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Abstract 

Artificial Neural Networks (ANNs) are one of the most widely 
employed forms of biomorphic computation. However (unlike 
the biological nervous systems they draw inspiration from) the 
current trend is for ANNs to be structurally homogeneous. 
Furthermore, this structural homogeneity requires the 
application of complex training & learning tools that produce 
application specific ANNs, susceptible to pitfalls like overfitting. 
In this paper, an alternative approach is suggested, inspired by 
the role played in biology by Neural Microcircuits, the so called 
“fundamental processing elements” of organic nervous systems. 
How large neural networks can be assembled using Artificial 
Neural Microcircuits, intended as off-the-shelf components, is 
articulated; before showing the results of initial work to produce 
a catalogue of such Microcircuits though the use of Novelty 
Search.  

Introduction 

ANNs, in their various permutations, currently form the 
backbone of many non-standard computing tools (Prieto, et al., 
2016). Typically, the state of the art is focused in one of two 
directions: large, topologically homogeneous feed forward 
(figure 1a) & recurrent networks (figure 1b) whose connection 
weights are adjusted by either increasingly complex machine 
learning (Schmidhuber, 2015) or genetic algorithms (Shifei, Li, 
Su, Yu, & Jin, 2013); or iterative evolutionary methodologies 
designed to produce complex topologies from scratch (Stanley 
& Miikkulainen, 2002) (figure 1c). With either of these 

approaches, the resultant networks are often application 
specific, which both limits flexibility and raises the specter of 
issues such as overfitting as a consequence of the limited 
breadth of training data available. 
 However, advances in neuroscience are painting a picture of 
biological nervous system that possess much more nuanced 
architectures; ones built up of various computational subunits, 
or Neural Microcircuits, which work together both 
hierarchically and in parallel (Luo, 2016). Furthermore, these 
biological systems are more flexible, being able to carry out 
multiple different tasks, adapt to new ones, or apply 
approximate information to new situations.  

In this paper, this more biological partitioned architecture is 
used as inspiration, employing novelty search to create a 
catalogue of Artificial Neural Microcircuits, which can then be 
used as off-the-shelf components to fashion larger application 
specific networks, an idea illustrated in figure 1. It is envisaged 
that this approach will improve the robustness of network 
behaviours by breaking that behaviour into sub-behaviours that 
can be the focus of individual specialised Microcircuits or 
groups of Microcircuits; as well as bringing other advantages 
such as reducing network development and training overheads 
by allowing them to be build out of off-the-shelf components 
and allowing for the updating or alteration of a network’s 
overall behaviour through swapping of Microcircuits. 

Figure 1: An illustration of the various approaches to neural network topologies, including the approach proposed in 
this paper: a) Feed Forward; b) Recurrent; c) Evolved from scratch; d) Microcircuit based. 
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Neural Microcircuits 

Neuroscientists refer to the multitude of specialised subunits 
within biological nervous systems as Neural Microcircuits. 
Commonly referenced examples of such include motor neuron 
sequencing circuits; the hazard amelioration reflexes of some 
invertebrates; sensory processing circuits; and the columns of 
the neocortex. Though varied in form and function, Neural 
Microcircuits share a common role as the “elementary 
processing units” of the nervous system  (Grillner & Graybiel, 
2006). 

By way of an example, consider two elements of the 
locomotion system of P. leniusculus, the Signal crayfish. This 
organism’s primary form of propulsion through the water is via 
a set of appendages called Swimmerets, which beat back and 
forth in coordination with one another to produce motion. 
Control of these appendages is performed by a portion of the 
crayfish’s nervous system called the Swimmer System, found 
within four of the six ganglia of the abdominal nerve cord. Each 
of these ganglia, labeled as A2 through A5 in figure 2, controls 
the motion of one pair of Swimmerets via motor neurons RS & 
PS. 

Figure 3: Illustration of the Microcircuit within the left 
hemiganglion of segment A4, counterparts of which are 
repeated in the segments A2 through A5. Arrows are 
connections to other microcircuits, dot lines are biochemical 
synapsis, & the resistor represents an electrical synapsis. 
Adapted from (Schneider, Blumenthal, & Smarandache-
Wellmann, 2018). 

 
Within each of the relevant hemiganglion is an identical 

neural Microcircuit, illustrated in figure 3, consisting of a pair 
of motor neurons and associated inhibitory neurons: Power 
Stroke (PS), Inhibits Power Stroke (IPS), Return Stroke (RS) 
& Inhibits Return Stroke (IRS); and three neurons that facilitate 
the interconnection of the Microcircuits in the different ganglia. 

In isolation, the pattern generating and motor neurons produce 
the rhythmic beating motion of the Swimmerets; but via the 
three interconnection neurons that motion is modulated, such 
that all the Swimmerets move in concert and thus efficient 
movement results (Smarandache-Wellmann & Grätsch, 2014) 
(Schneider, Blumenthal, & Smarandache-Wellmann, 2018). 

However, in situations where the crayfish is threatened, 
other locomotive behaviours are employed to facilitate fast 
escape. Collectively referred to Escape Reflexes, they activate 
the musculature that flexes the whole of the crayfish’s tail to 
rapidly propel the creature away from danger. Of interest to this 
work is the Lateral Giant Escape reflex, named because of the 
role played by the Lateral Giant neurons within the nerve cord. 

Figure 4: Illustration of the Lateral Giant Escape reflex 
Microcircuits within the left hemiganglion of segment A2, 
counterparts of which are repeated in segments A1 through A5. 
Adapted from (Vu, Berkowitz, & Krasne, 1997). 
 

When stimulus is applied to the sensory neurons on the 
crayfish’s abdomen, signals are sent to the Lateral Giant (LG) 
neuron of that segment, either directly or through Interneuron 
A. As the LG neurons are connected in series down the 
abdomen and also linked to their counterparts on the opposite 
side of the animal, sufficient sensory input passes the threshold 
which is deemed to mean hostile action. The LG neuron then in 
turn activates the muscles of the tail, causing them to rapidly 
contract and push the crayfish out of danger. This motor action 
is caused by the LG directly signaling the Motor Giant neuron 
(MoG) in each segment, for the immediate motion, and the 
segments Segmental Giant neuron (SG), with in turn triggers 
the Fast Flexor neurons (FF) and their interneurons I, which 
extend the motion beyond the initial impulse (Vu, Berkowitz, 
& Krasne, 1997) (Edwards, 2017).       

Figure 2: the crayfish ventral nerve cord (a), taken from (Demyanenko, Dzreyan, & Uzdensky, 2019); with a block 
illustration of the ganglia of the abdominal section (b), adapted from (Smarandache-Wellmann & Grätsch, 2014)   D
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Artificial Neural Microcircuits 

From this example, it is easy to see an argument for adopting a 
similar approach in neuromorphic systems; after all, such 
compartmentalization of different functionality, but with 
interconnection to allow for coordination of more macro 
behaviours is seen as a positive side effect if it emerges within 
neural networks during training or evolution. Furthermore, as 
individual neural Microcircuits’ can be repeated throughout a 
nervous system wherever similar behaviours are needed, this 
paper proposes that it should be possible to create a general-
purpose catalogue of Artificial Neural Microcircuits, which can 
be used as building blocks of a wide variety of different more 
complex neuromorphic systems, while assisting in scalable 
hardware implementations. 

Methodology 

In order to assemble a catalogue of Microcircuits that can be 
used, the following steps need to be taken: (i) generation of 
candidate Microcircuits; (ii) assessment of them based on some 
criteria; and (iii) the use of the assessment to select which 
Microcircuits would be useful components.    

Generating Prospective Microcircuits 

A Microcircuit is represented using a set of connection 
matrices: (i) one for external inputs; (ii) one for internal 
connections; and (ii) a final array for outputs. This approach 
would allow for the production of arbitrary topologies simply 
by randomising the values of these matrices, however in this 
paper a somewhat different direction has been taken. 

One of the goals of the proposed Microcircuits-as-
components method is to provide a degree of substrate 
agnosticism. That is to say, the exact spiking neuron model that 
is used to implement the Microcircuits should be divorced from 
their functionality. Hence, it is desirable to avoid using 
individual neurons as the building blocks, and instead employ 
something “one step up” from this. 

This can be achieved while also injecting some biological 
domain knowledge into the methodology through the use of 
neural Circuit Motifs. Neurobiologist Liqun Luo identifies ten 
recurring patterns of connectivity within biological 
neurocircuits, termed Motifs (Luo, 2016). Each of these motifs 
consists of two to seven neurons and they exhibit distinct 
patterns of behaviour. 

Initial investigations of the Microcircuit approach employ 
simplified versions of six of the ten motifs (Byrne, 1997), 
selected because they represent a breadth of functionalities 
without using a large number of neurons and connections: 
FeedForward Excitation (FFE); FeedBack Excitation (FBE); 
FeedBack Inhibition (FBI); ReCurrent Excitation (RCE); 
ReCurrent Inhibition (RCI); and LaTeral Inhibition (LTI). 

Figure 5: The FeedForward Excitation (FFE) Motif 
 
 
 

 
 

Figure 6: The FeedBack Excitation (FBE) Motif 
 

 
 
 
 
 
 
 
 

Figure 7: The FeedBack Inhibition (FBI) Motif 

 
Figure 8: The ReCurrent Excitation (RCE) Motif 

Figure 9: The ReCurrent Inhibition (RCI) Motif 
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Figure 10: The LaTeral Inhibition (LTI) Motif 
 
 In addition to these, an additional “motif” is suggested, in 

the form of a Central Pattern Generator (CPG). This could be 
argued to be a Microcircuit in its own right, but here it is 
included as a “motif” due to its small size (three neurons), and 
the useful behaviour it adds (the ability to generate a 
consistently spiking output of a fixed frequency). 

Figure 11: The Central Pattern Generator (CPG) Motifs 
 
Each of the above Motifs has an associated connection 

matrix, which can be tiled together, and connections between 
the Motifs can then be randomly initialised to produce a 
potential Microcircuit. Note that, as the Motifs have defined 
input & output connections, not all possible connections 

between Motifs are allowed: e.g. a connection could not end at 
neuron 2 of the FBE Motif, nor start at neuron 1. 

Thus, the matrices of two input, one output Microcircuit 
consisting of two Motifs might be as illustrated in figure 12: 
with the associated topology shown in figure 13. 
 

Figure 12: Example input (a); internal (b); and output 
connection (c) matrices. 

Behavioral Assessment 

Once a selection of prospective Microcircuits exists, it is 
necessary to assess their behaviour. This step is conceptually 
straightforward, as all that is required is to record the response 
of the various Microcircuits to a given stimulus or set of stimuli. 
Ideally, there would be a standard stimulus or set of stimuli 
which could provide a sufficiently comprehensive set of 
responses from the Microcircuit so as to consider its behaviour 
fully mapped, i.e., all possible forms of output from that 
Microcircuit have been solicited and recorded. However, the 
creation of such a test stimulus or set of stimuli has not yet been 
undertaken, hence preliminary experiments employed a less 
generic stimulus pattern, described later in this paper.   

  

Figure 13: An example Microcircuit, consisting of a CPG (neurons 0, 1 & 2) and a FBE (neurons 3 & 4) 
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Catalogue Selection 

Regardless of the exact test stimuli used, the result is a set of 
Microcircuits, each with one or more output spike trains which 
illustrate their response to the stimuli. Using these, it is then 
necessary to determine whether a Microcircuit is suitable for 
addition to the component catalogue. To increase the coverage 
of Microcircuits, Novelty Search is used to produce a catalogue 
that encompasses a sufficiently large breadth of the behavioral 
space. 
 Novelty Search is an alternative to fitness function based 
evolutionary algorithms. Instead of assessing individuals based 
on how successful their behaviours are at meeting some 
explicitly defined criteria, they are instead compared on the 
basis of how different their behaviours are from one another. 
Individuals surpassing some threshold of difference are then 
added to an archive, which forms the output of the search 
(Lehman & Stanley, 2008). Originally this archive was then 
searched to locate a final “best” individual, but in this use case, 
the archive constitutes the desired final product: a catalogue of 
Microcircuits with varying behaviours. Unlike fitness-based 
evolution, this approach allows for a catalogue to be created 
without needing to characterise any of the desired behaviours 
or even without knowing what those behaviours might be.   

To employ Novelty Search, a method to compare the output 
spike trains of the various Microcircuits is required, ideally one 
that will provide a concise numerical value related to the 
difference between them. Neuroscientists have compared the 
recorded spike trains of biological neurons, and have produced 
a wide range of methods that can be applied in this work 
(Kreuz, Measures of spike train synchrony, 2011). Bivariate 
SPIKE-Distance has been chosen, a measure that has the 
advantages of taking a wide range of spike train metrics into 
consideration, while producing a single value. This value is 
between 0.0 and 1.0 and corresponds to the “distance” between 
the two spike trains, with a value of 0.0 only being returned if 
the two spike trains are identical (Kreuz, Chicharro, Greschner, 
& Andrzejak, 2010). By applying this measure to each unique 
paring of Microcircuits, a distance matrix can be generated, 
with the average of the distances between one individual and 
all others being the metric used by the Novelty Search. 

All that remains is to iterate the population of prospective 
Microcircuits in the standard fashion (using crossover & 
mutation as part of selection), before repeating the process to 
produce a suitable catalogue, as illustrated in figure 12. 

Simulated Data Bus Experiment 

To establish if the previously detailed methodology is sufficient 
to produce a selection of useful Microcircuits, it is necessary to 
put it to the test. For this purpose, an emulation of an 8-bit bus 
is used as the input stimulus, with the intended output being 
Microcircuits that displayed clear and consistent responses to 
different parts of the data streamed. 

Experiment Stimulus 

To provide an input stimulus that is meaningful in both quantity 
and quality, this experiment used a sample of text. This sample 
consisted of 2030 characters, including spaces, complete with 
punctuation. Each character of the text sample was translated 
to a single byte, following the UTF-8 encoding scheme, with 
these binary values then used to produce a set of eight input 
spike trains. A simple encoding scheme was used, where a 
binary 1 produced a 25ms long burst of spikes on the associated 
input channel (25ms was selected as it was the same as τ of the 
example spiking neuron being used). 

Figure 15: A section of the input stimulus. Note that there are 
only 7 input spike trains shown, as UTF-8 does not use the 
Least Significant Bit (LSB) for all characters. 
 
 It should be noted that, while in the context of this 
experiment it is specific characters that are being considered, 
any Microcircuits that display the desired kind of behaviours 
will be doing so because they have latched onto the pattern of 
input spike trains those characters have been mapped to. Those 

Figure 14: An illustration of the complete Microcircuit catalogue generation methodology D
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patterns could correspond to other stimuli of interest, for 
example: control codes on a microprocessor’s instruction bus. 
Furthermore, validating the ability of this approach to reliably 
produce Microcircuits that latch onto patterns in a useful 
fashion would indicate its broad applicability, as not only could 
any conceivable input of interest be encoded thus, but the 
outputs of the Microcircuits themselves are spike train patterns, 
meaning that there is nothing to prevent them being assembled 
sequentially.      

Experiment Parameters 

The population of Microcircuits consisted of 100 individuals 
and was iterated 50 times. All Microcircuits had eight inputs 
and one output, with the starting pool of Microcircuits all 
having two Motifs. Input and internal connections had a 25% 
chance of existing (tuned to allow for suitably sparse 
connectivity) and a weight value between -1.0 and 1.0. 
 Each iteration of the population produced new Microcircuits 
by combining two Microcircuits from the previous iteration: 
one with a high average Bivariate SPIKE-Distance and one 
with a low average. This avoided the possibility of self-
crossover, while also aiding diversity. Crossover ratio was 4:6 
in favor of the low SPIKE-Distance individual. Following 
crossover, mutation was applied with the following 
probabilities: 35% chance to add a new Motif; 60% chance to 
replace a Motif; 60% chance to alter the weight of an input or 
internal connection; and a 60% chance of changing an output 
connection. These values were deliberately set quite high so as 
to fuel diversity within the population.  

To be added to the catalogue, a Microcircuit needed to 
possess an average Bivariate SPIKE-Distance of at least 0.5, 
though this value was dynamic, as suggested in (Lehman & 
Stanley, 2008). If 10 iterations of Microcircuits passed without 
an addition being made to the catalogue, the threshold was 
reduced by 5%. Alternatively, if 10 individuals were added to 
the catalogue in the space of one iteration, the threshold was 
raised by 20%. 

 
  

Results 

From a total pool of 5000 Microcircuits created over the course 
of the experiment, 50 were deemed to display sufficiently novel 
behaviour to warrant transfer to the catalogue, with average 
Bivariate SPIKE-Distance values of between 0.44 and 0.63. As 
is to be expected from the increase in complexity that occurs in 
novelty searches (shown in figure 16), the number of motifs, 
and as such neurons, within the Microcircuits increased 
steadily, with the largest instance coming from generation 45: 
possessing 61 neurons across 20 motifs. 

 
Figure 16: Average number of neurons (blue) and motifs 
(orange) of Microcircuits added to the catalogue, showing the 
trend towards increasing complexity. 
 
 The breakdown of which motifs are present in those 
Microcircuits added to the catalogue at which point in time is 
shown in figure 17. This data suggests there is no strong 
inclination towards a specific ratio of motifs for novel 
microcircuits, nor that the presence or absence of a given motif 
is of any specific importance.   
  

Figure 17: Percentage breakdown of the motif makeup of Microcircuits added to the catalogue in a given generation 
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To determine if any of the Microcircuits in the catalogue 
demonstrated clearly useful behaviour, a correlation was 
determined between the output spike trains of the Microcircuits 
and the character the input spike trains were presenting. To do 
this, the average number of output spikes across each of the 
input characters was calculated. If this value was zero, the 
Microcircuit was not responding to a given character; values 
less than one would indicate that a character was only 
responded to sometimes (a weak correlation); while any value 
greater than one would indicate the Microcircuit spiked more 
than once on each instance of a character (a strong correlation) 
 Across all 50 Microcircuits in the catalogue, 8 Microcircuits 
exhibited strong correlations for all characters, which on closer 
investigation corresponded to different forms of consistent 
spiking. Of the others: 20 Microcircuits displayed weak 
correlations to one or more characters; 15 displayed a mixture 
of strong and weak correlations, while the remaining 7 
displayed strong correlations with specific subsets of 
characters. Of these 7, two are of particular note: Microcircuits 
392 & 466 (figures 18 and 19). 

 
Figure 18: Illustration of Microcircuit 392 
 

Microcircuit 392, produced in the fourth generation with 8 
neurons across 3 motifs (FBE, RCI & FBE), displayed a strong 
correlation (average of 1.20 spikes) with the dashes in the 
sample text. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 19: Illustration of Microcircuit 466 

 
Microcircuit 466, produced in the fifth generation with 9 

neurons across 3 motifs (FBI, LTI & FBI), displayed an even 
stronger correlation with all four non-letter characters in the 
sample text (Space: 4.31; Comma: 4.50; Dash: 3.80; Stop: 
4.33). 

Conclusions 

Both of the two Microcircuits highlighted have clear uses 
within a larger neural network, indicating that the proposed 
approach to building networks has merit. It is easy to see how 
a more expansive version of the Microcircuit catalogue from an 
experiment like this could be used to assemble a network able 
to completely parse UTF-8 text streams, but of course it should 
be possible to go further. 

The exact same Microcircuits could be used as part of a 
network that takes in handwritten characters, with other kinds 
of Microcircuit forming the interface between the character 
images and the character recognisers; or in a completely 
different application where the 8-bit patterns they recognise are 
some other stimuli of interest. In addition, the local connections 
within a Microcircuit support more scalable neuromorphic 
implementations as inter-microcircuit connectivity does not 
follow the traditional ANN arrangement of one-to-many 
neurons. 

With the eventual goal being the creation of a usefully 
expansive catalogue of Microcircuit components, there are 
obviously steps to take before that point. A number of areas for 
improvement in the generation methodology have been 
identified, including updates to the selection of motifs; 
refinement of the novelty metric; and alterations to the 
Microcircuit population iterator to avoid unconstrained growth. 

It should also be noted that these initial experiments have 
been focused on the generation of Microcircuits that react to 
spatial input patterns (i.e. which inputs are or are not spiking). 
A vital next step is to expand these efforts to investigate 
temporal patterns (i.e. sequences of spikes on both the same or 
multiple inputs).     
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