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Feasibility study of a MEMS threshold-pressure
sensor based on parametric resonance: experimental

and theoretical investigations
Mark Pallay, Meysam Daeichin, and Shahrzad Towfighian

Abstract—A tunable threshold pressure sensor based on para-
metric resonance of a microbeam subjected to electrostatic
levitation is proposed. Parametric excitation can trigger a large
amplitude vibration at twice the natural frequency if the mag-
nitude of the driving force is large enough to overcome energy
loss mechanisms in the system such as squeeze film damping.
This causes a temporarily unstable response with a significant
gain in oscillation amplitude over time until it is eventually
capped by nonlinearities in the force or material or geometric
properties. The instability divides the frequency region into two
regions: distinct responses bounded by the system nonlinearity,
and trivial responses with very low oscillation amplitudes. It
is shown experimentally that the appearance of parametric
resonance depends on the pressure, which influences the amount
of energy loss from squeeze film damping. Therefore, the distinct
difference in the vibration amplitude can be used to detect when
the pressure passes a threshold level. The activation of parametric
resonance also depends on the amplitude of the driving force
(Vac). This voltage amplitude can be set to trigger parametric
resonance when the pressure drops below a predetermined
threshold. A reduced-order model is developed using the Euler-
Bernoulli beam theory to elucidate the nonlinear dynamics of the
system. The simulation results from the mathematical model are
in good agreement with the experimental data. The advantages of
the proposed sensor over pull-in based sensors are its reliability
and improved resolution from a large signal-to-noise ratio.

I. INTRODUCTION

Monitoring air (or other gas) pressure in many applications
requires periodic checking of the pressure level to see if
it has dropped below a threshold value. An example is
detecting sudden changes in the air pressure inside a plane
cabin to decide if breathing masks should be released for the
passengers. For these applications, it would be advantageous
to use a smart sensor that only triggers when the pressure
drops below the specified level, eliminating the need to
constantly monitor the pressure and reducing the amount of
computational overhead required. One method of developing
this type of smart sensor is to rely on the hysteresis in
nonlinear systems, which can cause sudden changes in system
dynamics when a parameter such as excitation amplitude,
frequency, or damping changes. Nonlinear oscillators that are
susceptible to parametric resonance are one of such systems
that can trigger a significant jump in oscillation amplitude if
the system damping drops below a threshold value.

M. Pallay, M. Daeichin, and S. Towfighian are with the Department
of Mechanical Engineering, State University of New York at Binghamton,
Binghamton, NY, 13902 USA, Corresponding author: S. Towfighian (stow-
figh@binghamton.edu)

Parametric excitation is a phenomenon that happens in
the response of physical oscillators that have at least one of
their properties varying with time [1]–[3]. For example, a
simple mass-spring-damper oscillator could exhibit parametric
excitation if the spring stiffness changes with time. As a
result, the system will experience a dramatic change in its
vibration amplitude if the magnitude and frequency of the
varying stiffness satisfy the conditions needed to trigger
parametric resonance. For any given system, these conditions
can be found by mapping curves called transition curves in
a 2D space of the magnitude and frequency of the varying
parameter. If the magnitude and frequency are inside a
transition curve, the system is said to be unstable and will
trigger parametric resonance. These transition curves are
found at numerous frequency intervals in this space, with the
primary transition curve located at twice the natural frequency.

In electrostatic systems, the electrostatic force has a
linear component that is proportional to the displacement
of the movable electrode. This linear term acts as a second
mechanical stiffness that is related to the square of the
applied voltage. By applying a voltage between a fixed
and movable electrode, in addition to the electrostatic
force that is generated, the total effective stiffness of the
movable electrode is affected. If an AC voltage with a
frequency twice that of the natural frequency is applied,
the system can be driven into parametric resonance. This
can happen in any electrostatic system, even one that does
not use a traditional parallel-plate configuration [4]. The
sudden change in amplitude from parametric resonance
has been exploited for sensing and actuation applications
[5]–[7]. Mass and gas sensors have been developed based on
parametric resonance in microstructures. [8], [9]. In a previous
work, The parametric resonance for a circular micromirror
is used to achieve large displacement at higher frequencies [6].

Electrostatic levitation is generated by a particular
configuration of electrodes that offers several advantageous
features over conventional parallel-plate-based sensors [10]–
[12]. Figure 1 (a) shows the schematic of the electrode
configuration in the levitation scheme. In this approach,
the bias voltage is placed on the side electrodes, which are
fixed to the substrate. The bottom electrode (also fixed) and
the moving electrode (beam) above it are grounded. This
voltage distribution creates an electrostatic force that pulls
the microstructure away from the bottom electrode [11], [12].
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The nature of the electrostatic levitation force is completely
different from the electrostatic force in parallel-plate
capacitors, where the moving electrode is pulled toward the
bottom electrode [13]. The levitation electrode configuration
allows for a large vibration of the moving electrode [14]
and does not suffer from the pull-in instability between the
moving and bottom electrodes [15]–[17]. Furthermore, it
provides the flexibility to increase the bias voltage to increase
sensitivity in sensing applications [18]. The use of high bias
voltages may be counted as a drawback of the levitation
scheme though. However, advances in Application Specific
Integrated Circuits (ASIC) designs has made handling
high bias voltages possible. For some applications such
as instrumentation devices, the use of high bias voltage is
not of concern. In applications where the use of high bias
voltages is of concern, the dimensions of the electrodes could
be changed to make the use of low bias voltages feasible [14].

All MEMS (Micro-Electro-Mechanical-Systems) pressure
sensors output a continuous measurement of pressure. They
take advantage of linear features of MEMS such as resonance
frequency of resonators [19] or deflection of a diaphragm
[20] in the linear regime. This is because a linear relationship
between input and output of the sensor makes the electrical
circuitry and data processing much simpler [13]. Therefore,
nonlinearity is undesired in pressure sensors. However, for
threshold pressure sensors, exploiting nonlinear features of
MEMS such as pull-in [21], buckling [22], and snap-through
[23] could be very beneficial because they can improve
the signal-to-noise ratio. For example, the pull-in instability
of parallel-plate capacitors has been studied for threshold
sensing applications [24], [25]. The dynamic pull-in of a
parallel-plate capacitor depends strongly on the squeeze
film damping, which is a function of pressure [26]. The
main drawback of this approach is that pull-in may cause
permanent failure of the device with a detrimental effect on its
reliability [27]. In previous work by our research group [21],
[28], parallel-plate excitation is combined with electrostatic
levitation to make a robust pressure switch. Snap-through
bi-stability of a clamped-clamped MEMS arch is another
nonlinear phenomenon that could be used as a mechanism
to establish a threshold pressure [23], [29]. The caveat to
this approach is that the fabrication of a clamped-clamped
arch beam is more challenging compared to a cantilever
beam. This is because controlling residual stresses during the
fabrication process is a cumbersome task [30].

In this study, we extend on previous studies [2], [31] to
exploit another interesting feature of the levitation approach,
which is parametric resonance-based threshold pressure
sensing. A time-varying voltage on the side electrode
modulates the equivalent stiffness of the system, and, under
the right damping circumstance, the microbeam exhibits
parametric resonance. It is shown experimentally that the
dependence of parametric resonance on the damping can
be used to build a threshold pressure sensor. A parametric
resonance-based sensor can generate a distinct electrical signal
that is easy to detect and process. This helps avoid complex

electrical circuitry and requires less processing power, which
is very desirable. The proposed sensor is tunable meaning
that the threshold at which the sensor is triggered can be
adjusted by changing the amplitude of time-varying (AC)
voltage on the side electrode. Because the beam and the
bottom electrode are grounded, even if the cantilever comes
into contact with the bottom electrode, it will not experience
pull-in. If humidity and other environmental effects cause
stiction, the sensor can be reset by applying side electrode
voltage [32], [33], making the sensor robust and reusable.

The rest of this paper is organized as follows. Section II
presents the working principle of the proposed sensor. In
section III, a mathematical model is developed to investigate
the nonlinear dynamics of the microbeam under levitation
electrostatic force. The model is turned into a Mathieu’s
equation to demonstrate the system will experience parametric
resonance. Section IV presents and discusses the experimental
results. In Section V, the highlights of the work is summarized
and some concluding remarks are presented.

II. PRINCIPLE OF OPERATION

The sensor is built from a micro cantilever that is subjected
to the levitation electrostatic force. The microbeam is built
with the POLYMUMPs fabrication standard (Fig. 1 (b)). The
dimensions of microbeam and other electrodes are given in
Table I. We have used QP-QFN44-7MM-.5MM package from
Quik-pak Company for the MEMS chip.

The sensor is placed in an environment where it will be
measuring pressure. A time-varying voltage that has DC
and AC components is applied to the side electrodes and
the microbeam is excited at twice its natural frequency.
It is important to note that the natural frequency of the
microstructure depends on the stiffness, which in this case,
consists of the structural stiffness as well as the electrostatic
field induced stiffness (electrical stiffness). The structural
stiffness of the microstructure comes from the elasticity of the
microbeam, which depends on the material and the geometry
of the microbeam. The electrical stiffness is introduced
mainly from the DC voltage on the side electrodes and
depends on the electrode dimensions and their configuration,
especially the gap between the side and the bottom electrodes.

In general, the electrical stiffness in the levitation approach
increases with the bias voltage on the side electrodes.
Depending on the geometry of the electrodes and their
configuration, it is possible for the natural frequency to
initially decrease with an increase in the bias voltage up to a
certain voltage and then to increase. The increase of linear
natural frequency with the DC voltage is a characteristic of
the levitation approach that is in contrast to the parallel-plate
configuration. A comprehensive study of the effect of bias
voltage on the resonance frequency of the microcantilever is
given in [11].
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Fig. 1. (a) Schematic of the electrodes in the electrostatic levitation configuration. This particular voltage distribution creates an electric field that causes an
upward electrostatic force on the moving electrode, pulling it away from the bottom electrode.(b) Top view of a fabricated microbeam. The fabrication is
done using POLYMUMPs standard.

0 0.2 0.4 0.6 0.8
-1

-0.5

0

0.5

1

change in

amplitude

Parametric resonance

No parametric

 resonance

Fig. 2. Appearance of parametric resonance in the microstructure’s response
that leads to a distinct difference in the vibration amplitude of the microbeam.
This change in the amplitude can be used to build a threshold pressure sensor.

As it will be shown experimentally, at a given DC voltage,
the AC component of the voltage determines the threshold
pressure at which the parametric resonance is triggered.
As the microbeam is resonating, if the pressure inside the
environment drops below a certain level, the parametric
resonance is triggered. As a result, the amplitude of vibration
will increase dramatically, and the sensor goes to the ON
state. Figure 2 shows the velocity of the microbeam at its
tip point before and after the parametric resonance. The
increase in the amplitude is distinct and could be detected by
a piezoelectric transducer or capacitive sensing between the
beam and side electrodes.

III. MATHEMATICAL MODEL

A. Governing Equation of Motion

In this section, a mathematical model is developed to
investigate the nonlinear dynamics of the microbeam at the
parametric resonance. The governing equation of motion for
the beam in the z direction (ŵ) is given in Eq. (1) using
the Euler-Bernoulli beam theory. The microbeam is made of
polysilicon, and its modulus of elasticity and density are given
in Table I.

ρA
∂2ŵ

∂t̂2
+ ĉ

∂ŵ

∂t̂
+ EI

∂4ŵ

∂x̂4
= V 2f̂e(ŵ) (1)

In Eq. (1), I is the second moment of inertia of the y-z
section of the beam about the y axis, V is the electric voltage
on the side electrode, and f̂e is the electrostatic force per
unit length for when V = 1V olt. The electrostatic force
profile (f̂e) is obtained from a finite element simulation in
COMSOL for a 2D cross section of the beam and electrodes.
A polynomial function is fit to the numerical results for force
profile from COMSOL [11].

Using non-dimensional parameters given in Table II, Eq. (1)
can be rewritten as:

∂2w

∂t2
+ c

∂w

∂t
+

∂4w

∂x4
=

L4

EIh
V 2

9∑
n=0

Anh
nwn (2)

where An are the coefficients of the polynomial for the force
profile given in Table I. The value of c is given in Table II
as well. The voltage on the side electrode is represented by
V in Eq. (2), which has a DC component and a harmonic
time-varying component as (3).

V = Vdc + Vac cos(ΩTt) (3)

where Ω is the excitation frequency.
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TABLE I
BEAM MATERIAL AND GEOMETRIC PROPERTIES

Parameter Symbol Value

Beam Length (µm) L 504.25
Beam Width (µm) b 18
Beam thickness (µm) h 2
Beam Electrode Gap (µm) g 2
Electrode Gap (µm) s 20.5
Bottom electrode Width (µm) b1 31
Side electrode Width (µm) b2 28
Electrode Thickness (µm) h1 0.5
Elastic Modulus (GPa) E 157
Density ( kg

m3 ) ρ 2330

Moment of inertial (m4) I bh3

12
Poisson’s Ratio ν 0.22
Force Constant A0 1.1629 ×10−7

Force Constant A1 5.6299 ×10−3

Force Constant A2 -1.6118 ×103

Force Constant A3 1.2729 ×108

Force Constant A4 -3.0638 ×1012

Force Constant A5 -3.4096 ×1017

Force Constant A6 3.6121 ×1022

Force Constant A7 -1.5228 ×1027

Force Constant A8 3.1435 ×1031

Force Constant A9 -2.6096 ×1035

TABLE II
NON-DIMENSIONALIZATION

Parameter Substitution

x-direction position x = x̂
L

z-direction position w = ŵ
h

Time t = t̂
T

Damping c = ĉL4

EIT

Quality factor Q =
β2
1
c

Time Constant T =

√
ρAL4

EI
β1 1.875
σ1 0.7341
D1 0.5
Q(P = 590mTorr) 300
Q(P = 990mTorr) 136
Q(P = 2000mTorr) 67

A reduced-order model can be developed using separation
of variables as

w(x, t) =

n∑
i=1

qi(t)φi(x) (4)

where qi(t) are the time-dependent coefficients and φi(x) are
the linear mode shapes of the cantilever given as follows

φi(x) = Di(cosh(βix) − cos(βix)−
σi(sinh(βix) − sin(βix))) (5)

where βi are the square roots of the non-dimensional mechan-
ical natural frequencies, and σi are constants determined from
the clamped-free boundary conditions for the microcantilever.
The first mode approximation is used for the analysis as it
has shown good agreement with experimental results for this
system in a previous study [11]. Values of β1, σ1, and D1

for the first mode are given in Table I. The mode shapes are
normalized such that the displacement at the free end is unity.

Substituting Eq. (4) into Eq. (2), multiplying both sides of
Eq. (2) by φ1, and integrating between 0 and 1 using the
orthogonality of the mode shapes yields a nonlinear ordinary
differential equation on the time-dependent coefficient q(t) as

q̈(t)+cq̇(t)+β4
1q(t) = r1(Vdc+Vac cos(ΩTt))2

9∑
n=0

pn(q(t))n

(6)

where

r1 =
L4

EIhI1
I1 =

∫ 1

0

φ2
1(x)dx pn = Anh

n

∫ 1

0

φn+1
1 dx

(7)
The shooting method is used to solve Eq. (6) and obtain the

frequency response. This method shoots for periodic solutions
of the equation, and it is more computationally efficient
compared to integrating Eq. (6) over time. The details of this
method for the electrostatically levitating system are outlined
in [11]. By performing multiple frequency sweeps at different
Vac and damping conditions, the transition curves will be
extracted. The damping coefficient, c in Eq. (6), will be
identified from the experimental results presented in Section
IV.

B. Analytical Expression for Transition Curves

In addition to the numerical results from the shooting-
method solution of Eq. (6), an analytical expression of the
transition curves is also extracted. The transition curves
separate the stable regions from unstable regions where
the parametric resonance occurs. As it will be shown, the
transition curves depend on the amplitude of the time-varying
voltage (Vac), the excitation frequency (Ω), and the damping
coefficient (c)(or the quality factor (Q)). Although numerical
methods can be used to solve Eq. (6) to obtain the transition
curves, they are computationally cumbersome and time
consuming. To obtain the transition curves, the frequency
response of Eq. (6) should be calculated at different electrical
excitations (Vdc and Vac) and different damping conditions,
which is a cumbersome task. On the other hand, an analytical
formula for the transition curves not only yields the results
with much less computation, but it provides insight on how
the dynamics of the system is affected by the intertwined
relationship between various parameters, and therefore it is
very useful.

To obtain the transition curves, one can rewrite Eq. (6) into
the form of Mathieu’s equation given below.

q̈d(t) + Cq̇d(t) + [δ + ε cos τ ]qd(t) = 0 (8)

Introducing a change of variable given as

q(t) = qst + qd(t), (9)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, MAY 2020 5

0 50 100 150 200

0

2

4

6

8

10

12

14

16

18

-6 -3 0 3 6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8
10

-8

Fig. 3. (a) The solution of Eq. (11) gives the static displacement at the tip of the beam for different DC voltages on the side electrodes (b) The linearization
of the electrostatic force about qd = 0 given in Eq. (12). According to this figure, the linearization of the electrostatic force is a reasonable assumption.

one can rewrite Eq. (6) as

q̈d(t) + cq̇d(t) + β4
1qd(t) =

r1(Vdc + Vac cos(ΩTt))2
9∑

n=0

pn(qst + qd(t))
n − β4

1qst (10)

where qst is the solution of the algebraic static equation, given
in Eq. (11). Figure 3 (a) shows the static displacement of
the microcantilever at the tip point as the voltage on the side
electrodes increases.

β4
1qst = r1(Vdc)

2
9∑

n=0

pn(qst)
n (11)

The summation in Eq. (10), which is a function of qd, can
be expanded about qd = 0 using Taylor series expansion as

f(qd) =

9∑
n=0

pn(qst + qd(t))
n = α0 + α1qd +O(q2

d) (12)

where

α0 = f(0) =

9∑
n=0

pn(qst)
n α1 =

ḟ(0)

1!
=

9∑
n=0

npn(qst)
n−1

(13)
Substituting Eq. (12) into Eq. (10) and rearranging the terms,
one can write

q̈d(t) +
β2

1

Q
q̇d(t)+

[(β4
1 − δ1) − ε11 cos(ΩTt) − ε21 cos(2ΩTt)]qd(t) =

[(δ0 − β4
1qst) + ε10 cos(ΩTt) + ε20 cos(2ΩTt)]

+ [δ2 + ε12 cos(ΩTt) + ε22 cos(2ΩTt)]O(q2
d) (14)

where Q is the quality factor given in Table II. All the other
coefficients in Eq. (14) are given in the Appendix. In Eq. (14),
the higher-order terms are ignored, (O(q2

d)). That serves as a
good approximation because the electrostatic force (f(qd)) is
mostly linear about the static solutions corresponding to high
DC voltages as shown in Fig. 3 (b). This figure illustrates that
at the qst corresponding to 165(V ) on the side electrodes,
the electrostatic force can be approximated with a line. All
of the experiments are performed at this voltage. To obtain
the transition curves, the homogeneous version of Eq. (14)
is considered. The last assumption to make is to ignore the
ε21 cos(2ΩTt) term in Eq. (14) compared to the ε11 cos(ΩTt)
term. This is a reasonable approximation when Vac is much
smaller than Vdc as shown in the equation below.

ε21

ε11
=

Vac
4Vdc

(15)

Using another change of variable given in Eq. (16), and
applying the assumptions explained above, Eq. (14) can be
rewritten in the form of Mathieu’s equation as given in Eq.
(17).

ΩTt = τ (16)
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q̈d(t) + CM q̇d(t) + [δM + εM cos τ ]qd(t) = 0 (17)

where CM , δM , and εM are given in the Appendix.
For the Mathieu’s equation given in Eq. (17), the transition

curves are obtained by using perturbation techniques, and they
are given by the following expression [34].

δM =
1

4
±

√
ε2M − c2M

2
+O(ε2M ) (18)

Substituting all the coefficients in the equation for the
transition curves results in:

β4
1 − r1α1(V 2

dc +
V 2
ac

2 )

(ΩT )2
=

1

4
∓ (

2r1α1VdcVac
(ΩT )2

)

√
( 2r1α1VdcVac

(ΩT )2 )2 − (
β2
1

QΩT )2

2
+O(ε2M )

(19)

which is an implicit algebraic equation relating the Vac, quality
factor (Q), and the excitation frequency (Ω). In the next
section, the prediction of this equation for the transition curves
is shown and compared with the experimental results.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental set up is shown in Fig. 4. The sensor
is placed inside a chamber with controlled pressure. All the
experiments are conducted in the room temperature (25◦C).
The beam is excited by applying a voltage with DC and
AC components to the side electrodes. The velocity of the
beam at its free end is measured with a Polytec MSA 500
laser vibrometer. To demonstrate the parametric resonance of
the microbeam, a forward and backward frequency sweep is
conducted at a constant pressure of P = 590 mTorr when
the DC voltage on the side electrodes is 165 V . Figure 5
(a) presents the results for when the AC voltage is 10 V .
As shown in this figure, there is a frequency band (∆f )
where the beam undergoes parametric excitation. The branch
associated with parametric excitation expands well beyond
this frequency band. However, reaching the points outside
of this frequency band depends on the initial conditions of
the beam. For reliable and consistent operation of the sensor,
we only focus on this frequency band, where, independent of
initial conditions, the beam is forced to undergo parametric
excitation.

The frequency band in Fig. 5 (a) depends on the amplitude
of the AC voltage on the side electrode. As shown in Fig.
5 (b) and Fig. 6, this frequency band expands with an
increase in the AC voltage. The curve in Fig. 5 (b), which
is called a transition curve (or instability tongue), separates
the stable and unstable regions depending on the emergence
of parametric resonance. This figure illustrates that there is a
minimum value for the AC voltage below which the beam will
not experience parametric resonance. This minimum point is
strongly dependent on the pressure inside the chamber. Figure

Fig. 4. The experimental setup. The microbeam is excited by applying voltage
to the side electrodes. The velocity of the microbeam is measured with a
laser vibrometer. The pressure inside the chamber is controlled via a pressure
controller set. By reducing the pressure inside the chamber, the microbeam
exhibits large amplitude vibrations because of parametric resonance.

7 shows the transition curves for three different pressures.
The minimum AC voltage required to trigger the parametric
resonance increases with the pressure (Fig. 8). That indicates
the energy dissipation that system needs to overcome before
the parametric resonance can occur.

As depicted in Fig. 7, the transition curves obtained
from the simulations are in good agreement with the
experimental results. The damping coefficient in Eq. (6) is
identified from matching the minimum points of the transition
curves obtained from the experiment and shooting method.
Furthermore, this figure shows that the transition curves
that are given by the analytical perturbation method (Eq.
(19)) are in excellent agreement with the results from the
shooting methods. For these transition curves, we have used
the same quality factor that was identified by comparing
the results of the shooting method to the experiment.

:::
The

::::::::
numerical

::::::
values

:::
of

:::
the

::::::
quality

:::::::
factors

::
at

:::::
each

:::::::
pressure

:::
are

::::
given

:::
in

:::
the

:::::
Table

::
II.Substituting the values of quality factors

into Eq. (19) yields an implicit algebraic equation between
Vac and Ω, which is plotted with MATLAB. Solving these
algebraic equations are computationally more efficient than
the numerical method of shooting that solves the nonlinear
differential equation. The transition curves from the model
are all symmetric, where as the experimental ones are slightly
bent to the right. This could be attributed to the stiffness and
damping of the air which is not considered in the model.
Because of the large vibration of the beam at the parametric
resonance, the air stiffness because of the squeeze film effect
could be considerable and needs further investigations.
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Fig. 5. (a) Forward and backward frequency sweeps at Vdc = 165(V ) − Vac = 10(V ) − P = 590(mTorr). The jump in the amplitude on the left side
of the instability region is much more pronounced compared to the jump on the right side. (b) The transition curve at Vdc = 165(V )− P = 590(mTorr).
Inside the transition curve lies the frequency region for which the beam exhibits parametric resonance. Below a certain Vac there will be no parametric
resonance.
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Fig. 6. Forward frequency sweeps at Vdc = 165(V ) − P = 900(mTorr)
and different Vac. As shown in Fig. 5, the frequency range that is used to
obtain the transition curve, can be extracted by performing only the forward
frequency sweep. This frequency range enlarges by increasing Vac.

To present the operating voltages of the pressure sensor,
the minimum AC voltages required to trigger parametric
resonance at 23.8kHz for different pressures are shown in
Figure 9. The figure compares simulations with experimental
results. Based on this figure, the AC voltage can be tuned to
establish different threshold pressure values. The operating
DC voltage is fixed at 165 V. The difference between the
experimental and simulation results is related to the air

stiffness and damping effect, which causes similar deviations
on the left side of the transition curve in Fig. 7. The best
performance of the sensor is obtained when it is operated
at an AC voltage and a frequency (Vac, f) corresponding to
points on the left side of the transition curves. This is because
the jump in the amplitude on the left side of the instability
region (point A in Fig. 5 (a)) is much larger than the jump
on the right side (point B in Fig. 5 (a)). Operating the sensor
at this (Vac, f) ensures a large change in the amplitude when
the parametric resonance is triggered. Figure 10 illustrates
how the transition curve grows by decrease in pressure. The
operating point which is initially outside of the transition
curve, will be encompassed by the growing transition curve
as the pressure drops. That means, if the pressure drops in
the environment by a very small amount, the oscillations will
significantly increase. This significant rise in the amplitude
can be observed using a charge amplifying circuit, which can
detect the capacitance change. This study has characterized
the pressure sensor in pressure ranges below 2 Torr. Studying
the performance of the pressure sensor at pressures above 2
Torr can be the subject of future investigations.

In theory, the sensor could be used to detect either drop
or rise in pressure. However, we have studied the device
only to detect a drop-in pressure below a certain threshold.
The application of the sensor for detecting a rise in pressure
above a threshold value needs further investigation and could
be studied in a future work. This is because for the sensor
to detect a pressure rise, we need to change the operating
point of the sensor. In Fig. 11, we have demonstrated the
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Fig. 7. Transition curves for three different pressure values. By increasing the pressure the transition curve shrinks, and therefore the minimum voltage for
the appearance of the parametric resonance increases. The center-line indicates the experimental results, while the dashed line shows the analytical solution
and the solid line depicts the numerical simulation data obtained from the shooting technique.
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Fig. 8. The minimum AC voltage required to trigger parametric resonance
increases with pressure.

difference between detecting a pressure drop versus detecting
a pressure rise by schematically showing the forward and
backward frequency sweeps at different pressures. If the
sensor is operating at point A shown in the Fig. 11, a drop
in pressure will trigger the parametric resonance and the
amplitude jumps up to point B. But if the pressure increases,
the amplitude will not fall back to point A. It rather gradually
sinks down to point C and there would be no sudden jump
down similar to the jump up. A better operating point for
detecting the pressure rise is point D that exists at the end of
the high branch oscillation for the backward frequency sweep.
When the sensor operates at point D at low pressure, the
sensor will have a large amplitude. If the sensor experiences

0 500 1000 1500 2000 2500 3000

5

10

15

20

Model

Experiment

Fig. 9. Red (Solid-dot) curve: The Minimum experimental Vac required
for the appearance of parametric resonance at different pressures (Vdc =
165(V )). Blue (dash-dot) curve: The minimum theoretical Vac to trigger
parametric resonance when the excitation frequency is 23.8(kHz) (Vdc =
165(V )). This curve can be used for the operation of the sensor to establish
different pressure thresholds when detection of drop in the pressure is desired.
At each pressure, the required Vac for the operation of the sensor can be
identified from this curve.

a pressure rise, the amplitude will drop suddenly to point
E. This distinct drop in amplitude because of pressure rise
can easily be realized in a charge amplifying circuit for
capacitance detection.

V. CONCLUSION

A threshold pressure sensor is proposed using paramet-
ric resonance in a microbeam subjected to the levitation
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Fig. 10. By operating the sensor at a frequency and Vac outside of the
transition curves for a particular pressure (the operation point), the sensor
does not experience parametric resonance. With a decrease in pressure, the
transition curve grows and encompasses the operation point. Therefore, the
sensor will exhibit parametric resonance.

Fig. 11. The forward and backward frequency sweeps are shown at two
pressure levels schematically. This figure shows that for detecting a rise in
pressure, the sensor should be operated at point D, where an increase in
pressure will lead to a dramatic drop in the amplitude of vibration.

electrostatic force. The experimental data shows the distinct
difference in the vibration amplitude of the beam when it
is parametrically excited compared to when it is not. The
appearance of the parametric resonance depends on the pres-
sure and AC voltages. Therefore, the AC voltage can be used
as a tuning parameter to establish different values for the
threshold pressure. The sensor is reusable, and in theory, it
can be used to detect when the pressure goes above or drops
below a certain threshold. The operation of the sensor for
detecting a drop in pressure is studied experimentally and
theoretically. The application of the sensor for detecting rise
in the pressure needs further investigations. A mathematical
model is developed using the Euler-Bernoulli beam theory.
The governing equation of motion is solved using the shooting

method, and the results are compared to the experimental data.
An analytical expression for the transition curves of the system
is obtained by rewriting the governing equation of motion in
the form of Mathieu’s equation. The comparison shows that
the developed model is capable of capturing the nonlinear
dynamics of the system that can serve in designing high
signal-to-noise ratio sensors with improved pressure sensing
resolution.
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VI. APPENDIX
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