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Ernesto A. Diaz (California) 

WICKED PROBLEMS AND THE INVENTION OF CALCULUS 

Introduction 

Since the 1980s, wicked problems have represented a category of challenges that 
defy clear description, cannot be addressed with existing models or theories, and 
resist experimentation in trying to solve them. This class of problems existed before 
they were identified and have been unsuccessfully addressed with Thomas Kuhn’s 
model of scientific discovery, an expectation that requires the identification of a 
new object and the development of its correct interpretation. This paper proposes 
an alternative view of scientific discovery using the invention of Calculus as a case 
study that describes a successful process addressing wicked-like problems from a 
philosophical perspective, develops ideas that have an epistemological objective 
and are multidisciplinary in their applications, and results in additions to the Body 
of Knowledge that permeate human language and understanding. Leibniz’s wicked 
problem was to produce a universal method of discovery at the centre of his idea of 
a ‘General Science’ and the compilation of an encyclopaedia of all knowledge avail-
able at the time. From the existing paradigm of geometrical arguments and deduc-
tive processes, there is a gestalt shift in Leibniz’s leap in understanding mathemat-
ical methods and the language used in describing and solving problems that was 
rooted in the idea of infinitesimals and in a more general method of analysis. In 
doing so, the transition that began with his methods and notation became the first 
stage in a Kuhnian paradigm shift and the incorporation of Calculus and its appli-
cations into the mainstream of science. I will start by giving some background on 
wicked problems and describing the concept of discovery associated with Kuhn’s 
ideas, and I will then introduce the process of additions to knowledge advocated in 
this essay. These ideas will form the antecedent to summarise the paradigm in 17th 
century mathematics and from there I will proceed to describe Leibniz’s leap and 
the inherent gestalt shift that occurred in the mathematics of the 18th century. That 
gestalt shift was not exempt from acrimonious discussions over alternate formula-
tions and I will present some differences between the views of Newton and Leibniz 
and of two of their supporters; Maclaurin and l’Hôpital. I will then describe some 
of the efforts that helped to expand the acceptance of Calculus and to embed it in 
the mainstream of science. I will conclude by proposing that there are other exam-
ples from the History and Philosophy of Science that follow a similar process of 
additions to the Body of Knowledge.  
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Wicked Problems 

Wicked problems are complex, ill-structured, and resist easy resolution due to their 
high degree of uncertainty, ambiguity, and conflicting values. Examples include 
climate change, poverty, healthcare, and education reform. Wicked problems are 
typically characterised by the following: 

– Complexity: They involve many interconnected elements that are difficult to disentangle. 

– Uncertainty: The nature and extent of the problem is not well-defined, and there may be 
multiple, conflicting viewpoints on the issue. 

– Ambiguity: They lack clear solutions, and the boundaries of the problem are difficult to de-
fine. 

– Resistance to resolution: Because they are so complex and interconnected, there is no clear 
endpoint to the problem-solving process. 

Although these problems were identified in the 1980s, wicked-like situations have 
long existed and been associated with Natural Philosophy. Addressing wicked prob-
lems requires us to reflect on the dimensions of problem-solving and confront the 
limits of scientific knowledge and the complexity of the systems that we seek to 
understand and control. It leads us to adopt a more holistic, interdisciplinary ap-
proach that integrates multiple perspectives and values, and recognizes the limits of 
our knowledge and the contingency of our solutions. Wicked problems are also mul-
tidimensional, and not just technical or scientific in nature, involving complex 
methodological, social, cultural, and political factors that shape our understanding 
of the problem and our solutions. For example, climate change involves not only 
science, but also complex social and political issues such as the distribution of re-
sources, the role of technology, and the responsibility of different actors. I will now 
explain some ideas associated with classical views of Discovery. 

Discovery and Thomas Kuhn 

Until recently, it has been widely believed that any problematic situations can be 
approached from a professional perspective. Rittle and Webber say that “Based in 
modern science, each of the professions has been conceived as the medium through 
which the knowledge of science is applied. In effect, each profession has been seen 
as a subset of engineering.”1 However, Alrøe and Noe add that “...as society has 
become more complex, there has been a correlated differentiation of disciplines in 
science that results in a growing difficulty of applying science and expertise.”2 The 

 
1 Horst W. J. Rittel, and Melvin M. Webber: “Dilemmas in a General Theory of Planning”, in: 

Policy Sciences, 4 No. 2 , 1973, pp. 155 – 169.  
2 Hugo Fjelsted Alrøe and Egon Noe: “The paradox of scientific expertise: A perspectivist ap-

proach to knowledge asymmetries”, in: Fachsprache – International Journal of Specialized 
Communication. (3-4), 2011, pp. 152–167. 
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engineering approach to problem solving implies working within an existing para-
digm following Thomas Kuhn’s conception as a set of methods, values, and stand-
ards for success that defines a particular field and group of professionals.3 The en-
gineering model has traditional views of discovery, where Kuhn proposed that sci-
entific discoveries require both a discovery-that and a discovery-what,4 that is to 
say, the outcome of discovery is the identification of an entity and its correct inter-
pretation. This approach has not been successful in addressing wicked-like problems 
and situations, and in some cases the process of discovery has followed a different 
path, as I describe it next. 

Process of Addition to Knowledge 

Discovery in the context of this paper does not contradict existing definitions and 
descriptions, and instead augments the understanding of its multifaceted nature, 
while addressing a gap in current views that fails to explain the genesis of inven-
tions not provable or falsifiable empirically. What emerges is not a unique intellec-
tual algorithm that produces a thing but rather an approach that fosters a description 
and understanding of a previously undefined ontological space and facilitates the 
development of applications, explorations, results, and solutions to problems in that 
space. The discovery process begins with the wish to understand a problem and 
generates ideas that help describe and explain said problem, even at the risk of con-
troversy arising from challenging accepted methods and models. This creative 
phase becomes a catalyst in a fertile ground of diverse ideas and partial solutions in 
examples which adhere to existing and inadequate paradigms. Through intuition 
and creative integration of existing precursor ideas, a scholar invents entities (ob-
jects, models, or methods) and replicable frameworks that describe and explain 
them. 

One key feature of wicked problems is their inherent value-ladenness. That is, 
different stakeholders hold different values, beliefs, and priorities that shape how 
they perceive the problem and its possible solutions. As a result, there is often dis-
agreement about what constitutes a problem and what goals should guide its reso-
lution. This value-ladenness makes wicked problems particularly challenging for 
scholars working within established paradigms, who often assume that facts and 
evidence can be separated from values and politics. I believe that addressing wicked 
problems requires an interdisciplinary approach that develops in stages and includes 
multiple stakeholders, diverse perspectives, and a willingness to embrace uncer-
tainty and ambiguity. The result is an addition to the Body of Knowledge that per-
meates our vocabulary and understanding of nature and our interactions with it. I 
will now give an example of this point. 

 
3 Thomas S. Kuhn, and Ian Hacking: The Structure of Scientific Revolution, with an introductory

essay by Ian Hacking, Chicago, 2012.
4 Samuel Schindler: “Scientific Discovery: That-Whats and What-Thats”, in: Ergo, an Open Ac-

cess Journal of Philosophy 2, no. 6, 2015, https://doi.org/10.3998/ergo.12405314.0002.006

https://doi.org/10.3998/ergo.12405314.0002.006
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Antecedents: Historical Environment – Mathematics in the 17th Century 

The antecedents to the development of Calculus rest on two areas of 17th century 
mathematics: geometry and infinitary arithmetic. Leibniz arrived in Paris for the 
first time in 1672 in a politically charged and unstable environment, and with very 
minimal foundations in mathematics. There he gained access to the Académie des 
sciences and in particular to Huygens. In addition to sharing his own work, Huygens 
shared with Leibniz the master work and fundamental papers from some of the best 
contemporary mathematical minds: Honorè Fabri, Nicolas Mercator, Blaise Pascal, 
James Gregory, René Descartes, and John Wallis.5 Their efforts revolved around 
the works of Euclid, Apollonius, Archimedes, and Pappus; and Richard Brown ar-
gues that “...they indicated the way Mathematics should be done, what standards it 
should meet, the general type of problems that were of interest, and what should 
constitute a precise solution to them.”6 In this environment we can see echoes of 
the role of exemplars described in Kuhnian paradigms. Much emphasis was placed 
on geometric constructions of a few classical problems such as finding the area 
under a curve (squaring) in general, and of the circle in particular. In the late 1500s 
and early 1600s, some especially talented mathematicians like Françoise Viète and 
Christopher Clavius had begun to successfully transfer algebraic methods used pre-
viously on arithmetic problems to develop geometric constructions, however, they 
worked within the constraints of classical Greek mathematics which had no concept 
of real numbers. Numbers represented distances and dimensions, and therefore, ra-
tios and other relations could only be expressed with homogeneous entities: seg-
ments to segments, areas to areas. The use of polynomials was limited to physical 
dimensions, and higher order polynomials were seen as abstractions without real 
applications.7 Algebra progressed from its mediaeval use as a tool for specific prob-
lems to a symbolic language for abstraction affecting geometry applications. Mul-
tiplication of two segments was seen as an area and that of three segments as a 
volume. Given that multiplication was seen as a change in dimension, there was no 
way to represent graphically more than three dimensions.8 

René Descartes began to transform geometry by using algebra as more than an 
aid in constructions by introducing equations that no longer had to be homogeneous, 
with the cost of adding relativity to some operations like line segment multiplica-
tion. His work, however, remained within the existing classical paradigm.9 Des-
cartes’ publication of the Discourse on Method, Meditations on First Philosophy, 
and Principles of Philosophy locates mathematics and physics as antecedents to the 
‘order of reason,’ provides their metaphysical justification and legitimisation, and 

 
5 Siegmund Probst: “The Calculus” in: The Oxford Handbook of Leibniz, edited by Maria Rosa 

Antognazza, Oxford, 2018, pp. 213–214. 
6 Richard C Brown: The Tangled Origins of the Leibnizian Calculus; A case Study of a Mathe-

matical Revolution, Singapore, 2012, p. 19. 
7 Idem. pp. 22–26. 
8 Emily R. Grosholz: Representation and Productive Ambiguity in Mathematics and the Sci-

ences. Oxford, 2007, pp 165–166. 
9 Richard C Brown: The Tangled Origins of the Leibnizian Calculus, p. 27. 
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organises items of knowledge within a domain, and domains the sphere of human 
knowledge as a whole.10 Descartes was not interested in the study of curves in gen-
eral and did not include what we now call transcendental curves (a term introduced 
by Leibniz) since they were not developed from arithmetical methods and therefore 
were not subject to the methods he developed. Although he was committed to the 
Greek geometrical canons of construction and existence, his analytical geometry 
shows how the classical means of construction fail to provide a foundation for both 
geometry and the study of numbers.11 

Leibniz was influenced by traditional proof methods and tried to follow rational 
paradigms by criticising Wallis for using experiments and phenomena to derive 
laws.12 His work on the infinitary series was influenced by Huygens, Mercator, 
Wallis, Pascal, and others, and this environment forms the antecedents of Calculus. 
However, Leibniz did not simply produce a combination of elements existing in the 
fertile ground of the intellectual development of mathematics at the time. This will 
be my next point. 

Leibniz’s Leap: Infinitesimals and Generalisation 

Leibniz’s wicked problem/situation was to produce a method of discovery follow-
ing Descartes: a philosophical thesis followed by examples. Leibniz published 
“Maximis et Minimis…,”13 the seminal paper of 1684, on differential Calculus as 
part of his goal of developing the art of discovery at the centre of his idea of a 
‘General Science’ and the compilation of an encyclopaedia of all knowledge avail-
able at the time.  

What were some of Leibniz’s root ideas? Trying to contextualise the concepts 
of infinity and continuum, infinitary series, infinitesimals, and indivisibility. His 
thinking shifted from deductive reasoning in a continuum to inductive, inferential 
thinking in a quantised space. This is how the linking of ideas on infinitary descrip-
tions, conceptions, and processes connects to the need to operate with indivisibles 
and infinitesimals. They correspond to ontological conceptions that are necessary 
to describe and understand. The later resistance to accept Calculus was in part due 
to the difficulty of the transition, and in part to the uncertainty of operating with 
non-tangible, ill-defined quanta: infinitesimals/indivisibles in this case. It was nec-
essary to ideate the quanta that describe the change within the process/space and 
the implication of using them in a framework. This did not occur in a vacuum, nor 
did it happen in a moment of brilliant inspiration, or as the output of an intellectual 

 
10 Emily R. Grosholz: Representation and Productive Ambiguity in Mathematics and the Sci-

ences, p. 166. 
11 Idem pp. 231–232. 
12 Richard C Brown: The Tangled Origins of the Leibnizian Calculus, Sp. 78. 
13 Gottfried W. Leibniz: “Nova Methodus pro Maximis et Minimis, itemque Tangentibus, quae 

nec Fractas nec irrationales quantitates moratur et singulare pro illis Calculi Genus – Acta Eru-
ditorum Octobre 1684”, in: G. W. Leibniz Naissance du calcul différentiel, M. Parmentier 
(Translator). Paris, 1995, pp. 96–117. 
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algorithm. While Leibniz was surrounded by others in a common environment and 
fertile preconditions, he used pieces that existed among current discussions on ideas 
and integrated them in a unique way with intuition and a priori concepts and 
thoughts. He then invented a set of entities that helped define a new space and ex-
plained the implications of using them. 

For Leibniz, the leap goes from the constraints of working with equal entities 
in ratios in specific cases to the description and use of infinitesimals and to the more 
general acceptance of numerical ratios that can then be implemented in various ap-
plications. Leibniz did not see the examples he studied with Huygens as part of his 
education, but rather as the point of departure for his discoveries.14 With the pub-
lishing of the “Maximis et Minimis…,”15 Leibniz leaves behind previous efforts by 
providing a method that works geometry differently, by applying calculation to the 
operations (functions in modern language) that define the curves. He was attempt-
ing to understand and mathematically describe continuous movement as seen in 
nature, whether in observable or unobservable entities. At issue were the adoption 
of different metaphysical ideas such as the corpuscular (atomic) nature of matter 
and the idea of continuity. 

Leibniz’s “Maximis et Minimis…,” 16  opens with a figure showing several 
curves and their tangents,17 proceeding to explain that the tangents can be repre-
sented by arithmetic operations on small segments [x, [w, [y, [z.18 These small 
segments will come to be known as infinitesimals. Having posited the segments as 
represented by their numerical expressions, he proceeds to extend the operations to 
multiplication and division. Leibniz introduces notation that allows him to represent 
arbitrary segments with expressions that can be used in the same way in different 
curves and explains how the operations that represent the differences correspond to 
increases of the values associated with the curve if it is positive, or decreases if it is 
negative, with a maximum in a point at the apex of concavity or a minimum at a 
point at the bottom of a convexity.19 Leibniz continues by calculating the differ-
ences of the differences (derivative of the derivative, or second derivative in modern 
language) with a notation of ∂ ∂x and uses it to associate concavity and convexity 
with the signs resulting from those operations. Precisely here is the departure from 
previous work, as the geometrical interpretation of the curve follows the numerical 
operations on its symbolic representation. 

By analysing curves with traditional geometrical methods, approximations with 
geometrical figures (such as using a number of rectangles to fill the space under the 

 
14 Marc Parmentier: “l’Optimisme Mathématique”, in: G. W. Leibniz Naissance du calcul diffé-

rentiel, M. Parmentier (Translator), pp. 12–13. 
15 Gottfried W. Leibniz: “Nova Methodus pro Maximis et Minimis, itemque Tangentibus, quae 

nec Fractas nec irrationales quantitates moratur et singulare pro illis Calculi Genus – Acta Eru-
ditorum Octobre 1684”, in: G. W. Leibniz Naissance du calcul différentiel, M. Parmentier 
(Translator). Paris, 1995, pp. 96–117. 

16 Ibidem. 
17 Ibidem. 
18 Idem pp. 105–106. 
19 Idem p. 107. 
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curve), the introduction of errors was inevitable. Numbers were necessarily differ-
ent unique entities that needed to be connected to a continuous line. Leibniz ap-
proached the problem by looking at quantities as representing segment lengths that 
were very, very small, and yet different from zero. Using these “vanishing,” intan-
gible, incommensurable entities born from the mathematical description of the 
curves themselves, Leibniz could approximate the actual line so closely that the 
error disappeared for all practical purposes. Separating the infinitesimals from the 
physical and geometrical interpretation of the curve was a radical departure from 
scientists requiring experimentation and data to prove hypotheses, and from math-
ematicians providing rigorous proofs using Euclidean geometry, thus creating an 
intellectual space where it was necessary to address and use entities that were not 
representational of reality, and with no empirical status.20 

Here is the departure from previous work, as the geometrical interpretation of 
the curve follows the numerical operations on its symbolic representation. The be-
haviour of the curve can be described by numerical analysis, and in doing so, Leib-
niz is creating an epistemic entity informed by mathematics in the study of the 
curve. The description of the method is semantic, teleological, and pedagogical. 
Leibniz develops not only a notation but a vocabulary that describes the behaviour 
of the curve, defining maximums and minimums by the arithmetical result that iden-
tifies them and by the use of descriptors such as inflection point (punctum flexus 
contrarii)21. He anticipates the use of the method in a variety of applications by 
developing rules and examples in the calculations of examples from power and ra-
tional functions, and radical functions. Leibniz characterises his method as algo-
rithmic (algorithmo)22 and calls it ‘differential’ (differentiali).23 He elaborates on 
the usefulness of the approach by arguing that it can be extended to all curves with-
out relying on hypotheses specific to particular curves or families of curves. In do-
ing so, Leibniz goes beyond the specificity of a solution of a problem to the univer-
sality of a method that can be explicitly used in a myriad of applications and fields. 
In his defence of the method, Leibniz explains that in progressively difficult prob-
lems, calculations by traditional methods might considerably increase in complex-
ity, which his approach avoids, while using a notation that is not particular to a 
specific case.24 The approach above also relaxes the restrictions when operating 
within specific problems such as movement, which would ease the realism require-
ment to understand differentials in terms of variations in time such as was used by 
Newton, and in doing so it permits a true generalised analysis for the first time. I 

 
20 Mitchell G. Reyes: “The rhetoric in mathematics: Newton, Leibniz, the Calculus, and the rhe-

torical force of the infinitesimal”, in: Quarterly Journal of Speech, 90:2, 2004, 163–188, 
https://doi.org/10.1080/0033563042000227427 pp. 178–179.

21 Gottfried W. Leibniz: “Nova Methodus pro Maximis et Minimis, itemque Tangentibus, quae 
nec Fractas nec irrationales quantitates moratur et singulare pro illis Calculi Genus” Acta Eru-
ditorum Octobris, 1684, pp. 467–473. p. 468. Retrieved from Mathematical Association of 
America Mathematical Treasure: Leibniz’s Papers on Calculus – Differential Calculus.

22 Idem, p. 469.
23 Ibidem.
24 Idem. pp. 471–472.

https://doi.org/10.1080/0033563042000227427
https://www.maa.org/press/periodicals/convergence/mathematical-treasure-leibnizs-papers-on-calculus-differential-calculus
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will now describe how these ideas represented the beginning of a mathematical rev-
olution à la Kuhn. 

Gestalt Shift and the New Mathematics 

There is a gestalt shift in Leibniz’s leap in understanding mathematical methods 
and the language used in describing and solving problems. Severing the attachment 
to reality allowed an understanding that was disconnected from strictly geometric 
arguments and deductive logic to infer the applicability of the method beyond spe-
cific cases. The difficulty in transitioning from infinitary techniques in series to 
algebraic methods in integrals of ‘functions’ (in modern terms) arose from the re-
luctance to accept their equivalence, and thus, accepting a break with existing par-
adigms in 17th century mathematics. The transition uses the concept of infinitesi-
mals as a bridge, and it was the philosophical approach that made possible the break 
with the existing paradigm by developing a general problem-solving ‘process’ and 
a general ‘language’ that permitted seamless communication and diffusion. The 
ease of implementation of the new methods and their success in solving existing 
and new problems and applications is one of the critical factors in their eventual 
adoption.  

By 1676, Leibniz had long recognised that the summation of the terms of a 
series is inverse to their difference, and yet, there were no systematic applications 
to quadratures and tangents.25 The link between these concepts is the essence of the 
usefulness and novelty of Calculus. What Leibniz put together was a notation and 
algorithm to solve a classical problem in a manner that could become a universal 
method and could be applied to many problems beyond specific cases and the set 
of classical problems. In modern integral Calculus we teach that a Riemann sum (in 
the limit with an infinite number of terms) is the same as the integration of a func-
tion that describes the curve. This is an example of the power of Calculus: 

 
The notation on the left side of equation 1 describes an infinitary sum whose origin 
is the quadrature (area under the curve) of a specific curve. The notation on the right 
side describes the area under the curve, found by adding infinite rectangles that 
approximate the full space under the curve (giving origin to the infinitary series on 
Dthe left). The sigma notation (left) is a tool to write more efficiently the description 
of the solution of the problem, and is solved with a formula as a method to effi-
ciently carry out the summation of the series, such as the formula to add consecutive 
numbers in an arithmetic series. The integration formula in a definite integral (right) 
allows for an algorithmic solution of a family of functions that makes it easier to 
obtain the area under the curve (the quadrature) without recurring to infinite series 

 
25 Richard C Brown: The Tangled Origins of the Leibnizian Calculus, p. 126. 
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techniques. If we have two different descriptions of a solution of a problem that 
produce indistinguishable solutions, then it does not matter which one we choose 
since they are both true representations of reality. The system is so powerful that to 
solve the problem it is only necessary to apply the algorithm, without necessarily 
understanding the details of the problem or being an advanced mathematician.  

The gestalt shift originated by Leibniz’s invention and subsequent adoption, 
expanded with the work, pedagogical methods, and communication from key fig-
ures like l’Hôpital, the Bernoullis in the late 17th century, and later with Euler’s 
text and work in the 18th century. The adoption of Calculus stemmed from a 
Kuhnian revolution in mathematics, with fierce challenges and a lengthy process of 
adoption in which political, sociological, historical, and pedagogical factors played 
a role. I will next describe some of the differences in the alternate views of Newton 
and Leibniz. 

Challenge from Newton and how their Calculus Differ 

Calculus faced bitter challenges, particularly from Newton and his followers. Reyes 
argues that the adoption of the Calculus developed by Leibniz and Newton evolved 
from a network of discourses and brought with it a change in how humans perceive, 
think about, and discuss nature, and it became accepted knowledge through wide 
communication, discussion, and clarification between established thinkers.26 From 
a philosophical perspective, the differences between Leibniz’s and Newton’s ap-
proaches to Calculus reflect their broader philosophical views. Leibniz saw infini-
tesimals as a tool for reasoning about the behaviour of functions and believed that 
they could be used to develop a rigorous foundation for Calculus. In contrast, New-
ton was an empiricist who believed that knowledge should be based on observation 
and experimentation. Leibniz believed in a relational theory of space and time, in 
which they are defined by the relationships between objects. He saw infinitesimals 
as a way to reason about these relationships and believed that they could be used to 
develop a unified theory of physics. Newton, on the other hand, believed space and 
time were absolute, and existed independently of objects. He saw his Calculus as a 
tool for understanding the behaviour of physical systems in this absolute frame-
work. Newton’s views and conceptions as a physicist were constrained by a math-
ematical language specific to the problem at hand while Leibniz’s approach was 
philosophical and concerned with developing explanations in a universal language 
not restricted to specific problems. This is where the leap to a more general method 
and understanding breaks with the existing paradigm, opening the path for its use 
in other applications.  

 
26 Mitchell G. Reyes: “The rhetoric in mathematics: Newton, Leibniz, the Calculus, and the rhe-

torical force of the infinitesimal”, in: Quarterly Journal of Speech, 90:2, 2004, 163–188, 
https://doi.org/10.1080/0033563042000227427, p. 165.

https://doi.org/10.1080/0033563042000227427
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Bos explains the nature of the difference between Leibniz’s and Newton’s ap-
proaches to Calculus.27 This is why we think of Leibniz as a mathematician and 
Newton as a scientist, no matter how brilliant a mathematician he was. Newton’s 
mathematical methods were extremely difficult to replicate and generalise, and 
therefore were not adopted, while Leibniz’s were used extremely successfully by 
others and over time became the new methodological standard, the new paradigm. 
The approach could be applied to higher order differentials and sums, and while it 
was a logical next step in the application of the method at first it was difficult to see 
phenomena explained by the mathematical operations. Instead, explanations began 
with mathematical descriptions that could later explain and predict phenomenolog-
ical behaviour. This is crucial to understand the gestalt shift in mathematics in the 
18th century. Replicability and mechanisation of approach made it possible for the 
new mathematics to be generally used. What made it difficult for Newton’s follow-
ers to replicate was a combination of the difficulty in the language used to describe 
his method and the specificity of its goal. Despite the later efforts to generalise its 
results and methods by Colin Maclaurin (1698–1746)28 and others, it was not pos-
sible for British mathematicians to emulate or expand its use and this stagnated 
British mathematics for more than a century. I agree with Richard Brown when he 
states that more than the physical discoveries of Newton, it was Leibniz’s Calculus 
that made the modern world possible.29 Next I will present some examples of the 
pedagogical approaches used in explaining the alternate formulations of Calculus. 

Expansion: Pedagogical differences – Maclaurin vs l’Hôpital 

The change in paradigm did not happen without bitter controversies and discussions 
in a revolutionary process à la Khun. In the debate about Calculus and its imple-
mentation and uses, the different approaches of Newton and Leibniz had implica-
tions for the influence and acceptance of the new tools in science and mathematics. 
The second phase of the epistemological process of additions to the Body of 
Knowledge implies the use of accepted semantic entities. Similarly to Niels Bohr’s 
description of the Principle of Correspondence, we rely on classical views rooted 
in our experience in order to accept the use of new entities and frameworks. The 
semantic articulation of these concepts is achieved through socialisation of the 
ideas, and it triggers discussion and comparisons with alternate views. The useful-
ness of the semantics and notation used to describe and apply to new situations 
becomes critical in their acceptance and diffusion. Good examples of the exchanges 
that took place during this phase are some of the arguments from Maclaurin regard-

 
27 Henk J. M. Bos: “Differentials, Higher-Order Differentials and the Derivative in the Leibnizian 

Calculus”, in: Archive for History of Exact Sciences 14, no. 1 (1974): 1–90. 
http://www.jstor.org/stable/41133417.

28 Colin Maclaurin: An account of Sir Isaac Newton’s Philosophical Discoveries: in four books,
London, 1747.

29 Richard C Brown: The Tangled Origins of the Leibnizian Calculus.

https://www.jstor.org/stable/41133417


336 Ernesto A. Diaz 

 

ing Newton’s methods and ideas and the success in acceptance of Leibniz’s Calcu-
lus vs Newton’s: Maclaurin defends Newton’s slowness to publish as his reluctance 
to engage in controversy out of modesty.30 Maclaurin contrasts Newton’s explana-
tions of gravity with Leibniz’s, where the former seemed to lean towards physics 
and the latter towards mathematics and philosophy. Maclaurin explains Leibniz’s 
success by virtue of his theological argument that God (the Deity) had made a most 
perfect world, and that this argument resonated with others.31 Maclaurin explains 
Leibniz’s introduction of monads32 and afterwards proceeds to define space, body, 
etc., in an approach to the continuum vs quanta issue.33 Following the reasoning of 
science vs mathematics/philosophy in the two approaches, he leads the discussion 
and defence of Newton’s views by explaining their root in the study of motion.34 In 
a separate text explaining Newton’s theory of fluxions, he describes indivisibles,35 
followed by a description of the continuum, metaphysical arguments, and the idea 
of infinitesimals.36 Maclaurin wrote the Treatise of Fluxions to answer Berkeley’s 
attack on Newton’s methods for their lack of rigour.37 These arguments are either 
apologetical or seek to clarify Newton’s language, and contrast with expositions in 
the texts from l’Hôpital and others that concentrate on didactic descriptions of the 
implementation of Leibniz’s methods in a variety of problems.  

The first Calculus textbook was written by l’Hôpital38 and follows the peda-
gogical approach and structure of modern texts, with a presentation of several prob-
lems and their solutions. For example, section IX, proposition 1 presents the prob-
lem of a fraction where both numerator and denominator approach zero and where 
the ratio is the same as that of the differentials at the same point. The description of 
the solution that follows the stated problem is known as the l’Hôpital Rule (also 
attributed to Bernoulli) and is an example of the tone and purpose of the text which 
contributed to the expansion of Calculus. l’Hôpital’s approach was successfully 
used in communications and publications of other scholars addressing different ap-
plications, thus contributing to the acceptance of Leibniz’s Calculus notation and 
methods which I will present next.  

 
30 Colin Maclaurin: An account of Sir Isaac Newton’s Philosophical Discoveries: in four books,

London, 1747, pp. 10–15.
31 Idem, p. 80.
32 Idem, p. 81.
33 Idem, p. 100.
34 Idem, p. 104.
35 Colin Maclaurin: A Treatise of Fluxions in Two Books, Edinburgh, 1742, p. 1
36 Idem, pp. 39–45.
37 J J O’ Connor and E F Robertson: “Colin Maclaurin”, Maths History at Saint Andrews.

https://mathshistory.st-andrews.ac.uk/Biographies/Maclaurin/
38 Guillaume François Antoine de l’Hôpital: Analyse des infiniment petits, pour l’intelligence des

lignes courbes. A Paris, 1716.

https://mathshistory.st-andrews.ac.uk/Biographies/Maclaurin/
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Expansion: Communications and Applicability; Bernoullis, Varignon, 
Bodenhausen 

The process of addition to knowledge stems from active and confrontational debates 
on the articulation of the new ideas. Understanding emerges from a dialectical ap-
proach within the scientific community before new knowledge gains the status of a 
correct conceptualization. Concepts, methods, and their interpretation then spread 
through textbooks and teaching and by their use in new applications. An example 
of this phase is seen in the arguments on the validity of the concept of infinitesimals, 
and the discussion of usefulness of the new methods as in the exchanges between 
Leibniz and Huygens. 

The successful adoption of Calculus arose from the communications with oth-
ers in the development of applications such as differential equations of the type 
]y=(2x+2y) ]x (communications with Jacob Bernoulli), the integration of polyno-
mial and root functions (with Johann Bernoulli), and the determination of central 
forces from orbits (with Varignon). Further diffusion and acceptance ensued from 
the exchange of ideas, for example between Leibniz and Rudolph von Boden-
hausen, regarding the study of the catenary and an approximation to the value of 
e,39 and preparations for a pedagogical text in 1690.40 There are additional socio-
logical factors influencing the incorporation of Calculus to the mainstream of Sci-
ence and the Body of Knowledge, as I will briefly present next. 

Expansion: Adoption; Euler and the French Schools 

Wahl has explored the role of cosmopolitanism, nationalism, and expatriates in the 
adoption and expansion of Calculus.41 Textbooks like those of l’Hôpital42 and later 
those of Euler,43 L. A. de Bougainville, and Maria Gaetana Agnesi44 succeeded in 
spreading its use among different audiences. During the 18th century, problems in 
celestial mechanics, hydrodynamics, elasticity, and in general rational mechanics 
grew in importance and scope with interest expanding and expeditions sent to check 

 
39 Michael Rough and Siegmund Probst: “The Leibniz catenary and approximation of e – an anal-

ysis of his unpublished calculations”, in: Historia Mathematica 49, 2019, 1–19 https://doi.org/ 
10.1016/j.hm.2019.06.001

40 Rudolph von Bodenhausen, in: Leibniz Manuscripts on Mathematics LH35, 11, 18c, 1690
http://digitale-sammlungen.gwlb.de/resolve?id=00068193.

41 Charlotte Wahl: “Between cosmopolitanism and nationalism. The role of expatriates in the dis-
semination of Leibniz’s differential Calculus”, in: Almagest, 2014, 40–68. https://doi.org/ 
10.1484/J.ALMAGEST.5.103566.

42 Guillaume François Antoine de l’Hôpital: Analyse des infiniment petits, pour l’intelligence des
lignes courbes. A Paris, 1716.

43 Leonhard Euler: Introduction a l’analyse infinitésimale, Traduite du latin en français, avec des
notes & des éclaircissements – Tome Premier – par J. B. Labey. A Paris, 1796.

44 Henk J. M. Bos: “Calculus in the eighteenth century – the role of applications” in: Lectures in
the History of Mathematics – History of Mathematics Volume 7 – Chapter 7. American Math-
ematical Society 1995. DOI: https://doi.org/10.1090/hmath/007, pp. 113–128.

https://doi.org/10.1016/j.hm.2019.06.001
http://digitale-sammlungen.gwlb.de/resolve?id=00068193
https://doi.org/10.1484/J.ALMAGEST.5.103566
https://doi.org/10.1090/hmath/007
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results. Rational mechanics provided a language and the concepts for the new meth-
ods of analysis, and with these influences, it conferred prestige on the new methods 
of Calculus.45 In France, influential military and civil engineering educational in-
stitutions adopted textbooks on hydraulics. By the end of the century, the 
knowledge of pure mathematics required for admission increased along with what 
was taught in those schools, and the influential École Polytechnique made Calculus 
part of the curriculum,46 thus establishing it and analysis within the mainstream of 
academia and the professions. I will now conclude this essay by summarising how 
the example follows the proposed view of discovery as well as suggesting other 
examples that exhibit similar patterns. 

Conclusion 

Understanding the invention of Calculus goes beyond the how and must address the 
important question of the why. Newton was not interested in ‘philosophy’ and in-
stead focused on the description of how and in the specific problem of motion, and 
therefore his solution was particular to that problem. Leibniz was driven by the why, 
by philosophical questions, and by the need to contribute to the improvement of 
society, and he was working on the wicked problem of developing a universal 
method for discovery and a language to communicate it. In teaching Calculus, I 
show how we transition from the methods for solving specific problems (limits in 
the calculation of slopes, and infinite series in the calculation of areas) to the effi-
cient description and general methods of solutions contained in derivatives and in-
tegrals as a framework for working on new problems in the various fields associated 
with their studies. Derivatives allow us to understand how quickly something 
changes, and integrals let us find out about the extent of that change. The goal is to 
promote the transition from the practitioner approach of a science student who rep-
licates existing and known solutions to that of a scientist who uses frameworks, 
methods, and diverse entities in addressing new situations, problems and applica-
tions in science. Replicability, implementability, and pedagogical approach became 
the roots of the adoption of Calculus and analysis as a new paradigm beginning in 
the 18th century, and later, of language and understanding in the mainstream in Sci-
ence. 

Leibniz’s ideas can be translated and seen in examples far removed from tech-
nical solutions in mathematics; the idea of speed and amount of change being re-
lated to each other, integration as a seamless sum of parts, the relation between 
continuum and quanta in understanding a process, the importance of normative lan-
guage in understanding, the applicability of visceral/ physical images in describing 
the process and understanding its implications and role in solutions, the philosoph-
ical implications of choosing seemingly different explanations and solution meth-

 
45 Idem, p. 119. 
46 Idem, pp. 121–122. 
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ods that nonetheless produce indistinguishable results. These are all present in Cal-
culus, and they exist also in Charles Darwin’s ideas on evolution, complementarity 
from Niels Bohr, computability and mechanical intelligence from Alan Turing, and 
in information theory from Claude Shannon. The resistance to Calculus was due in 
part to the difficulty of the transition, in part to the uncertainty of operating with 
non-tangible, ill-defined quanta: infinitesimals/ indivisibles in this case, but appli-
cable to other cases following this process: quanta, infinitesimals, bits of infor-
mation, evolutionary traits and steps, Turing machine (computer software) steps, 
and first order logic rules in the computability of numbers. For additions to the Body 
of Knowledge following the path described in this essay, it is necessary to ideate 
the quanta that describe the change within the process/space and the implication of 
using it in a framework. This does not occur in a vacuum, nor does it happen in a 
moment of brilliant inspiration, or as the output of an intellectual algorithm. This is 
what makes them additions to the Body of Knowledge in a different way and of a 
different type from the that and what of traditional conceptions of discovery. Those 
concepts are not extensions or syntheses of precursors of the scholar’s work, but 
true inventions of new ontological spaces that expanded our understanding. 
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