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Abstract

Linear systems occur throughout engineering and the sci-

ences, most notably as differential equations. In many cases

the forcing function for the system is unknown, and interest

lies in using noisy observations of the system to infer the

forcing, as well as other unknown parameters. In differential

equations, the forcing function is an unknown function of

the independent variables (typically time and space), and

can be modelled as a Gaussian process (GP). In this paper

we show how the adjoint of a linear system can be used to

efficiently infer forcing functions modelled as GPs, after

using a truncated basis expansion of the GP kernel. We show

how exact conjugate Bayesian inference for the truncated

GP can be achieved, in many cases with substantially lower

computation than would be required using MCMC methods.

We demonstrate the approach on systems of both ordinary

and partial differential equations, and by testing on synthetic

data, show that the basis expansion approach approximates

well the true forcing with a modest number of basis vectors.

Finally, we show how to infer point estimates for the non-

linear model parameters, such as the kernel length-scales,

using Bayesian optimisation.

1 Introduction

Linear systems are used as models throughout the sci-

ences and engineering, encompassing a wide range of both

ordinary and partial differential equations (including the heat,

wave, Schrodinger’s, Maxwell’s equations etc), as well as

systems of linear algebraic equations (such as eigenvalue

problems). To fix notation, let

L : U → V

be a linear operator between Banach spaces U and V . A

prototypical linear system is then of the form

Lu = f, (1)

where u ∈ U is the quantity of interest being modelled. We

shall refer to the right hand side, f ∈ V , as the forcing

function of the system. Given a fully specified operator L
and forcing function f (and possibly initial and boundary

conditions), solving the system for u is referred to as the

forward problem. Typically, this is a computationally inten-

sive task. For example, consider modelling air pollution as

it moves through the atmosphere. In this case, L will be

a partial differential operator describing the advection and

diffusion of the pollution, and f will be a function describing

the source of the pollution at each location and time. The

forward problem refers to computing the concentration, u,

given the emission sources and will usually require the use

of numerical integration methods.

In many applications, both the linear operator L and the

forcing f may not be fully specified, and we may face the

statistical task of learning L and f from noisy observations

of u:

z = h(u) + ǫ. (2)

Here z ∈ R
n are the observations, h the observation opera-

tor, and ǫ ∈ R
n a zero-mean observation error. This is often

referred to as the inverse problem. In the air pollution exam-

ple this would equate to finding the distribution of pollution

sources, f , given a set of concentration measurements z.

We focus on the situation where

1. f is modelled as a zero-mean Gaussian process, with

kernel function kψ(·, ·), in the case where V is an in-

finite dimensional Banach space, or with a Gaussian

distribution in the finite dimensional case. E.g., if L
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is an ordinary differential operator with independent

variable t, then f will be an unknown function of t.

2. The linear operator L depends (possibly non-linearly)

on unknown parameters p. We write Lp to emphasise

this dependence.

3. The observation operator h : U → R
n is linear (or

affine). In the finite dimensional case, h(u) = Hu for

some matrixH , but in the infinite dimensional case (i.e.,

when U is a space of functions) this includes pointwise

evaluation, as well as integral and derivative observa-

tions.

4. The observation error ǫ has a Gaussian distribution.

This assumption can be relaxed for maximum likeli-

hood estimation.

The full specification of the statistical model is then

Lpu = f (possibly including ICs/BCs) (3)

z = h(u) + ǫ (4)

f ∼ GP (0, kψ(·, ·)) (5)

ǫ ∼ Nn(µ, σ
2In). (6)

Our aim is to infer f (and possibly p, u, and ψ) given z

either via

• maximum likelihood (ML) estimation, by solving the

constrained optimization problem

min
p,f

(z − h(u))⊤(z − h(u)) + ||f ||2V (7)

s.t. Lpu = f

• Bayesian inference, where we find

π(p, f, u|z) ∝ π(z|u)π(u|f, p)π(f)π(p). (8)

Here, π(p) and π(f) denote the prior distributions for

p and f .

To solve either problem numerically is likely to require

many solves of the forward problem (1). For example, for

ML we may seek a solution using numerical optimization

[4], whereas with Bayes, we might use an MCMC scheme

[19][30][1] or variational approach [8]. All of these ap-

proaches require multiple solves of the forward problem.

Our aim is to reduce the number of forward solves required

during inference, resulting in lower computational costs.

1.1 Contribution

In this paper we show that implementing an adjoint of the

linear system can result in much faster statistical inference

for this problem. Instead of using numerical approaches to

solve either the ML or Bayesian inference problem, we can

do inference for f at the cost of n forward model solves,

where n is the number of data points. In many (but not all)

cases, this will incur a substantially lower computational cost

than competing methods, such as MCMC. More specifically,

we show that

1. if f depends linearly on parameters q, we can estimate

q or its distribution analytically, i.e., without resorting

to numerical integration methods

2. if we model f as a Gaussian process, then by using a

truncated basis expansion we can efficiently infer the

posterior distribution for f .

The paper is structured as follows. In the next section we

discuss related work before introducing adjoints in Section

3.1. We derive the main results in Section 3.2, and in Section

3.3 we show how linearizing Gaussian processes via a basis

expansion reduces inference for GPs in linear systems to

simple linear algebra. Finally, in Section 4 we demonstrate

the approach on two linear systems: ordinary (ODE) and

partial differential equations (PDE).

2 Related work

Source term estimation in differential equation models

has been extensively studied, for example, in the field of

modelling atmospheric advection-diffusion [35, 6, 32, 27,

36]. with many papers solving the inverse problem using

an adjoint approach combined with MCMC to compute the

posterior distribution [35, 15, 22, 1]. Of particular relevance

is [15] who use a point source model of pollution, and use the

adjoint to write the backward finite difference approximation,

noting that this can be written as a linear model, where the

features are conjugate fields associated with each sensor.

MCMC sampling still is still a limiting factor, restricting the

extension of the approach to more complex situations such

as time-varying pollution sources.

The problem defined by Eqs. (3)-(6) is often referred to

as a latent force model [2, 3]. [2] showed how the posterior

for this model can be computed by using the integral formu-

lation of Lpu = f , u(x) =
∫

Gp(x− v)f(v)dv, where G(·)
is the Green’s function associated with the differential opera-

tor Lp. Due to the linearity of the integral transform, placing

a GP prior over f leads to a joint GP over f and u. From this

joint GP, the posterior distributions π(u | f, p) and π(u | p)
can be computed in closed form. Unfortunately, in many

situations, particularly for non-trivial differential equation

models, the expressions for the covariances are cumbersome

and lead to the use of error functions with complex argu-

ments or functions like the Faddeeva function which can be

numerically unstable to compute. Recently, [13] proposed

representing f using random Fourier features to reduce the

number of integrations necessary to be solved analytically.

Here, rather than using Green’s functions, we instead use

adjoints to write the problem as a linear model and then

combining this with a reduced-rank Gaussian process formu-

2



lation, leading to numerically stable and fast approximations

to the posterior distribution.

Other related work includes the stochastic PDE approach

of [21], in which the underlying function u is modelled

as a Gauss Markov random field (GMRF), which can then

be formulated as a stochastic partial differential equation.

This allows finite element methods to be used to efficiently

compute the posterior distribution for u given z. Similarly,

[14] exploit the link between GMRFs and dynamical systems

to convert inference for u to a form in which Kalman filtering

methods can be used, which scale linearly with n. [31] focus

exclusively on the advection diffusion PDE considered in

Section 4.2, and use white noise for the forcing function,

f , to create a stochastic PDE model for u. They use a

spectral approach, solving the PDE in the Fourier domain,

to develop an efficient algorithm for statistical inference.

Whilst attractive, it is difficult to generalize this approach

from white noise models of f to correlated Gaussian process

models. [16] show how to infer statistical inference for

linearly constrained systems, i.e., where Lu = 0. These

approaches all model u, whereas our focus is on inferring

the forcing function f to the system. There is likely to be

benefit in combining these approaches with ours to further

accelerate inference in these models.

3 Methods

We first recap the definition of adjoints, before deriving

our main result illustrating how they can be used to accel-

erate inference. We then show how using a truncated basis

approximation to Gaussian processes allows us to find the

GP posterior distribution without resorting to MCMC meth-

ods.

3.1 Adjoints

Let U∗ and V∗ denote the dual spaces of U and V . We

can construct the adjoint to a continuous linear operator Lp
as follows. Let v∗ ∈ V∗ and define F : U → R by

F : u 7→ v∗(Lpu). (9)

Then F is a bounded linear functional on U , i.e., F = u∗

for some u∗ ∈ U∗. Thus for all v∗ ∈ V∗ we’ve associated a

unique u∗ ∈ U∗.

L∗
p : v

∗ 7→ u∗ = v∗ ◦ Lp (10)

We call L∗
p the adjoint of Lp, and L∗

p is itself a bounded

linear operator [11]. By construction, we have that for all

u ∈ U and v∗ ∈ V∗

(L∗
pv

∗)(u) = v∗(Lp(u)), (11)

a result known as the bilinear identity.

In the case where U and V are also real Hilbert spaces,

with respect to inner products 〈·, ·〉U and 〈·, ·〉V , then we can

identify the dual spaces with their underlying space: by the

Riesz representation theorem if v∗ ∈ V∗ then there exists

v ∈ V such that v∗(·) = 〈·, v〉V . In this case, the bilinear

identity reduces to its more familiar form

〈Lpu, v〉V = v∗(Lpu) = (L∗
pv

∗)(u) (12)

= 〈u,L∗
pv〉U (13)

where we now consider L∗
p : V → U . We only consider real

vector spaces here, resulting in a symmetric inner product.

Generally, the adjoint L∗
p will be the same type of operator

as Lp (e.g. if Lp is a differential operator then L∗
p will be

too), so solving an adjoint system of the form L∗
pv = g will

have similar computational complexity as solving Lpu = f .

See [11] for an introduction to adjoints, and the experiments

section for examples of adjoints.

3.2 Benefits of adjoints

How does the development of an adjoint to a linear system

help us perform statistical inference for that system? There

are two main advantages. Consider first the situation where

uncertainty about the unknown forcing function, f in Eq. (1),

can be characterized by a linear dependence upon unknown

parameters q. That is, we can write

f(·) =
M
∑

m=1

qmφm(·). (14)

In the infinite dimensional case where U and V are spaces of

functions on some set X , the φm will also be functions on

X . In the finite-dimensional case, the φm will be vectors of

length n.

In the situation where the observation operator (2) is

linear, then we can write the ith observation as hi(u) =
〈hi, u〉 plus noise, for some hi ∈ U . Consider the n different

adjoint systems

L∗
pvi = hi for i = 1, . . . , n.

Then using the bilinear identity (13) we get

hi(u) = 〈hi, u〉 = 〈L∗
pvi, u〉

= 〈vi,Lpu〉
= 〈vi, f〉,

i.e., the ith observation is the inner product between the

unknown forcing function f and the solution of the ith ad-

joint system. At first, the introduction of the adjoint doesn’t

appear to have helped. To evaluate the likelihood (or sum

of squares) we have gone from needing a single solve of the
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forward problem, to requiring the solution to n adjoint sys-

tems: an n-fold increase in computational cost. The benefit

arises if we now use the assumption of a linear dependence

upon the parameters, and linearity of inner products:

hi(u) = 〈vi,
M
∑

m=1

qmφm〉 =
M
∑

m=1

qm〈vi, φm〉.

The complete observation vector z can then be written as

z =







〈v1, φ1〉 . . . 〈v1, φM 〉
...

...

〈vn, φ1〉 . . . 〈vn, φM 〉











q1

qM



+ ǫ (15)

= Φq + ǫ

where q ∈ R
M is the parameter vector, and Φ ∈ R

n×M is

the matrix of inner products between the n adjoint solutions

and M basis vectors.

This can be recognized as a standard linear model.

Thus, standard results can be used to compute the least

squares/maximum likelihood and Bayesian estimators. For

maximum likelihood, the minimum of S(q) = (z −
h(u))⊤(z − h(u)) subject to Lpu = f , is obtained at

q̂ = (Φ⊤Φ)−1Φ⊤z

with Var(q̂) = σ2(Φ⊤Φ)−1 in the case where the obser-

vation errors ǫi are uncorrelated and homoscedastic with

variance σ2. Standard results can be used from regularized

least squares if we need to regularize q.

In a Bayesian setting, if we assume a priori that q ∼
NM (µ0,Σ0), then the posterior for q given z (and other

parameters) is

q | z ∼ NM (µn,Σn) (16)

where

µn = Σn(
1

σ2
Φ⊤z+Σ−1

0 µ0), Σn =

(

1

σ2
Φ⊤Φ+ Σ−1

0

)−1

.

(17)

See, e.g., [25]. Note that for readability, we have just pre-

sented the approach for Hilbert spaces here, but the idea

works in more general Banach spaces.

A second advantage of using adjoints is that the gra-

dient of a cost function depending on the solution u can

be computed with respect to parameters p, using the ad-

joint sensitivity approach [7, 23, 34]. For example, consider

the unregularized sum of squares/log-likelihood S(p, q) =
(z − h(u))⊤(z − h(u)) from Eq. (7), where u satisfies

Lpu = fq. We’ve shown how we can estimate q̂(p) =
argmaxS(p, q) or find the posterior π(q | z, p), but us-

ing the adjoint sensitivity approach also gives us ∂
∂p
S(p, q).

This can be used either by a gradient-based optimizer to

learn p̂ = argmaxS(p, q̂(p)), or in a variational inference

scheme that requires gradients to estimate the variational pa-

rameters such as the variational autoencoder [18, 29], or in a

Hamiltonian Monte Carlo algorithm [24] to efficiently target

the posterior (Eq. 8). We do not explore these approaches in

detail here.

3.3 Inference of Gaussian forcing functions

We now consider the situation where the forcing function

is given a Gaussian process prior distribution:

f(·) ∼ GP (m(·), k(·, ·)), (18)

where m(·) and k(·, ·) are the prior mean and covariance

functions respectively [28]. Our approach is to use a reduced-

rank representation of the GP, as in Eq. (14), derived by

truncating an expansion for k of the form

k(x, x′) =

∞
∑

m=1

φm(x)φm(x′). (19)

There are many possible choices for the basis vectors

φi(·), including the Karhunen-Loève (KL) [10], Laplacian

[33, 9, 5], and random Fourier feature [26] expansions. The

Karhunen Loève basis is formed by finding the spectral ex-

pansion of the integral operator defined in Mercer’s theorem:

Tkf(x) =

∫

X

k(x, x′)f(x′)dx′.

In the case where dim(x) is small (such as the ODE exam-

ple below), the eigenfunctions of Tk are easy to compute

either analytically [28, Section 4.3.2, p116] or numerically

[12]. Using the eigenfunctions of Tk gives the L2-optimal

approximation [20], but the eigenfunctions can be difficult

to compute even in three dimensions. A simpler approach

that extends easily to higher dimensional problems, is to

use random Fourier features (RFFs) [26]. This relies upon

Bochner’s theorem, which can be used to express stationary

kernels k(x, x′) := k(x− x′) as the Fourier transform of a

positive measure p

k(x− x′) =

∫

e−iw(x−x′)dp(w). (20)

If we use an isotropic exponentiated quadratic kernel,

k(x− x′) = τ2 exp(− 1

2λ2
(x− x′)⊤(x− x′)) (21)

then the measure corresponds to a multivariate Gaussian.

Using results from [26], we can approximate the Gaussian

process with Fourier feature vectors:

φi(x) =

√

2τ2

M
cos(

1

λ
w⊤
i x+ bi) (22)

4
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Figure 1: Posterior distribution for the unknown forcing

function (shown as 95% credibility interval) with true value

overlaid in the case of n = 50 (top) and n = 500 training

points (bottom). A different ground truth is used in each

case.

where wi ∼ N(0, 1) and bi ∼ U(0, 2π). The extension

anisotropic kernels is straight-forward.

Although the RFF expansion will requires more basis

vectors (a larger M) than the KL expansion to achieve the

same accuracy, the computational complexity of our adjoint

approach is dominated by the number of adjoint solves, not

the number of features (which only affects the cost of com-

puting the relatively low-cost Eq. 19), and so including more

terms has a minor effect on overall computational cost.

4 Experiments

4.1 Ordinary differential equation (ODE)

Consider the non-homogeneous linear ODE:

p2
d2u

dt2
+ p1

du

dt
+ p0u = f(t) (23)

on the domain [0, T ] with initial conditions u(0) = u′(0) =
0. The right hand side, f(t), is the unknown forcing func-

0.0 0.2 0.4 0.6 0.8 1.0
t

3

2

1

0

1

2

3

f(t
)

estimated source term
True source term

0.0 0.2 0.4 0.6 0.8 1.0
t

4

3

2

1

0

1

2

3

f(t
)

estimated source term
True source term

Figure 2: Posterior distribution for the forcing function using

M = 10 (top) and M = 150 (bottom) features in the GP

expansion (Eq. 14). True value overlaid in red. The over con-

fident and wrong posterior when M = 10 is a consequence

of the model being heavily misspecified in this case.

tion that we wish to estimate, and p = (p0, p1, p2)
⊤ are

parameters in the linear operator. We model f as a zero-

mean GP with the exponentiated quadratic covariance func-

tion: f(·) ∼ GP (0, k(t, t′)).We assume observations are

obtained as noisy time averages over short time windows:

hi(u) =

∫ ti+∆t

ti

1

∆t
u(t)dt = 〈u, h̃i〉 (24)

where h̃i is the indicator function h̃i(t) = I[ti,ti+∆t](t).
We could include direct measurements of u(ti) by setting

h̃i(t) = δ(t− ti). To generate synthetic data, we first simu-

late a realization f from the GP model, solve Eq. (23) for

u(t), and then simulate n observations from Eq. (24) with

T = 1, p2 = 0.5, p1 = 1, p0 = 5, ∆t = T
n

, ti =
iT
n

, adding

zero-mean Gaussian noise with standard deviation σ = 0.1.

For simplicity, we solve the ODE with a simple forward Eu-

ler approximation, but higher order schemes can and should

be used in real applications (although see the discussion for

comments about numerical difficulties). We approximate the
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GP using Eq. (14), using 200 RFFs generated using Eq. (22)

with λ =
√
0.6 and τ2 = 4. The linear operator in this case

is

Lpu =

(

p2
d2

dt2
+ p1

d

dt
+ p0

)

u.

To derive the adjoint operator we use the bilinear identity

(Eq. 13), and integrate by parts twice:

〈Lu, v〉 =
∫ T

0

Lu(t)v(t)dt =
∫ T

0

(p2ü+ p1u̇+ p0u)vdt

= [p2u̇v + p1uv]
T
0 +

∫ T

0

−p2u̇v̇ − p1uv̇ + p0uvdt

= [p2(u̇v + uv̇) + p1uv]
T
0 +

∫ T

0

p2uv̈ − p1uv̇ + uvdt

=

∫ T

0

(p2v̈ − p1v̇ + v)udt = 〈u,L∗v〉

when v(T ) = v̇(T ) = 0. So the adjoint of Lp is

L∗
pv =

(

p2
d2

dt2
− p1

d

dt
+ p0

)

v.

Note that rather than an initial condition, the adjoint has

a final condition, and so to solve the system we have to

integrate it backwards in time from t = T to t = 0. A

summary of the approach is given in Algorithm 1.

Algorithm 1 Adjoint-aided inference for the ODE model

For i = 1, . . . , n:

• Solve the adjoint system L∗
pvi = h̃i with final con-

dition vi(T ) = v̇i(0) = 0.
For m = 1, . . . ,M :

• Sample an RFF basis vector φm(t) using Eq. (22)

• Compute 〈vi, φm〉 for 1 ≤ i ≤ n

Form the matrix Φ, and compute the posterior distribution

for q using Eqs. (16) and (17).

Fig. 1 shows the posterior distribution of the forcing

function when using n = 50 and n = 500 data points. As

expected, more data results in a more confident posterior.

Fig. 2 shows the effect of increasing the number of features

in the GP approximation. Note the danger of using too few

features: with M = 10 the approximation to f has limited

expressive power and cannot capture the true form of f ,

i.e., the model is heavily misspecified. This can result in

the uncertainty collapsing upon the most likely, but wrong,

value, which can be difficult to spot in real applications.

4.2 Partial differential equation (PDE)

We now demonstrate the approach on a PDE in which

there are two spatial variables, x ∈ X ⊂ R
2, and time,

t ∈ [0, T ] ⊂ R, so that the solution u ≡ u(x, t) is a function

of three independent variables. We consider the advection-

diffusion equation:

∂u

∂t
+ p1∇u−∇.(p2∇u) = f in X × [0, T ] (25)

with the following initial and boundary conditions:

u(x, 0) = 0 for x ∈ X (26)

∇nu = 0 for x ∈ ∂X . (27)

Here, the unknown forcing function f ≡ f(x, t) is a function

of space and time, and we model it as a zero-mean GP

f(x, t) ∼ GP (0, k((x, t), (x′, t′)) (28)

with exponentiated quadratic kernel k (Eq. 21). We use a

random Fourier feature approximation to k (Eq. 22), where

in this case the random weights are wm ∼ N3(0, I) and

bm ∼ U [0, 2π].

Algorithm 2 Adjoint-aided inference for the PDE model

For i = 1, . . . , n:

• Solve the adjoint system L∗
pvi = h̃i with final and

boundary conditions:

v(x, T ) = 0 for x ∈ X
p1v + p2∇v = 0 for x ∈ ∂Ω and t ∈ [0, T ].

For m = 1, . . . ,M :

• Sample an RFF basis vector φm(t) using Eq. (22)

• Compute 〈vi, φm〉 for 1 ≤ i ≤ n.

Form the matrix Φ, and compute the posterior distribution

for q using Eqs. (16) and (17).

Observations are assumed to arise from sensors which

take an average of u(x, t) over a small spatial and temporal

window Ri × Ti ⊂ X × [0, T ]:

zi = 〈u, h̃i〉+ ei (29)

with h̃i =

{

1
|Ri|.|τi|

if x ∈ Ri and t ∈ Ti
0 otherwise.

(30)

The adjoint of the linear operator Lpu = (∂u
∂t

+ p1∇u −
∇.(p2∇u) is

L∗
pv = −∂v

∂t
− p1∇v −∇.(p2∇v). (31)

This can be derived by integrating by parts as for the ODE,

but for partial differential operators, we rely upon Green’s

theorem to do so; see [17] for details. Our adjoint-aided

approach then requires the solution of

L∗
pvi = h̃i in X × [0, T ] (32)
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with the following initial and boundary conditions:

v(x, T ) = 0 for x ∈ X
p1v + p2∇v = 0 for x ∈ ∂Ω and t ∈ [0, T ]

for i = 1, . . . , n. Inference then proceeds as before. After

solving the n adjoint systems, we compute the inner product

of these solutions with the random Fourier feature basis

vectors to form the matrix Φ (Eq. 15). We can then use

Eqs. (16) and (17) to compute the posterior with minimal

additional computational cost. The approach is summarized

in Algorithm 2.

Data was simulated on the spatial domain X = [0, 10]2

for t ∈ [0, 10] by first randomly generating a forcing function

f(x, t), and then solving the forward problem (Eqs. 25-27)

to find u(x, t). We generate n observations using sensors

that record averages over short time windows equally spaced

across the domain [0, 10], and at the locations shown in Fig.

4. Zero-mean Gaussian distributed noise is added to the

true sensor readings with standard deviation σ = 0.05 (note

that this is relatively small compared to the signal, which

can often create problems for sampling methods). We then

use Algorithm 2 to calculate the posterior distribution for

q, hence giving the posterior for f . By sampling forcing

functions from this posterior and simulating forward, we can

test the posterior predictive accuracy of the model.

Fig. 3a shows the ground-truth forcing function f (gener-

ated from an isotropic GP with an exponentiated quadratic

kernel with λ = 2, τ2 = 2) as a spatial map at three dif-

ferent time points. Observations were generated for four

time windows using both arrays of 4 and 16 sensors at the

locations shown in Fig. 4, i.e., a total of either n = 16 or

n = 64 observations. We used M = 200 RFFs to infer f

using the adjoint-aided approach. The posterior mean for f

is shown as spatial maps in Figs. 3b and 3c at 3 different

time slices. As expected, more sensors results in better esti-

mates. Figure 4 shows the posterior standard deviation for f

in the 4 and 16 sensor cases. Here we used PDE parameters

p1 = (0.4, 0.4)⊤ (and p2 = 0.01), so that advection occurs

parallel to the y = x line. We can see that standard deviation

is greatest downwind of the sensors, with a reduction in the

variance upwind, as expected.

To investigate the effects of varying feature and sensor

numbers we performed a posterior predictive check using

held-out data and used Monte Carlo estimation to calculate

the posterior predictive mean squared error (MSE). Figure

5 gives the MSE as the number of sensors and RFFs vary.

As both increase, so does the accuracy of our estimates. In

general, the accuracy depends upon a variety of factors, in-

cluding the PDE parameters (ratio of diffusion to advection),

kernel parameters (decreasing lengthscale makes the prob-

lem more challenging), and sensor locations. The speed

and efficiency of the proposed adjoint-aided approach al-

lows us to investigate these effects in a way that would not
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(a) Ground truth f(x, t) generated with λ = 2 and τ2 = 2.
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(b) Posterior mean of f using data from 4 sensors, averaged over 4

time windows, using M = 200 random Fourier features.
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(c) Posterior mean of f using data from 16 sensors, averaged over

4 time windows, using M = 200 random Fourier features.

Figure 3: Spatial maps of the forcing function at three dif-

ferent time slices: f(x, 2), f(x, 5), f(x, 8). Top row shows

ground truth, middle shows the posterior mean with 4 sen-

sors, bottom row using 16 sensors.

be possible if we were using MCMC (as each estimate of

the posterior requires tens of thousands of simulator eval-

uations, rather than just the n evaluation required for the

adjoint-aided approach).

Finally, we can infer the remaining parameters (PDE and

GP hyperparameters) in a variety of ways. By way of il-

lustration, Figure 6 shows the results from using Bayesian

optimization to infer lengthscale in a problem where data

are generated with true lengthscale λ = 2. We used GPyOpt

to maximise the negative log-likelihood using the expected

improvement acquisition function. In this case, we are eas-

ily able to determine the correct lengthscale with relatively

minimal computational cost.

5 Discussion

This work was motivated by the problem of inferring

(with uncertainty) the distribution of spatially and tempo-

rally varying sources of pollution (e.g. across a city), given

a small set of (noisy) observations, and a model of the pol-
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Figure 4: Posterior standard deviation for the examples

shown in Fig. 3, given as spatial maps at three time slices.

The top row is for the case where 4 sensors are used, and the

bottom row for 16 sensors. Sensor locations are shown as

white crosses. Advection occurs parallel to the x = y line,

so regions of reduced uncertainty are immediately upwind

of each sensor.

lution’s atmospheric transport. This is typical of the type

of challenge faced throughout the sciences and engineering.

Linear systems such as this, still pose computational chal-

lenges that make any form of principled statistical inference

almost intractable, or if they are tractable, the computational

cost (e.g. of using MCMC) is such that only a limited range

of models and situations can be analysed. This paper com-

bines the adjoint approach, which allows us to write the

problem as a standard linear model, with a linear-sum for-

mulation of a Gaussian process for the forcing term. The

result is conjugate Bayesian inference for an unknown GP

forcing function, which can vary in both time and space. The

computational cost scales linearly1 in time with the number

of observations, n. As n increases, the approach may even-

tually require more computation than competitor methods

such as MCMC (which in theory has cost independent of

n), but given that MCMC typically requires 105 − 106 itera-

tions even for low-dimensional problems, there is still a large

range of problems for which an adjoint may be beneficial,

more so if it used to also compute gradients. In our PDE

example with relatively few observations, the adjoint-aided

approach requires orders of magnitude fewer PDE solves

than MCMC. It is also worth noting that the computational

tasks in our approach are embarrassingly parallelisable.

One issue that is only briefly touched upon in this paper,

is the problem of estimating the non-linear operator param-

1Specifically, with G grid elements and M features, the algorithm has

computational complexity O(GMn+M2n+M3).
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Figure 5: The posterior predictive mean squared error (MSE)

as a function of the number of sensors and random fourier

features. The ground truth was generated from a GP with

λ = 2 and τ2 = 2, and using advection-diffusion parameters

p1 = (0.04, 0.04) and p2 = 0.01.

eters p, such as advection and diffusion rates, as well as

the GP kernel hyperparameters. Using adjoint sensitivity

to estimate gradients with respect to these parameters is a

numerically stable alternative to using auto-diff frameworks

(such as TensorFlow), which can be unstable when back

propagating through long iterative loops. Knowledge of gra-

dients then allows inference for the additional parameters

to be performed efficiently within the preferred statistical

paradigm. A cautionary note is that when the observation

operator h̃ has small support, such as for pointwise evalua-

tion (i.e., h(u) = u(x, t)), then care is needed when using

numerical methods to solve the adjoint systems, as adaptive

step size methods can easily miss small non-zero regions in

h̃.

Finally, there are many ways in which this approach may

be accelerated, for example, by the use of intelligent nu-

merical solvers that reuse solution trajectories and adaptive

step size solvers, multi-fidelity methods that use varying grid

sizes, and stochastic approaches which use only a subset of

the data at each stage.
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Supplementary material

PDE Inference Examples

Here we show the effect of the GP lengthscale, λ, on the

quality of inference in the PDE problem. Figures 7 to 9

show the ground truth forcing function, f(x, t), simulated

concentration, u, and the forcing function inferred with 200

random Fourier features, in the cases where λ = 0.2, 1 and

3, respectively. It should be noted that at t = 0, u is 0

everywhere, due to the established initial conditions. In the

shorter lengthscale cases, the quality of inference is worse

than that at λ = 3 (and at λ = 2, as shown in main paper).

However, the quality of inference in shorter lengthscale cases

can be improved by increasing the number of random Fourier

features used to perform the adjoint method.
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(a) Ground truth f generated with λ = 0.2 and τ2 = 2.
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(b) Simulated concentration, u, using the ground truth f , with

parameters p1 = (0.04, 0.04) and p2 = 0.01.
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(c) Posterior mean of f using data from 16 sensors, averaged over

4 time windows, using M = 200 random Fourier features.

Figure 7: An example of the adjoint inference method ap-

plied to a ground truth forcing function, f , with lengthscale

λ = 0.2. The inference was performed using 200 random

fourier features.
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(a) Ground truth f generated with λ = 1 and τ2 = 2.
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(b) Simulated concentration, u, using the ground truth f , with

parameters p1 = (0.04, 0.04) and p2 = 0.01.
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(c) Posterior mean of f using data from 16 sensors, averaged over

4 time windows, using M = 200 random Fourier features.

Figure 8: An example of the adjoint inference method ap-

plied to a ground truth forcing function, f , with lengthscale

λ = 1. The inference was performed using 200 random

fourier features.

Time complexity

Let G be the number of grid elements, n the number of

observations and M the number of features. There are five

specific operations our algorithm requires. (1) Solving the n

adjoint systems takes O(Gn). (2) Computing each φ vector

over the grid for each feature takes O(GM). (3) Computing

the Φ matrix, takes O(GMn) time (having to dot product

each feature computed over the grid with each q associated

with each observation). (4) Finding Φ⊤Φ takes O(nM2).
Finally solving the matrix inverse will take O(M3). The

upshot is an algorithm linear in n. Empirically, for the

problems we’ve experimented with, we found computing

φ over the large grid was the most time consuming step.

The overall time complexity is O(GMn + M2n + M3),
but the constants associated with each term are important to

consider.
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(a) Ground truth f generated with λ = 3 and τ2 = 2.
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(b) Simulated concentration, u, using the ground truth f , with

parameters p1 = (0.04, 0.04) and p2 = 0.01.
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(c) Posterior mean of f using data from 16 sensors, averaged over

4 time windows, using M = 200 random Fourier features.

Figure 9: An example of the adjoint inference method ap-

plied to a ground truth forcing function, f , with lengthscale

λ = 3. The inference was performed using 200 random

Fourier features.
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