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Objective: Lumbar lateral interbody fusion (LLIF) allows placement of large interbody cag-
es while preserving ligamentous structures important for stability. Multiple clinical and bio-
mechanical studies have demonstrated the feasibility of stand-alone LLIF in single-level fu-
sion. We sought to compare the stability of 4-level stand-alone LLIF utilizing wide (26 mm) 
cages with bilateral pedicle screw and rod fixation.
Methods: Eight human cadaveric specimens of L1–5 were included. Specimens were at-
tached to a universal testing machine (MTS 30/G). Flexion, extension, and lateral bending 
were attained by applying a 200 N load at a rate of 2 mm/sec. Axial rotation of ± 8° of the 
specimen was performed at 2°/sec. Three-dimensional specimen motion was recorded us-
ing an optical motion-tracking device. Specimens were tested in 4 conditions: (1) intact, (2) 
bilateral pedicle screws and rods, (3) 26-mm stand-alone LLIF, (4) 26-mm LLIF with bilat-
eral pedicle screws and rods.
Results: Compared to the stand-alone LLIF, bilateral pedicle screws and rods had 47% less 
range of motion in flexion-extension (p < 0.001), 21% less in lateral bending (p < 0.05), 
and 20% less in axial rotation (p = 0.1). The addition of bilateral posterior instrumentation 
to the stand-alone LLIF resulted in decreases of all 3 planes of motion: 61% in flexion-ex-
tension ( p < 0.001), 57% in lateral bending (p < 0.001), 22% in axial rotation (p = 0.002).
Conclusion: Despite the biomechanical advantages associated with the lateral approach and 
26 mm wide cages, stand-alone LLIF for 4-level fusion is not equivalent to pedicle screws 
and rods.

Keywords: Stand-alone, Lateral interbody fusion, Multilevel, Extreme lateral interbody fu-
sion, Lumbar lateral interbody fusion, Biomechanics

INTRODUCTION

Lateral lumbar interbody fusion (LLIF) is one minimally in-
vasive operative technique used to create fusion in patients with 
degenerative lumbar spinal diseases.1 Surgical advantages of 
LLIF as compared to anterior or posterior lumbar fusion in-
clude excellent visualization, preservation of ligamentous and 

bony structures contributing to spine stability, access for discec-
tomy, and decreased mobilization of neurologic structures and 
vasculature.2-4 The lateral approach allows for implantation of 
interbody cages of large sizes, which facilitates restoration of 
disc height, correction of deformity, and dispersion of axial loads 
across the endplate.4-6 As a minimally invasive technique, LLIF 
has demonstrated less tissue trauma, low intraoperative blood 
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loss, and lower infection rates than open surgery.7-9 In addition, 
its efficacy has been shown in multiple clinical studies utilizing 
validated patient-reported outcome measures.6,10-12

In practice, LLIF is usually combined with supplemental pos-
terior fixation to enhance segmental stability, reduce subsidence, 
and thereby increase rates of instrumented fusion.13,14 Multiple 
level lateral interbody fusion combined with percutaneous ped-
icle screw fixation is a minimally invasive surgical strategy with 
high fusion rates and favorable radiographic and clinical results.14 
The placement of supplemental posterior fixation represents an 
additional step of surgery and often repositioning of the patient, 
although single-position surgery has been attempted.15

If stand-alone lateral interbody fusion can confer adequate 
biomechanical stability to promote fusion, this would be impor-
tant knowledge because it could potentially obviate the need for 
posterior instrumentation. The literature suggests that a stand-
alone lateral approach is sufficient in some situations. A recent 
systematic review of 22 studies by Manzur et al.16 found that 
stand-alone LLIF of various cage widths achieved pooled clini-
cal fusion rate that was not statistically different from combined 
LLIF and posterior (circumferential) fusion. Biomechanically, 
single-level stand-alone LLIF has been reported to reduce the 
segmental range of motion (ROM) more than transforaminal 
lumbar interbody fusion (TLIF) or stand-alone anterior lumbar 
interbody fusion (ALIF).17

Cage width may also have an important role in the feasibility 
of stand-alone lateral interbody fusion. In a cadaveric study of 
extra wide (26 mm) cages, Pimenta et al.18 found that increas-
ing the width of the cages from 18 mm to 26 mm resulted in a 
more significant reduction of ROM. In addition, they reported 
that the stand-alone 26-mm LLIF was more rigid than TLIF 
with bilateral pedicle screws. Clinically, Lang et al.19 reported 
that 26-mm wide cages decreased subsidence compared to 22-
mm and 18-mm wide cages. 

Considering the previous works supporting stand-alone LLIF 
for single-level surgery and the favorable biomechanical profile 
of 26-mm cages, we sought to investigate a stand-alone LLIF 
approach to multilevel fusion. The biomechanical stability of 
multilevel stand-alone LLIF utilizing extra wide cages has not 
been characterized. This study compared the biomechanical 
stability of stand-alone LLIF using 26-mm cages for long multi-
level fusion (L1–5, 4 levels) to posterior bilateral pedicle screws 
and rods. We chose bilateral pedicle screws and rods because 
this surgical strategy is widely accepted as providing adequate 
stability to promote spinal fusion. We hypothesized that the mul-
tilevel stand-alone LLIF will provide comparable stability as tra-

ditional pedicle screw fixation due to the use of extra wide cages.

MATERIALS AND METHODS

1. Specimen Preparation
Eight fresh-frozen human cadaveric specimens of L1–5 were 

included. Specimens were prepared by cleaning surrounding 
soft tissue and muscle and preserving the discs and spinal liga-
ments (supraspinous, interspinous, facet capsules, posterior lon-
gitudinal ligament, anterior longitudinal ligament). The mean 
specimen age was 66.5± 11.5 years. There were 7 male and 1 fe-
male specimens. The average body mass index was 31.1± 7.32 
kg/m2. All specimens were visually inspected to confirm no frac-
ture, deformity, previous surgery, or severe spondylosis.

A computed tomography (CT) scan (GE Brightspeed, Bos-
ton, MA, USA) was performed on all specimens (120 kV, 20 
mA, 0.62-mm resolution) to investigate the bone quality and 
produce measurements to plan optimal implant size. Nonde-
structive testing was performed for all the conditions in flexion/
extension, lateral bending, and axial rotation.

2. Instrumentation
Lateral interbody cages were implanted with the specimen in 

the lateral decubitus position utilizing the LLIF surgical tech-
nique and instrumentation specific to this technique (eXtreme 
Lateral Interbody Fusion, Nuvasive, San Diego, CA, USA). All 
interbody cages were 26 mm in width (anteriorposterior dimen-
sion) and polyetheretherketone material (CoRoent, Nuvasive, 
San Diego, CA, USA). Each implant’s height (superiorinferior) 
and length (medial-lateral) were determined by CT scan and 
adjusted when necessary.

Pedicle screws (Armada, Nuvasive, San Diego, CA, USA) were 
placed with the specimen in the prone position. Screws were 
implanted bilaterally at every level from L1–5 utilizing standard 
freehand technique with anatomic landmarks. Screw size was 
determined by CT scan and adjusted if necessary. Pilot holes 
were tapped and probed, in addition to visual inspection of the 
specimens, to detect any breach. Rod size was 5.5-mm titanium 
and placed bilaterally for the conditions that required posterior 
instrumentation. The specimens were tested with screws in place 
but without rods for the intact and stand-alone conditions.

3. Biomechanical Testing
Specimens were attached to a universal testing machine (MTS 

30/G) using specially designed holding jigs. Flexion, extension, 
and lateral bending were attained by applying a 200 N load at a 
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rate of 2 mm/sec to the loading arm connecting the cup con-
taining the thoracic end of the spine while the cup with the sacral 
end was fixed to the base of the loading frame (Fig. 1A). Axial 
rotation of ± 8° of the specimen was achieved by coupling the 
thoracic end to a servo motor rotating at 2°/sec with the sacral 
end fixed (Fig. 1B). A 50N preload (follower load) was applied 
from L1 to L5. During all testing, 3-dimensional specimen mo-
tion was recorded using an optical motion-tracking device (Op-
totrak, Northern Digital Inc., Waterloo, ON, Canada). The ap-
paratus was designed to apply compressive follower preload rep-
resenting the physiologic preload acting in the lumbar spine 
and maintaining the spine alignment. This was applied using 
bilateral cables passing freely through guides anchored to each 
vertebra. Additional load for flexion and extension was applied 
with a compressive force that varied between 200–300 N with a 
lever arm of 1.5 cm and allowed for a combined moment of 4.5–6 
Nm. Most of the reported experiments using the follower meth-
od reported a pure moment load between 4–8 Nm.

4. Order of Testing
Specimens were tested in 4 conditions: (1) intact, (2) bilateral 

pedicle screws and rods L1–5 (posterior-only). Following test-
ing for posterior-only, lateral interbody cages were implanted as 
described above, and the experiment continued for (3) 26-mm 
lateral interbody cages L1–5 without rods (stand-alone LLIF), 
(4) 26-mm lateral interbody cages with bilateral pedicle screws 

and rods L1–5 (LLIF+posterior).

5. Statistical Analysis
Descriptive statistics for continuous variables are reported as 

mean± standard deviation. Change in ROM after instrumenta-
tion was reported as percentage decrease from the intact speci-
men. Paired t-test was used to compare ROM between instru-
mentation conditions, which mitigates the confounding effect 
of differences among specimens, such as in bone quality. Statis-
tical analyses were performed using Microsoft Excel Version 
2013. Significance was set as p< 0.05.

RESULTS

Bone quality was determined by CT scan utilizing a previ-
ously described technique.20 The mean Hounsfield unit (HU) 
was 143± 29.4 (range, 84–169.4). Only one specimen was be-
low the suggested threshold for osteoporosis of less than 110 
HU.21

Lateral interbody cages were 26 mm in width and ranged from 
8 to 14 mm. The most common heights were 10 mm (n= 13). 
Length ranged from 45 to 60 mm. The most common length 
was 55 mm (n= 14). Pedicle screw diameters ranged from 6.5 
mm to 8.5 mm in diameter and 40 to 60 mm in length.

Axial rotation was measured in all 8 specimens. In addition, 
flexion/extension and lateral bending are presented for 7 speci-

Fig. 1. Experimental setup demonstrating the load cell applied to the cadaveric spine specimen in flexion/extension (A) and axi-
al rotation (B). Optical motion sensors were placed from L1 to L5 to track segmental motion.

A B

Load cell

Motion sensors Motion sensors

Motor
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mens because of a change in methodology that excluded one 
specimen.

1. Stand-Alone LLIF vs. Intact
In the intact specimen, each disc space’s mean flexion-exten-

sion ROM was 4.95°± 1.18°. With stand-alone LLIF, flexion-ex-
tension decreased by 55% to 2.23°± 1.07° ( p< 0.001). Mean lat-
eral bending was 3.65°±1.62° in the intact condition. With stand-
alone LLIF, lateral bending decreased by 18% to 3.01° ± 1.70° 
(p=0.3). For axial rotation, the intact specimen mean ROM was 
1.4°± 0.62°. With stand-alone LLIF, axial rotation decreased 15% 
to 1.19°± 0.67° (p= 0.2). While a decrease in all 3 planes of mo-
tion was observed, only flexion-extension was statistically sig-
nificant.

2. Stand-Alone LLIF vs. Posterior-Only
Comparing stand-alone LLIF with bilateral pedicle screws 

and rods, posterior-only had 47% less ROM in flexion-exten-
sion, 21% less ROM in lateral bending, and 20% less ROM in 
axial rotation (Table 1). The differences were statistically signif-
icant for flexion-extension and lateral bending (p≤ 0.03). How-
ever, the difference did not reach statistical significance for axial 
rotation (p= 0.1).

3. Posterior-Only vs. LLIF+Posterior
When comparing bilateral pedicle screws and rods with or 

without LLIF, the LLIF+posterior group had 27% less ROM in 
flexion-extension and 45% less ROM in lateral bending, both 
differences being statistically significant (p≤0.02) (Table 2). How-
ever, axial rotation was similar between the 2 groups, with a mean 
reduction of 0.02° (p= 0.4).

The addition of bilateral posterior instrumentation to the stand-
alone condition resulted in statistically significant decreases in 
all 3 planes of motion (Table 3): 61% decrease in flexion-exten-

Table 1. Comparing range of motion after stand-alone lateral lumbar interbody fusion (LLIF) versus posterior fixation only

Level

Flexion-extension (°) Lateral bending (°) Axial rotation (°)

Stand-alone 
LLIF

Posterior 
fixation 

only
p-value† Stand-alone 

LLIF

Posterior 
fixation 

only
p-value† Stand-alone 

LLIF

Posterior 
fixation 

only
p-value†

L1–2 1.90 ± 0.69 1.34 ± 0.44 0.053 2.39 ± 1.02 2.05 ± 1.48 0.362 1.10 ± 0.96 0.72 ± 0.50 0.239

L2–3 2.45 ± 1.16 0.92 ± 0.55 0.011* 1.77 ± 1.39 1.54 ± 1.54 0.399 1.27 ± 0.42 1.00 ± 0.33 0.153

L3–4 2.33 ± 1.27 0.77 ± 0.17 0.011* 2.49 ± 2.59 2.13 ± 2.62 0.226 0.94 ± 0.35 0.80 ± 0.30 0.235

L4–5 2.25 ± 1.15 1.72 ± 1.17 0.232 5.41 ± 1.78 3.75 ± 2.18 0.023* 1.45 ± 0.93 1.28 ± 0.93 0.388

Combined value (N = 28) 2.23 ± 1.07 1.19 ± 0.58 < 0.001* 3.01 ± 1.70 2.37 ± 1.96 0.035* 1.19 ± 0.67 0.95 ± 0.51 0.112

% Decrease from stand-alone 47% 21% 20%

Values are presented as mean ± standard deviation.
*p < 0.05. †Paired t-test.

Table 2. Comparing range of motion after posterior fixation with and without lateral lumbar interbody fusion (LLIF)

Level

Flexion-extension (°) Lateral bending (°) Axial rotation (°)

Posterior 
fixation  

only

LLIF+  
posterior  
fixation

p-value†
Posterior  
fixation  

only

LLIF+ 
posterior  
fixation

p-value†
Posterior  
fixation  

only

LLIF+  
posterior  
fixation

p-value†

L1–2 1.34 ± 0.44 0.8 ± 0.39 0.005* 2.05 ± 1.48 0.97 ± 0.77 0.079 0.72 ± 0.5 1.07 ± 0.88 0.183

L2–3 0.92 ± 0.55 0.42 ± 0.25 0.071 1.54 ± 1.54 0.47 ± 0.27 0.066 1 ± 0.33 0.84 ± 0.25 0.227

L3–4 0.77 ± 0.17 0.71 ± 0.66 0.479 2.13 ± 2.62 1.13 ± 0.88 0.145 0.8 ± 0.3 0.61 ± 0.25 0.060

L4–5 1.72 ± 1.17 1.52 ± 1.18 0.342 3.75 ± 2.18 2.64 ± 1.52 0.110 1.28 ± 0.93 1.2 ± 0.82 0.469

Combined value (N = 28) 1.19 ± 0.58 0.86 ± 0.62 0.024* 2.37 ± 1.96 1.3 ± 0.86 0.003* 0.95 ± 0.51 0.93 ± 0.55 0.432

% Decrease from bilateral  
   screws

27% 45% 3%

Values are presented as mean ± standard deviation.
*p < 0.05. †Paired t-test.
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sion (p< 0.001), 57% decrease in lateral bending (p< 0.001), 22% 
decrease in axial rotation (p= 0.002).

DISCUSSION

This study sought to characterize the biomechanical stability 
of multilevel stand-alone LLIF utilizing extra wide cages com-
pared to posterior-only bilateral pedicle and rod screw fixation. 
Our results indicate that, although the 4-level stand-alone con-
dition reduced ROM in all tested planes, this reduction was sta-
tistically significant for only flexion-extension. Our study’s as-
sessment of stability is limited to angular ROM and does not 
include other possible measures such as endplate stress, transla-
tion, or cage motion. The stand-alone construct did not provide 
stability, defined here as a reduction in ROM, that was equiva-
lent to bilateral pedicle screws and rods. Bilateral pedicle screw 
fixation provided greater stability, which was statistically signif-
icant in flexion-extension and lateral bending. The addition of 
pedicle screw and rod instrumentation to LLIF provides sub-
stantially higher stability than the stand-alone condition, even 
with the use of 26-mm cages.

The degree of mechanical stability required for spine fusion 
is unknown.22,23 In a cadaveric study, Harris et al.23 reported that 
TLIF with bilateral pedicle screws, a procedure currently in broad 
practice, showed flexibility not significantly different from in-
tact specimens. It is generally accepted that greater stability is 
associated with higher fusion rates, with stability influenced by 
the bone quality, implant choice, and surgical approach.24,25 We 
used pedicle screws and rods as the comparison group because 
this is an accepted technique with high reported rates of fusion.24,26 
Open surgery for placement of posterior instrumentation re-

quires extensive intraoperative soft tissue trauma and dissec-
tion,27,28 leading to an interest in less invasive alternatives to cre-
ate stability and fusion. LLIF is an interbody fusion technique 
that utilizes a lateral retroperitoneal approach to access the disc 
space via a transpsoas or anterior to psoas trajectory. This pre-
serves the anterior and posterior longitudinal ligaments and 
posterior facet joints. As a minimally invasive technique, LLIF 
has demonstrated reduced blood loss, shorter operative times, 
and shorter hospital lengths of stay.28

Multilevel LLIF has been reported to have favorable outcomes 
compared to posterior-only surgery for adult spinal deformity.29 
Strom et al.30 reviewed 92 adult deformity operations with 5 or 
more levels, comparing the deformity correction and morbidity 
of open posterior-only surgery versus combined LLIF and open 
posterior surgery. The LLIF group had lower total blood loss, 
fewer intensive care unit days, similar hospital length of stay, 
and less need for inpatient rehabilitation services, despite un-
dergoing 2 procedures. The LLIF cohort also reported greater 
improvement in visual analogue scale (VAS) and Oswestry Dis-
ability Index (ODI) scores. Radiographically, the LLIF group 
had greater Cobb angle correction and lumbar lordosis restora-
tion than the open posterior-only group. Matsukura et al.31 per-
formed a propensity-matched comparison between 21 pairs of 
patients undergoing LLIF or posterior lumbar interbody fusion 
(PLIF)/TLIF. Both groups received subsequent posterior instru-
mentation. While both techniques resulted in similar radiogra-
phic improvements postoperatively, LLIF resulted in lower in-
traoperative blood loss than PLIF/TLIF. Bae et al.32 compared 
outcomes of 221 adult deformity patients who underwent a pos-
terior spinal fixation (PSF) only approach LLIF+PSF, or ALIF+ 
PSF. At a mean follow-up time of 34.5 months, patients in the 

Table 3. Comparing range of motion after stand-alone lateral lumbar interbody fusion (LLIF) versus LLIF with posterior fixation

Level

Flexion-extension (°) Lateral bending (°) Axial rotation (°)

Stand-alone 
LLIF

LLIF+  
posterior  
fixation

p-value† Stand-alone 
LLIF

LLIF+  
posterior  
fixation

p-value† Stand-alone 
LLIF

LLIF+  
posterior  
fixation

p-value†

L1–2 1.9 ± 0.69 0.8 ± 0.39 0.002* 2.39 ± 1.02 0.97 ± 0.77 0.001* 1.1 ± 0.96 1.07 ± 0.88 0.439

L2–3 2.45 ± 1.16 0.42 ± 0.25 0.001* 1.77 ± 1.39 0.47 ± 0.27 0.022* 1.27 ± 0.42 0.84 ± 0.25 0.003*

L3–4 2.33 ± 1.27 0.71 ± 0.66 0.001* 2.49 ± 2.59 1.13 ± 0.88 0.064 0.94 ± 0.35 0.61 ± 0.25 0.002*

L4–5 2.25 ± 1.15 1.52 ± 1.18 0.137 5.41 ± 1.78 2.64 ± 1.52 0.002* 1.45 ± 0.93 1.2 ± 0.82 0.182

Combined value (N = 28) 2.23 ± 1.07 0.86 ± 0.62 < 0.001* 3.01 ± 1.7 1.3 ± 0.86 < 0.001* 1.19 ± 0.67 0.93 ± 0.55 0.002*

% Decrease from  
   stand-alone LLIF

61% 57% 22%

Values are presented as mean ± standard deviation.
*p < 0.05. †Paired t-test.
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LLIF+PSF group had similar radiographic parameters as those 
in the PSF only or ALIF+PSF groups, with a lower incidence of 
proximal junctional kyphosis, lower ODI scores, and the most 
improvement in pain scores. The benefits of the less invasive 
LLIF approach could potentially be amplified if stand-alone LLIF 
for fusion of multiple segments is also feasible.

There are few reports describing the clinical results of stand-
alone LLIF, and none that include 26-mm wide cages to our 
knowledge. Previously suggested indications for stand-alone 
LLIF include degenerative disc disease, adjacent segment dis-
ease, degenerative scoliosis, spinal stenosis, and spondylolisthe-
sis.6,9,13,19,33,34 Aichmair et al.13 followed 52 patients after single-
level LLIF for adjacent segment disease. There was a difference 
between fusion rates between stand-alone LLIF (54%) and cir-
cumferential fusion (88%) that was not statistically significant, 
and cage width was not specified. Malham et al.6 described an 
algorithm to identify patients suitable for stand-alone LLIF. Pro-
spectively applied to 21 patients who underwent stand-alone 
LLIF, all cages being 18 or 22 mm wide, they observed no dif-
ferences in clinical outcomes from patients with supplemental 
posterior fixation, as well as a 95% fusion rate in the stand-alone 
cohort. Castro et al.33 reported the clinical outcomes of 35 adult 
degenerative scoliosis patients receiving an average of 3.1 levels 
of stand-alone LLIF, demonstrating a 57% improvement in VAS 
scores for leg pain and 74% symptom resolution, and 56% im-
provement in ODI scores. Ten patients experienced cage sub-
sidence. The cage width was 18 mm, and the authors suggested 
that larger cages may reduce the subsidence rate. In further ex-
ploring the impact of cage width, Lang et al.19 reviewed patients 
undergoing LLIF with and without supplementation fixation, 
finding that radiographic subsistence rates decreased nearly lin-
early when implanting 18-mm to 22-mm to 26-mm wide cages.

The biomechanical characteristics of LLIF lends credence to 
the idea that a stand-alone approach may be sufficient.4-6,16,29,35 
Results of in vitro studies appear to support this. Cappuccino et 
al.17 demonstrated that stand-alone LLIF of L4–5 using an 18-
mm wide cage reduced the flexion-extension ROM and lateral 
bending ROM to 31.6% and 32.5% of the intact spine ROM. 
They concluded that stand-alone LLIF improved stability more 
than stand-alone ALIF and TLIF. Fogel et al.36 found that, across 
10 cadaveric specimens, insertion of a single L3–4 LLIF 18-mm 
wide cage reduced ROM to 32% of the flexion-extension, 33% 
of the lateral bending, and 69% of the axial rotation of the intact 
state. Kretzer et al.37 compared the reduction of ROM at L2–3 
and L4–5 in 4 conditions—stand-alone LLIF, bilateral pedicle 
screw fixation, and 2 facet screw systems—and concluded that 

all instrumentation decreased ROM compared to the intact 
spine, with no differences detected among the fixation techniques. 
In a model of adjacent segment disease, Chioffe et al.38 found in 
6 cadaveric specimens that L3–4 stand-alone LLIF decreased 
adjacent segment motion by 56%. Finally, in a study that high-
lights the role of cage width, Pimenta et al.18 found that a stand-
alone 26-mm wide cage provided similar stability to bilateral 
pedicle screws and rods and greater stability than TLIF with bi-
lateral pedicle screws, as well as 18-mm wide LLIF with unilat-
eral pedicle screws. These results formed the rationale for the 
current investigation of stand-alone LLIF of multiple levels.

Our results found that stand-alone LLIF from L1 to L5 de-
creased the mean motion segment flexion-extension ROM to 
45% of the intact spine, with smaller decreases observed in lat-
eral bending and axial rotation, to 83% and 85%, respectively. 
Compared to stand-alone LLIF, posterior bilateral pedicle screws 
and rods showed more considerable reductions in ROM in all 
tested planes of motion, statistically significant for flexion-ex-
tension and lateral rotation. These results contrast with some of 
the previous studies described above and highlight the pitfalls 
of extrapolating the results of single-level studies to the multi-
level fusion environment. Despite the biomechanical advantag-
es associated with the lateral approach and 26-mm wide cages, 
stand-alone LLIF for 4-level fusion is not equivalent to pedicle 
screws and rods. It should be noted that the stand-alone LLIF in-
cluded pedicle screws without rods, rather than lateral inter-
body cages only, to avoid the confounding effect of removal and 
replacement of screws. Screws were carefully placed extra-artic-
ular to the facet joints, there was no visualized contact of screws 
with adjacent segments or screws during testing, and the tested 
ranges of motion were low. Nevertheless, the presence of screws 
is a potential confounder and therefore a limitation of the study.

In a study similar to this investigation, Lai et al.35 examined 
intersegmental and overall ROM after L2–5 stand-alone LLIF 
with 17-mm wide cages. They found that, although overall ROM 
was decreased by 55% in flexion-extension, 54% in lateral bend-
ing, and 31% in axial rotation, addition of either unilateral or 
bilateral pedicle screws further reduced flexion-extension and 
axial rotation motion. The reported reductions in ROM in the 
above studies are more significant than seen in our results, which 
may be attributable to the long fusion (4-level) model, differ-
ences in experimental technique, and lower baseline ROM of 
our intact specimens.

Our results are also consistent with the conclusions of a finite 
element analysis that multiple level stand-alone LLIF with a 22-
mm wide cages did not provide sufficient stability.39 The consis-
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tency of in vitro and finite element results strengthens their va-
lidity.40 In addition to ROM, the finite element analysis allowed 
measurement of endplate stress, in which the stand-alone con-
dition exceeded supplemental screws and rods in all planes of 
motion, exceeding 170% in lateral bending. Endplate stress is 
an important factor in the risk of cage subsidence, and that our 
analysis of stability was limited to ROM represents a weakness 
of this study. In addition, there is emerging literature support-
ing the necessity of posterior instrumentation to prevent sub-
sidence. A recently completed systematic review found that LLIF 
without posterior fixation had distinguishably higher rates of 
subsidence than LLIF with posterior fixation.41 Although bone 
mineral density has been shown to correlate with the risk of 
subsidence,42 Jones et al.43 found that the use of stand-alone tech-
nique was a stronger risk factor for subsidence after LLIF than 
endplate volumetric bone mineral density.

CONCLUSION

In conclusion, because stand-alone multilevel LLIF provided 
less stability than bilateral pedicle screw and rod instrumenta-
tion, surgeons may not consider it an acceptable alternative, save 
for exceptional cases where the probability of fusion is already 
high. However, the addition of bilateral pedicle screws and rods 
to multilevel LLIF provided significantly higher stability than 
posterior-only instrumentation. Therefore, in the presence of 
risk factors for nonunion or cage subsidence, 26-mm cages with 
pedicle screw and rod fixation may be a good strategy for sur-
geons seeking to maximize biomechanical stability.
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