COVID-Net model on new data is done. Finally, the
described experimental procedures set the scene for the work to be done towards
completing TO5.

Continuing the work described in 4.1, this paper discusses the work to be
done in converting the NPS to a ML-based model, especially in terms of data
preparation. In parallel, the results from an analysis of the COVID-Net model with
newly obtained data from research partners e*HealthLine (EHL) are also presented.
This publication was presented at the 45th Jubilee International Convention on
Information, Communication and Electronic Technology (MIPRO) which was held as
a hybrid conference on 23 to 27 May, 2022.

Given a deeper understanding of how the NPS operates, especially in terms of
the expected inputs and the generated outputs, as well as the knowledge gained from
the literature reviews concerning the ARDS disease pattern, the path towards the
diagnostic model became clear: the MATLAB-based simulation would be replaced
with an equivalent, but more portable and open ML model. This conversion would
not only require the model to be built, but also the data for its training to be
generated since the MIMIC-III data is far from representative. On the other hand,
and as part of supervising the Masters thesis work of G. Ingólfsson, the COVID-Net
DL model performance on newly obtained data would be tested and then improved.
This use case would highlight the developed data science and ML platform as an
effective tool for developing diagnostic models in times of crisis.

The use of HPC in speeding up and scaling up the research was a central part of
the paper. Thus, the MATLAB simulation would be converted to C, making it easily
parallelisable on the supercomputing cluster, and setting it up as a tool to generate
data for upcoming research. The process of generating synthetic inputs is also
discussed, with special emphasis on the computational complexity of the task and
the need for an efficient solution. In parallel, a separate environment is set up with
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Table 4.1. Execution time of the simulation.

Platform Execution Time
Original Simulation on Laptop 259.1 s
C in serial on DEEP with JupyterLab 108.8 s
C in parallel on DEEP on 48 CPUs 100.79 s

the necessary modules and storage for storing and running the COVID-Net model;
several experiments are conducted following the cross industry standard process
model for data mining (CRISP-DM) in order to select the best performing version of
the model given the available data [65]. The chosen model is used to classify the
newly obtained images, then retrained on a subset of this data to highlight how the
performance is affected.

Converting the NPS cause an extreme reduction in the length of individual
simulations as shown in Table 4.1. Furthermore, by running multiple simulations in
parallel, the average duration of a simulation is further reduced, thus highlighting the
speed-up that the platform can offer. Similarly, by analysing the available MIMIC-III
data, a sampling method for generating synthetic data is proposed, although it
poses the risk of overloading even the HPC system. This problem would require
a solution that takes advantage of statistical methods and would be the subject of
later research. Finally, the performance of the COVID-Net model before and after
retraining is analysed and a clear difference is highlighted in Figure 4.3. This
improvement is also shown to be extremely dependent on a number of parameters,
which sets the path towards TO5.

Figure 4.3. Prediction performance on a test set of the EHL dataset (a) before and
(b) after training.
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The paper described in this section provided the conclusive results that HPC
is necessary for the research being done. The training of the COVID-Net model
was accelerated using the available computing resource, while the parallelised NPS
makes it possible to run multiple simulations simultaneously, thus generating more
data for the proposed DL surrogate model.
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4.4 Analysis of Chest X-Ray for COVID-19 Diagnosis
as a Use Case for an HPC-enabled Data Analy-
sis and Machine Learning Platform for Medical
Diagnosis Support

C. Barakat, M. Aach, A. Schuppert, S. Brynjólfsson, S. Fritsch, and M. Riedel,
‘Analysis of Chest X-ray for COVID-19 Diagnosis as a Use Case for an HPC-Enabled
Data Analysis and Machine Learning Platform for Medical Diagnosis Support’, Diag-
nostics, vol. 13, no. 3, 2023, DOI: 10.3390/diagnostics13030391.

This journal article partially fulfills TO5 especially concerning speed-up and
scale-up of the work done on re-training the COVID-Net model with newly obtained
data from industry partners which was done to fulfill TO4. Additionally, this work is
the culmination of the other TOs and the knowledge collected along the way.

The results from the paper summarised in Section 4.3 highlighted the potential
for improvement in the performance of the COVID-Net model, leading to an
analysis of available methods for model tuning that take advantage of the available
supercomputing resources. It follows that several researchers have discussed the
implementation of hyperparameter tuning to improve ML models such as Zhang et
al. with their work on Alzheimer’s Disease data [66], and Farag et al. with their
applications on ResNets and Xception networks for COVID-19 diagnosis [67]. From
there, it seems evident that further experimentation should be done towards scaling
up the hyperparameter tuning process for the COVID-Net model. The goals of this
analysis would be to highlight the speed-up of the tuning process, especially in
terms of covering more ground in the parameter search process.

We consider the Ray12 Tune library, and the KerasTuner13 library for the hyper-
parameter optimization step due to prior successful experience within the team.
Furthermore, given the extensive documentation available for Ray Tune and especially
due to its compatibility with Tensorflow 1.13 (the version used to build COVID-Net),
it is implemented in the remainder of this work. The parameters to tune are selected,
namely the class weights, learning rate, and the COVID-19 percentage, and the
tuning process is performed as a comparative analysis of 4 scheduling algorithms
that are built into the Ray library. Aside from the default first-in, first-out (FIFO)
scheduler used here as a control, each of the selected algorithms approaches the
tuning process in a different manner: HyperBand and Asynchronous HyperBand
rely on early stopping of underperforming trials to make the process more resource-
efficient, with Asynchronous HyperBand also implementing a successive halving
approach [68, 69], and population-based training (PBT) introduces perturbations at
a set point during the process to expand the search space [70]. All of the tuning
trials took advantage of parallel computing on the developed data science and
machine learning platform discussed in Sections 4.1 and 4.3.

12https://www.ray.io/
13https://keras.io/keras_tuner/
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and Machine Learning Platform for Medical Diagnosis Support

Figure 4.4. Prediction performance heatmaps for COVID-Net on the EHL dataset
after re-training on the parameters chosen by (a) FIFO, (b) HyperBand, (c)
Asynchronous HyperBand, and (d) PBT.

Figure 4.4 presents the prediction performance of the models trained using the
best parameter combinations selected by each scheduler. The Asynchronous Hyper-
Band and PBT schedulers produced models that improved the per-class accuracy of
the COVID-Net model, especially in the case of pneumonia where the pre-tuning
performance (Figure 4.3(b)) was noticeably improved. The remaining approaches
under-performed, which highlighted the need to further analyse the chosen success
metric over which the best trials are selected. A final experiment is performed
to highlight the potential speed-up that can be achieved using the Horovod14 dis-
tributed training framework. The training durations are presented in Figure 4.5
which highlights the fact that there is an upper limit at which the communication
overhead between the recruited resources begins to affect performance.

The research presented in this paper was an initial foray into the use of hyperpa-
rameter optimization for improving the performance of ML models. Additionally, it
sets up some of the groundwork for the final publication presented in Section 4.5
where a ML-based ARDS diagnosis model is developed, trained, and validated.

14https://horovod.ai/
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4 Summary of Publications

Figure 4.5. Training duration (in minutes) as more GPU nodes are recruited, (a) on
a linear scale and (b) on a logarithmic scale.
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4.5 Developing an Artificial Intelligence-Based Rep-
resentation of a Virtual Patient Model for Real-
Time Diagnosis of Acute Respiratory Distress
Syndrome

C. Barakat, K. Sharafutdinov, J. Busch, S. Saffaran, D.G. Bates, J.G. Hardman,
A. Schuppert, S. Brynjólfsson, S. Fritsch, and M. Riedel, ’Developing an Artificial
Intelligence-Based Representation of a Virtual Patient Model for Real-Time Diagno-
sis of Acute Respiratory Distress Syndrome’, Diagnostics, Pending publication, 2023.

This journal article fulfills the remaining requirements of TO5, specifically in
terms of large-scale parallel data generation for the ARDS model, the development
and analysis of the surrogate ML model, and the analysis of potential improvements
of the generated model through hyperparameter tuning methods. This publication is
thus the culmination of the work done on the virtual patient model conversion and
builds on all the knowledge gained through completing the previous TOs.

Building on the results of the paper described in Section 4.3, and the technical
knowledge in parallel hyperparameter tuning methods gained during work on the
publication described in Section 4.4, the research presented in this publication
revolves around the process by which different network architectures were tested
in order to choose the best approach for the eventual ML-based surrogate virtual
patient model. The article thus describes the following processes in detail:

• Generate data that mimics available real-world patient data.

• Run the C-based simulation using the generated data to produce the expected
outputs.

Figure 4.6. Histograms comparing the distribution of the generated input data with
that of the original data. The red lines represent the means for each parameter.
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• Perform preliminary testing with the generated inputs and expected outputs
on different neural network architectures.

• Perform large-scale parallel hyperparameter optimization to uncover the best
performing parameter combinations.

• Finally, train the best performing model and validate its performance.

It was necessary to generate data since the MIMIC-III patient data made available
by Sharafutdinov et al. was not sufficient for adequate model training, or for
covering a wide range of patient states [71]. Their analysis of the data does however
provide an insight into the statistical distribution of physiological parameters which,
combined with upper and lower bounds provided through the practical knowledge
of medical personnel, could be used to generate biosimilar synthetic data. A
comparison of the distributions of some parameters is provided in Figure 4.6.

Feeding the generated data as initial patient states into the C-based simulator
produced output values of the parameters after a given time has passed. The outputs

Table 4.2. Input and output parameters of the C-ported virtual patient simulator.

Parameter Description
Input Parameters v_sR, v_inR used to calculate individual compartment

resistance to flow (Rcomp) values
v_sVR, v_inVR used to calculate individual compartment

vascular resistance (VRcomp) values
v_nc number of closed compartments
asht anatomical shunt
RQ respiratory quotient
VO2 oxygen uptake
VDphys volume of physiological deadspace
CO cardiac output
I:E inspiratory to expiratory ratio
Hb hæmoglobin
FiO2 fraction of inspired oxygen
PEEP peak end-expiratory pressure
PEI end-inspiratory pressure
SvO2 venous oxygen blood saturation
RR respiratory rate
Vt tidal volume
BEa arterial base excess

Output Parameters PaO2 partial pressure of arterial oxygen
PaCO2 partial pressure of arterial carbon dioxide
HCO3 bicarbonate concentration
pH blood acidity level
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are indicative of pulmonary impairment and which can be used to determine ARDS
onset, namely PaO2, partial pressure of arterial carbon dioxide (PaCO2), pH, and
bicarbonate concentration. These inputs and expected outputs are combined into a
training dataset that is next used to train several neural networks. Table 4.2 presents
a description of the input and output parameters for the simulator.

Several neural network architectures were considered for building the surrogate
model, although Recurrent Neural Networks (RNNs) were eventually excluded
as the available data is not sequence data. Furthermore, given the experience
applying ANNs and CNNs in the previously described research, they were chosen
as the techniques for the task at hand. Additionally, the intention of this research
is to develop the most portable, simplified, and lightweight approach to building
a surrogate model, which further reinforces the choice of basic neural network
architectures. It follows that the preliminary results showed that the CNN-based
models often outperformed the ANN counterparts, reaching lower loss values in
fewer training epochs with fewer instances of overfitting. It follows that a CNN
model with hyperparameters chosen through trial and error was the most likely
candidate for the next step of the experiment: large-scale parallel hyperparameter
tuning. In this experiment, the parameters to be tuned dictated the network structure
(presence or absence of an intermediate fully-connected layer at before the output
layer), the rate of dropout within the network structure, training parameters such as
the learning rate and the batch size, and finally the loss function (mean absolute
error (MAE) or mean squared error (MSE)).

In similar fashion to the process described in the publication from Section 4.4,
four different schedulers are selected to distribute the tuning trials between the
available resources, and their performance is compared. The HyperBand-based
schedulers were fastest at completing the tasks and, since they stop underperforming
trials, they were deemed the most resource efficient. The PBT scheduler took the
longest to finish due to it running the model training in several iterations with minor
changes to selected parameters. Finally, the best performing parameter combination
of each scheduler is used in training a model in full scale over the available data.
Figure 4.7 showcases the performance of each model and presents the R2 score
for each of the output parameters as an accuracy metric.

The results show that even the best performing parameters chosen through
hyperparameter tuning can lead to an model that overfits, which is the case for
the parameter combinations produced by the FIFO and Asynchronous HyperBand
schedulers. Additionally, the results achieved by these models do not greatly improve
upon the results from the original trial and error approach in terms of loss reduction,
although it is clear that an algorithmic search for best parameter combinations is
substantially more resource-efficient than the trial and error approach, especially
when early-stopping is implemented. Finally, all the trained models have a per-
parameter R2 score greater than 0.9 which, combined with their small footprint and
ease of implementation, make them adequate diagnosis support and early warning
systems for potential disease onset in ICU patients.
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Figure 4.7. Learning curves of the training (blue) and validation (orange) MAE of
the models using the best parameters as selected by each scheduling algorithm,
accompanied by their respective per-parameter R2 score bar graph.

To conclude the summary of this publication, it is necessary to discuss the added
benefit of employing supercomputing resources in the model training process. The
HPC-enabled ML and data science platform developed and discussed in previous
publications provides an adequate and easily adaptable environment for data
processing and model development, as it eliminates the resource limitations of
personal computers and smaller scale architectures. This is also done without
losing track of the portability and ease of implementation of the platform itself
within different environments, including containers and cloud computing resources.
Additionally, the specific application described herein serves as a definitive proof
that the platform is applicable for the massively parallel development, training, and
deployment of models; these in turn can be easily exported for offline use and
implementation in clinical routine. This work thus paves the way for future research
where larger and more representative models are developed and tested within the
platform.
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Chapter 5

Conclusions

Through the digitisation and collection of health records, the healthcare sector has
set up the groundwork for Medical Big Data, a treasure trove for data scientists
looking to extract new information and for ML researchers aiming to improve current
technologies in the field and to develop the next generation of diagnostic support
tools. This growth was made possible through the use of novel techniques and
materials in electronic storage media and processing hardware which have also
been the driving factors to the advancements in HPC. In fact, the race to exascale
computing has already been won and the next target has already been selected.
With the increase in computing power, more advanced ML models have been
developed, many of which making their way into commonplace use such as in
autonomous driving, improving search engines, and providing medical diagnosis
assistance.

Additionally, with compute resources being made available to the general
public through commercial CC services, and as more work is done towards the
development of open-source software that take advantage of these resources, the
research in this field is made more accessible to institutions that would otherwise
not have access to these technologies. This Thesis compiles the research done
within these fields towards the establishment of a modular, adaptable data science
and ML platform within which novel diagnostic models and tools can be developed
and improved, and which takes advantage of both HPC resources and open-source
software to achieve the task. The validation of this platform was also presented
herein as the central aspects of published material.

The research described in this manuscript is presented in the form of five TOs,
the successive accomplishment of which designates progress through the doctoral
research as well as the advancement of knowledge of the Thesis author in the field.
These TOs are described below:

TO1 – Build a knowledge base concerning ARDS and machine learning in biomed-
ical applications

TO2 – Explore potential applications of machine learning algorithms in ARDS
understanding and diagnosis
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TO3 – Explore model conversion techniques on the ARDS simulation using differ-
ent network architectures

TO4 – Perform retraining on the COVID-19 detection model using new data

TO5 – Speed up and scale up the developed techniques using the available HPC
resources

The main tasks of TO1 were to collect information concerning the medical
condition in question, namely ARDS, as well as the research done towards its
diagnosis and treatment. Additionally, an analysis of the available approaches
to data processing and clustering was done as well as a survey of available ML
methods for information extraction, forecasting, and prediction. This work paved
the way for application as part of TO2 where the first steps towards setting up the
aforementioned HPC-enabled ML platform were taken.

Completion of TO2 was determined through the first publication, and provided a
stepping stone for the experiments conducted towards TO3 and 4 which concerned
the implementation of the platform for model conversion and model improvement
tasks, respectively. These two tasks were the core of a publication and would further
be studied as part of the final TO revolving around the improvement of the models
through the HPC resources within the established platform. TO5 would yield two
publications, one relating to the work done on improving the COVID-19 diagnosis
model, and the other presenting the work done on converting the NPS to a ML
simulation that would potentially aid in, and accelerate ARDS diagnosis.

Future Work
Given all of the above, it is self-evident that more work needs to be done to improve
the platform for a wider spectrum of applications by finding new use cases and
incorporating new tools and techniques. In particular, implementing the platform
for the development or improvement of larger models is one of the main use cases
expected within upcoming projects. That is not to say that work on improving ARDS
diagnosis will stop; in fact, this work will be made available to other researchers
within the scope of the SMITH project, thus making new clinical data available with
which to test the model, and inviting scrutiny from experts in a wide variety of fields.

On the other hand, the majority of the ML models analysed or developed during
this doctoral work were developed through Keras15, an application programming
interface (API) for TensorFlow. This approach may not be the fastest or most resource-
efficient which makes the search for other ML frameworks the logical next step.
During the doctoral work, PyTorch16 was gaining in popularity as a ML framework,
making it the most likely candidate.

Finally, although the platform discussed herein is designed to be portable, it
would be an interesting exercise to implement it within different distributions or

15https://keras.io/
16https://pytorch.org/

36

https://keras.io/
https://pytorch.org/


compute resources in order to determine the elements that would need to be tuned or
completely changed. This also highlights the need to compile some documentation
for the platform in order to help in future implementations and troubleshooting.
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Abstract—An increasing number of data science approaches
that take advantage of deep learning in computational medicine
and biomedical engineering require parallel and scalable algo-
rithms using High-Performance Computing systems. Especially
computational methods for analysing clinical datasets that con-
sist of multivariate time series data can benefit from High-
Performance Computing when applying computing-intensive Re-
current Neural Networks. This paper proposes a dynamic data
science platform consisting of modular High-Performance Com-
puting systems using accelerators for innovative Deep Learning
algorithms to speed-up medical applications that take advantage
of large biomedical scientific databases. This platform’s core
idea is to train a set of Deep Learning models very fast
to easily combine and compare the different Deep Learning
models’ forecast (out-of-sample) performance to their past (in-
sample) performance. Considering that this enables a better
understanding of what Deep Learning models can be useful
to apply to specific medical datasets, our case study leverages
the three data science methods Gated Recurrent Units, one-
dimensional convolutional layers, and their combination. We
validate our approach using the open MIMIC-III database in a
case study that assists in understanding, diagnosing, and treating
a specific condition that affects Intensive Care Unit patients,
namely Acute Respiratory Distress Syndrome.

Keywords—High-Performance Computing; MIMIC-III
database; Acute Respiratory Distress Syndrome; modular
supercomputing; data science platform

I. INTRODUCTION

The technology involved in collecting, storing, and pro-
cessing information has advanced to such an extent that we
have at our disposal data on almost every aspect of the
world we can observe; this is true on a Universe1 ,2, global3,
local4, or personal level. This abundance of data means that
Machine Learning (ML) experts can use new innovative tools
to improve their sequence models, for example, improving
Natural Language Processing (NLP) algorithms by process-
ing open-access literature5. New ML methods are increasing
image processing algorithms’ accuracy with labelled open-
source photographic data [1] and enhancing weather prediction
protocols with long and detailed weather records that go back
several decades3. Specifically, in the medical field, Electronic

1https://exoplanetarchive.ipac.caltech.edu/index.html
2https://ai.googleblog.com/2018/03/open-sourcing-hunt-for-exoplanets.html
3https://www.ncdc.noaa.gov/cdo-web/
4https://www.europeandataportal.eu/data/datasets/10532954-7c62-44d4-826a-

34642954e394?locale=en
5https://www.elsevier.com/connect/new-open-access-resource-will-support-
text-mining-and-natural-language-processing

Health Records (EHRs) have made it easier to group data
of many patients diagnosed with the same conditions from
several hospitals, countries, and even time periods to highlight
previously overlooked markers that could improve treatment
or accelerate diagnosis [2]. Applying ML and Deep Learning
(DL) techniques to this data has the potential of uncovering
underlying correlations that would otherwise require several
researchers several years to piece together [3]. All the above
relevant methods and techniques for medical data sciences
have in common that we observe a significant increase in
the requirement of having larger computing capacity available
(e.g., HPC for distributed training of deep learning networks).

This paper addresses the increased complexity that medical
experts experience when interacting with High-Performance
Computing (HPC) resources which are becoming more widely
available in academic centers and accessible through public
cloud resources as well. That also includes an increase in the
power of HPC resources available through research institu-
tions, clinics, and hospitals. Aside from their regular duties,
medical experts have to learn to navigate these resources in
order to perform their analyses as opposed to the traditional
data analysis performed on personal computers. This paper
thus describes one flexible platform approach wherein this
problem is mitigated and there is no need for medical experts
to pick up any specialised high-level programming skills. Fur-
thermore, today, it is possible to scale medical applications of
the above-mentioned DL and ML techniques in a way that fits
the growing size of the data available through EHRs. But the
quality of the data stored in EHRs represents another challenge
for medical experts in the data analysis process. It varies
between institutions due to different reporting standards or
sensor configurations, while in parallel, several EHR standards
are currently being used in hospitals, adding another layer
of complexity to the equation and ultimately influencing the
quality of any data analysis task.

This paper addresses these challenges by proposing an
HPC-enabled platform that assists in data preparation and
understanding to help medical professionals by taking advan-
tage of algorithmic techniques and efficient computing and
storage resources. We use one specific medical condition as a
driving use case for the design and evaluation of this platform.
Hence, our platform employs ML and DL models in the
analysis of patient information to predict missing values in
medical datasets while keeping the technical complexity to a



low degree. This model aims to assist in the understanding,
diagnosis, and treatment of a specific condition that affects
Intensive Care Unit (ICU) patients, namely Acute Respiratory
Distress Syndrome (ARDS) while not losing sight that this
platform can be used for other medical conditions.

The remainder of this paper is structured as follows. Related
work is reviewed in Section II and Section III provides brief
overviews on medical and technological methods required
to understand the paper. Section IV describes the dynamic
data science platform tailored to support clinical researchers
in understanding ARDS. While Section V reveals our data
analysis approaches, followed by our evaluations and findings.
This paper ends with some concluding remarks.

II. RELATED WORK

In this section we survey related works that are relevant
in context (e.g., simulators of disease progression, machine
and deep learning approaches, etc.). The research by Wang et
al. showed the importance of using mathematical modeling
in the treatment of chronic obstructive pulmonary disease
patients (COPD). Their approach employed a physiological
simulator of the cardiopulmonary system, tuned to replicate
the responses of COPD patients, in order to test mechanical
ventilation protocols in silico[4]. Their work builds on original
work by Hardman et al. who initially developed a physio-
logical simulator of the respiratory systems of a patient that
was capable of accurately representing responses to changes in
mechanical ventilation maneuvers[5]. Das et al. describe the
development, testing, and validation of a virtual patient model
that can accurately mimic the physiological state of ARDS
patients[6]. Their work is a continuation of the work on the
physiological simulator described in the work by Wang et al.

In terms of applications of machine and deep learning
techniques in the context of ARDS analysis, Le et al. trained
a gradient boosted tree model using the Medical Information
Mart for Intensive Care - III (MIMIC-III) database that would
provide an early prediction model for ARDS. Their model
could accurately detect onset of ARDS, and had a relatively
high predictivity of the condition up to 48 hours before
onset[7]. Che et al. employed the MIMIC-III database, as
well as synthetic data, in the development and testing of
a novel Recurrent Neural Network (RNN)-based mortality
prediction and classification model. Their GRU-D model is
based on the Gated Recurrent Units (GRUs) discussed earlier
in this paper, with an trainable decay mechanism and an
application of "informed missingness" that take advantage of
some of the inherent properties of medical timeseries data (i.e.
homeostasis) in order to accommodate missing values[8].

Finally, Punn et al. fine-tuned and compared the perfor-
mance of several current deep neural networks in diagnosing
COVID-19 from chest X-ray images. The models were tested
for binary classification in order to find out whether COVID-
19 is detected or not, as well as for multi-class classification
where the model would distinguish between healthy, COVID-
19, and pneumonia patients, highlighting the NASNetLarge-
based model as superior to the other proposed models [9].

III. MEDICAL AND TECHNOLOGICAL METHODS

A. Acute Respiratory Distress Syndrome (ARDS)
ARDS is a medical condition that affects an average of 1-

2% of mechanically-ventilated (MV) ICU patients and has a
40% mortality rate [10, 11]. At present, the leading protocol
for diagnosing this medical condition is the Berlin definition
that defines the onset of ARDS as a prolonged ratio of arterial
oxygen potential to fraction of inspired oxygen (P/F ratio) of
less than 300 mmHg, and the lower this value is determined to
be, the more severe the diagnosis is [12]. Several papers have
determined a correlation between early detection of the onset
of ARDS and the patient’s survival, highlighting the need for
early detection and treatment of the condition before the onset
of sepsis and multi-organ failure [11, 13, 14]. Also, several
MV protocols stabilise and remedy the lung injury at the root
of ARDS with the most promising being the ’low tidal volume’
and ’high Peak End-Expiratory Pressure (PEEP)’ ventilation
[13, 15, 16]. However, these procedures depend significantly
on the ICU personnel and are considerably subjective to each
case. For this reason, an algorithmic approach seamlessly
accessible through a platform that provides early warning
and informs medical staff of mitigating procedures can be an
extremely beneficial tool in the hands of ICU personnel.

B. Large Medical Databases for Scientific Research
The computationally powerful data platform’s requirements

are driven by our German Smart Medical Information Technol-
ogy for Healthcare (SMITH)6 project, with more than seven
university hospitals and clinics taking part in it to deploy those
solutions in daily medical care. The activities related to the
realization of such a platform are part of the Algorithmic
Surveillance of ICU patients (ASIC) use case in the SMITH
project. The goal of ASIC relies in applying modern technolo-
gies to the healthcare system [17]. This use case’s specific
focus is to work with ARDS-related patient datasets, process
them, analyse them, and understand the correlations between
the features to predict outcomes from small changes in phys-
iological parameters. The evaluation of the design of such an
HPC-driven data science platform requires to access datasets
that are very close to real datasets in those clinics. However,
using the medical datasets directly from involved SMITH
clinics is subject to many regulations (in terms of availability
for research and anonymisation requirements), especially for
publications. Instead, we take advantage of the freely available
ICU patient data provided in the MIMIC-III database, com-
piled between 2001 and 2012 from patient admissions to the
Beth Israel Deaconess Medical Center in Boston, MA [18].
Thus, the procedure is to build and test our platform using
patient data from the MIMIC-III database, then verify our
results using patient data collected from hospital participating
in the SMITH project once available. After the platform and
its models are assessed and found useful, the platform is rolled
out with developed models for implementation in ICU for real-
time usage subject to a more extensive medical certification
foreseen in the SMITH project.

6https://www.smith.care/



Figure 1. HPC-based data science platform design for medical applications for seamless access by non-technical medical
experts.

C. Experimental HPC Setup for the Platform
Given the use of sophisticated DL models, our HPC-driven

data science platform’s computational requirements are high
for training models. Simultaneously, hospitals and clinics
can run the platform locally with trained models to perform
inference (i.e., much less computationally demanding) on real
patients in the future. That avoids data transfers of critical
patient datasets during the platform models’ real usage and
is a vital requirement. Our platform’s HPC design elements
take advantage of the Modular Supercomputing Architecture
(MSA) [19] developed by the DEEP series of projects7. While
the platform’s experimental evaluation uses the Data Analytics
Module (DAM) module (cf. Table I for selected technology
specifications) of the MSA-based DEEP prototype8, our plat-
form can also leverage the MSA-based JUWELS9 system to
scale to larger models.

TABLE I. SPECIFICATIONS OF THE DEEP-EST DAM
PROTOTYPE

CPU 16 nodes with 2x Intel Xeon Cascade Lake
Hardware Acceleration 16 NVIDIA V100 GPU

16 Intel STRATIX10 FPGA PCIe3
Memory 384 GB DDR4 CPU memory /node

32 GB DDR4 FPGA memory /node
32 GB HBM2 GPU memory /node

Storage 2x 1.5 TB NVMe SSD

IV. HPC-BASED PLATFORM DESIGN ELEMENTS

The HPC-based data science platform (see Fig. 1 A) can
be seamlessly used by medical experts to perform essentially
two different activities that are ’ARDS Time Series Analysis
and Model Training’ (see Fig. 1 B) and ’ARDS Time Series
Analysis and Model Inference’ (see Fig. 1 C). It is important
to understand that the former performs model training on the
Juelich Supercomputing Centre (JSC) HPC and AI Exascale

7https://www.deep-projects.eu/
8https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/DEEP-EST/_node.html
9https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/

JUWELS_node.html

Figure 2. Covid-19 Chest X-Ray and ARDS Analysis
Platform Environment.

infrastructure (see Fig. 1 D), while the latter is performing in-
ference on patients on Hospitals moderate HPC infrastructure
(see Fig. 1 E).

A. Data Science Platform Design Blueprint
For model training our platform used the MSA-based DEEP

DAM system (see Fig. 1 F) while we already started to use
also the MSA-based JUWELS system (see Fig. 1 G). The
deployment of trained models (see Fig. 1 top right) is foreseen
to be done using the Singularity10 container environment on
JUWELS (see Fig. 1 H)11 that is interoperable with Docker-
based solutions. We expect to run Docker12 container envi-
ronments (see Fig. 1 I) at Hospital computational and storage
resources (see Fig. 1 J). The platform uses a git-based data
management system called DataLad13 (see Fig. 1 P) to enable
a transparent and trackable access to patient datasets on the
premises at the hospital, while also the JSC infrastructure takes
advantage of DataLad in context of MIMIC-III datasets stored
in the Scalable Storage Service Module (SSSM) [19] of the
MSA (see Fig. 1 Q). Hence, the model inference with real
patient data will take place within the hospital moderate HPC
environment that is not a problem because inference itself
is not very much computational expensive (i.e., especially
when only some patients of the ICU are daily analysed).

10https://singularity.lbl.gov/
11https://apps.fz-juelich.de/jsc/hps/juwels/container-runtime.html
12https://www.docker.com/
13https://www.datalad.org/



Figure 3. Comparison of the different model structures.

As it is difficult to obtain an ’informed consent’ as outlined
in the General Data Protection Regulation (GDPR)14 from
many patients of the ICU our platform deployment approach
convinces medical experts.

The platform supports the training of ARDS time series
data (see Fig. 1 bottom right) via traditional machine learning
models that are using MPI and OpenMP (see Fig. 1 K) via
the Cluster modules [19] of the DEEP and JUWELS systems
using high single-thread performance CPUs (see Fig. 1 S).
Those models are used to exploit a new innovative platform
approach of using Network Attached Memory (NAM) [19]
for model sharing in teams (see Fig. 1 R) without the need
to store data analysis results (e.g., hyper-parameter tuning
or ’gridsearch’ results to disk). More notably, deep learning
training is supported by offering cutting edge many-core
processors and accelerators such as Nvidia GPUs (see Fig. 1 T)
as part of the Booster modules [19] of the DEEP and JUWELS
systems. The tensor cores of those systems are available by
using libraries such as cuDNN (see Fig. 1 O) in conjunction
with powerful deep learning libraries (see Fig. 1 M) such
as pyTorch15, TensorFlow16, and Keras17. Our platform is
even more powerful when considering that distributed deep
learning training is possible via multiple GPUs using tools like
Horovod18 or DeepSpeed19 which are available as modules
within the HPC environment (see Fig. 1 L,N and Fig. 2).

14https://www.eu-patient.eu/globalassets/policy/data-protection/
data-protection-guide-for-patients-organisations.pdf

15https://pytorch.org/
16https://www.tensorflow.org/
17https://keras.io/
18https://horovod.ai/
19https://www.deepspeed.ai/

B. Feature Selection with the Platform
Because our platform GUI is based on Jupyter notebook (see

Fig. 1 M) it enables a seamless visual interface for medical
experts to perform the necessary data preparation steps. Before
performing ’feature selection’ on the available data, it is worth
noting that of the ~44,000 patients in the original MIMIC-III
database, we consider only the 24,947 patients that received
mechanical ventilation during their ICU stays. Also, the patient
data has many features with missing values and noise. Since
we aim to predict missing values, we base our case study
approach on the most represented features in our dataset.
Hence, we first analyse the patient information (i.e., feature
selection), drop the features that have missing values in all
records, and try to determine which features have data in most
patient records. In this way we also reduce the overall size
of our data. Through this approach we find that six features
are very well represented: Respiratory Rate (RR), Heart Rate
(HR), Systolic Arterial Pressure (SAP), Diastolic Arterial
Pressure (DAP), Mean Arterial Pressure (MAP), and Blood
Oxygen Saturation (SpO2). Knowing that (a) the Fraction of
Inspired Oxygen (FiO2) is a ventilator parameter that is set by
ICU staff and is automatically recorded whenever it is adjusted
and (b) that the Potential of Arterial Oxygen (PaO2) is directly
related to SpO2, and keeping in mind that our final aim is to
assist in the diagnosis of ARDS which is done by calculating
the ratio of the two parameters mentioned above (P/F ratio),
we centre our approach on predicting values of SpO2 using
our built DL models.

C. Medical Pre-processing Steps with the Platform
The platform key feature is to enable medical experts to in-

teract with platform bringing in their medical expertise without
being exposed to the underlying HPC technical difficulties. For
example, the medical experts opted to disregard all patients



Figure 4. Performance comparison of the different model structures.

having less than 70 recorded timesteps during their ICU stay.
That reduced dataset at this point consists of 19,781 patients.
Some patients had extremely long records (in the range of
tens of thousands of timesteps), although this issue is resolved
through down-sampling. The timestamps for the recordings
are made consistent by up- or down-sampling each record.
Resampling the data resulted in all patient files consisting of
1000 timesteps, although some patients still had columns of
missing values which resulted in them being dropped from
analysis. At the end of the resampling step the total number
of patients available for analysis was 19,769. The resampled
data is finally standardised and normalised. At the end of pre-
processing all the features are within the same range, centred
around 0.

V. PLATFORM EVALUATION CASE STUDIES

This section describes the three learning and prediction ap-
proaches used to evaluate the usability and performance of the
HPC-based platform described in Section IV. To enable a bet-
ter comparison and understanding of the different structures,
we summarize all models together in Fig. 3. Additionally, we
present the training and testing performance of these models
in Fig. 4.
A. Gated Recurrent Units (GRUs) Approach

The GRU model is built with two GRU layers with 32 units
each, with dropout values of 0.2 and both kernel and recurrent
regularization, followed by an output layer (Dense layer of
size 1). 32 units were chosen for the layers after testing several
sizes and tuning for the combination that produced lowest loss
value. It is essential to mention here that this hyper-parameter
tuning of the different layer structures requires HPC resources
for our platform since layers’ concrete structure is usually not
known. The loss is calculated using the Mean Absolute Error
(MAE) function and the optimisation is performed using the
ADAM algorithm with a learning rate of 1e-4. Fig. 3 (a) shows
the model structure and the shape of the tensors at each layer.
The model had a total of 10,209 trainable parameters and was
trained for 15 epochs, at which point the loss value stabilised
at 0.7432. The training was completed in 405 seconds. This
value, multiplied by the standard deviation of the feature in
question, equates to an average difference of 1% difference

from the expected value of SpO2. The evolution of the training
and validation losses is represented in Fig. 4 (a).
B. One-Dimensional Convolution Approach

Our One-Dimensional Convolution (1D-Conv) model is
made up of three convolution layers with 128 filters each
and a stride of 9, each followed by a 1D-maxpooling layer,
except the last layer where we implement a GlobalMaxPool-
ing1D layer to simulate “flattening” the data before the fully-
connected output layer. Global maxpooling is used as it better
takes into consideration the structure and sequence of the
data than a normal Flatten() layer. To slowdown learning
and try to avoid overfitting, we implement L1 and L2 kernel
regularization at the input layer, and a 0.5 dropout layer before
the final 1D-Conv layer. Also here the HPC-based platform
features have been particularly effective in enabling multiple
different quick runs to find the best hyper-parameter setups
(e.g., dropout value). The structure of the 1D-Conv model is
presented in Fig. 3 (b). The built model had a total of 302,337
trainable parameters. For this implementation, the learning rate
of the ADAM optimiser was tuned to 5e-5 after several trials.
At the end of training, which was completed in 40 seconds,
the MAE plateaued at 0.725. The changes in training and
validation losses during the 20 epochs are presented in Fig. 4
(b).
C. Mixed Approach

Finally, the hybrid model constitutes two 1D-Conv layers
with 64 filters each, followed by a 32 unit GRU layer that leads
into the fully-connected output layer. Optimisation during
the training of this model was performed with a learning
rate of 5e-5 which eventually produced the most promising
results. The structure of the model is presented in Fig. 3
(c). This model had a total of 49,889 trainable parameters.
This model brings together elements from both approaches
described above and produce similar results. It performs much
better than the GRU model in terms of speedup, completing
training in 45 seconds, while its loss reduction is comparable.
The loss results are presented in Fig. 4 (c).

D. Results Discussions
The results presented above highlight One-Dimensional

Convolution networks as a promising approach to processing



medical sequence data due to it’s higher learning rate and
better performance in terms of loss reduction. This is evident
when we take into consideration that the two other models
required more time to complete fewer training steps. That
is especially beneficial in research if HPC time is limited.
Similarly, these models are much easier to fine-tune and work
with as medical experts, as they process the data in a similar
fashion to 2D-convolution models. In other words, these initial
phases of pre-processing and training are not difficult for the
persons undertaking the task of building these models if they
have only limited experience in using Convolutional Neural
Network (CNN) as medical experts.

Using a pure GRU model for sequence data is a tried and
true method, although our experience here made it clear that it
is bulky, and quite sensitive to minute changes in parameters.
It deserves more attention given that its loss reduction is still
somewhat comparable to the convolution model, however its
downfall is in the time required to train the model, which only
increases as the network grows and becomes more complex.

Although the mixed model performs similarly to the
1D-Conv model in terms of speedup, its results are only as
good as the basic GRU model. That is a positive aspect in
that it offers the same loss reduction as a GRU model with
reduced processing and training time, however it also suffers
from the same sensitivity to minor changes in the parameters.

VI. CONCLUSION

In this paper we presented the design of a HPC-based plat-
form for medical experts to perform analysis of different RNN
approaches to analysing medical timeseries data, one purely
based on GRUs, one using 1D-Conv, and a hybrid of both
technologies. Medical experts have been able to seamlessly use
the platform after having some short introduction and avoiding
technical details of HPC and AI elements of our platform.
The results of the platform case studies highlight that One-
Dimensional Convolution as promising method of predicting
missing values in time-series data. We can further conclude
that for ARDS medical experts still some know-how is needed
to understand some of the DL model elements despite the fact
that the platform abstracts away all technical difficulties.

The next steps in our research will be to further understand
the shortcomings of all three models and improve the data
preparation procedures with more significant features with
guidance from medical professionals using the platform. Ad-
ditionally, more experimentation will be done on the available
model in terms of increasing filters and the number of layers
and observing how that affects the output predictions.
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Abstract—Given the Covid-19 pandemic, the retail industry
shifts many business models to enable more online purchases
that produce large transaction data quantities (i.e., big data).
Data science methods infer seasonal trends about products
from this data and spikes in purchases, the effectiveness of
advertising campaigns, or brand loyalty but require extensive
processing power leveraging High-Performance Computing to
deal with large transaction datasets. This paper proposes an
High-Performance Computing-based expert system architectural
design tailored for ’big data analysis’ in the retail industry,
providing data science methods and tools to speed up the
data analysis with conceptual interoperability to commercial
cloud-based services. Our expert system leverages an innovative
Modular Supercomputer Architecture to enable the fast analysis
by using parallel and distributed algorithms such as association
rule mining (i.e., FP-Growth) and recommender methods (i.e.,
collaborative filtering). It enables the seamless use of accelerators
of supercomputers or cloud-based systems to perform automated
product tagging (i.e., residual deep learning networks for product
image analysis) to obtain colour, shapes automatically, and other
product features. We validate our expert system and its enhanced
knowledge representation with commercial datasets obtained
from our ON4OFF research project in a retail case study in
the beauty sector.

Keywords—High-Performance Computing; Expert Systems; Par-
allel and Distributed Algorithms; Retail data analysis; Accelerators;
Deep Learning

I. INTRODUCTION

With the advent of online marketplaces, it has become easier
to reach a broad customer base for many retailers and collect
relevant information concerning shopping habits and seasonal
trends. That became especially clear during the government-
imposed lockdowns that came as a response to the Covid-
19 pandemic. A wide variety of commercial sectors report a
significant increase in online purchases since then. With this
growth comes a benefit for data scientists as more information
becomes available in a digital format, making it easier to
extract, process, and analyse retail datasets. That is valid for
both sales data from individual shopping transactions, and for

This work was performed in the ON4OFF Project receiving funding from
the EFRE.NRW programme and the Euro CC and DEEP-EST projects receiv-
ing funding from EU’s Horizon 2020 Research and Innovation Framework
Programme under grant agreement no. 951740 and no. 754304 respectively.

image data of the products themselves to support a proper
online presentation of products in online marketplaces.

On the other hand, the availability and abundance of col-
lected datasets represent a significant challenge for store man-
agers and data scientists being overwhelmed by the technical
complexity of the ’big data analysis’. That can be at least
partly explained by the fact that the ’big data analysis’ requires
scalable storage, memory, and computing at the intersection
of traditional Data Mining (DM) and cutting-edge Machine
Learning (ML) and Deep Learning (DL) algorithms. There
is a need for an expert system that includes new forms of
knowledge representations to seamlessly enable retail data
analysis using cutting-edge technology.

This paper presents an architecture blueprint for such
an expert system designed explicitly for retail applications
(e.g., product image tagging, shop product placements, re-
tail product recommendations). We address the challenging
’big data analysis’ requirements by exploiting cutting edge
technologies such as modular High-Performance Computing
(HPC) systems, containers, accelerators, Jupyter1 notebooks,
and open-source software stacks. Our lessons learned from the
ON4OFF2 retail project in using Europe No. 1 supercomputer
Jülich Wizard for European Leadership Science (JUWELS)3

and modular Dynamical Exascale Entry Platform (DEEP)4

supercomputing prototypes complement this paper’s general
technical approach with practice and experience. By not losing
sight of the interoperability with commercial cloud vendors,
we outline conceptual pathways to encourage a broader uptake
by retailers that require alternatives for academically-driven
HPC infrastructures.

The remainder of this paper is structured as follows. Related
work is reviewed in Section II followed by Section III where
a summary of the DM and ML methods used to realise our
expert system is presented. Section IV introduces the expert
system architectural design, including its main features and
necessary data preparation steps, including unique aspects of

1https://jupyter.org/
2https://www.on-4-off.de/
3https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS
4https://www.deep-projects.eu/



the HPC-based implementation. Finally, this paper ends with
a brief summary and some concluding remarks.

II. RELATED WORK

There is a lot of related research in association rule mining
like by Sağın et al. in [1] to identify product groups sold
together by DM transaction data of a hardware retailer. For
this purpose, they grouped the products in categories and
subcategories. Their approach was based on using DM soft-
ware to extract association rules using both FP-Growth and
Apriori. Kumar et al. [2] analyses the different state of the
art parallel and distributed methods for DM. In addition to
frequent itemset mining, they also investigate those meth-
ods regarding high utility itemset mining, uncertain itemset
mining, and sequence pattern mining. They also analyse the
difficulties in regards to big data and DM. Gassama et al. [3]
developed a parallel approach to the FP-Growth algorithm,
using the Apache Spark framework’s in-memory computing
capabilities. They compared their approach to the implemen-
tation of Apache Mahout5 to evaluate the scalability of their
algorithm. Min et al. [4] propose an FP-Growth algorithm,
Grided FP-Growth, optimized for usage on a cluster. The
Grided FP-Growth approach foregoes the construction of FP-
trees and finds conditional pattern bases using the projection
method, therefore preventing memory overflow problems. The
processing of the conditional pattern bases is divided into
subtasks and distributed to multiple nodes. They show that
the Grided FP-Growth algorithm has better scalability and
shorter computation time than FP-Growth. Venkatachari et al.
[5] used the FP-Growth and Apriori algorithms to identify
correlations between items in a grocery store. The goal was
to use the gained knowledge to develop marketing strategies.
They also compared the computational speed of generating
frequent itemsets using the FP-Growth and Apriori algorithms.
Khader et al. [6] analyses pharmacy data using association
rule mining to help improve pharmacy management strategies.
They compare a sequential and parallel approach to FP-Growth
to find the system with the shortest execution time. They
also analyse the difference between using data with only
transactions that include more than one item and data that
include single item purchase transactions.

Winlaw et al. [7] highlighted the effectiveness of using
Nonlinear Conjugate Gradient (NCG) wrappers in Alternating
Least Square (ALS)-based collaborative filtering algorithms
in serial and parallel applications. They show a speedup
and scalable performance that is also compatible with cloud-
based environments such as Apache Spark. Jiang et al. [8]
proposed a method to scale-up item-based collaborative filter-
ing using Map-Reduce by distributing the compute-intensive
components of the data analysis over parallel resources of an
Apache Hadoop6 cluster. They also implemented a partitioning
method to reduce the communication cost as the dataset’s size
increases.

5https://mahout.apache.org/
6https://hadoop.apache.org/

Loureiro et al. [9] used transaction data from a fashion
retailer and a DL approach to predict sales numbers of clothing
items. For the DL model, they used multiple physical charac-
teristics of the items as well as opinions of domain experts.
They also used traditional ML methods such as Support Vector
Regression (SVR) and compared to the results of their DL
approach. Advani et al. [10] developed an inference DL model
for visual object recognition that is similar to our approach.
In contrast, their DL model is used to identify relationships
between objects in a given scene in retail environments and,
therefore, add visual context. Fuchs et al. [11] analyses the
potential of using Convolutional Neural Network (CNN) for
object classification and multi-product object detection. They
train the DL model with images of vending machines. They
suggest running the image detection on mixed reality headsets
which could provide customers with valuable information
about products.

III. DATA ANALYSIS METHODS

The ’association rule mining’ method is used to uncover
underlying relationships between different retail products in
transactions [12]. It identifies ’frequent itemsets’ that are items
frequently occurring together in the transactions (i.e., products
that customers often buy together). After fine-tuning param-
eters (i.e., support, confidence, and lift), the method result
is typically a set of rules that can predict more products of
interest for customers that already picked one or more certain
products. As seen in Fig. 1, one example of applications that
take advantage of these rules can be shop product placements
or ‘not personalized product recommendations‘. Two of the
most commonly used algorithms are Apriori [13] and Frequent
Pattern Growth (FP-Growth) [12] while the latter is more
scalable since it uses a tree-based approach.

In contrast, the ’collaborative filtering’ [14] method identi-
fies ’personalized product recommendations’ (cf. Fig. 1) out of
a given transaction list using ’embeddings’. The ’embedding
space’ is an abstract representation common to both prod-
ucts and customers, in which similarity or relevance using
a similarity metric is measured. Algorithms can learn ’em-
beddings’ automatically, which is the power of those models.
Customers with similar preferences will be close together (i.e.,
a recommendation of a product to customer A based on the
interests of a similar customer B). Used algorithms are ’matrix
factorization (MF) models’ or ’singular value decomposition
(SVD)’ while a comprehensive survey is given in [14].

Another processing-intensive application relevant for retail-
ers is ’product image tagging’ (cf. Fig. 1) using innovative
’deep learning (DL)’ methods. CNNs are widely known for
their effectiveness in analysing image data [15]. That is mostly
due to ’CNN’s’ ability to uncover local patterns within a
product image rather than trying to extract features from
the whole as would be the case with traditional Artificial
Neural Network (ANN)s [16]. But increasingly using deep
layers is not limitless and gives rise to the ’vanishing gradient
problem’ where the network will no longer train properly
after reaching a certain complexity [16]. Another DL model



to overcome this problem is a ’residual network’ [17] that
introduces residual blocks within the network structure, which
bypass convolutional layers during training and prevent the
gradient from decreasing to zero.

We performed all data analysis with our HPC-enabled
Jupyter-JSC7 with JupyterLab (see Fig. 1 O), a Web-based
interactive development environment for Jupyter notebooks.

IV. EXPERT SYSTEM ARCHITECTURAL DESIGN AND
SELECTED IMPLEMENTATION DETAILS

Fig. 1 shows our architectural design of an expert system
driven by three concrete retail applications that require differ-
ent types of datasets and features in the data. The innovative
HPC-based design implementation is realized by our modular
supercomputing architecture (MSA) [18] that was developed
in the last decade during the course of the DEEP series of
projects. To use our HPC-based expert system for ’product
image tagging’ (see Fig. 1 A), the retailer needs to access high-
resolution images from products. But our experience working
with many retailers in the German ON4OFF research project
reveals that the availability of product image data is often
limited. Reasons are copyright issues with the original brand
owners or only too little number of pictures of products. Our
practical experience also reveals that this limiting number
of product images is challenging for offering sophisticated
Graphical User Interfaces (GUI)s in our expert system in
cases where product recommendations may not have a picture.
As shown in Fig. 3, we used 6,585 product images of the
beauty sector (e.g., perfume bottles, lipsticks, etc.) for our
implementation evaluation example. Storing high-resolution
image data raises the demand for a Scalable Storage Service
Module (SSSM) [18] of our MSA architecture implemented
in our Jülich Supercomputing Centre (JSC) infrastructure via
the Lustre8 parallel file system (see Fig. 1 B).

To use our expert system for ’shop product placements’ (see
Fig. 1 C), the retailer needs ’simple transaction data’ without a
vital link to customers (i.e., shopping baskets only). The input
to association rule mining algorithms (see Fig. 1 D) require
no customers’ identity, and their rules are not personalized,
thus making this method more suitable to optimize a store
setup. Our research project example of this optimization is to
position often brought together products at entirely different
locations within the store to keep the customers as long as
possible in a corresponding shop (i.e., expecting revenues by
buying more products). As shown in Fig. 3, our expert system
evaluation is using 8,139,215 transactions.

While association rule mining is also applicable in our
example application of ’retail product recommendations’ (see
Fig. 1 E) for customers, our experience reveals that person-
alized recommendation techniques like collaborative filtering
(see Fig. 1 D) are more effective. However, these techniques
require distinct customer IDs as part of the transactions. As
such, the data needs to be often anonymized, making it difficult

7https://jupyter-jsc.fz-juelich.de/hub
8https://www.lustre.org/

to include in the data analysis other relevant customer features
(e.g., the street address of cities with high vs low-income
regions). Our research reveals that stores often do not even
have a system to link cashier transactions in stores to unique
customer IDs. Only online shops and the use of (optional)
customer loyalty cards overcomes this challenge, but also leads
to a significant reduction of usable transactions.

A. Computational Infrastructure for Data Analysis

All DM and ML implementations of the HPC-based expert
system are encapsulated as different services and hosted in a
professional Service-Oriented Architecture (SOA) landscape
(see Fig. 1 F) by our ON4OFF project partner Adesso9.
While Adesso is a professional company able to host fu-
ture commercial settings off the service landscape after the
ON4OFF research project is over, one goal of the HPC-based
expert system design is to enable conceptual interoperability
with commercial cloud vendors (see Fig. 1 G). That enables
decoupling the computing infrastructure from the services
implemented in the project. Migration to Cloud services hosted
by Amazon Web Services (AWS), MS Azure, or the Google
Cloud is possible. Also, the SOA-based architecture design and
this interoperability further enable retailers to complement the
academically created service landscape with existing commer-
cial services (e.g., AWS Sagemaker10).

Moderate size HPC systems are also available in Clouds
today. But our proof-of-concept architecture implementation
of the expert system uses academically-driven HPC systems
to keep the research project’s costs to a considerable level.
It also enables us to fully exploit and conduct research with
our unique MSA approach [18] since we use the DEEP
modular supercomputer (see Fig. 1 H) in our studies and the
JUWELS modular supercomputer (see Fig. 1 I). The DEEP
Data Analytics Module (DAM)11 comprises 16 nodes, each
with 2 Intel Xeon Cascade Lake CPUs, 1 NVIDIA V100
Graphics Processing Unit (GPU), 1 Intel STRATIX10 Field-
Programmable Gate Array (FPGA), and 446 GB of RAM,
as well as a total of 2 TB of Non-Volatile Memory (NVM).
Hence, with an aggregated 32 TB of NVM, this HPC module
design is primarily driven to support big data analytics stacks
like Apache Spark12 (see Fig. 1 M) that require a high amount
of memory to work fast. The module also has access to the
SSSM module (see Fig. 1 B) of the cluster to support large-
scale datasets and keep the local DAM storage available for
memory-intensive applications. The JUWELS supercomputer,
currently the fastest supercomputer in Europe and 7th fastest
worldwide13, consist of 2,583 and 940 nodes respectively,
totalling 122,768 CPU cores and 224 GPUs in the cluster
module, and 45,024 CPU cores and 3,744 GPUs in the booster
module.

9https://www.adesso.de/en/index.jsp
10https://aws.amazon.com/sagemaker/
11https://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/DEEP-EST
12https://spark.apache.org/
13https://www.top500.org/lists/top500/2020/11/



Figure 1. Architecture and design of a HPC-based expert system for retail being interoperable with commercial cloud vendors.

B. Product Image Tagging Application Evaluation

Customers of beauty stores participating in our ON4OFF
project often ask salesclerks in the shops about specific shapes
and colors of products (e.g., perfume bottle shapes and colors)
without knowing the particular brands. Based on our research
in the ON4OFF project, Fig. 2 shows selected examples of
perfume bottles that are often asked for by customers given
their unique characteristics. The basic knowledge representa-
tion of product data does not include those shapes and colors
in the perfume producers’ description. It focuses on fragrance
strengths and types (e.g., fresh, floral, oriental, woody) that
are sometimes even unknown by customers, especially when
they search for new products never tried before. Our expert
system GUI offers an advanced knowledge representation of
the products available in a beauty store to salesclerks in the
beauty shop to address the above-described problem.

As shown in Fig. 3, our expert system’s ’Image Tagging
Service’ (i.e., hosted in the Adesso service environment, see
Fig. 1 F) consists of the colour detection module and shape
detection module. It extracts information about the colour and
shape of perfume products to produce previously unknown
tags for these items (e.g., see Fig. 2 teddy bear) and store them

Figure 2. Perfume examples with unique shape/color features.

together with other relevant product data, thus improving the
search functionality in the expert system GUI. A salesclerk
in the shop using our expert system with an electronic tablet
facing a customer can now enter search strings that represent
product shapes and colors. This approach works not only for
perfume bottle examples, whereby perfume still represents the
significant product portfolio of our use case in the beauty
sector. Hence, it is essential to understand on the technical
perspective that our implementation of the colour and shape
detection modules are not customer nor salesclerk facing.
Instead, our implementation using cutting-edge DL techniques
enriches the product database to enable a better product
knowledge representation, search, and management.

Our image tagging service shown in Fig. 3 consists of
two separate modules that take the same input image data
(i.e., 6,585 images of beauty products) and provide output to
different service landscape interfaces. For the colour detection
module to process the input, it applies a mask to the image
and removes the background information, then converts it
from the RGB (Red, Green, Blue) colour space to the HLS
(Hue, Lightness, Saturation) colour space. Then the module
flattens the data from a three-dimensional array to a single
dimension. It then applies ’K-means clustering’ [12] to the
resulting matrix with K=10, and the clusters are sorted by
size, with the largest clusters representing the most frequently
observed colours in the image. Knowing that most Linux
distributions consist of an RGB colour reference system file
(see Fig. 1 P), the obtained clusters’ centroids are compared to
an HLS conversion of that reference file. The nearest colours’
names and HLS values to those centroids are returned to
the service landscape via the Colour Tagging Interface of an
Adesso landscape service updating the product database.

Our second ’shape detection module’ takes advantage of
’transfer learning’ [19], where a pre-trained network de-



Figure 3. HPC-based expert system modules with implementation details about the different services and data analysis steps.

veloped to solve one problem is applied to solve a new,
somewhat similar situation. Describing the shape of the prod-
ucts represented in the available product images is done by
feeding the pre-processed images illustrated in Fig. 3 to a
pre-trained ResNet-50 model [17] and collecting the top 10
decoded predictions for each image. These predictions are
then post-processed to retain relevant shape descriptions (e.g.,
perfume, water bottle, website, lipstick... being subsequently
dropped being too specific or too abstract). Further trimming
is done on the list to select only one descriptive label for
each image finally. We are using these labels and the original
images to train a new ResNet-50 model with a reconstructed
classification layer. Finally, the retrained model is stored on
the service landscape as part of the Shape Tagging Interface
(see Fig. 3).

The model ResNet-50 is available in DL packages available
in our HPC module environment (i.e., Keras14, TensorFlow15,
see Fig. 1 N) on JUWELS and DAM. Our experience reveals
that python scripts from Keras and TensorFlow can be quickly
migrated into clouds if needed by using the AWS EC2 com-
bined with the Amazon Machine Images (AMI) that also offer
images with the same set of DL packages (see Fig. 1 L). We
also achieve interoperability by using container technologies
such as Docker16 (see Fig. 1 K) in Clouds and Singularity17

on JUWELS (see Fig. 1 J) that can work with Docker files
too18. Our approach is scalable to large quantities of product
image data since we can use up to 128 GPUs on JUWELS
(cf. Sedona et al. [20]) using Horovod19 and DeepSpeed20 (see
Fig. 1 N). In terms of speedup during the re-training process of
the ResNet-50-based image tag generator, we find that running

14https://keras.io/
15https://www.tensorflow.org/
16https://www.docker.com/
17https://singularity.lbl.gov/
18https://apps.fz-juelich.de/jsc/hps/juwels/container-runtime.html
19https://horovod.ai/
20https://www.deepspeed.ai/

the build, training, and validation scripts required a total of
603 seconds to complete using only the CPUs available in the
HPC environment, while it completed within 70 seconds when
using the available GPUs. This confirms the need to use the
computational power of HPC resources in these applications,
as well as the importance of applying the right tools for the
right task at hand.

Finally, Horovod is using the Message Passing Interface
(MPI) (see Fig. 1 Q) to communicate between GPUs. How-
ever, our experience reveals that scaling in commercial clouds
is still challenging when using cutting-edge GPU types (see
Fig. 1 T) required for DL because of high costs (e.g., AWS
EC2 24 USD per hour rate for V100). For that reason
we foresee that data manipulation and DL approaches can
be performed using the modules on the HPC cluster, and
migrating association rule and collaborative filtering scripts
to the cloud.

C. Shop Product Placements Application Evaluation

Fig. 3 shows the implementation details and data analysis
steps of our ’Recommender Service’ in our expert system. We
use the FP-Growth MLxtend21 library implementation (see
Fig. 1 D) on our DAM HPC system with powerful CPUs
(see Fig. 1 S) and take advantage of the large memory node
setup, so that transaction data fits into memory. That can be
combined by using new types of memory hierarchies that go
beyond NVM using an innovative Network Attached Memory
(NAM) [18] in DEEP (see Fig. 1 R). Larger transaction data
can take advantage of Apache Spark (see Fig. 1 M) on the
large-memory DAM nodes using the MLlib implementation
of FP-Growth 22. That also enables another conceptual inter-
operability with clouds since most offer Apache Spark with
MLlib as part of their Hadoop ecosystem services (e.g., AWS
Elastic Map Reduce service, see Fig. 1 L) too. We use the

21http://rasbt.github.io/mlxtend/
22https://spark.apache.org/docs/latest/ml-frequent-pattern-mining.html



resulting rules in collaboration with store managers for product
placements in beauty stores and the expert system GUI.

D. Product Recommendation Application Evaluation

Given the page restriction, we do not provide a detailed
implementation for our ’Personalized Recommender Service’
in Fig. 3, because many steps overlap with those from our
illustrated (unpersonalized) ’Recommender Service’. In our
approach we find that the data cleaning and association rule
generation are only possible on the HPC cluster as the avail-
able memory was able to hold the generated one-hot encoded
matrix of the 2.8 million transactions (size 289 GB). There is
only a slight change in the number of transactions since we
only use those with an associated CustomerID (i.e., beauty
store loyalty cardholders). Instead of FP-Growth, we use
the SVD algorithm mentioned above to perform personalized
recommendations via collaborative filtering [14]. We use both
Surprise23 and the Apache Spark MLlib implementations of
SVD 24 on our DAM nodes and in commercial clouds.

V. CONCLUSIONS

Based on the thorough survey of related work, we conclude
that our HPC-based expert system is unique because it offers a
comprehensive approach of seamlessly working with parallel
and scalable methods on large quantities of data from the
retail sector. Although there is a lot of research on parallel
and scalable algorithms (e.g., FP-Growth, Apriori, DL), we
observe that most retail-based solutions are instead purely
algorithm-oriented or they do not offer an open-source solution
like in our approach. We can further conclude that we do not
validate our approach with only synthetic data as seen in many
other algorithm-based retail systems, but on real retail data in
the beauty sector through the ON4OFF project including real
stores and store managers. While some related work addresses
parallel and scalable methods, we are confident that our unique
HPC-based expert system can scale to a very high amount of
product image datasets or a very high number of transactions.
Our approach also enables interoperability with Cloud-based
systems and complements the existing services with other
services relevant for retail and reusing this approach in other
retail sectors such as bikes, wines, or book shops under the
umbrella of the ON4OFF project. Another challenging future
work is to enable reinforcement learning in our expert system
that learns over time (i.e., through rewards and punishment)
what recommender systems are performing good or bad in
certain stores.
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Abstract—Acute Respiratory Distress Syndrome (ARDS), also
known as noncardiogenic pulmonary edema, is a severe con-
dition that affects around one in ten-thousand people every
year with life-threatening consequences. Its pathophysiology is
characterized by bronchoalveolar injury and alveolar collapse
(i.e., atelectasis), whereby its patient diagnosis is based on the
so-called ‘Berlin Definition‘. One common practice in Intensive
Care Units (ICUs) is to use lung recruitment manoeuvres (RMs)
in ARDS to open up unstable, collapsed alveoli using a temporary
increase in transpulmonary pressure. Many RMs have been
proposed, but there is also confusion regarding the optimal way to
achieve and maintain alveolar recruitment in ARDS. Therefore,
the best solution to prevent lung damages by ARDS is to identify
the onset of ARDS which is still a matter of research. Determin-
ing ARDS disease onset, progression, diagnosis, and treatment
required algorithmic support which in turn raises the demand
for cutting-edge computing power. This paper thus describes
several different data science approaches to better understand
ARDS, such as using time series analysis and image recognition
with deep learning methods and mechanistic modelling using
a lung simulator. In addition, we outline how High-Performance
Computing (HPC) helps in both cases. That also includes porting
the mechanistic models from serial MatLab approaches and its
modular supercomputer designs. Finally, without losing sight of
discussing the datasets, their features, and their relevance, we also
include broader selected lessons learned in the context of ARDS
out of our Smart Medical Information Technology for Health-
care (SMITH) research project. The SMITH consortium brings
together technologists and medical doctors of nine hospitals,
whereby the ARDS research is performed by our Algorithmic
Surveillance of ICU (ASIC) patients team. The paper thus also
describes how it is essential that HPC experts team up with
medical doctors that usually lack the technical and data science
experience and contribute to the fact that a wealth of data exists,
but ARDS analysis is still slowly progressing. We complement the
ARDS findings with selected insights from our Covid-19 research
under the umbrella of the European Open Science Cloud (EOSC)
fast track grant, a very similar application field.

Keywords—High-Performance Computing; Acute Respiratory
Distress Syndrome; modular supercomputing; data science plat-
form; machine learning

I. INTRODUCTION

In their survey on the global impact of respiratory disease,
the World Health Organization (WHO) highlighted the lungs’
vulnerability to external disease vectors, and described the

broad range of life-threatening conditions that can occur as
a result of such exposures [1]. These conditions endanger
the pathways through which the body collects oxygen and
drains carbon dioxide, and would benefit greatly from early
treatment, leading to more positive outcomes for patients.
Generally speaking, diseases of the respiratory system can be
either directly related to trauma or infection to the airways and
lungs, or deferred through the failure of other organs (cardio-
vascular conditions, multi-organ failure). In the specific case
of infections, part of the respiratory system can be affected
and there is a generally observed distinction between upper
respiratory tract infections (URTI) affecting the airways above
the glottis and usually more benign, and lower respiratory
tract infections (LRTI) where the condition can quickly be-
come life-threatening [2]. One specific condition that affects a
large fraction of mechanically-ventilated (MV) Intensive Care
Unit (ICU) patients is Acute Respiratory Distress Syndrome
(ARDS). It was first referred to in the literature by Ashbaugh et
al. and has since been the subject of much research in order to
determine means of diagnosis and treatment [3]. This condition
is especially dangerous as it has a relatively high mortality
rate, while early detection is generally associated with more
positive outcomes for the patients [4, 5].

With the onset of the Covid-19 pandemic, it became clear
that fast and accurate methods for diagnosis and prediction of
disease progression are vital for hospitals as they strain under
the large number of incoming patients. Seeing as infection
with the Severe Acute Respiratory Syndrome coronavirus 2
(SARS-CoV-2) virus leads to a condition that is a similar
application field to the work we are performing in ARDS
prediction, we use the available resources and expertise to
advance some work done in chest X-ray image analysis and
attempt to expand it into new data provided under partnerships
within the European Open Science Cloud.

The work described herein takes advantage of the infor-
mation gained through work conducted on ARDS patient
data as well as the collected knowledge of Covid-19 pro-
gression, the Modular Supercomputing Architecture (MSA)
hardware resources available at the Jülich Supercomputing
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Centre (JSC), the previously developed High-Performance
Computing (HPC)-enabled expert system [6], and the col-
laboration and collected expertise of Machine Learning (ML)
specialists, medical doctors, data analysts, and statisticians to
fulfill several goals as part of the overarching Smart Medi-
cal Information Technology for Healthcare (SMITH) project
spanning several medical and research institutions in Germany,
under the guidance of the Federal Ministry of Education and
Research (BMBF) [7, 8]. The goals we set out to reach
include (i) understanding ICU medical data made available
through the collaboration between university clinics, (ii) using
a patient simulator, made available by project partners, to
generate output data that determine outcomes of patients based
on selected inputs [9, 10], (iii) to leverage the available HPC
and MSA resources at JSC to parallelise and optimise the
process, (iv) to design, develop, train, and evaluate a ML-
based model that can assist in ARDS diagnosis and is portable
enough to be implemented in hospital ICUs, (v) to retrain a
previously developed CNN-based approach to detect Covid-19
from patient chest X-rays, and subsequently, (vi) to validate
the previously established HPC-enabled expert system in a
clinical use case.

The remainder of this paper is structured as follows: related
work is reviewed in Section II and Section III provides brief
overviews on medical and technological methods required to
understand the paper, Section IV presents the work done on the
physiological model parallelisation and data preparation, while
Section V describes the data preparation and model training
for the predictive Covid-19 model. This paper ends with some
concluding remarks.

II. RELATED WORK

In this section we survey related works that are relevant in
context (e.g., simulators of disease progression, machine and
deep learning approaches, etc.).

Currently, the generally accepted method of diagnosing
ARDS is the "Berlin Definition" which defines onset of the
condition as a ratio of arterial oxygen to inspired oxygen of
less than 300 mmHg, with increasing severity as the ratio de-
creases [11, 12]. The definition does not specify the duration of
the reduced ratio, and diagnosis depends on the familiarity of
the ICU staff and physicians with the condition. On the other
hand, many treatment methods have been proposed to prevent
or treat ARDS, although no concensus has been reached in the
literature. These methods either revolve around lung protective
ventilation in order to prevent ARDS, or lung recruitment
through maintained inflation or high-PEEP/low tidal volume
accompanied by treatment to reduce the associated infection
[13, 14, 15]. In order to simplify the analysis of potential
treatment methods, Hardman et al. and later on Das et al.
worked on developing a mechanistic approach to simulate the
pulmonary and cardiovascular system of a patient. Their model
was built on available formulae that simulate air flow into the
lungs, gas exchange through the alveoli, and hemodynamic
equilibrium in the blood, and was shown to be accurate in its
representation of patient trajectories based on selected input

parameters [9, 16, 17, 10]. This model was also used to test
the efficacy of several ventilation protocols to treat a simulated
ARDS patient [14, 15, 18].

Work such as that done by Das et al. could only be possible
as medical information becomes digitised, and patient data,
after anonymisation, becomes more accessible and available
for research [19, 20]. As Electronic Health Records (EHRs)
become the standard for medical data storage while storage
itself become more efficient, more medical information is
available for analysis and research and we come into the
age of medical "Big Data" [21]. This advancement mirrors
the growth, increased efficiency, and expanding availability of
computational resources and algorithms. Research institutions,
universities, and medical centres are now more likely to have
access to HPC resources on-site or through agreements with
other institutions, cloud computing resources are available
through private vendors (e.g. Amazon Web Services, Microsoft
Azure), and finally, through worldwide collaboration, new and
efficient open-source algorithms for ML and data processing
that take advantage of the technological advancements are
available online and are well-documented (e.g. Python1, Ten-
sorFlow2, PyTorch3, etc.).

Covid-19 is the disease caused by infection with Severe
Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2)
and which has had a major effect on the international scale
in terms of strain to medical infrastructures, as well as
on an economic level4 [22, 23]. Infected patients generally
exhibit flu-like symptoms that in 5% of cases can lead to
severe consequences such as shock, respiratory failure, and
multi-organ dysfunction5. Currently, the standard and most
effective diagnosis method is through Reverse Transcription-
Polymerase Chain Reaction (RT-PCR) which is a time- and
resource-consuming method6. The ability to quickly and ac-
curately diagnose the condition at low cost and using standard
equipment available at hospitals has been a goal for several
researchers and Punn et al. present an analysis of developed
Deep Learning (DL) methods to detect Covid-19 from chest X-
rays [24]. Of these methods, COVID-Net developed by Wang
et al. is considered in this paper, as an open-source network,
trained on collected chest X-rays compiled within a open-
source dataset (COVIDx7) [25]. This network leverages resid-
ual networks in a similar fashion to the ResNet50 developed
by He et al. that outperformed its competitors in the ImageNet
detection and localisation tasks in 2015 [26].

1https://www.python.org/
2https://www.tensorflow.org/
3https://www.pytorch.org/
4https://www.oecd.org/coronavirus/policy-responses/global-financial-markets-
policy-responses-to-covid-19-2d98c7e0/

5https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-
management-patients.html

6https://ec.europa.eu/research-and-innovation/en/horizon-magazine/pcr-
antigen-and-antibody-five-things-know-about-coronavirus-tests

7https://www.kaggle.com/andyczhao/covidx-cxr2
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Figure 1. Parameter distribution over predetermined physiological ranges (mean in red).
Parameters: FiO2 - Fraction of inspired O2, PEEP - Peak End-Expiratory Pressure, Vt - Tidal Volume,

P_EI - End-Inspiratory Pressure, SvO2 - Venous O2 Saturation, BEa - Arterial Base Excess.

III. MEDICAL AND TECHNOLOGICAL METHODS

A. Machine Learning using State-of-the-Art Deep Learning
Artificial Intelligence (AI) is a vast area of techniques and

tools that enable computers to mimic human behaviour and
thus also include an extensive range of approaches such as ML,
DL, and robotics. ML is a specific subset of AI that is well
understood through statistical learning theory [27] wherein
valuable information can be extracted concerning model ca-
pacity, generalization, and the relevance of regularization and
validation for model selection. More recently, DL emerged
from ML as systems with the ability to learn underlying
features in data using neural networks with specific dedicated
types of layers tuned specifically for the tasks at hand such as
image processing [28] or sequence data analysis [29]. DL is an
active research topic with the number of publications grown
exponentially [30]. The image recognition work described in
this paper takes advantage of a specific type of DL network
for image recognition tasks related to Covid-19 described in
details in Sections II and V in more detail.

B. Understanding the need for High-Performance Computing
Using DL networks for image recognition tasks as required

for Covid-19 prediction is very computational-intensive, re-
quiring HPC or Cloud Computing (CC) resources. Paral-
lelising DL algorithms on HPC resources happens at the
level of numerical operations, at the level of the DL models
themselves, and at the level of the training process. DL models
transform n-dimensional tensors by applying element-wise
operations (e.g. activation functions, convolution operations, or
matrix multiplication) in fully-connected layers. Element-wise
operations are easily parallelizable, but convolution operations
and matrix multiplication require specialised parallelization
strategies. Our work benefits from HPC systems using parallel
matrix operations and convolutions using highly optimized

libraries such as MKL8, cuBLAS9, and cuDNN10. More details
on used HPC systems that are based on MSA[7] are described
in Table I of Section IV.
C. Selected Data Analysis Toolset

A wide variety of toolsets enabled the work on both aspects
of the project and simplified access to the HPC systems.
The system JuDoor11 enabled access to the HPC systems
addressing issues such as resource access through the Secure
Shell (SSH) protocol and account management, while the
availability of Jupyter notebooks on HPC resources of the
JSC12 made it possible to test code and visualise results more
efficiently. One particular challenge was switching between
TensorFlow versions where using the Covid-19 prediction
model required version 1.3 while the work on the virtual
patient model is not version-restricted. Having access to both
versions on the cluster greatly simplified the process. Addi-
tionally, the HPC systems we used provide an implementation
of Horovod [31], a data-parallel framework for distributed
training of DL networks with NCCL13 as a communication
framework. Finally, using COVID-Net required the use of the
Open Source Computer Vision Library (OpenCV)14 for image
manipulation.

IV. PHYSIOLOGICAL MODEL - RESULTS AND DISCUSSION

A. Model Conversion and Parallelisation
The physiological simulator is available to us as a Matlab15

script. Given that (a) our intention is to parallelise the model,

8https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
9https://docs.nvidia.com/cuda/cublas/index.html
10https://developer.nvidia.com/cudnn
11https://judoor.fz-juelich.de
12https://jupyter-jsc.fz-juelich.de
13https://docs.nvidia.com/deeplearning/nccl/index.html
14https://opencv.org/
15https://www.mathworks.com/products/matlab.html
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Figure 2. Prediction performance on a test set of the EHL dataset (a) before and (b) after training.

feed it automatically generated data, and produce from it
outputs for selected parameters, and (b) the supercomputing
clusters at JSC do not have an implementation of Matlab
running in parallel, we opted to convert the model itself into
a compilable and portable version in C. This was done using
Matlab Coder16 developed by Mathworks inc. On the cluster
side, a python script was prepared that can read patient data,
use it to populate a function call for the C-based simulator,
compile it, and run it in order to generate outputs. The specific
parameters to output after each simulation run will be selected
at a later step as we progress further into the project.

Depending on which section of the supercomputing cluster
we use, we are able to scale up the simulation both in terms
of speed of execution of individual tasks and in terms of
the number of tasks that can be executed concurrently. Table
I shows the different configurations available. Accordingly,
we tested the ported simulator using dummy data as input
both within a serial JupyterLab implementation and in parallel
using the Message Passing Interface (MPI) on the Dynamical
Exascale Entry Platform (DEEP) cluster, and were able to
achieve the speedup values presented in Table II.

Given these results, and after comparing the outputs with
those from the original simulation, we show that the model
can be scaled up proportionally to the number of processors
recruited for the task at hand. Similarly, as running the
simulations in parallel also reduces the run times, as shown
in Table II, we can estimate the time it would take to run
the large number of simulations possible using algorithmically
generated inputs. The following section takes into considera-
tion the methods through which the inputs for the simulator
are generated.

16https://www.mathworks.com/products/matlab-coder.html

TABLE I. PARTITIONS ON THE DEEP PROTOTYPE.

Partition Nodes CPUs GPU

DP-DAM 16 96 ✓
DP-ESB 75 16 ✓
DP-CN 50 48 x

B. Defining Boundaries and Sampling
For the approach described in this paper, the available

patient data is used to validate the ranges within which our
parameter generation methods will have to be bound. The
boundaries themselves were selected based on the recommen-
dations from ICU staff and medical practitioners participating
in the work, and Figure 1 highlights the distribution of the data
within these ranges. It is clear from the histograms that the
data provided confirms the choice of upper and lower bounds
for the parameters in question.

Aside from the parameters presented in Figure 1, the
simulation also requires inputs related to the behaviour of the
individual alveolar compartments within the respiratory model.
These parameters will also be sampled within boundaries
that were experimentally selected based on their distribution
in the patient data provided by the clinics. Sampled values
include the intra-compartmental airway resistance (Rcomp), the
physiological deadspace volume (VDphys), and the stickiness of
the alveoli, among others.

We use the simulator in this manner to generate a large
number of outputs that, along with their respective inputs,
can be used to train a ML-based model. This model will
be developed as an upcoming step within the scope of our
work. We generate inputs by populating a range between
the boundaries defined above, and randomly sampling over
these values over several iterations. By limiting the range
between boundaries to 10 values, we obtain 108 possible
combinations of values for the patient parameters presented
in Figure 1 and 1011 possible combinations for the variables
that define compartment parameters. It follows that the number
of combinations increases as the range between the boundaries
increases, though it is worth noting that the list of generated
parameter combinations grows in size to such an extent

TABLE II. EXECUTION TIME OF THE SIMULATION.

Platform Execution Time

Original Simulation on Laptop 259.1 s
C in serial on DEEP with JupyterLab 108.8 s
C in parallel on DEEP on 48 CPUs 100.79 s
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Figure 3. Prediction performance on a test set of the Fusion dataset (a) before and (b) after training.

that it would be difficult to keep in the available storage,
even on the HPC cluster. Our approach to avoiding memory
overload in this case is to apply the knowledge we have in
using distributed memory and HPC to break down the task
into smaller individual tasks. In doing these steps, we set
the ground work both for building the ML model, and for
generating the data required to train said model.

V. COVID-19 MODEL - RESULTS AND DISCUSSION
A. Data Preparation and Distribution

Data from health partners in Europe is provided to assist
in testing, training, and validating a model that builds on
the work done by Wang et al. for COVID-Net [25]. Unlike
the COVIDx dataset, in which the X-ray images are labelled
across 3 categories (healthy, pneumonia, and Covid-19), the
X-ray images provided by e-HealthLine (EHL) are further
classified, as well as the above-mentioned three classes, into
categories covering a wide range of conditions affecting the
lungs (e.g. pulmonary edema, atelectasis, etc.).

For the time being, and as part of our attempt to validate the
model and the platform with the available data, we restrict our
approach to a 3 class prediction. Given that the EHL dataset is
greatly reduced after removing images that do not fit the three
categories mentioned above, we opt to create a Fusion dataset
that merges the provided images with those available from
COVIDx. Table III compares dataset sizes and constitutions.

B. Model Selection
Several iterations of COVID-Net exist in the original au-

thors’ public repository and they provide a comprehensive
guide that sheds light on model accuracy after training. In
our implementation of the model, we found that the latest
greatest model (at the time of writing: COVID-Net-CXR4-A)
performed badly on the data made available through EHL. This

TABLE III. DATASET CONSTITUTION

Dataset Normal Pneumonia Covid-19

COVIDx 8,066 5,575 2,358
EHL 1,898 118 187
Fusion 9,964 5,693 2,542

was due to the provided images being of a lower resolution
than the COVIDx images. For that reason we opted to use an
earlier version of the model (COVIDNet-CXR Large) which
takes images of 224x224 pixel resolutions, and which has
relatively high accuracy and Covid-19 sensitivity.

The model inference performance was poor on both the
EHL data and the Fusion dataset, with many images auto-
matically being classified as having Covid-19. This highlights
the difference between the available images and those that
the model was trained on, as well as the presence of a
built-in algorithmic weighting scheme that pushes the model
towards detecting Covid-19 more often. Alternately, these
results, presented in Figures 2(a) and 3(a), confirm the need
to retrain the model altogether in order to increase prediction
accuracy for the two other classes in our data.
C. Model Retraining

Training COVID-Net is done through a script provided
by the original authors, though several parameters can be
tuned. In our applications, we fine-tuned the class weights to
leverage the Covid-19 and Pneumonia classes. This was done
to make up for the class imbalance due to the healthy patient
dataset being significantly larger than the other classes. We
can see the improvement in the model’s predictive capabilities
in Figures 2(b) and 3(b). When training is performed on the
EHL dataset alone, the model’s ability to distinguish between
Covid-19 and the other classes is much more pronounced. For
pneumonia we see that the model is not able to accurately
differentiate between it and healthy patients, but that might be
due to the reduced number of images for this particular class.
Alternatively, the model’s performance improvement on the
Fusion dataset is less pronounced but still clear as prediction
accuracy increases for all three classes.

Seeing as the model was successfully trained on the data
made available by EHL, which in turn was shown to be
different than the COVIDx data the model was originally
trained on, we can confirm that it is both robust and easy
to train. This COVID-Net model that was retrained on the
images from the EHL dataset is currently more attuned to
the type of images that will be made available in the future
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by the participating hospitals, making it a good fit for their
applications. On the other hand, and with the information
gained through retraining the model, we can move on to the
next step of the project where we to use the remainder of the
labelled dataset and apply transfer learning on the model for
prediction over further conditions.

VI. CONCLUSION

In this paper we described two methods where we leverage
the HPC structure available through JSC to make possible or
to accelerate work in medical data processing. On the one
hand we facilitate the generation of data for simulating the
pulmonary and cardiovascular system responses and pave the
way for the development of a portable black-box model of
human physiology. On the other hand we parallelise retraining
of a DL classification model with new data to simplify Covid-
19 diagnosis through chest X-rays, with the potential to expand
into more conditions as data become more available and
accessible. This work is presented both as stepping stones for
future projects as well as validation of a pre-established HPC-
enabled expert system for medical applications.
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Abstract: The COVID-19 pandemic shed light on the need for quick diagnosis tools in healthcare,
leading to the development of several algorithmic models for disease detection. Though these
models are relatively easy to build, their training requires a lot of data, storage, and resources, which
may not be available for use by medical institutions or could be beyond the skillset of the people
who most need these tools. This paper describes a data analysis and machine learning platform
that takes advantage of high-performance computing infrastructure for medical diagnosis support
applications. This platform is validated by re-training a previously published deep learning model
(COVID-Net) on new data, where it is shown that the performance of the model is improved through
large-scale hyperparameter optimisation that uncovered optimal training parameter combinations.
The per-class accuracy of the model, especially for COVID-19 and pneumonia, is higher when using
the tuned hyperparameters (healthy: 96.5%; pneumonia: 61.5%; COVID-19: 78.9%) as opposed to
parameters chosen through traditional methods (healthy: 93.6%; pneumonia: 46.1%; COVID-19:
76.3%). Furthermore, training speed-up analysis shows a major decrease in training time as resources
increase, from 207 min using 1 node to 54 min when distributed over 32 nodes, but highlights
the presence of a cut-off point where the communication overhead begins to affect performance.
The developed platform is intended to provide the medical field with a technical environment for
developing novel portable artificial-intelligence-based tools for diagnosis support.

Keywords: deep learning; COVID-19; high-performance computing; image-based diagnostics;
medical diagnosis support

1. Introduction

As the COVID-19 pandemic threatened to break down medical infrastructure all over
the world, it became evident that effective and efficient methods of diagnosis are necessary
in order to improve outcomes and save the lives of hospital patients [1]. Especially during
the early phase of the pandemic, when antigen-based rapid tests were not yet available,
there was an urgent need for alternative diagnostic procedures. The standard approach us-
ing reverse-transcription polymerase chain-reaction (RT-PCR) required a lot of time, trained
staff, and laboratory capacity and showed, especially at the beginning of the pandemic,
very heterogeneous accuracy [2,3]. Since pulmonary involvement in particular posed a
risk to patients with COVID-19, it was reasonable to examine conventional chest-X-ray
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(CXR) images, which are a rapid and widely available diagnostic tool for COVID-19-specific
changes [4]. Thus, early publications had already reported the presence of specific changes
in thoracic imaging before a laboratory test yielded a positive result [5]. Focusing on read-
ily available and inexpensive diagnostic procedures is especially meaningful as research
predicts that such large-scale contagion events will happen at an increasing rate [6].

However, given the current advancements in high-performance computing (HPC)
technology and the availability of commercial cloud computing (CC) resources to the
general public, as well as large increases in online data storage and sharing capabilities,
an increasing interest in machine learning (ML) and deep learning (DL) applications that
put these resources to use in order to solve common problems can be observed [7–9].
Similarly, these techniques and resources are being employed towards extracting infor-
mation from Big Data repositories that would otherwise require hundreds of researchers
over several thousand hours [10,11]. More recently, the combination of HPC, Big Data,
and ML have made headlines in the scientific community with the publication of two DL
models, AlphaFold from DeepMind and RoseTTAFold from Baek et al., which match or
even outperform existing methods for protein structure prediction [12,13].

It follows that several research groups have developed ML and DL methods for de-
tecting COVID-19 from sonographic [14] and X-ray images of the thorax [15–17], or for
predicting the mortality of COVID-19 patients from medical data [18], with all of the results
highlighting how effective these models might be for quick triaging. In a similar application
field, Rajaraman et al. merged several trained DL models to improve the diagnosis of pneu-
monia from CXR images with a higher success rate than conventional image recognition
models [19]. Other researchers have made use of cutting-edge HPC resources, namely the
Jülich Wizard for European Leadership Science (JUWELS) (https://www.fz-juelich.de/en/
ias/jsc/systems/supercomputers/juwels (accessed on 19 December 2022)) cluster, one of
Europe’s fastest supercomputers to train advanced DL networks on Big Data from different
fields, thus highlighting the need to make use of modular supercomputing architecture
(MSA) to advance the field of artificial intelligence (AI) [20]. Furthermore, advanced auto-
mated hyperparameter tuning methods such as KerasTuner (https://keras.io/keras_tuner/
(accessed on 19 December 2022)) and Ray Tune (https://docs.ray.io/en/latest/tune/index.
html (accessed on 19 December 2022)) have been developed, which simplify the parameter
search process needed to fine-tune the training of neural networks, thus yielding the best
performing model without major interventions from ML researchers [21].

Application of the available HPC resources in the medical field, thus contributing
to the analysis of medical data and a timely and precise diagnosis, has the potential to
reduce the amount of stress that medical personnel are exposed to during their work [22,23].
Similarly, the medical field presents a fertile ground for setting up frameworks that can be
easily loaded, modified, and deployed where needed to help mitigate the effects of future
epidemics and pandemics [24]. In the present paper, these approaches are thus validated in
the application of the COVID-Net developed by Wang et al. on newly obtained CXR images
that were provided by healthcare partner E*HealthLine (EHL) as part of the European
Open Science Cloud (EOSC) Fast-Track grants for COVID-19 research.

The work presented in this article describes the culmination of work performed
towards setting up a platform within which medical data can be stored, cleaned, and
analysed, and easily used to train ML and DL models [25,26]. The platform makes use of
highly specialised hardware and software available at the Jülich Supercomputing Centre
(JSC) to develop and train these models in the most efficient manner. These include firstly
the DEEP and JUWELS supercomputing clusters, and the storage made available through
the related projects. Advanced hyperparameter tuning methods are also used to fine-tune
the models to produce the best results.

The following sections go into the details of (a) training COVID-Net on newly acquired
data, (b) performing large-scale hyperparameter tuning on the model in order to extract the
parameter combinations that produce the best trained models, and (c) re-training the model
to highlight the improvement achieved in per-class accuracy for each of these combinations.
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Furthermore, resource scale-up is also performed in order to gauge the speed-up that can
be achieved through the established platform.

Re-training the COVID-Net model in such a way serves as a preliminary proof-of-
concept for the platform. Due to its easy adaptability to new use-cases and its portability
on other academic or commercially available CC resources, this platform can support
researchers in the medical field to create more complex models with better performance
that would otherwise be impossible to develop due to a lack of computational resources and
missing expertise in usage of HPC systems. Additionally, the models built and pre-trained
within the platform rely on open-source data and software, making them easy to deploy on
local machines in hospitals intensive care units (ICUs).

It is worth noting that several groups have applied hyperparameter optimisation to
improve the results of DL-based COVID-19 diagnosis models [27–29]. However, compari-
son with these works cannot easily be undertaken, as the concept and specific innovation
described in the present paper lies within scaling up the data storage, the model training,
and the hyperparameter tuning processes through efficient use of HPC resources in order
to cover more ground.

2. Materials and Methods

This section describes the hardware and software implemented within the developed
data analysis and machine learning platform, as well as the methods and data through
which the COVID-Net model, developed by Wang et al. [15], is re-trained on new data
and its prediction performance is improved through large-scale hyperparameter tuning.
Figure 1 presents a general overview of the re-training process and model improvement
steps performed as part of the platform validation, and highlights how computationally
expensive the hyperparameter tuning step is.

Figure 1. Block diagram representing the experimental process within the data analysis and machine
learning platform. The different schedulers are represented as boxes within the hyperparameter
tuning step. Due to the large amount of computations that it needs to perform, the hyperparameter
tuning step requires significantly more resources than the remaining steps.

2.1. HPC Resources

In their presentation of a novel approach to build and organise HPC resources, Suarez
et al. provide a thorough technical description of the hardware set up at JSC, with an
emphasis on its modular aspects [30]. This is true in terms of the hardware dedicated to
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computation as well as that used for communication and for storage. In essence, the MSA
allows for efficient scale-up as required by HPC researchers according to the tasks at hand.

The hardware is supported by the open-source scheduling software Simple Linux
Utility for Resource Management (SLURM) (https://slurm.schedmd.com/(accessed on
19 December 2022)), which manages the workload over the available resources and lever-
ages the scalability aspect of the modular system, but also reduces wasted computing
time through intelligent prioritisation of tasks. Furthermore, aside from terminal access
through SSH, users can directly access resources through an integrated Jupyter (https:
//jupyter-jsc.fz-juelich.de/ (accessed on 19 December 2022)) development environment,
which can be adapted to the specific needs of the task at hand through pre-packaged data
analytics and ML modules as well as personalised kernels and virtual environments.

2.1.1. DEEP

The DEEP series of projects has been setting up the path towards exascale computing
since 2016, focusing on scaling available HPC resources through boosters [31]. These
projects have received funding granted by the European Commission under the Horizon
2020 program and have so far had three iterations under the titles “DEEP”, “DEEP-Extended
Reach” (DEEP-ER), and “DEEP-Extreme Scale Technologies” (DEEP-EST). A fourth iteration
upcoming as “DEEP-Software for Exascale Architectures” (DEEP-SEA) was launched in
2021 with the aim of delivering a standardised programming environment for exascale
computing for the European HPC systems.

At the hardware level, DEEP-EST introduced the concept of MSA, making the cluster-
booster architecture more attuned for data analytics tasks [32]. Accordingly, the system
itself is divided into several modules, each sporting the necessary hardware for specific
tasks (i.e., numerical data processing, image processing, hyperspectral image processing).
These modules are presented in Table 1.

Table 1. Partitions on the DEEP prototype.

Partition Nodes CPUs/Node GPU

DEEP-Data Analytics
Module 16 96 NVIDIA V100 + Intel Stratix10 FGPA

DEEP-Extreme Scale Booster 75 16 NVIDIA V100
DEEP-Cluster Module 50 48 n/a

2.1.2. JUWELS

The JUWELS supercomputer consists of two main parts: a cluster module and a booster
module, commissioned in 2018 and 2020, respectively. The cluster module is a BullSe-
quana X1000 system (https://atos.net/en/solutions/high-performance-computing-hpc/
bullsequana-x-supercomputers/bullsequana-x1000 (accessed on 19 December 2022)) with
2583 nodes totalling 122,768 CPUs. Furthermore, several nodes are specialised for visualisa-
tion, large-memory, and accelerated computing tasks (https://apps.fz-juelich.de/jsc/hps/
juwels/configuration.html (accessed on 19 December 2022)). The booster module, a Bullse-
quena XH2000 system (https://atos.net/wp-content/uploads/2020/07/BullSequana
XH2000_Features_Atos_supercomputers.pdf (accessed on 19 December 2022)), expands on
the available computing power by adding a total of 940 nodes totalling 3744 GPUs.

In essence, the cluster module is intended for general-purpose computation tasks
while the booster module allows for scalable computing, making large-scale simulation and
visualisation tasks more possible [20]. By making use of the available high-speed network
connections and available storage, the booster module has reached a peak performance
of 73 petaflop per second. Kesselheim et al. validated its performance for large-scale AI
research on several DL network training tasks across different fields. Their results and the
recorded peak performance earned the JUWELS booster the top position on the fastest
supercomputers in Europe in 2021 as well as the 7th spot on the international TOP500 list
and the 3rd spot on the Green500 list.
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For the purposes described in this manuscript, the development phase is performed
on the DEEP-EST cluster and the usage of the JUWELS cluster and booster is reserved for
large-scale production applications of the developed models.

2.2. Datasets

To validate the established platform, two separate datasets were used in order to train
a pre-built classification model. The first dataset is the open-source COVIDx dataset (https:
//github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md (accessed on 19
December 2022)), which was compiled by Wang et al. from a collection of open repositories
as listed in Table 2 [15]. At the time of preparing the data, the most current version was
COVIDx V8A. This dataset is subdivided into 3 main classes: Healthy, Non-COVID-19
Pneumonia, and COVID-19.

Table 2. COVIDx V8A dataset sources.

Title URL

Cohen https://github.com/ieee8023/covid-chestxray-dataset
Figure 1 https://github.com/agchung/Figure1-COVID-chestxray-dataset

Actualmed https://github.com/agchung/Actualmed-COVID-chestxray-dataset

Sirm https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/
version/3

RSNA https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data

RICORD https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=702302
81

The second dataset was pre-compiled by industry partner EHL and made available
through file transfer protocol (FTP). The dataset is subdivided into training and testing sets,
each of which is further divided into different conditions including Healthy, Pneumonia,
COVID-19, Atelectasis, and Cardiomegaly, among others. Further details about the dataset
constitutions are presented in later sections of this manuscript, though it is worth men-
tioning that there was a considerable difference in the image resolutions between the two
datasets as can be seen in Figure 2. Additionally, Table 3 describes the class distribution of
images within each dataset.

Table 3. Number of images within each dataset.

Dataset Healthy Non-COVID-19
Pneumonia COVID-19

COVIDx 8066 5575 2358
EHL 1898 118 187

Fusion 9964 5693 2542

Finally, in order to increase the robustness of the model to be re-trained, the two
datasets were merged into a Fusion dataset, preserving the split structures shown in
Tables 4 and 5. The Fusion dataset represents the relatively heterogeneous data usually
received from different medical institutions in special circumstances [33]. The applicability
of the platform and its intended use on heterogeneous data represents one of the most
important advantages.
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Figure 2. Range of image resolutions of the COVIDx (left) and EHL (right) datasets. A high
concentration of images in the COVIDx dataset is centered around 1000 × 1000 pixels, but the
majority of EHL images is below 480 × 480 pixels.

2.2.1. COVIDx Dataset

The process to obtain the COVIDx dataset is provided in detail as part of the COVID-
Net Github (https://github.com/lindawangg/COVID-Net (accessed on 19 December
2022)) repository as it was compiled by Wang et al. [15]. The dataset was loaded into the
online storage available at JSC and an analysis of the images was performed using the
Open-Source Computer Vision Library (OpenCV) python package in order to verify that
the dataset contains no duplicates or corruptions. The majority of the data provided in
the COVIDx dataset are in the portable network graphics (PNG) image format. Table 4
presents the train-test split of the COVIDx dataset.

Table 4. COVIDx V8A dataset training and testing split.

Set Healthy Non-COVID-19
Pneumonia COVID-19

Training 7966 (98.8%) 5475 (98.2%) 2158 (91.5%)
Testing 100 (1.2%) 100 (1.8%) 200 (8.5%)
Total 8066 5575 2358

2.2.2. EHL Dataset

The EHL dataset was made available through secure FTP and, similarly to the COVIDx
dataset, loaded onto the online storage at JSC. The dataset is subdivided into several pul-
monary and chest-related conditions, though for the purposes described in this manuscript
solely the images within the Healthy, Non-COVID-19 Pneumonia, and COVID-19 direc-
tories were used. The remainder of the data will be used in a future transfer learning
application of the available ML model.

After performing some verification steps on the data using OpenCV, it became evident
that some images were duplicates of those available in the COVIDx dataset, which was
traced back to the fact that one of the participating hospitals had made their data available
as part of the Cohen dataset. These images were removed and the resulting distribution
of data is presented in Table 5. The EHL dataset is made available as part of the Euro-
pean Open Science Cloud fast-track grant project and can be accessed online for research
purposes (https://b2share.fz-juelich.de/records/aef5d3b8aa044485b9620b95b60c47a2 (ac-
cessed on 19 December 2022)). Evaluation of the trained models was performed using only
the EHL dataset in order to verify these models’ ability to predict over the new data.
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Table 5. E*HealthLine dataset training and testing split.

Set Healthy Non-COVID-19
Pneumonia COVID-19

Training 198 (10.4%) 21 (17.8%) 189 (65.4%)
Testing 1700 (89.6%) 97 (82.2%) 100 (34.6%)
Total 1898 118 289

2.3. COVID-Net Model

The COVID-Net deep learning model was developed and released by Wang et al. in
May of 2020 in response to the COVID-19 pandemic to screen patients for COVID-19 using
chest radiographs [15]. The model follows the current DL standard for image analysis of
using convolutional neural networks (CNNs) with intermittently varying kernel sizes, but
expands on it by employing the residual architecture that was introduced by He et al. in
their pioneering work on residual networks for object detection in images [34]. COVID-Net
was built using TensorFlow (https://www.tensorflow.org/ (accessed on 19 December
2022)) version 1.13.

The initial approach with COVID-Net within the scope of this project involved running
inference using the pre-trained model on both available datasets in order to highlight their
differences, before moving forward with the re-training attempts, which also served the
purpose of highlighting the potential speed-up that can be achieved using the available MSA.

2.3.1. Model Selection

The Git repository for COVID-Net lists a number of models each with varying input
image sizes and performance markers. At the time of performing this analysis, the best
performing model was labelled “COVIDNet-CXR4-A”, which scales input images to a reso-
lution of 480 × 480 pixels. Two other versions of the model exist that take inputs of lower
resolution (224 × 224 pixels) with the best performing among them being “COVIDNet-CXR
Large”. Both models are available for download from links in the repository.

Selecting the appropriate model for this application required an analysis of the resolu-
tions of the available images, and since the majority of the images within the EHL dataset
are below the threshold of 480 × 480 pixel resolution as can be seen in Figure 2, it became
evident that the “COVIDNet-CXR Large” model would perform best. This decision is fur-
ther supported by the initial inference results that will be presented below in Section 3, but
follows the logic that down-sampling image data produces far less noise than up-sampling,
which is more likely to generate artefacts by magnifying limited visual information.

2.3.2. Model Training

The repository for COVID-Net provides scripts and terminal commands for training
the network. These scripts define the training parameters (learning rate, number of epochs,
batch size, location of the pre-defined network weights) and the location of the datasets for
training and testing. Accordingly, the parameters are adapted to the updated datasets being
used in this application, and a range is defined over which the training will be parallelised.

Additionally, the training script is updated in order to introduce the possibility of
many concurrent parallelised training runs, thus making use of the available HPC resources.
The initial approach for parallelised training was through performing a grid-search of pre-
defined parameters to tune and iteratively populating a job-script that would then be
submitted to the HPC scheduler. Instead, hyperparameter tuning is implemented, as
described in the next subsection, which can streamline the parameter search and potentially
uncover hyperparameter combinations that would otherwise have been missed. Finally,
a set of parameters is selected to train the model with an increasing number of nodes,
using the Horovod (https://horovod.ai/ (accessed on 19 December 2022)) distributed DL
framework, in order to determine the extent to which training can be accelerated as more
resources are made available.
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2.4. Hyperparameter Tuning

Hyperparameters are parameters which influence an algorithm’s behaviour. These
values are typically set by the user manually before the training of an algorithm. Choos-
ing an optimal set of hyperparameters can significantly improve the performance of a
model [35]. In order to easily find the best performing combination of parameters for
training the COVID-Net model on the new and the combined datasets, the hyperparameter
tuning library Tune, developed under the Ray framework, was employed [21,36]. This
tuner takes a model and selected tunable parameters as input and performs an optimisation
that highlights the combination of parameters that produces the best results according to a
selected metric. Due to compatibility issues related to the earlier version of TensorFlow
used in constructing COVID-Net, it was necessary to use version 0.6.2 of the Ray module.

The Ray framework employs schedulers that take advantage of parallel computing to
scale up and speed up the task at hand; of these schedulers, population-based training (PBT),
HyperBand, and Asynchronous HyperBand [37–39] are considered and compared to the
default first-in, first-out (FIFO) scheduler. The comparison was performed by running
the hyperparameter tuning process with each of the selected schedulers over the same
parameter search space. The best-performing scheduler was selected based on runtime
and the COVID-Net model’s performance when re-trained using the optimal parameter
combination that the tuning process output.

3. Results
3.1. Pre-Optimisation Analysis

Running inference with COVID-Net on the available images highlighted the differ-
ences between the two datasets. The network performance on COVIDx was in line with
the results published by the original authors. However, the images from EHL were more
likely to be misclassified. In fact, the results presented in Figure 3a highlight a bias towards
predicting COVID-19.

After re-training the network on a combination of the newly acquired images and the
original COVIDx dataset, the results achieved are presented in Figure 3b, where classifi-
cation accuracy is improved. In order to achieve these results, several training runs were
performed in parallel where the class weights (CWs) were adjusted, as well as the learning
rate (LR), the batch size, the COVID-19 percentages (CPs), and the number of training
epochs. Through these training runs the range of these parameters that are tuned on a
larger scale in the next step was narrowed down.

Figure 3. Prediction performance (in %) heatmaps for COVID-Net on the EHL dataset (a) before and
(b) after initial re-training.
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3.2. Hyperparameter Optimisation

The hyperparameter optimisation is performed on the DEEP-Extreme Scale Booster
(ESB) partition, with 20 trials taking up 1 node each (see hardware configuration listed in
Table 1). During these 20 trials the network is trained over 24 epochs, with each trial being
assigned a different combination of the tunable parameters, in this case the COVID-19
percentage, the class weights, and the learning rate. The parameter values are chosen
following a random uniform distribution in the case of the CWs and the CP, and a loga-
rithmic uniform distribution for the LR. The selected schedulers distribute the tasks on
the available nodes and in three of the four cases introduce further perturbations to the
hyperparameters halfway through the training process. The specific experimental setup is
further expanded in the below sections for each of the selected schedulers.

3.2.1. First-In First-Out

The default scheduling algorithm for the Ray library, first-in first-out (FIFO), performs
the basic scheduling task of distributing the trials over the available nodes and does not
update the tunable parameters during the training process. It is employed here as a
benchmark to gauge the performance of the other schedulers.

Running all the trials in parallel took a total of 402 min to complete, after which the best
performing combination of parameters was an LR of 0.00013, CWs of 1 for healthy, 1.38745
for pneumonia, and 6.1508 for COVID-19, and a CP value of 0.289. These parameters were
used to re-train COVID-Net over 50 epochs and the prediction performance of the model
re-trained using these parameters is highlighted in Figure 4a. The trained model in this
case is very capable of detecting COVID-19 infections in CXRs, but pneumonia cases are
almost always diagnosed as healthy.

Figure 4. Prediction performance heatmaps for COVID-Net on the EHL dataset after re-training on
the parameters chosen by (a) FIFO, (b) HyperBand, (c) Asynchronous HyperBand, and (d) PBT.
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3.2.2. HyperBand

The HyperBand scheduler is activated in this case halfway through the training
process, at which point it begins stopping tasks that underperform. The trials required a
total of 421 min to complete, at which point stopped trials were discarded while the best
performing trial was selected based on the overall accuracy, loss, and run time.

Interestingly, several of the trials that presented high accuracy at the end of tuning
did not perform well when trained, showing a complete bias towards predicting one of
the three conditions. The prediction performance of a model trained on the selected best
parameters of LR = 0.0006, CW = [1, 5.0312, 3.4151], and CP = 0.081 is presented as a
heatmap in Figure 4b. The trained model was unable to provide certain predictions when
exposed to the images from the test set even after training for 50 epochs. The highest overall
prediction accuracy is for healthy patients, but that is still at 80%.

3.2.3. Asynchronous HyperBand

Similarly to HyperBand, the Asynchronous HyperBand scheduler also implements
early stopping, but does so while taking advantage of the available parallel processing
power to distribute the tasks more efficiently.

Running the trials required a total of 422 min and the best performing model was
chosen as having LR = 0.00012, CW = [1, 4.0981, 3.0387], and CP = 0.187. The outputs from
the model trained on the best parameter combination from Asynchronous HyperBand are
presented in Figure 4c. In this case, the generated parameters resulted in a trained model
with improved results on the original re-trained COVID-Net presented in Figure 3b.

3.2.4. Population-Based Training

The PBT scheduler introduces perturbations to selected parameters at a set time during
the tuning process. This introduces an extra layer of randomness to the hyperparameter
tuning and potentially uncovers new combinations from the different trials running in
parallel. In this case PBT is tasked to begin perturbing the LR halfway through the total
training time.

The trials ran for a total of 419 min and from the results LR = 0.00024, CW = [1, 9.9599,
9.4996], and CP = 0.346 were selected to be used for re-training COVID-Net, the predictive
performance of which is presented in Figure 4d. Similarly to the results obtained in the
Asynchronous HyperBand trial, this model also presented an improved performance in
detecting pneumonia and COVID-19 cases although the “Healthy” prediction was reduced
to 84%.

Figure 5 compares the prediction performance of the original re-trained COVID-Net
model with that of models retrained using the best performing hyperparameters from the
tuning process with Asynchronous HyperBand and PBT.

Figure 5. Comparison of trained COVID-Net prediction performance before (a) and after hyperpa-
rameter tuning with Asynchronous HyperBand (b) and PBT (c).
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3.3. COVID-Net Re-Training

The Horovod framework was used to re-train the COVID-Net model based on pa-
rameters chosen from the previous results, while the resources available for training were
iteratively increased. The graph presented in Figure 6a shows the change in training
duration as more resources were made available.

Figure 6. Training duration (in minutes) as more GPU nodes are recruited, (a) on a linear scale and
(b) on a logarithmic scale.

The model trained significantly faster as the tasks were distributed among the increas-
ing number of worker nodes. The time required to train over 25 epochs was reduced from
207 min on 1 node, to 54 min on 32 nodes. However, the rate of reduction decreased with
resource increase as can be seen from the decreasing slope of Figure 6b. Ultimately, as the
resources were increased to 64 nodes, the model training became slower and both curves
switched to a positive slope, indicating that the cut-off point for speed-up had been reached.

4. Discussion

Through trial and error a set of parameters was selected to train the COVID-Net model
on the Fusion dataset and the results obtained are shown in Figure 3b. In reality, several
more parameters, including the batch size, the train-test split, the number of epochs, and
freezing or unfreezing some layers from COVID-Net could have been tuned by hand in
order to improve the results, but as the number of these parameters increases, so does the
complexity of the optimisation problem. The results show that the model can be improved
and highlight the fact that more effective tuning approaches are necessary.

Through four straightforward applications of a hyperparameter optimisation frame-
work, it was possible to improve the predictive performance of COVID-Net on new data.
The schedulers used for the optimisation took advantage of the available MSA and effi-
ciently distributed the work over the available resources. In doing so, the framework was
able to cover more ground and test more parameter combinations simultaneously in order
to close in on the parameters with which the model would train more effectively. This
process is not perfect, as can be seen from the results obtained from Hyperband, where the
best-performing parameter combination yielded a model that underperformed, or through
reducing the pneumonia class weights, the best performing parameters from the FIFO
scheduler resulted in a model that was extremely good at finding COVID-19 patients, but
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completely incapable of predicting pneumonia. However, these results give insight into
novel ways the parameters can be tuned and thus the model performance can be improved.

In the case of Asynchronous HyperBand and PBT, both resulting trained models
performed more consistently than the original re-trained COVID-Net, with predictions
trending towards true positives. The results also highlight the possibility of further im-
provement with longer training and further fine-tuning of the hyperparameters, both of
which are made possible through the scale-up of the GPU resources on the compute clusters.

The reduction in training duration observed in Figure 6a is not infinite; in fact, as more
nodes are recruited, the communication overhead between these nodes becomes more
complex and more time-consuming, resulting in the flattening of the curve and ultimately
the upward trend seen in Figure 6b. To counter this issue, it is important to understand the
problem at hand and to recruit the appropriate hardware and software accordingly, while
also performing many trials to pinpoint the cut-off at which training is the most efficient.

The work presented in this manuscript describes the large-scale re-training of COVID-
Net as a use case to validate a modular medical diagnosis support platform built on an
HPC infrastructure and taking advantage of novel and efficient ML algorithms. That is
not to say that this work would not be possible without the specific HPC infrastructure
used. In fact, the platform makes use of open-source software, making it easily portable
onto commercially available cloud computing (CC) solutions. Similarly, the main aim is to
develop the base infrastructure that takes advantage of the HPC resources to simplify the
development of software that is lightweight enough to be easily deployed in most standard
computers available in hospitals, making them a vital tool to support medical personnel.

Given that the medical field is regularly facing time-sensitive problems, this paper
highlights the need for platforms that simplify access to cutting-edge resources for model
training and development, and also for specially trained experts in the field of ML, data
science, and HPC for medical applications, who would advise on applications, assist in
setting up the problem solutions, and take part in the data analysis and the development of
the diagnostic and treatment techniques of the future.

Finally, since the prototype platform described in this manuscript only used open-
access data, there are no privacy risks and thus this issue was not addressed. As the
platform moves towards production, and especially before dealing with restricted real-
world data, its safety from outside threats will need to be assessed. Additionally, this
process is still in its infancy and much work still needs to be done in order to test the
robustness of this platform, and validate its performance in real-world use cases.

5. Conclusions

In the present manuscript, the re-training of a COVID-19 detection model was de-
scribed as a use case through which an HPC-enabled data analysis and ML platform was
validated. The MSA available at JSC, especially the scalable storage and computing re-
sources, made it possible (1) to validate the performance of the COVID-Net model on
the original COVIDx data as well as new data made available through research partners,
(2) to perform large-scale hyperparameter tuning, through which the optimal training
parameters for the model were uncovered, and (3) to re-train the model using the selected
parameters and highlight the improvement that was achieved. Furthermore, the research
also highlights the training speed-up that can be achieved using the platform.

The severity with which the COVID-19 pandemic struck worldwide, and research
showing that such global phenomena may become more frequent, highlight the need for
research platforms such as the one described in the present manuscript. These platforms
would make use of highly efficient computing, communication, and storage technology, as
well as open-source and interoperable software, and should be made available to assist the
healthcare sector in order to simplify and accelerate the development of medical diagnosis
support tools. This does not mean that medical institutions should be required to have
access to HPC resources, which would put hospitals at a severe disadvantage, not only
in developing countries. Rather, the models developed within these platforms ought to
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be more portable and easily implementable, while the communication channels between
research institutions and medical centres ought to be strengthened, paving the way for
effective medical and technological cooperation. Such platforms rely on the availability
of data and the willingness of medical institutions to participate in the research, both of
which are more likely to increase as the developed and validated models show beneficial
effects in the field.
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The following abbreviations are used in this manuscript:

AI artificial intelligence
CC cloud computing
CNN convolutional neural network
CP COVID-19 percentage
CW class weight
CXR chest X-ray
DEEP dynamic exascale entry platform
DL deep learning
EHL E*HealthLine
EOSC European Open Science Cloud
ESB extreme scale booster
FIFO first-in, first-out
FTP file transfer protocol
HPC high-performance computing
ICU intensive care unit
JSC Jülich Supercomputing Centre
JUWELS Jülich Wizard for European Leadership Science
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LR learning rate
ML machine learning
MPI message passing interface
MSA modular supercomputing architecture
NumPy Numerical Python
OpenCV Open-Source Computer Vision Library
PBT population-based training
PNG portable network graphics
RT-PCR reverse-transcription polymerase chain-reaction
SLURM Simple Linux Utility for Resource Management
SSH secure shell
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Abstract: Acute Respiratory Distress Syndrome (ARDS) is a condition that endangers the lives of 1

many Intensive Care Unit patients through gradual reduction of lung function. Due to its hetero- 2

geneity, this condition has been difficult to diagnose and treat, although it has been the subject of 3

continuous research, leading to the development of several tools for modeling disease progression on 4

the one hand, and guidelines for diagnosis on the other, mainly the "Berlin Definition". This paper 5

describes the development of a deep learning-based surrogate model of one such tool for modeling 6

ARDS onset in a virtual patient: the Nottingham Physiology Simulator. The model development 7

process takes advantage of current machine learning and data analysis techniques, as well as efficient 8

hyperparameter tuning methods, within a high-performance computing-enabled data science plat- 9

form. The lightweight models developed through this process present comparable accuracy to the 10

original simulator (per-parameter R2 > 0.90). The experimental process described herein serves as 11

a proof of concept for the rapid development and dissemination of specialised diagnosis support 12

systems based on pre-existing generalised mechanistic models, making use of supercomputing in- 13

frastructure for the development and testing processes and supported by open-source software for 14

streamlined implementation in clinical routine. 15

Keywords: High-Performance Computing; Machine Learning; ICU; ARDS; Surrogate Model; Virtual 16

Patient 17

1. Introduction 18

Respiratory diseases endanger the ability of the respiratory system to supply the 19

body with oxygen and to eliminate carbon dioxide sufficiently, potentially causing life- 20

threatening consequences. These conditions are caused on one hand primarily by damaging 21

the pulmonary tissue through, for instance, infection, toxic effects of inhaled gases or fluids 22

or trauma. On the other hand, the lung can be affected indirectly as a side-effect of diseases 23

of other organs [1]. Early diagnosis and treatment are essential to achieve positive outcomes 24

for patients [2–5]. Critically ill patients who require treatment in an intensive care unit 25

(ICU) are at high risk of developing respiratory disease, one of the most serious of which 26

is Acute Respiratory Distress Syndrome (ARDS), a condition that was first described by 27

Ashbaugh et al. [6]. ARDS is still the subject of intensive research due to its high incidence 28
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in ICU patients as reported by Confalonieri et al (10.4% of total ICU admissions), and high 29

mortality rate as highlighted by Le et al. (30-55% of affected patients) [3,5]. 30

ARDS is further characterised by its heterogeneity and the difficulty of its diagnosis, 31

leading clinicians and researchers to establish of the "Berlin Definition" by which ARDS on- 32

set is defined as a ratio of Partial Pressure of Arterial Oxygen (PaO2) to Fraction of Inspired 33

Oxygen (FiO2) (P/F ratio) of less than 300 mmHg in combination with bilateral opacities 34

in pulmonary imaging and absence of hypervolemia and heart failure [7]. Furthermore, 35

this definition classifies the severity of the condition to be inversely proportional to the 36

value of the P/F ratio. Despite widespread research activities in this field, which were even 37

intensified during the COVID-19 pandemic, effective treatment methods of ARDS are still 38

lacking, resulting in a high mortality rate [3,5]. In fact, Bellani et al. highlight that ARDS 39

diagnosis is still delayed or missed in two thirds of patients, leading to severe outcomes [8]. 40

The management of ARDS patients, thus, usually remains supportive with lung-protective 41

mechanical ventilation, prone positioning, and Extracorporeal membrane oxygenation 42

(ECMO) treatment as ultima ratio [9–12]. 43

In developing the Nottingham Physiology Simulator (NPS), Hardman et al. launched 44

an in-silico tool for modelling pulmonary disease progression and determining the potential 45

effectiveness of treatment methods [13]. This model was later improved upon by Das et 46

al. and Saffaran et al. to include elements of the cardiovascular system and to improve 47

its performance, which extended its usefulness even further [14,15]. The resulting virtual 48

patient simulator was validated through generating outputs for initial conditions similar to 49

real-world ARDS patients, and it was found that these model outputs were consistently 50

comparable with the source clinical data [16]. With a tool such as the NPS, clinicians 51

and biomedical engineers can consistently and accurately model individual patient states, 52

predict the onset of disease, and formulate and validate potential treatment methods to 53

guarantee the best outcomes for patients. 54

The development of models such as the NPS was simplified with the advent of 55

Electronic Health Records (EHRs). Making large amounts of clinical data easily accessible 56

has enabled a lot of research in healthcare, has helped highlight pathological patterns and 57

uncover treatment methods, but has also sparked discussions about patient privacy and 58

data security [17–19]. As these records grow into the realm of Medical Big Data, the need 59

to develop more efficient storage for the data and more capable computing resources to 60

process it grows at a similar rate [20–23]. Thus, it is essential to make High-Performance 61

Computing (HPC) available for biomedical applications, and to develop the algorithms to 62

take advantage of these resources in order to clean, process, analyse, and extract information 63

from the available data. 64

It follows that several teams have already employed available HPC resources in the 65

storage and analysis of medical big data or in training Machine Learning (ML) and Deep 66

Learning (DL) models. Kesselheim et al. applied the Jülich Wizard for European Leader- 67

ship Science (JUWELS) (https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/ 68

juwels (accessed on 03 February 2023)) supercomputing cluster and booster to perform pre- 69

training of the ResNet-152 DL network. Their goal was to highlight the speedup achieved 70

using the HPC resources and to eventually perform large-scale transfer learning using the 71

publicly available COVIDx (https://www.kaggle.com/datasets/andyczhao/covidx-cxr2 72

(accessed on 03 February 2023)) dataset to develop a tool for rapid Covid-19 detection 73

from Chest X-Rays (CXRs) [24]. The researchers also discussed using their supercomputing 74

resources to improve the available ML methods for RNA structure prediction. In a sim- 75

ilar vein, Baek et al. and Jumper et al. concurrently published their results for Artificial 76

Intelligence (AI) models, RoseTTAFold and AlphaFold, that make use of the HPC clusters 77

available at the University of Washington and at Google, respectively [25,26]. Both teams 78

used an implementation of multi-track DL networks in an attempt to solve the protein 79

folding problem, and in both cases the results were highly accurate. Finally, Zhang et 80

al. made use of HPC to perform hyperparameter tuning on a ML model for Alzheimer’s 81

disease detection [27]. Their work highlights the speedup that can be achieved by making 82
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use of HPC, especially in situations where many trials need to be performed with minute 83

changes in order to find the optimal parameter combination that produces the best results. 84

This paper describes the process by which a ML and data science platform, that 85

takes advantage of Modular Supercomputing Architecture (MSA) available from the Jülich 86

Supercomputing Centre (JSC), is used to build a surrogate model of the NPS with the 87

intention of implementing it for streamlined ARDS diagnosis support [28–30]. In order to 88

achieve this primary goal, several steps need to be completed as follows: 89

• Medical data collection, cleaning, analysis and visualisation. 90

• Data augmentation through statistical analysis of the available clinical data. 91

• Parallel simulation of patient states using a ported NPS. 92

• Parallel hyperparameter optimisation of the developed DL model using Ray Tune [31]. 93

• Final training of the DL-based surrogate model and validation of the results with the 94

original simulation. 95

As Gherman et al. highlighted, several researchers have already developed ML surro- 96

gate models from complex mechanistic models [32]. These surrogates benefit greatly from 97

the high accuracy of the mechanistic models they emulate, while avoiding the computation 98

overhead associated with equilibrating multiple complex differential equations. This aspect, 99

coupled with the use of a pre-established HPC-enabled data science and ML platform that 100

was validated in previously published work, represent the core innovations of the research 101

described in this manuscript [28,29]. In this way, the HPC resources are instrumental to the 102

accelerated development and testing of the surrogate. 103

This work is done as part of the use case Algorithmic Surveillance of Intensive Care 104

Unit patients with ARDS (ASIC) which is part of the Smart Medical Information Technology 105

for Healthcare (SMITH) project under the guidance of the German Federal Ministry of 106

Education and Research (BMBF) [33,34]. Furthermore, the work described here paves the 107

way for the future development of surrogate models from pre-established mechanistic 108

disease representations, thus providing valuable tools to accelerate diagnosis in critical 109

situations. 110

2. Materials and Methods 111

The experimental process leading towards completion of the research objective de- 112

scribed in the Introduction is represented in Figure 1. The subsections below go further into 113

the details of each step of the experimental process as well as the hardware and software 114

implemented within them. 115

2.1. HPC Resources 116

The Dynamic Exascale Entry Platform (DEEP) series of projects (https://www.deep- 117

projects.eu/ (accessed on 03 February 2023)) was set up to highlight the benefits of using 118

heterogeneous architectures in HPC to pave the way towards exascale computing by 119

introducing boosters alongside traditional supercomputing clusters [35,36]. The boosters, 120

which run independently of the cluster nodes used for traditional supercomputing tasks, 121

offer the option of expanding storage and compute power for specific tasks, including large- 122

memory nodes for image processing tasks and multi-GPU nodes for accelerated DL tasks. 123

Thus, the DEEP projects introduced the Modular Supercomputing Architecture (MSA) 124

concept that would later be used in development systems such as the JUWELS cluster 125

and booster, unveiled in 2018 and 2020, respectively [37]. The specific configuration 126

Table 1. Partitions on the DEEP Prototype.

Partition Nodes CPUs/Node GPU

DEEP-Data Analytics Module 16 96 NVIDIA V100 + Intel Stratix10 FGPA
DEEP-Extreme Scale Booster 75 16 NVIDIA V100
DEEP-Cluster Module 50 48 n/a
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Figure 1. Flow diagram describing the data augmentation and surrogate model development steps
within the data analysis and ML platform. The flow of data is represented in green, while the models
are represented in blue.

of the cluster-booster prototype set up in the DEEP project and its subsequent projects, 127

DEEP-Extended Reach (DEEP-ER) and DEEP-Extreme Scale Technologies (DEEP-EST), is 128

presented in Table 1. 129

2.2. Software and Libraries 130

2.2.1. Nottingham Physiology Simulator 131

The NPS is made available as part of the SMITH project as a central MATLAB (https: 132

//www.mathworks.com/products/matlab.html (accessed on 03 February 2023)) script ac- 133

companied by peripheral functions written either in MATLAB, or in C-script and converted 134

at initial startup into the MATLAB executable (.mex) format. Version 1.4 of the simulator 135

was made available for this research as part of the SMITH project. Further updates to the 136

NPS have already been implemented which improve its performance [15], however all 137

of the experiments described in this manuscript concern the version mentioned above. 138

The simulator loads patient data from prepared input files, then runs a preset number of 139

cycles during which it solves a series of differential equations that model the gas exchange 140

occurring during a breathing cycle. 141

Disease states can be modelled in the simulator through adjusting the input parameters, 142

such as reducing oxygenation, reducing lung compliance, or changing the acid-base balance 143

of the blood [16,38], which are typical pathophysiological alterations in ARDS patients [39]. 144

Previous research has validated the performance of the NPS compared to the responses of 145

real patients in the ICU [13,15,40]. 146

Given all of the above, the NPS is certainly a valuable tool in the hands of clinicians 147

aiming to understand medical conditions such as ARDS and to analyse potential treatment 148

methods. It does however have specific shortcomings: 149

• the time required to run individual simulations makes it unfeasible to use the NPS in 150

diagnosis support especially for more time-critical clinical situations. 151

• the outputs are broad and extremely detailed, requiring users to filter through them in 152

order to extract the information useful for their specific task. 153

• it uses proprietary and license-based software which is a limiting factor for applications 154

on a large scale, especially in remote clinics that would not have proper funding for it. 155

These shortcomings highlight the need to convert the NPS and to develop the surrogate 156

model as described in the remainder of this manuscript. 157
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2.2.2. Software Used in Model Conversion 158

As mentioned above, the NPS is built in MATLAB and thus is implemented on a local 159

machine running MATLAB version R2019a within Windows 10 version 22H2. Addition- 160

ally, the MATLAB Coder (https://www.mathworks.com/products/matlab-coder.html 161

(accessed on 03 February 2023)) software plugin is used in order to export the simulation as 162

a C-script and package it for implementation on the HPC cluster. 163

The remainder of the programming done for this project uses the Python (https: 164

//www.python.org/ (accessed on 03 February 2023)) programming language with ad- 165

ditional packages installed through the built-in pip function or loaded from the list of 166

pre-installed modules available on the HPC cluster. The packages include Numerical 167

Python (NumPy) (https://numpy.org/ (accessed on 03 February 2023)) and Pandas (https: 168

//pandas.pydata.org/ (accessed on 03 February 2023)) for data structure manipulation, 169

MatPlotLib (https://matplotlib.org/ (accessed on 03 February 2023)) for data visuali- 170

sation, Keras (https://keras.io/ (accessed on 03 February 2023)) (running from within 171

TensorFlow (https://www.tensorflow.org/ (accessed on 03 February 2023))) and Scikit- 172

Learn (https://scikit-learn.org/ (accessed on 03 February 2023)) for performing the ML 173

tasks, and mpi4py to bind to the Message Passing Interface (MPI) and handle the paral- 174

lelisation aspect of some of the data manipulation tasks [41]. Hyperparameter tuning is 175

done using Ray Tune, which in turn employs different scheduling algorithms in order to 176

simplify the task of finding the optimal parameters for training the final model [31]. Finally, 177

the HPC cluster employs the Simple Linux Utility for Resource Management (SLURM) 178

scheduler (https://slurm.schedmd.com/ (accessed on 03 February 2023)) in order to dis- 179

tribute the submitted training and tuning jobs onto the available computing resources. The 180

submission of jobs is done using shell scripts that define the environments to load and the 181

resources to recruit for each specific job. 182

2.3. Model Preparation 183

In order to build the surrogate model, it is necessary to convert the NPS to a format 184

that can more easily be run in parallel, which would then be used to generate data to 185

train the DL model with. Exporting the model in C-script would be a simple task given 186

its similarity to the MATLAB programming language, as well as the availability of the 187

MATLAB Coder plugin. Accordingly, the various peripheral function files that make up 188

the NPS are grouped into a single script as per the requirements of the MATLAB Coder, 189

and the input parameters are defined according to the variables provided in the patient 190

data. 191

Additionally, the original model outputs an array containing several parameters 192

recorded over every time step of the simulation, which made exporting values difficult. 193

Therefore, the output parameters are reduced to only include the final values of markers 194

for a pulmonary impairment, which can be consistent with an ARDS onset (PaO2, Partial 195

Pressure of Arterial Carbon Dioxide (PaCO2), pH, and Bicarbonate). 196

This converted model is tested locally on several patients and its outputs are compared 197

to those from the original simulation in order to verify its integrity. The duration of 198

each simulation is also recorded in order to evaluate the speed-up achieved through this 199

conversion. Moreover, the same patient simulations are performed on the HPC cluster to 200

both validate the outputs and to highlight the speed-up that can be achieved when running 201

several instances concurrently. 202

2.4. Data 203

The data used in this research was collected from the open-source Medical Information 204

Mart for Intensive Care - III (MIMIC-III) database as part of the research done by Sharafutdi- 205

nov et al. also within the scope of the SMITH project [42–44]. Due to the limited number of 206

patients and the inconsistent representation of their parameters, it was decided to generate 207

simulated data based the statistical distribution of the original data extracted from the 208

MIMIC-III database. In order to perform this data augmentation, the statistical distribution 209
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Figure 2. Histograms comparing the distribution of the generated input data with that of the original
data. The red lines represent the means for each parameter.

of each parameter listed in Table 2 is analysed, and a generator is developed that outputs 210

randomised snapshots of patient states emulating a wide range of real-world parameter 211

combinations. The choice of these parameters was based on the input parameters required 212

for proper functioning of the NPS. Matching the parameters from the simulation to their 213

equivalent values in the MIMIC-III database was done by Sharafutdinov et al. in previous 214

work [43,44]. Table 3 provides a statistical description of the data extracted from the source 215

dataset while Figure 2 presents a comparison of the distributions of the source data and the 216

generated data. In this case, the minimum and maximum cutoff values were chosen based 217

on discussions with clinicians. 218

As this data is fed into the reduced simulation, the aforementioned markers of ARDS 219

onset of these patients are generated. The end result of this data manipulation step is 220

a collection of 1,000,000 initial states of patients made up of 19 input parameters and 4 221

associated expected outputs. The output parameters were chosen based on a sensitivity 222

analysis done by Sharafutdinov et al. in previously published research [44], and are 223

presented in Table 2. The generated patient states are further subdivided into 80% training 224

/ 10% validation / 10% testing datasets to be used to train the DL-based model described 225

in the next section. 226

2.5. Model Design and Training 227

In order to select the model architecture that offers the greatest potential training 228

performance, several different approaches are tested. However, the choice was limited 229

by two major factors: first, the architecture does not need to be adapted for timeseries 230

data since the inputs chosen are snapshots of patients’ states, as described above, therefore 231

Recurrent Neural Networks (RNNs) are excluded. Second, no advanced neural network 232

architectures, such as residual layers or transformers, are to be used in order to maintain a 233

reduced model complexity. Accordingly, the models tested out in this step were made up 234

of stacked fully connected layers, convolutional layers, or a combination of both. 235

Several models of both architectures were tested, with varying depths and types of 236

layers, including regularization, dropout, and normalization layers, and with different layer 237

sizes, dropout rates, regularization factors, learning rates, batch sizes, and loss functions. 238

This was done in order to uncover the hyperparameters that have a significant effect on 239

the training process. Each of these architectures was trained for 50 epochs. After this 240

initial testing phase, a provisional best performing model structure is decided based on a 241

statistical comparison of the four output parameters listed in Table 2 (PaO2, PaCO2, pH, and 242
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Parameter Description

Input Parameters v_sR, v_inR Used to calculate individual Compartment Resistance to
Flow (Rcomp) values

v_sVR, v_inVR Used to calculate individual Compartment Vascular
Resistance (VRcomp) values

v_nc Number of Closed Compartments
asht Anatomical Shunt
RQ Respiratory Quotient
VO2 Oxygen Uptake
VDphys Volume of Physiological Deadspace
CO Cardiac Output
I:E Inspiratory to Expiratory Ratio
Hb Hæmoglobin
FiO2 Fraction of Inspired Oxygen
PEEP Peak End-Expiratory Pressure
PEI End-Inspiratory Pressure
SvO2 Venous Oxygen Blood Saturation
RR Respiratory Rate
Vt Tidal Volume
BEa Arterial Base Excess

Output Parameters PaO2 Partial Pressure of Arterial Oxygen
PaCO2 Partial Pressure of Arterial Carbon Dioxide
HCO3 Bicarbonate Concentration
pH Blood Acidity Level

Table 2. Input and Output parameters of the C-ported virtual patient simulator.

HCO3) with the outputs generated by the original simulation. Further improvements of 243

this model are done through hyperparameter optimization as described in the next section. 244

2.6. Hyperparameter Tuning 245

Hyperparameters are the variables that affect the way in which a model is built 246

or its training process, and can be altered either through a process of trial and error, 247

or automatically using optimization algorithms [45,46]. In order the uncover potential 248

hyperparameter combinations through which model training and performance can be 249

improved, the Ray (https://www.ray.io/ (accessed on 03 February 2023)) framework 250

is employed to perform hyperparameter tuning [31,47]. This framework can also take 251

advantage of available HPC resources by distributing the tuning process over several 252

nodes, thus reducing the time needed to run the trials and making the process more 253

efficient. 254

The schedulers used by Ray Tune in the optimization process described in this 255

manuscript are HyperBand, Asynchronous HyperBand, Population-Based Training (PBT), 256

and the default First-In, First-Out (FIFO) [48–50]. These algorithms distribute the tuning 257

task over the available resources and may interfere with the process by introducing pertur- 258

bations as is the case for PBT, or by shutting down under-performing tasks as is the case 259

for HyperBand and Asynchronous HyperBand. Aside from FIFO which was chosen to 260

BEa Hb Vt PEEP PEI FiO2 SvO2 RR

Unit mmol/l mmol/l ml cmH2O cmH2O % %
Min -15 6 220 0 0 20 30 10
Max 15 12 840 24 40 100 100 40
Mean 1.37 9.15 463.80 8.64 21.68 41.08 68.81 20.83
SD 4.42 1.17 115.13 3.15 5.76 12.39 11.03 5.73

Table 3. Statistical description of the parameters extracted from the source dataset.
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Table 4. Comparison of the average duration of the original MATLAB-based simulation with the
ported C-code version.

Short Simulation
(run_time=60)

Long Simulation
(run_time=120)

MATLAB Simulation 51 s 259.1 s
C-based Simulation on HPC 23.1 s 108.8 s

serve as a control in this experiment, the remaining schedulers were chosen based on their 261

purported resource efficiency and accuracy. The comparison of the different algorithms is 262

thus intended to highlight the most successful both in terms of resource use and accuracy 263

of results for this specific application. 264

In this experiment, the tuned parameters are the learning rate, the batch size, the 265

dropout rate, the loss function, and the presence of an intermediate fully-connected layer 266

before the output layer in the network architecture. The choice of tuning these specific 267

hyperparameters stemmed from the initial testing done in the model design and training 268

phase described in Section 2.5 where changing these parameters had a significant effect on 269

how the models performed. The tuning process is done to minimise the Validation error 270

value, which serves to reduce the possibility of an overfitting model being selected as the 271

best performing trial. After tuning, the best performing parameters for each scheduler are 272

used to retrain the ML-based model and to highlight the improvement in its prediction 273

performance. Best performance is thus based on the models with the most effective loss 274

reduction, and where the output R2 scores are closest to 1 for all output parameters. These 275

scores quantify the deviation of the model results from the outputs generated by the original 276

simulation. 277

3. Results 278

3.1. Performance of the C-based Model 279

The data generated as per Section 2.4 is used as input for the C-based simulation. To 280

do that, it was necessary to hard code the information into an entry-point function for the 281

simulation, which was done through Python. Additionally, and to take advantage of the 282

available HPC resources, the process was automated through a jobscript that recruits the 283

necessary resources and modules, then initialises the aforementioned python script that 284

in turn scatters the data over the recruited CPUs using MPI. Each worker on the cluster 285

generates its own copies of the entry-point function, compiles and then runs them, then 286

collects the outputs and stores them. When all the tasks are completed successfully, the 287

mother node gathers all the stored outputs, sorts them, and then appends them to the 288

original inputs, before saving them as a Comma-separated values (CSV) file to be used for 289

training the ML model. 290

Table 4 presents the average duration of a short (60 minute equivalent) and a long 291

(120 minute equivalent) simulation in MATLAB and compares it to the average duration of 292

those simulations using the C-based simulation on HPC, which highlights the speed-up 293

that was achieved through this process. 294

3.2. Neural Network Architecture Choice 295

Different types of neural network architectures with varying depths were tested with 296

the available data. The best performing were based on fully-connected layers and on 297

1D-convolutional layers. Further experiments with different depths of the two architectures 298

were performed. From these experiments it was clear that models built with stacked fully- 299

connected layers underperformed compared to the approaches using convolutional layers. 300

Additionally, extending the training duration did not lead to improvement in the results, 301

and in some cases led to overfitting. 302
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Figure 3. Training (blue) and Validation (orange) MAE for several neural networks built either using
the fully-connected architecture or as CNNs.

Applying CNN-based models to the task at hand resulted in more consistent perfor- 303

mance even with shallow architectures. Additionally, some of the Convolutional Neural 304

Network (CNN) models did overfit, but in general the models using this architecture 305

reached lower Mean Absolute Error (MAE) in fewer training steps than the fully-connected 306

models. The evolution of the MAE during training and validation for several models of 307

both network architectures are presented in Figure 3. 308

For both of these architectures, several iterations of testing were done during which the 309

depths of the networks were varied, as well as the widths of their layers, and the addition of 310

dropout and pooling layers into the network design. This process was done in combination 311

with updating the learning rate, batch size, and regularization rates in order to find a rough 312

estimate of the range of hyperparameters as well as the combination of layers that produced 313

a promising model. Based on the results of these experiments, the parameters to be tuned 314

during the hyperparameter tuning process were selected and the ranges over which the 315

tuning would occur were estimated. Furthermore, the chosen network architecture would 316

be based on CNNs with the possibility of adapting the architecture during the tuning 317

process. Additionally, this network would have four 1-dimensional convolution layers, 318

with kernel size of 64 for the first layer and 128 for the remaining layers. The output from the 319

final convolution layer is flattened before being fed either to a intermediate fully-connected 320

layer, or directly to the output layer. 321

3.3. Hyperparameter Tuning Results 322

Four different schedulers were used in the hyperparameter tuning step of this experi- 323

ment in order to provide performance comparisons of the different applications. Figure 4 324

presents the training and validation MAE values of the different trials for each of the 325

schedulers used. 326
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Figure 4. Curves showing the MAE for each of the 64 hyperparameter tuning trials. Each graph
represents the trials for one scheduling algorithm: (a) FIFO, (b) HyperBand, (c) Asynchronous
HyperBand, and (d) PBT.

Table 5. Parameters of the best performing trial from each Hyperparameter Tuning Scheduler.

Scheduler Learning
Rate

Loss
Function

Dropout
Rate Batch Size Additional Fully-

Connected Layer

FIFO 4e-5 MSE 0.5 128 True
HyperBand 8e-5 MAE 0.52 64 True
Async. HyperBand 3e-5 MAE 0.5 128 True
PBT 5.8e-5 MSE 0.54 128 True

Running on 16 nodes of DEEP-ESB cluster, the FIFO scheduler provides a benchmark 327

as it distributes the 64 available tuning jobs. In this approach, new trials cannot be started 328

until the prescribed maximum number of training epochs of previously scheduled tasks are 329

completed. Completing all the trials required a total of 78 minutes. The HyperBand sched- 330

uler performed early stopping on many trials that were underperforming, which allowed 331

the tuning process to complete within a shorter duration (46 minutes). Asynchronous 332

HyperBand performed in a similar manner, taking 64 minutes to complete all the trials. 333

The early stopping is evident in the learning curves of these two scheduling algorithms 334

(Figure 4(b) and (c)). Finally, PBT took the longest to complete due to the method with 335

which it implements perturbations at specific times during the model training process. This 336
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Figure 5. Learning Curves of the Training (blue) and Validation (orange) MAE of the models using
the best parameters as selected by each scheduling algorithm, accompanied by their respective
per-parameter R2 score bar graph.

is visible in the spikes of the learning curves in Figure 4(d). At these points in the training 337

process the scheduler reruns each trial with a slightly modified Learning Rate. This resulted 338

in the hyperparameter tuning with the PBT scheduler taking 160 minutes to complete. 339

The best performing model parameters from each scheduler are presented in Table 5. 340

A common aspect of the best performing models is the presence of the intermediate fully- 341

connected layer before the output layer of the network. Similarly, the dropout rates and 342

learning rates were all within close range for the four models. 343

3.4. Final Model Performance Analysis 344

The results from each parameter combination listed in Table 5 are presented in Figure 5. 345

The learning curves for the networks trained on the parameters from the FIFO and the 346

Asynchronous HyperBand trials both show some overfitting towards the second half of 347

the training process. This is also reflected in the R2 score graphs for the output parameters, 348

where it can be seen that prediction performance for PaCO2, bicarbonate concentration, and 349

pH is reduced compared to the networks from the HyperBand and PBT trials. Additionally, 350

the R2 score graphs show that PaO2 prediction accuracy is consistently lower than the 351

remaining output parameters, although still above 0.90. 352

4. Discussion 353

Converting the NPS to C helped highlight the speed-up that can be achieved through 354

the use of HPC resources. Running multiple simulations simultaneously as well as the 355

increased efficiency and reduced overhead of C code reduced the code execution times 356

and made it possible to generate more data with which to train the proposed ML models. 357

In the end, the average duration of simulations was less than half the average duration 358

of simulations in MATLAB. Additionally, processing and storing the output data was a 359

compute- and communication-intensive process which was greatly simplified through the 360

availability of online storage on the pre-established HPC-enabled platform for medical ML 361

and data science [30]. 362

The results of the DL model training step of this research highlighted the inherent 363

differences between a fully-connected (i.e. traditional Artificial Neural Network (ANN)) 364

architecture and a convolution-based approach. While ANNs are more likely to give value 365
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to every input parameter, CNNs are more adapted to uncover connections between the 366

inputs and infer meaning from them, which might explain why these networks consistently 367

performed better. The results in Figure 3 show that CNNs might overfit the data if the 368

layers are not well tuned, but in most cases the performance surpassed that of ANNs and 369

lower MAE values were reached in shorter training periods, which ultimately makes the 370

convolutional approach more resource-efficient. Additionally, the curves consistently show 371

the validation error being lower than the training error; this is due to the regularization 372

and dropout layers introduced in the network architectures to reduce overfitting. These 373

layers are active during the training process but inactive by design during validation and 374

testing (https://keras.io/getting_started/faq/ (accessed 10 February, 2023)). 375

Similarly, when considering resource-efficiency, HyperBand and its successor Asyn- 376

chronous HyperBand make the best use of the available resources to distribute the available 377

tasks. Besides the reduction in compute time, these two approaches minimise stragglers, 378

that is the number of allocated resources that are not effectively being used for compu- 379

tational tasks. Furthermore, the recommendations from the Ray framework highlight 380

Asynchronous HyperBand as a more capable and efficient scheduler than the original 381

HyperBand (https://docs.ray.io/en/latest/tune/api_docs/schedulers.html (accessed 10 382

February, 2023)). In the case of PBT, resource efficiency is secondary to uncovering more 383

effective approaches through parameter perturbations. Although this approach could 384

be beneficial for applications where minor changes of parameters might greatly alter the 385

outcome of the experiment, the computational overhead necessary for PBT to complete the 386

trials was judged too great for the research purposes described in this manuscript. 387

The performance of these models is comparable to the performance of the first CNN 388

model in Figure 3, which shows that the best combination of parameters can be reached 389

through a process of trial and error, although it required running several trials to find 390

the best parameters was extremely time and resource consuming and the many combina- 391

tions were difficult to keep track of. Making use of the hyperparameter tuning methods 392

streamlined the process and had the added benefit of managing the compute resources and 393

distributing the trials without much interference. 394

The models trained on the best parameters generated from the tuning process highlight 395

the need to take advantage of early stopping during training. Such an approach might 396

produce better predictive performance from the models trained on the parameters selected 397

by FIFO and Asynchronous HyperBand where overfitting was a clear issue. The model 398

trained on the parameters selected by HyperBand took the longest time to train due to 399

the lower batch size but still had a performance similar to that of the PBT model in terms 400

of R2 scores for PaCO2, bicarbonate concentration, and pH. Moreover, it is clear from the 401

results that all models have high prediction accuracy for the 4 output parameters (R2>0.90), 402

although the prediction of PaO2 was consistently lower. This could be due to possible 403

physiological patterns that were not effectively represented within the data, although future 404

tests with larger data sizes might shed more light on the issue. 405

These results highlight the fact that the surrogate model manages to accurately em- 406

ulate the performance of the NPS within a statistically acceptable range. Although the 407

performance of the models developed through this approach has not been compared with 408

existing diagnostic support models, the surrogate model benefits greatly from the accuracy 409

that is inherent to the original mechanistic simulation. On the other hand, in replacing 410

the NPS with the DL-based surrogate model, the computational overhead due to nested 411

calculation and equilibration loops is reduced. Additionally, following the experimental 412

procedure described herein, further surrogate models can easily be developed from the 413

NPS with the intent of diagnosing other conditions. 414

The results described in this research further showcase the benefits of building spe- 415

cialised surrogate models from existing complex medical mechanistic models, a process that 416

is well established in many scientific fields as described by Gherman et al. [32]. Through 417

this process, significantly representative, more easily applicable, and more lightweight 418

models can be made available within hospital ICUs. This has the added benefit of not 419
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exposing ICUs to unnecessary external threats of data breaches, not requiring specialised 420

and closed-source software, and at the same time not exposing the specific inner workings 421

of the models themselves. Furthermore, this approach benefits from the portability of 422

the developed models, as they can be trained within the platform and exported as offline 423

regressors to be implemented within a container environment. These benefits come at 424

the price of slightly reduced accuracy, although the resulting model predictions are still 425

adequate for supporting clinicians in diagnosing potential disease onset and identifying the 426

need for extra medical attention for a given patient. Another shortcoming of the research 427

described herein is the fact that our surrogate is effectively a black box model. This goes 428

against the current modus operandi of model development for clinical applications where 429

explainable AI methods are recommended. It follows that developing explainable AI 430

models for clinical diagnosis is one of the research focus points within the developed ML 431

and data science platform described in this manuscript. 432

5. Conclusions 433

This article described the process by which a pre-established machine learning and 434

data science platform was used to facilitate the conversion of a MATLAB-based virtual 435

patient model. The process took advantage of available HPC infrastructure to parallelise 436

the original model in order to generate synthetic data that was later used to train ML-based 437

surrogate models. The performance of the models was improved through hyperparameter 438

tuning which also took advantage of parallelisation. The resulting model performance 439

closely mimics the performance of the original model, though with a massive improvement 440

in the speed with which the results are generated. Additionally, the work shed light on 441

the resource use as a means by which to improve efficiency; algorithmic finetuning of 442

the models using parallel computing can efficiently uncover parameter combinations that 443

would otherwise require a long process of trial and error. The work on model conversion 444

is far from complete but offers a glimpse into the clinical applications of virtual patient 445

simulators as real-time diagnostic support tools for clinicians and ICU personnel, especially 446

in situations where early warning can greatly improve outcomes for patients. 447
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Abbreviations 473

The following abbreviations are used in this manuscript: 474

475

AI Artificial Intelligence
ANN Artificial Neural Network
ARDS Acute Respiratory Distress Syndrome
ASIC Algorithmic Surveillance of Intensive Care Unit patients with ARDS
BMBF Federal Ministry of Education and Research
CC Cloud Computing
CNN Convolutional Neural Network
CP Covid-19 Percentage
CW Class Weight
CSV Comma-separated values
CXR Chest X-Ray
DEEP Dynamic Exascale Entry Platform
DL Deep Learning
ECMO Extracorporeal membrane oxygenation
EHL E*HealthLine
EHR Electronic Health Record
EOSC European Open Science Cloud
ESB Extreme Scale Booster
FIFO First-In, First-Out
FiO2 Fraction of Inspired Oxygen
FTP File Transfer Protocol
HPC High-Performance Computing
ICU Intensive Care Unit
JSC Jülich Supercomputing Centre
JUWELS Jülich Wizard for European Leadership Science
MAE Mean Absolute Error
MIMIC-III Medical Information Mart for Intensive Care - III
ML Machine Learning
MPI Message Passing Interface
MSA Modular Supercomputing Architecture
NPS Nottingham Physiology Simulator
NumPy Numerical Python
OpenCV Open Source Computer Vision Library
PBT Population-Based Training
PNG Portable Network Graphics
PaO2 Partial Pressure of Arterial Oxygen
PaCO2 Partial Pressure of Arterial Carbon Dioxide
P/F ratio Ratio of PaO2 to FiO2
Rcomp Compartment Resistance to Flow
RNN Recurrent Neural Network
RT-PCR Reverse transcription polymerase chain reaction
SLURM Simple Linux Utility for Resource Management
SMITH Smart Medical Information Technology for Healthcare
SSH Secure Shell
SvO2 Venous Oxygen Blood Saturation
VRcomp Compartment Vascular Resistance
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