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A B S T R A C T 

The cables are extremely important and vulnerable components in the cable-stayed 

bridges. Because cable tension is one of the most crucial structural health indicators, 

therefore, assessing the cable condition based on the cable tension is a major interest in 

the structural health monitoring (SHM) of the cable-stayed bridges. This paper aims to 

develop a deep convolutional neural network (DCNN)-based transfer learning method that 

is integrated with a continuous wavelet transform (CWT) for the health condition 

identification of the cables in a cable-stayed bridge using the one-dimensional time series 

cable tension data. For this purpose, the CWT is adopted to convert the cable tension to 

the images of a time-frequency representation. The last three new layers emerged in the 

pre-trained DCNN model, which is called AlexNet, as a new learning framework to use 

for the identification of the cable condition. The performance of the proposed DCNN 

model is examined using several statistical measures that include accuracy, sensitivity, 

specificity, precision, recall, and the F-measure. The results show that the proposed 

DCNN model gives superior accuracy (100%) for the identification of the undamaged 

cables and the damaged cables based on the cable tension data. 

1 Introduction 

Cable-stayed bridges are widely used to pass over rivers due to their long-span capacity, good stability, and aesthetic 

design [1]. In the cable-stayed bridges, the cables are the major structural components, which primarily suffer from various 

effects of the dead load, the vehicle loads, the environmental actions, and natural disasters. The influences of these effects 

are adverse, and they prone to accelerate the collapse of the bridge. The sudden rupture of the cables can threaten the safety 

of the bridge, which causes severe vibrations on the bridge due to the loss of the cables and many changes in the internal 

forces of all the structural members [2]. The cable tension can be directly estimated using the load sensors, or it can be 

calculated indirectly using the different parameters of a cable, such as stress, strain, or the natural frequencies [3]. Several 

vibration based cable tension identification methods have been proposed for time-varying cable tension identification [4-6]. 

http://creativecommons.org/licenses/by-sa/4.0/
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Evidently, the consistency of the cable tension over time is considered as one of the health indicators for the cable bridges. 

Thus, it is necessary to recognize the cable condition timely to ensure the safety of the cable-stayed bridges. 

Monitoring the structural damage is critically important to sustain and preserve the service life of civil structures. 

Structural health monitoring (SHM) is a broad research field that involves experimental testing, system identification, data 

acquisition, data management, and the long-term measurement of the environmental conditions [7-10]. SHM has been 

implemented in mechanical, aerospace, and civil engineering applications [11-13] for both the theoretical and the 

experimental methods for an early warning against structural damage or any type of anomaly [14, 15]. A considerable amount 

of effort has been put into the vibration-based methods, which utilize the vibration response in order to assess the condition 

of the structures as well as identify the damage to the structures [16]. In the past, machine learning (ML) algorithms have 

become more feasible and extensively used in SHM systems with elegant performances and often with rigorous accuracy 

[17]. The basic ML algorithms require a fixed number of features. Therefore, it is pertinent to pre-process a data sample in 

order to extract certain features that represent the most characteristic pieces of information [18], before applying the 

algorithm. This means that these algorithms significantly rely on the choice of the extracted features [19]. Nevertheless, it is 

not very easy to manually select a good group of features to train the ML system [20] for many cases. To avoid the hand-

crafted features, the deep learning (DL) methods were introduced. The DLs have networks that are capable of learning 

unsupervised from the unstructured data. In addition, the DL algorithms can learn not only to correlate the features to the 

desired output, but they can also carry out the feature extraction process itself [21]. A DL is then able to explain the high-

level and abstract features as a hierarchy of the simple and low-level learned features. This ability allows the DL algorithms 

to deal with complex tasks by breaking them down into a large number of simple problems [16]. Recently, a deep 

convolutional neural network (DCNN) has demonstrated a state-of-the-art performance with image classification, object 

detection, and image segmentation [22]. For the image classification, many excellent DCNN models, such as AlexNet [23], 

GoogLeNet [24], VGG Net [25], and ResNet [26], have been developed using 1.4 million images. Generally, these DCNNs 

take the images as the input directly for the classification process, which avoids the high complexity of the pre-processing 

and the feature extractions. Instead using manual feature extractions, they offer automatic feature extractions using the 

concept of a deep neural network. 

In signal processing, the signal can be transformed into a time-frequency representation using a time-frequency 

distribution, which can be used as the input on a DCNN for diagnosis, classification, and identification. Wang et al. [27] used 

a series of wavelet scalograms as the input for a DCNN without manual feature extractions in order to diagnose the fault 

detection. Verstraete et al. [28] employed a spectrogram, which involved using the HilbertHuang Transform (HHT) and a 

wavelet scalogram as the input in a DCNN for the fault detection. Duan et al. [29] proposed a DCNN-based approach to 

detect the damages in a tied-arch bridge by using the acceleration responses. A numerical analysis with different damage 

conditions was conducted to generate the datasets. The acceleration responses and the generated Fourier spectra were used 

to transform the datasets, and the performances of the damage detection were compared. Tang et al. [30] proposed a five-

layer CNN to detect and classify the anomalous monitoring data from an SHM system. The acceleration data from a cable-

stayed bridge was utilized and divided into training sets with different sizes for the performance evaluation. 

Even though the DCNN models have achieved good results, the hyper parameters optimization that is performed by the 

intelligent optimization algorithms for the complex DCNN models may consume a lot of computational time. Therefore, 

when a small number of samples is available, the transfer learning offers huge advantages in terms of the accuracy and time 

consumption. The purpose of a transfer learning is to fine-tune a pre-trained DCNN that will be used to perform the 

classifications on a new problem. Transfer learning provides an approach that can transfer knowledge from one domain to 

other domains when the latter has a small amount of high-quality training data [31, 32]. Therefore, it is generally faster than 

having to train a network from the beginning with an arbitrary initialisation of weights. Dung et al. [33] compared three deep 

learning-based methods, which included a shallow CNN trained from scratch, a pre-trained VGG-16 with a fine-tuned 

classifier, and a pre-trained VGG-16 with a fine-tuned convolution layer and classifier to detect the cracks at the welded 

joints of the gusset plates. The performances of these models were compared using the accuracy rate, the precision rate, and 

the recall rate. Feng et al. [34] proposed a highly accurate damage detection method using a DCNN with transfer learning to 

detect the crack on concrete surfaces. The accuracy of the proposed damage detection method is 96.8%, which is considerably 

higher than the accuracy of a support vector machine. Gong et al. [35] proposed a deep transfer learning model in order to 

accurately extract the features for the inclusion of the defects in the X‐ray images of aeronautics composite materials. The 

results showed that the model can reach a 96% classification accuracy (F1-measure) with satisfactory detection results. 
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This paper aims to investigate the performance of a pre-trained DCNN, which is called AlexNet, through transfer learning 

that is integrated with the continuous wavelet transform (CWT) for the health condition identification of the cables in a cable-

stayed bridge using the time series cable tension data. In this regard, the CWT is used to convert the time series data to the 

time-frequency representations, which is called scalograms. A scalogram is the absolute value of the CWT coefficients of a 

signal. Subsequently, these scalograms are given as the inputs to the pre-trained DCNN model to train and test for the 

classification of the cable conditions. The proposed method is evaluated using a publicly available structural health 

monitoring (SHM) dataset. The evaluation results show that the proposed method can achieve superior accuracy for the 

undamaged and the damaged cables using a cable tension indicator. 

2 Methodology 

2.1 Continuous wavelet transformation 

Wavelet transformation (WT) [36] is known as a mathematical tool that converts a signal in the time domain into a 

different form, which is  a series of wavelet coefficients. A WT is effectively used for the time-frequency decomposition of 

nonstationary signals because of the excellent local zooming property of the wavelet. Traditionally, the wavelet transform 

can be categorized as the discrete wavelet transform (DWT), the wavelet packets transform (WPT), and the continuous 

wavelet transform (CWT) [37]. Among them, the CWT provides smoother and specific time-frequency resolution throughout 

the signals over the other two methods. The CWT, which is 𝜔(𝑠, 𝜏) of a continuous-time signal 𝑥(𝑡), is defined by comparing 

the signal 𝑥(𝑡) to the probing function Ψ𝑠,𝜏(𝑡), which is expressed as 

𝜔(𝑠, 𝜏) = ∫ 𝑥(𝑡)Ψ𝑠,𝜏(𝑡)𝑑𝑡

+∞

−∞

 (1) 

This equation represents the convolution between the signal (𝑡) and a filter with impulse response Ψ(−𝑡 𝑠)/√𝑠⁄ , the 

CWT can be viewed as a linear filter. 

As the CWT decomposes the waveform into coefficients of two variables 𝑠 and 𝜏, a double integration is needed to be 

performed to reconstruct the original waveform from the wavelet coefficients 

 

𝑥(𝑡) =
1

𝐶Ψ

∫ ∫ 𝜔(𝑠, 𝜏)Ψ𝑠,𝜏(𝑡)
𝑑𝜏𝑑𝑠

𝑠2

∞

0

∞

−∞

 (2) 

𝐶Ψ = ∫
|Ψ(𝑓)|2

|𝑓|
𝑑𝑓 < ∞

∞

0

 (3) 

where Ψ(𝑓) represents the Fourier Transform (FT) of Ψ(𝑡). 

The wavelet transform coefficients are obtained by correlating the normalized wavelet function at selected scales and 

shifting along the signal at each instant of time. This study uses a scalogram that is represented by the absolute values of the 

CWT of the signal, which can be plotted as a function of both the frequency and the time [38]. 

2.2 Deep convolutional neural network 

A deep convolutional neural network (DCNN) is a multiple layer feedforward neural network  [39]. It takes an input as 

an image, assigns learnable weights and biases to various objects in the image, and capable of differentiating each object 

from another object. The DCNN is mostly used to identify images, cluster them by their similarities, and implement object 

recognition within the scenes. The DCNN includes different types of layers, which are input layers, convolution layers, ReLU 

layers, pooling layers, and fully connected output layers. The architecture of the DCNN and its terminology are fully given 

in [23]. 
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2.2.1 Input layer 

The input layer takes the image as an input in normalized raw pixel values. For an image input layer, this is where the 

type of network is specified, and the choices regarding the image size and the data augmentation are made. 

2.2.2 Convolutional layer 

The convolution layer is the place where the image processing starts. It consists of two parts that include a feature detector 

and a feature map. A feature detector is a matrix that can transform an image into a feature map through a convolution 

operation. During the forward pass, the feature detector moves along the width and the height of the image, which produces 

the image representation of the receptive region. This two-dimensional representation is known as an activation map that 

shows the response of the feature detector at each spatial position of the image, which is shown in Fig. 1. 

 

Fig. 1 – Convolution processing. 

 

Fig. 2 - The ReLu activation function. 

The feature detector slides across the input image with a step that is called a stride. If 𝐿 is the actual convolution layer, 

𝑓𝐿 is the size of the filter, 𝑝𝐿  is its padding, 𝑠𝐿 is its stride, and 𝑐𝐿 is the number of filters. For an image  that has a size of 

(𝑛𝐿−1,𝑚𝐿−1, 𝑐𝐿−1), where 𝑛 is the height of the image, 𝑚 is the width, and 𝑐 is the number of channels, the output of the 

layer would be a two-dimensional representation of the image that has the following size (𝑛𝐿 , 𝑚𝐿 , 𝑐𝐿), where 𝑛𝐿 and 𝑚𝐿 are 

computed by 

𝑛𝐿 =
𝑛𝐿−1 + 2 × 𝑝𝐿 − 𝑓𝐿

𝑠𝐿

+ 1 (4) 
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𝑚𝐿 =
𝑚𝐿−1 + 2 × 𝑝𝐿 − 𝑓𝐿

𝑠𝐿

+ 1 (5) 

2.2.3 Activation function 

In general, a nonlinear activation function is used after the convolutional layer. The most common and the most effective 

activation function used in a DCNN is the rectified linear unit (ReLU) function [40], which is shown in Fig. 2. 

The gradients of the ReLU function are always zeros and ones. The ReLU function not only solves the disappearing 

gradient problem that can occur during training, but it also executes much quicker and achieves better accuracy than other 

functions, which includes the sigmoidal function. Therefore, when the ReLU function is used as the activation function of 

the hidden layers, the errors can propagate back through the hidden layers properly. 

2.2.4 Pooling layer 

The pooling layer can be used to ignore the less important data in the image, and it reduces the image further, which all 

occurs while preserving its important features [39]. In this method, the feature map derived from the convolution layer is 

passed through a pooling layer to further reduce the image. The pooling layer consists of functions, such as max pooling, min 

pooling, and average pooling. Each feature map is subjected to region-wise pooling, such as the maximum non-overlapping 

pixels or the average of the non-overlapping pixels. The output of this layer will lead to a dimensional reduction depending 

on the chosen stride, which is shown in Fig. 3. 

 

Fig. 3 -  Pooling processing. 

In a pooling operation, for an activation map, which has a size 𝑛 × 𝑚 × 𝑐, a pooling filter of a size 𝑓 and stride 𝑠 would 

lead to a reduction in the spatial size of the output layer, which follows the two-formula listed below 

𝑛𝑜𝑢𝑡𝑝𝑢𝑡 =
𝑛 − 𝑓

𝑠
+ 1 (6) 

𝑚𝑜𝑢𝑡𝑝𝑢𝑡 =
𝑚 − 𝑓

𝑠
+ 1 (7) 

where the output consists of a volume of size (𝑛𝑜𝑢𝑡𝑝𝑢𝑡, 𝑚𝑜𝑢𝑡𝑝𝑢𝑡, 𝑐) with 𝑛 being computed by Equation (4), and 𝑚 is 

calculated by Equation (5). 

2.2.5 Fully connected output layers 

A fully connected layer then connects all the previous layers. In this layer, the pooled image is flattened and converted 

into a single column. Each row is made into a column, and they are stacked on top of each other, which is shown in Fig. 4. 
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Fig. 4 - Flattening processing. 

It then computes the class scores by using the softmax activation function [9] to classify the images into the corresponding 

classes from the features extracted. The softmax layer is used just before the output layer of the DCNN. It outputs a probability 

distribution where the sum of the output values is equal to one. The softmax function is given by 𝑃(𝑦(𝑖) = 𝑛|𝑥(𝑖);𝑊), which 

is computed by Equation (8), where 𝑖 varies from 1 to 𝑚: number of training examples, 𝑗 is the class out of 𝑛 classes, 𝑊 is 

the adopted weights, and finally 𝑊𝑛
𝑇𝑥(𝑖) serves as the layer input. The function returns the probability per each class of the 

input. 

𝑃(𝑦(𝑖) = 𝑛|𝑥(𝑖);𝑊) =

[
 
 
 
𝑃(𝑦(𝑖) = 1|𝑥(𝑖);𝑊)  

𝑃(𝑦(𝑖) = 2|𝑥(𝑖);𝑊)  
…

𝑃(𝑦(𝑖) = 𝑛|𝑥(𝑖);𝑊)  ]
 
 
 

=  
1

∑ 𝑒𝑊𝑗
𝑇𝑥(𝑖)𝑛

𝑗=1

×

[
 
 
 𝑒

𝑊1
𝑇𝑥(𝑖)

𝑒𝑊2
𝑇𝑥(𝑖)

…

𝑒𝑊𝑛
𝑇𝑥(𝑖)]

 
 
 

 (8) 

 

The adopted 𝑛 (number of classes) in this study is equal to two (𝑛 = 2), which presents the undamaged classes and the 

damged classes.  

2.3 Transfer learning 

Transfer learning is a solution to the problem of too little training data by reusing the models of trained similar problems 

in order to map the existing and the original problems to the same feature space [31, 41]. Transfer learning is often referred 

to as the fine-tuning an existing network, which is generally faster than having to train a network from the beginning with an 

arbitrary initialisation of weights. Using the transfer learning method, a better classification rate can be achieved even with a 

limited amount of data. A common practice is to use a pre-trained model, which is trained on large dataset, such as ImageNet 

and use these pre-trained weights for the problem at hand. It is also possible to reduce the total number of classification 

classes for the DCNN to learn compared to the number of output classification classes of the initial network. 

The process of using a pre-trained network for transfer learning is shown in Fig. 5. In this process, the first step is to 

select a relevant pre-trained network that has been trained. After that, the classification layers are replaced for the new task. 

One can also choose to fine-tune the weights depending on the new task and the data that is available. Generally, the more 

data you have, the more layers you can chose to fine-tune. Finally, train the network on the data for the new task and test the 

accuracy of the new network. 

Fig. 6 shows the network performance for the models with transfer learning and the models that are trained from scratch. 

Evidently, it is possible to achieve a higher model accuracy in a shorter time with transfer learning. 
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Fig. 5 - Transfer learning process. 

 

Fig. 6 - Comparison of accuracy and time between model with and without transfer learning. 

3 Data acquisition 

In this paper, the dataset from a long-span cable-stayed bridge in China is used. This bridge is a double-tower and double-

cable-plane cable-stayed bridge that consists of 168 stay cables, which contains steel wires that are 7 mm in diameter, that 

are distributed in the double cable planes. The main span of the bridge is 648 m, and two side spans are 320 m each. The 

height of the two towers is approximately 215 m from the base level to the top of the tower. The bridge was opened to public 

traffic in October 2005 [5]. The configuration of the cable-stayed bridge is shown in Fig. 7. 

 

Fig. 7 - The investigated the long-span cable-stayed bridge [7]. 

The tension force of the stay cables was monitored using a load cell incorporated into the anchorage end of the stay cable 

[5]. The dataset contains the monitored cable tension data of a cable in an undamaged state in the year 2005 and a cable in a 

damaged state, which included ruptured wires in the year 2011. For the undamaged and the damaged level, 24 hour long time 

series cable tension data was collected at a 2 Hz sampling rate with 172800 data points. Fig. 8 illustrates the time-varying 

tension of the cable with the undamaged and the damaged states. 
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Fig. 8 - Cable tension of SJX08 sensor (a) in 2005 and (b) in 2011. 

     

a) 10 minutes data series of undamaged cable. 

     

b) 10 minutes data series of damaged cable 

Fig. 9. Cable tension and respective scalogram. 

4 CWT and DCNN-based classification 

4.1  Data processing 

Evidently, the signal data can be represented in the time-domain, frequency-domain, and time-frequency-domain. 

Generally, Short-Time Fourier Transform (STFT) and Wavelet Transform (WT) can be used to represent information in both 

the time and the frequency-domain. The previous studies [42, 43] showed that when the dataset is not big data, the wavelet 
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function can already be determined, since it follows the shape of the excitation signal. Therefore, the CWT is used in this 

study to transform the cable tension signal to the time-frequency domain. Herein, the 24 hours dataset is divided in to 144 

segments that represent each 10 minutes datasets. Fig. 9 shows one 10 minutes data series, which is 1200 data points, and 

they are converted to a one time-frequency spectra image, which is the scalograms with 227x227x3 pixels, using the CWT. 

As a result, 144 images are generated for each class, and there are 288 images in total for the undamaged and the damaged 

states. The datasets are divided in such a way that 80% is used as a training set and 20% as a validation set for the DCNN 

model. 

4.2 Transfer AlexNet DCNN model 

AlexNet [23] is a classic DCNN that is trained on more than a million images from the ImageNet database, and it was 

widely used as a reference model. Fig. 10 shows the original architecture of AlexNet. It is a relatively simple layout compared 

to the other modern architectures. 

The AlexNet network is 8 layers deep, which is comprised of five convolutional layers and 3 fully connected layers. The 

series of convolutional and max pool layers, which includes layers 1–5, extract features from the input scalogram images. 

The three fully connected layers, which include layers 6–8, along with the output classification layer performs the task of the 

classification. 

Based on the pre-trained AlexNet model, a transfer learning framework for classification in this study is established in 

Fig. 11. In this framework, the last three layers with a fully connected layer, a softmax layer, and a classification output layer 

of the pre-trained AlexNet are replaced. These three layers must be fine-tuned for the new classification problem. The options 

of the new fully connected layer are specified according to the new data. 

 

Fig. 10. Original architecture of AlexNet. 

 

Fig. 11. The proposed transfer framework based on AlexNet. 

5 Performance evaluation metrics 

The confusion matrix, which is shown in Fig. 12, is used to evaluate the performance of the proposed DCNN model. 

Herein, the TP, TN, FP, and FN represent the True Positive, True Negative, False Positive, and False Negative, respectively. 
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The Positive or Negative refers to the class labels predicted by the model, and True and False refers to the accuracy of the 

prediction. 

Based on the confusion matrix, the performance metrics, such as the accuracy, sensitivity, specificity, precision, recall, 

and the F1-measure are evaluated. The accuracy is given as the ratio of the correctly classified instances to all the instances, 

which is expressed as 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (9) 

Sensitivity is the ratio of the instances correctly classified as positive to all the positive instances, which is expressed as 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑒) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (10) 

Specificity is represented as the ratio of instances incorrectly classified as positive to all the negative instances, which is 

expressed as 

𝐹𝑃𝑅 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (11) 

Precision is the ratio of instances correctly classified as positive to all the instances classified as positive, which is 

expressed as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (12) 

A relation between the properly classified instances, which are the true positives, and the misclassified instances, which 

are the false negatives, is called recall, which is expressed as 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13) 

F-measure is defined as the harmonic mean of the precision and the recall indicators, which is expressed as 

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (14) 

 

Fig. 12. Representation of confusion matrix. 

6 Results and discussions 

The main parameter settings for modelling the proposed DCNN architecture are listed in the Table 1. The other 

parameters are set according to the default values of the original AlexNet architecture.  

The training progress of the proposed DCNN model is illustrated by the accuracy and the loss for both the training and 

the validation, which is shown in Fig. 13. It can be seen that the proposed DCNN model reaches a high accuracy after 6 

iteration. It means that the proposed DCNN model can get the convergence with short-time training. The loss value is almost 

equal zero indicated that the proposed DCNN model works perfectly. 
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Table 1. The main parameters of the proposed DCNN model. 

No. Hyperparameters Values 

1 Momentum 0.9 

2 Initial learning rate 0.0001 

3 Learning rate drop factor 0.2 

4 Learning rate drop period 5 

5 Number of epochs 15 

6 Batch size 10 

7 Optimizer SGDM 

 

Fig. 13. Training progression of the DCNN model. 

Table 2. The result for the different metrics. 

Class/label Acc Se FPR Precision Recall F1-measure 

Undamaged 1.0 1.0 1.0 1.0 1.0 1.0 

Damaged 1.0 1.0 1.0 1.0 1.0 1.0 

The confusion matrices of the training and the testing of the proposed DCNN model are illustrated in Fig. 14. In addition, 

Table 2 and Fig. 15 show the results of the training and validation phases of the proposed DCNN with the performance 

metrics of sensitivity, specificity, precision, recall, and the F1-measure. The results show that the proposed DCNN model 

utilized the pre-trained Alexnet CNN performs perfectly with the classification of the cable damage. Evidently, the proposed 

DCNN model successfully achieves two important targets, which do not only work with small feature numbers but also 

achieve a high accuracy. Furthermore, using a few hundred images to build and then train the DCNN model is considerable 

challenging, because the deep neural networks need large amounts of images to work efficiently and produce efficient 

features. However, the proposed DCNN model achieves superior results using the transfer learning approach. One of the 

main disadvantages is that the proposed DCNN model is built basically within two different classes of undamaged and 

damaged states due to the limitation of the damage levels. For further study, it is recommended to apply this approach for a 

dataset that has many damage severities, so the same approach can be extended to propose a DCNN model for an SHM 

system of other structures with different indicators. 
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Fig. 14. Confusion matrix of training and validation datasets. 

 

Fig. 15. Performance evaluation metrics. 

7 Conclusions 

Monitoring cable tension to access the cable condition or to detect a damaged cable is a necessary task in the structural 

health monitoring (SHM) system of cable-stayed bridges to ensure the safety, serviceability, durability, and sustainability. In 

this paper, a hybrid health monitoring approach, which is based on the integration of a continuous wavelet transform (CWT) 

and a deep convolutional neural network (DCNN), is proposed to identify the undamaged and the damaged cables. One-

dimensional time series cable tension signals are transformed into time-scale images through the CWT. These images are 

then classified by the DCNN through a transfer learning technique, which is able extract the underlying features and the deep 

features embedded in the images. The results indicate that the proposed approach achieved a 100% classification accuracy 

for the health condition identification of the cables in a cable-stayed bridge. The promising results of the proposed DCNN 

model, which combines the DCNN-based transfer learning and the CWT transformation, could be useful and might be 

successful in being applied to other classification tasks. 

Conflicts of interest 

The authors declare that they have no potential conflicts of interest in this paper. 

REFERENCES 

[1]-  Jiang, C., C. Wu, C. S. Cai,W. Xiong, Fatigue analysis of stay cables on the long-span bridges under combined 

action of traffic and wind. Engineering Structures. 207 (2020) 110212. 

doi:https://doi.org/10.1016/j.engstruct.2020.110212. 

[2]-  Haji Agha Mohammad Zarbaf, S. E. Vibration-based Cable Tension Estimation in Cable-Stayed Bridges. University 

https://doi.org/10.1016/j.engstruct.2020.110212


 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 10 (2023) 5–18  17 

 

of Cincinnati, 2018. 

[3]-  Mehrabi Armin, B., In-Service Evaluation of Cable-Stayed Bridges, Overview of Available Methods and Findings. 

Journal of Bridge Engineering. 11(6) (2006) 716-724. doi:10.1061/(ASCE)1084-0702(2006)11:6(716). 

[4]-  Deng, Y., Y. Liu,S. Chen, Long-Term In-Service Monitoring and Performance Assessment of the Main Cables of 

Long-Span Suspension Bridges. Sensors. 17(6) (2017) 1414. 

[5]-  Li, S., S. Wei, Y. Bao,H. Li, Condition assessment of cables by pattern recognition of vehicle-induced cable tension 

ratio. Engineering Structures. 155 (2018) 1-15. doi:https://doi.org/10.1016/j.engstruct.2017.09.063. 

[6]-  Nazarian, E., F. Ansari,H. Azari, Recursive optimization method for monitoring of tension loss in cables of cable-

stayed bridges. Journal of Intelligent Material Systems and Structures. 27(15) (2015) 2091-2101. 

doi:10.1177/1045389X15620043. 

[7]-  Abdel Wahab, M. M. ,G. De Roeck, damage detection in bridges using modal curvatures: application to a real 

damage scenario. Journal of Sound and Vibration. 226(2) (1999) 217-235. 

doi:https://doi.org/10.1006/jsvi.1999.2295. 

[8]-  Diez, A., N. L. D. Khoa, M. Makki Alamdari, Y. Wang, F. Chen,P. Runcie, A clustering approach for structural 

health monitoring on bridges. Journal of Civil Structural Health Monitoring. 6(3) (2016) 429-445. 

doi:10.1007/s13349-016-0160-0. 

[9]-  Li, Y. Y., Hypersensitivity of strain-based indicators for structural damage identification: A review. Mechanical 

Systems and Signal Processing. 24(3) (2010) 653-664. doi:https://doi.org/10.1016/j.ymssp.2009.11.002. 

[10]-  Park, S., C.-B. Yun, Y. Roh,J.-J. Lee, PZT-based active damage detection techniques for steel bridge components. 

Smart Materials and Structures. 15(4) (2006) 957. doi:10.1088/0964-1726/15/4/009. 

[11]-  Avci, O., O. Abdeljaber, S. Kiranyaz, M. Hussein,D. J. Inman, Wireless and real-time structural damage detection: 

A novel decentralized method for wireless sensor networks. Journal of Sound and Vibration. 424 (2018) 158-172. 

doi:https://doi.org/10.1016/j.jsv.2018.03.008. 

[12]-  Catbas, F. N., O. Celik, O. Avci, O. Abdeljaber, M. Gul,N. T. Do, Sensing and Monitoring for Stadium Structures: 

A Review of Recent Advances and a Forward Look. Frontiers in Built Environment. 3 (2017). 

doi:10.3389/fbuil.2017.00038. 

[13]-  Chaabane, M., A. B. Hamida, M. Mansouri, H. N. Nounou,O. Avci. Damage detection using enhanced multivariate 

statistical process control technique. In: 2016 17th International Conference on Sciences and Techniques of 

Automatic Control and Computer Engineering (STA). 2016.pp. 234-238. doi:10.1109/STA.2016.7952052. 

[14]-  Doebling, S. W., C. R. Farrar, M. B. Prime,D. W. Shevitz, Damage identification and health monitoring of structural 

and mechanical systems from changes in their vibration characteristics: a literature review. Shock Vib. Dig. 30 

(1996) 91-105. doi:doi.org/10.1177/058310249803000201. 

[15]-  Wu, R.-T. ,M. R. Jahanshahi, Data fusion approaches for structural health monitoring and system identification: 

Past, present, and future. Structural Health Monitoring. 19(2) (2020) 552-586. doi:10.1177/1475921718798769. 

[16]-  Avci, O., O. Abdeljaber, S. Kiranyaz, M. Hussein, M. Gabbouj,D. Inman, A review of vibration-based damage 

detection in civil structures: from traditional methods to machine learning and deep learning applications. Mech 

Syst Signal Process. 147(107077) (2021) 10.1016. doi:doi.org/10.1016/j.ymssp.2020.107077. 

[17]-  Toh, G. ,J. Park, Review of Vibration-Based Structural Health Monitoring Using Deep Learning. Applied Sciences. 

10(5) (2020) 1680. 

[18]-  Broe, M., An introduction to feature geometry. Papers in Laboratory Phonology II: Gesture, segment, prosody.  

(1992) 149-165. doi:doi.org/10.1017/cbo9780511519918.007. 

[19]-  Shyu, M.-l., S.-c. Chen,S. Iyengar, A survey on deep learning techniques. Strad Res. 7(8) (2020). 

doi:/doi.org/10.37896/sr7.8/037. 

[20]-  Liu, W., Z. Liu,A. Liu, A survey of deep neural network architectures and their applications, . Neuro-computing. 

234 (2017) 11-26. doi:10.1016/j.neucom.2016.12.038. 

[21]-  Kwon, D., H. Kim, J. Kim, S. C. Suh, I. Kim,K. J. Kim, A survey of deep learning-based network anomaly detection. 

Cluster Computing. 22(1) (2019) 949-961. doi:10.1007/s10586-017-1117-8. 

[22]-  LeCun, Y. ,Y. Bengio, Convolutional networks for images, speech, and time series. The handbook of brain theory 

and neural networks. 3361(10) (1995) 1995. doi:doi.org/10.1109/5.726791. 

[23]-  Krizhevsky, A., I. Sutskever,G. E. Hinton, ImageNet classification with deep convolutional neural networks. 

Commun. ACM. 60(6) (2017) 84–90. doi:10.1145/3065386. 

[24]-  Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,A. Rabinovich. Going 

https://doi.org/10.1016/j.engstruct.2017.09.063
https://doi.org/10.1006/jsvi.1999.2295
https://doi.org/10.1016/j.ymssp.2009.11.002
https://doi.org/10.1016/j.jsv.2018.03.008


18 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 10 (2023) 5–18 

 

deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 

2015.pp. 1-9. doi:doi.org/10.1109/CVPR.2015.7298594. 

[25]-  Simonyan, K. ,A. Zisserman. Very deep convolutional networks for large-scale image recognition. In: 3rd Int. Conf. 

Learn. Represent. ICLR 2015 - Conf. Track Proc. 2014.pp. 1–14. doi:doi.org/10.48550/arXiv.1409.1556. 

[26]-  He, K., X. Zhang, S. Ren,J. Sun, Deep residual learning for image recognition (2015). cite, in Proc. IEEE Comput. 

Soc. Conf. Comput. Vis. Pattern Recognit. (2016). doi:doi.org/10.1109/CVPR.2016.90. 

[27]-  Wang, J., J. Zhuang, L. Duan,W. Cheng. A multi-scale convolution neural network for featureless fault diagnosis. 

In: 2016 International symposium on flexible automation (ISFA). IEEE. 2016.pp. 65-70. 

doi:10.1109/ISFA.2016.7790137. 

[28]-  Verstraete, D., A. Ferrada, E. Droguett, V. Meruane,M. Modarres, Deep learning enabled fault diagnosis using time-

frequency image analysis of rolling element bearings. Shock and Vibration. 1(17) (2017) 10.1155. 

doi:doi.org/10.1155/2017/5067651. 

[29]-  Duan, Y., Q. Chen, H. Zhang, C. B. Yun, S. Wu,Q. Zhu, CNN-based damage identification method of tied-arch 

bridge using spatial-spectral information. Smart Struct. Syst. 23(5) (2019) 507-520. 

doi:doi.org/10.12989/sss.2019.23.5.507. 

[30]-  Tang, Z., Z. Chen, Y. Bao,H. Li, Convolutional neural network-based data anomaly detection method using multiple 

information for structural health monitoring. Structural Control and Health Monitoring. 26(1) (2019) e2296. 

doi:https://doi.org/10.1002/stc.2296. 

[31]-  Pan, S. J. ,Q. Yang, A survey on transfer learning. IEEE Transactions on knowledge and data engineering. 22(10) 

(2010) 1345-1359. doi:doi.org/10.1109/TKDE.2009.191. 

[32]-  Zhang, L. ,X. Gao, Transfer Adaptation Learning: A Decade Survey. IEEE Transactions on Neural Networks and 

Learning Systems.  (2022) 1-22. doi:10.1109/TNNLS.2022.3183326. 

[33]-  Dung, C. V., H. Sekiya, S. Hirano, T. Okatani,C. Miki, A vision-based method for crack detection in gusset plate 

welded joints of steel bridges using deep convolutional neural networks. Automation in Construction. 102 (2019) 

217-229. doi:https://doi.org/10.1016/j.autcon.2019.02.013. 

[34]-  Feng, C., H. Zhang, S. Wang, Y. Li, H. Wang,F. Yan, Structural Damage Detection using Deep Convolutional 

Neural Network and Transfer Learning. KSCE Journal of Civil Engineering. 23(10) (2019) 4493-4502. 

doi:10.1007/s12205-019-0437-z. 

[35]-  Gong, Y., H. Shao, J. Luo,Z. Li, A deep transfer learning model for inclusion defect detection of aeronautics 

composite materials. Composite Structures. 252 (2020) 112681. 

doi:https://doi.org/10.1016/j.compstruct.2020.112681. 

[36]-  Mallat, S. G., Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on 

Acoustics, Speech, and Signal Processing. 37(12) (1989) 2091-2110. doi:10.1109/29.45554. 

[37]-  Yan, R., R. X. Gao,X. Chen, Wavelets for fault diagnosis of rotary machines: A review with applications. Signal 

Processing. 96 (2014) 1-15. doi:https://doi.org/10.1016/j.sigpro.2013.04.015. 

[38]-  Lee, H. K. ,Y. S. Choi. A convolution neural networks scheme for classification of motor imagery EEG based on 

wavelet time-frequecy image. In: 2018 International Conference on Information Networking (ICOIN). 2018.pp. 

906-909. doi:10.1109/ICOIN.2018.8343254. 

[39]-  LeCun, Y., K. Kavukcuoglu,C. Farabet. Circuits and systems (ISCAS). In: Proceedings of 2010 IEEE International 

Symposium on. 2010.pp. 253-256. doi:org/10.1109/ISCAS.2010.5537907. 

[40]-  Brown, M. J., L. A. Hutchinson, M. J. Rainbow, K. J. Deluzio,A. R. De Asha, A Comparison of Self-Selected 

Walking Speeds and Walking Speed Variability When Data Are Collected During Repeated Discrete Trials and 

During Continuous Walking. Journal of Applied Biomechanics. 33(5) (2017) 384-387. doi:10.1123/jab.2016-0355. 

[41]-  Weiss, K., T. Khoshgoftaar,D. Wang, A survey of transfer learning, , Springer International Publishing. (2016). 

doi:org/10.1186/s40537-016-0043-6. 

[42]-  Gao, R. X. ,R. Yan, Wavelets: Theory and applications for manufacturing. Springer Science & Business Media, 

2010. 

[43]-  Giurgiutiu, V. ,L. Yu. Comparison of short-time fourier transform and wavelet transform of transient and tone burst 

wave propagation signals for structural health monitoring. In: Proceedings of 4th international workshop on 

structural health monitoring. Citeseer. 2003.pp. 1267-1274. 

 

https://doi.org/10.1002/stc.2296
https://doi.org/10.1016/j.autcon.2019.02.013
https://doi.org/10.1016/j.compstruct.2020.112681
https://doi.org/10.1016/j.sigpro.2013.04.015

