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A B S T R A C T

Traditional approaches to flood modelling mostly rely on hydrodynamic physical simulations. While these
simulations can be accurate, they are computationally expensive and prohibitively so when thinking about
real-time prediction based on dynamic environmental conditions.

Alternatively, social media platforms such as Twitter are often used by people to communicate during
a flooding event, but discovering which tweets hold useful information is the key challenge in extracting
information from posts in real time.

In this article, we present a novel model for flood forecasting and monitoring that makes use of a
transformer network that assesses the severity of a flooding situation based on sentiment analysis of the
multimodal inputs (text and images). We also present an experimental comparison of a range of state-of-the-
art deep learning methods for image processing and natural language processing. Finally, we demonstrate that
information induced from tweets can be used effectively to visualise fine-grained geographical flood-related
information dynamically and in real-time.
1. Introduction

Natural disasters, such as floods, can occur suddenly and with-
out much warning, forcing people to leave their homes, damaging
infrastructure, destroying livelihoods, and having long-term impacts
on the health of those affected (FitzGerald et al., 2019; Gould et al.,
2020; Khayyam and Noureen, 2020). With increasing occurrence of
such events due to climate change and associated phenomena, it is
imperative to be able to predict floods in an accurate and timely
manner — to give early warnings and avert humanitarian disasters, but
also to direct help effectively when a flood has occurred.

Traditional approaches rely on hydrodynamic physical simulations.
While these simulations can be accurate (Price et al., 2012; Vichiantong
et al., 2019), they are computationally expensive and not suited to real-
time prediction based on dynamic environmental conditions (Coulthard
et al., 2013; Teng et al., 2017).

Social media platforms like Twitter are often used by people to
communicate during a flooding event (Kongthon et al., 2012) and other
natural disasters (Sakaki et al., 2010; Riddell and Fenner, 2021). While
extracting information from such social media posts in real time has the
potential to increase situational awareness during flooding events, the
key challenge in achieving this however is discovering which tweets
hold useful information (e.g. ‘‘Part of London Road in Carlisle is closed
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after a building was badly damaged by #StormFranklin’’) and which
ones do not (e.g. ‘‘Never too early for lunch’’) (Gao et al., 2011).

We present a novel model for flood forecasting and monitoring that
can simultaneously process and interpret information from text and
images to (a) assess the severity of a flooding situation based on senti-
ment analysis of the multimodal inputs, and (b) map the development
of floods dynamically using geolocations of tweets, in combination
with the sentiment analysis computed. We present an experimental
comparison of a range of state-of-the-art deep learning methods for
image processing and time-series modelling, showing that models that
combine text and images achieve superior performance to unimodal
models (e.g. text-only or images-only) and information induced from
tweets can be used effectively to visualise fine-grained geographical
flood-related information dynamically and in real-time.

We make the following key contributions in this article:

• A novel model that uses joint linguistic and visual feature em-
beddings to create a multimodal representation of sentiment in
flood-related tweets on social media.

• We show that geographical and sentiment information induced
from tweets can model the dynamics and severity of floods in
different geographical areas.
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• A set of benchmarks using state-of-the-art deep learning method-
ology. All code and data (where we are able to share) are publicly
available.

. Related works

.1. Flood forecasting

Traditionally, flood forecasting has been approached with physics-
ased models such as LISFLOOD-FP (Coulthard et al., 2013),
LEFT3D (Deltares, 2021), ANUGA (Davies and Roberts, 2015), and
thers (Ming et al., 2020; Roux et al., 2020; Wu et al., 2020). Taking
n current environmental information, these models run a simulation
o calculate a future forecast of environmental conditions. These cal-
ulations tend to be computationally expensive, taking many hours to
omplete, and must also be manually calibrated — which can make
hem prohibitively expensive for real-time use cases.

GeoAI (Remote sensing and AI) (Janowicz et al., 2020; Li, 2020)
an alleviate some of these concerns (Keung et al., 2018; Furquim
t al., 2018). Multiple approaches have been applied here, for ex-
mple predicting future sensor values (Le et al., 2019) with an Long
hort-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), es-
imating risk with a Support Vector Machine (SVM) (Cortes and Vapnik,
995), or breaking rivers up into a graph of smaller models predicting
nvironmental conditions in the future (Moshe et al., 2020). These
uffer from a number of issues however, from being limited to specific
eographical positions (Le et al., 2019; Moshe et al., 2020), relying
n computationally costly simulations (Mojaddadi et al., 2017), or
imited generalisability (Le et al., 2019) to new and previously unseen
ocations.

While physics-based models can predict water levels in specific
reas, they are not fast enough to forecast and monitor floods dy-
amically in-situ, e.g. for locations with no historical data available.
lso, common to all approaches reviewed is that they do not take
umanitarian needs into account, as these are difficult to infer from
ater depth alone.

.2. Sentiment analysis from social media

In this article, we aim to explore the possibility of using sentiment
nalysis to assess flood severity and humanitarian needs in different
ocations. The idea of applying sentiment analysis to social media data
s well established. Lexicon-based approaches are well explored (Bac-
ianella et al., 2010; Mohammad and Turney, 2013; Vashishtha and
usan, 2019; Rout et al., 2018; Hutto and Gilbert, 2014), but are limited
o hard preset rules. Other linguistically-inspired approaches opt for

stronger grammatical representation of the input. For example, Fu
t al. (2016) use rhetorical structure theory and an LSTM to parse the
weet text — preserving contextual information in a tree-like form.
ome projects have attempted fine-grained classification (e.g. into 6
motional classes ‘‘happy’’, ‘‘sad’’, ‘‘anger’’, ‘‘fear’’, ‘‘surprise’’, and ‘‘dis-
ust’’) (Purver and Battersby, 2012; Schoene and Dethlefs, 2016), but
hallenges remain with respect to accuracy, which is lower than other
inary approaches.

Emojis are also often used to express emotions (Rout et al., 2018),
ut many existing models fail to take them into account (Sahni et al.,
017; Rout et al., 2018; Kokab et al., 2022). Scope exists to make
se of them in sentiment analysis tasks. For example, Felbo et al.
2017) demonstrates a potential approach to address this by deriving
ositive/negative sentiment labels from emojis in tweets, enabling an
STM-based model to be trained on a very large dataset of Twit-
er posts (1.2B tweets). This approach removes the need for manual
nd keyword-driven annotation, which reduces manual labour require-
ents and improves representation of the target domain in the training
ataset as positive words (e.g. ‘‘excited’’ or ‘‘sad’’) are not being used
s labels.
2

While LSTMs are powerful at modelling natural language (Felbo
et al., 2017; Fu et al., 2016), they are not well suited to being par-
allelised on a GPU or other parallel computing device, increasing
training times and underutilising equipment (Hochreiter and Schmid-
huber, 1997; Vaswani et al., 2017). Transformers do not have this
limitation (Vaswani et al., 2017) so scope exists to apply them to the
problem of sentiment analysis (Agüero-Torales et al., 2021). Zhang
et al. (2020) applies Bidirectional Encoder Representations from Trans-
formers (BERT; a transformer-based sentence embedding model, see
Section 4.1) (Devlin et al., 2019), Robustly optimised BERT approach
(RoBERTa) (Liu et al., 2019), and XLNet (Yang et al., 2019) to both
manually, automatically (emojis), and crowdsourced (reviews with
author-annotated labels) labelled data to gain performance improve-
ments over baselines, but these models have a large number of param-
eters (e.g. 110M for BERT (Devlin et al., 2019)), making them memory
and computationally expensive.

In comparison to sentiment analysis from other modalities, e.g. news
or reviews, social media data faces a number of challenges. These
include non-standard spellings (due to typos or abbreviations), non-
standard use of words and grammar, rapidly evolving vocabulary,
mixed languages and images, urls, usernames, hashtags, etc. Kokab
et al. (2022) tries to solve these challenges by splitting words up with
BERT as a word embedding to incorporating out-of-vocabulary words,
training an LSTM model to predict positive/negative sentiment, but
strips punctuation and stop words, potentially losing some semantic
meaning. To address this, we propose a transformer-based binary
sentiment analysis model using Global Vectors for Word Representation
(GloVe) (Pennington et al., 2014) pretrained on multilingual twitter
data. In doing so, multilingual text, non-standard grammar, and hash-
tags are included in sentiment predictions. Further, we use contrastive
learning (Radford et al., 2021) to predict sentiment using both text and
images at the same time.

2.3. Social sensing for emergencies

Social sensing approaches such as sentiment analysis/monitoring
from social media have been applied to emergency situations previ-
ously. The problem task can be divided into two components:

1. Identifying new emergency events from social media content,
and

2. Providing real-time intelligence on humanitarian needs during
a known emergency event, again from information provided
online.

Different pieces of related research have focused on either of these
problems. For example, Arthur et al. (2018) manually labels a dataset
of 3879 tweets to train a Naïve Bayes filter to classify tweets by rele-
vance. Relevant tweets are then geocoded using a number of heuristics,
before finally performing burst detection to identify flooding events
and plotting geocoded tweets on a map. The small dataset limits the
transferability of the relevancy classifier (Li et al., 2017), however.
Similarly, Smith et al. (2017) streams tweets and filters them using
a keyword (relevancy) and geocoding based approach before then
detecting bursts of filtered tweets with a simple threshold. When a burst
is detected, a hydrodynamic model is run a period of 4 h with LiDAR
and real-time rainfall data as inputs to predict areas which are likely
flooded.

In this article, we will focus on part of the second problem task,
specifically determining locations of humanitarian needs during an
emergency situation by quantifying tweets by their sentiment and
location, in our case, a flood.

An approach focusing on the identification of humanitarian needs
is taken by Kankanamge et al. (2020), who use frequency analysis and
word clustering to discover useful information from tweets during a
disaster. This proved effective for their target domain and data, but may
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Table 1
Overview of the floods included in our dataset.

Start date End date Region Tweets

Finsbury park flood 2019-10-08 2021-08-07 London, UK 267
Storm Dennis 2019-12-08 2021-07-22 UK 120,861
Storm Christoph 2021-01-17 2021-07-08 UK 17,085
Storm Jorge 2020-02-27 2021-07-10 UK 25,102
Hurricane Eta 2020-10-30 2021-07-16 Central America 17,265
Hurricane Beta 2020-09-18 2020-11-12 Central America 315
Hurricane Iota 2020-11-09 2022-07-22 Central America 315
New South Wales Floods 2021-02-04 2021-07-23 Australia 15,759
Queensland Floods 2018-12-18 2021-06-28 Australia 1889
Colorado Flooding 2013-08-10 2021-07-23 USA 1420
Mexico Floods 2020-11-07 2021-07-22 Mexico 26
Snaith Floods 2020-02-25 2021-07-13 Snaith, UK 322
Storm Franklin 2022-02-16 2022-03-04 UK 13,851
Himachalpradesh 2021-07-06 2021-07-31 Himachal Pradesh, North India 551
Texas Floods 2021-05-01 2021-05-31 Texas, USA 892
Sydney Floods 2022-02-23 2022-03-21 Sydney, Australia 2553
(floods OR flashfloods) 2007-12-06 2021-07-23 Worldwide 553,218
not be easily generalisable to other events as tweets were manually-
labelled (Li et al., 2017). The difficulty in transferring concepts learnt
from a disaster in one place to a disaster in another is highlighted by Li
et al. (2017). By using transfer learning performance improvements
were made in generalising a model to be effective in multiple disasters.
This transfer learning approach however assumes that all the tweets
from the target disaster will be available up-front, which may not
always be the case. Additionally, lower accuracy is observed when
transferring between disasters of different types, and only a small
dataset (7000–9000 tweets) is used.

Ragini et al. (2018) also classifies tweets using a dictionary: firstly,
classifying them by objectivity, secondly categorising by humanitarian
need (e.g. water, food, medical emergency, etc.), and finally sentiment
analysing the subjective tweets with an SVM. The tweets per category
evaluated however is again small (2000 for the majority class) and
with unbalanced categories the performance (F1: 0.95) is not directly
comparable to other studies.

Avvenuti et al. (2014) instead filters tweets by relevancy (i.e. ‘‘use-
ful’’ and ‘‘not useful’’) using a decision tree pretrained on a static
dataset, before then performing burst detection to detect events and
extracting and geocoding place names to determine where the event
happened. The decision tree used though is trained on 1412 man-
ually labelled tweets, which as Li et al. (2017) suggests limits the
generalisability of the approach.

Alternative approaches used include clustering and visualisation
(Beigi et al., 2016), burst detection (Yin et al., 2012) analysing im-
ages (Ning et al., 2020; de Vitry et al., 2019), hand-labelling training
datasets (Avvenuti et al., 2014), or use keyword-based analysis (Arthur
et al., 2018; Ragini et al., 2018; Smith et al., 2017), which does not
generalise easily to new and sudden events (Li et al., 2017), but despite
this wide range of approaches being taken to the issue, limited attempts
to combine text and images have been taken (Wang et al., 2018; Said
et al., 2020).

We suggest that scope exists to apply modern machine learning
algorithms such as transformers (Vaswani et al., 2017) and Contrastive
Language-Image Pretraining (CLIP) (Radford et al., 2021) to the prob-
lem of sentiment analysis in flooding situations, in order to create a
more generalisable approach — both in terms of analysing new events,
and in terms of handling new situations such as different places or
languages.

3. Data

To collect data for analysis, we identified major flood and extreme
weather events in the last ten years and collected the historical tweets
that were related to them based on hashtags and/or keyword search
3

using Twitter’s Academic API. We used the following search terms to
source tweets via the Twitter API: #StormDennis, #StormChristoph,
#StormJorge, #HurricaneEta OR #HuricaneEta, #HurricaneBeta OR
#HuricaneBeta, #HurricaneIota OR #HuricaneIota, #NSWFloods,
#qldfloods, #ColoradoFloods OR #ColoradoFlooding, #MexicoFloods,
flood #snaith, #floods OR #flashfloods, #StormFranklin, finsbury park
flood, himachalpradesh flash floods, texas floods, #SydneyFloods. The
tweets we collected span from 2007-12-06 to 2020-02-25.

Table 1 details the floods from which data was downloaded. The
start and end date columns refer to the time frame of tweets appearing
rather than to the events themselves. To preprocess the data, we
excluded retweets and deduplicated tweets by their IDs (though some
duplication is possible if multiple users copy the same text and post
it independently). Replies to tweets matching the search criteria were
included.

For all tweets collected, we kept information on: the search term
itself, the tweet ID, user name and description, user location, the
number of followers and tweets by a user, the number of retweets
and likes of a tweet, any media (e.g. images), and the geolocation of
the tweet, if provided. While we downloaded 13,851 tweets from the
hashtag #StormFranklin (including replies), we excluded these from
the training and validation datasets for later evaluation. This gave us a
dataset of 795,065 tweets in total, including the StormFranklin tweets.

Fig. 1 shows some examples of tweets with images. Tweets 1(a)
and 1(b) could be classed as positive (‘‘be safe’’, ‘‘easy way to do it
without getting wet!’’), with nobody in immediate distress. Meanwhile,
tweet 1(c) could be classed as negative (‘‘frustrated and upset’’), poten-
tially highlighting an issue that requires human attention. Below some
examples of tweets without images are shown:

‘‘@sZL7YcOsTnZhhzsf8xFXcA @JF1MQxDGoRT7NsObnSxQpA And
it’s still bucketing down in Coffs, landslips at the Big Banana and Thora,
Waterfall Way. These hills are supposed to keep us high and dry but
nooooo’’ –19th March 2021

‘‘@fXOQqWAYZqJlpv_r-qIy2 A @sZL7YcOsTnZhhzsf8xFXcA All good
here Cows and calves on the hill paddock All other animals + humans
safe’’ –19th March 2021

‘‘@jd2a0Qryu0aGHcz9bj4B2 A Extraordinary that Warragamba is full.
It’s a massive dam. Hope it goes ok for those downstream’’ –20th March
2021

Tweet 2 here could be classed as positive, whereas tweet 1 would
be negative as it indicates someone’s house has been flooded. Tweet 3
could be classed as negative, as it contains information that could have
a significant negative effect on those downstream.

Tweets were anonymised using the SHAKE128 hash function
(Dworkin, 2015) with a salt. We hashed all tweet ids, usernames, and
conversation ids. We kept geotags and place names extracted by twitter,

along with direct links to associated media.
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Fig. 1. Example tweets with images.
Fig. 2. The emojis and the categories they were manually assigned to.
3.1. Data labelling

The learning models we developed and trained require labels for the
training process. To this end we were inspired by Felbo et al. (2017)
and extracted a list of all unique emojis from the dataset, which we
then manually labelled to be either positive or negative — see Fig. 2.
By positive and negative, we define positive to be tweets of no concern,
and negative to be tweets potentially requiring attention (i.e. where
someone may require assistance).

Then, we extracted all tweets from the data that had at least one
(positive or negative) emoji, and automatically labelled them as either
positive or negative based on our categories. Whenever more than one
emoji was present, the majority category was used. If an equal number
of positive and negative emojis were present, the ‘positive’ category
took precedence. Finally, we split the data into two parts, with 80%
for training and 20% for validation during the learning process.

To evaluate the accuracy of our sentiment labels against a human
gold standard, we used Amazon Mechanical Turk (AMT) to collect
human sentiment labels on a representative data sample of 1938 tweets
randomly selected from the #NSWFloods hashtag from 40 different
raters. #NSWFloods was chosen as it is time-limited and has a signif-
icant sample size (∼15K). Turkers were presented with the tweet text
(excluding images and emojis) and asked to assign a categorical rating
from a 1–5 Likert scale, where 1 = negative, 2 = slightly negative, 3 =
4

neutral, 4 = slightly positive and 5 = positive. We collected fine-grained
ratings to allow a better comparison with models such as Valence
Aware Dictionary and sEntiment Reasoner (VADER) (Hutto and Gilbert,
2014) or RoBERTa who predict such distinctions. Accuracy was low
for finer sentiment distinctions, so 1–2 were collapsed as ‘‘negative’’
and 3–5 were considered ‘‘positive’’. These tweets form the basis of
our experiments. Table 4 provides a comparison of our learning models
against the human gold standard annotations.

4. Approach

This section will introduce the data representation and learning
models for our experiments.

4.1. Representation of inputs

In our experiments, we compared the effectiveness of different AI
model architectures in predicting the sentiment of social media posts
from Twitter. Specifically, we compare the following architectures:

• Pretrained baselines: VADER, RoBERTa.
• Models we trained: Transformer, LSTM, CLIP, ResNet50 (He

et al., 2016).
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Fig. 3. Top: GloVe (trained on 2 billion tweets with vocabulary of 1.2 million words)
word embedding vectors with a size (dimension) of 25 visualised as an array of
numbers in a heatmap for a selection of words. Bottom: Using cosine difference, two
vectors can be compared. flood and rain have a high similarity, whereas flood
and unrelated have a low similarity. Such semantic comparisons are not possible
e.g. using a one-hot encoding model — this enables the AI model that follows the
embedding layer to focus on the domain-specific task, rather than having to learn not
only the domain-specific task, but also relationships between words (Pennington et al.,
2014).

When training models on natural language data, a problem is the
size of the input data. e.g. if a dataset contains 15K unique words,
using one-hot encoding a vector in the form [𝑤𝑜𝑟𝑑0, 𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2,… ,
𝑤𝑜𝑟𝑑15000] is required to represent each word, where 𝑤𝑜𝑟𝑑𝑛 ∈ 0, 1. This
has significant implications on both memory usage and generalisability
– as one-hot encoding does not capture any lexical, semantic, syntacti-
cal meaning, or relationships – so alternate strategies are needed, such
as Word2Vec (Mikolov et al., 2013) or GloVe (Pennington et al., 2014).

An embedding layer is often the first layer in an AI model, and it
encodes the input data – which can in this case be defined as a string
of text tokens from a tweet split up into its constituent words – into
an array of numerical vectors of a fixed size. Such an embedding layer
can be defined by a dictionary in the form 𝑓 ∶ 𝑤𝑜𝑟𝑑1..𝑛𝑠𝑡𝑟𝑖𝑛𝑔 → 𝑣𝑒𝑐𝑡𝑜𝑟𝑑𝑖𝑚𝑓𝑙𝑜𝑎𝑡32,
which is then executed for every element of the input array of strings,
where 𝑑𝑖𝑚 is the size of the resulting vector. Hence, an input to an
embedding layer can be defined as 𝑖𝑛𝑝𝑢𝑡𝑤𝑜𝑟𝑑𝑠

𝑠𝑡𝑟𝑖𝑛𝑔[] (where 𝑤𝑜𝑟𝑑𝑠 is the
number of words in the array of strings), and the output defined as
𝑣𝑒𝑐𝑡𝑜𝑟𝑤𝑜𝑟𝑑𝑠,𝑑𝑖𝑚

𝑓𝑙𝑜𝑎𝑡32 .
Therefore, the memory required to encode the words from the

original input is significantly reduced, while also ensuring that seman-
tic meaning is retained by encoding words with a similar semantic
meaning to similar numerical values (Koehrsen, 2018) (Fig. 3). These
embeddings can be trained from the domain corpus, e.g. our tweets, but
are typically trained separately from large general-purpose domains.
They can be seen as a generalised representation of the English lan-
guage, for example, comprised of different types of text, domains, and
genres, e.g. GloVe (Pennington et al., 2014).
5

4.2. Learning models

The body of a neural network model follows the embedding layer
in the form of a set of hidden layers.

Consider an input vector 𝑖𝑛 of inputs that we want to map to a
sentiment value 𝑜𝑢𝑡. To do this, we learn a hidden representation ℎ(𝑖𝑛)
using a function 𝑓 (ℎ, 𝑖𝑛), minimising the loss (error) between a given
label 𝑜𝑢𝑡𝑡𝑟𝑢𝑡ℎ and predicted value 𝑜𝑢𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡 — e.g. using cross-entropy
loss. We end up with a function that predicts a sentiment value as
𝑜𝑢𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = ℎ(𝑖𝑛)

The first model we will train is the transformer network. A full trans-
former can be applied to e.g. machine translation tasks by translating
one sequence of vectorised inputs into another. Transformers are made
up of two parts: an encoder, which encodes features deemed important
by the model into a sequence of vectors with a lower dimensionality
(i.e. a feature map), and a decoder, which converts the feature map
into the desired output.

The models used in this paper can be classed more specifically as
deep feed forward networks with back propagation (Goodfellow et al.,
2016a) - the process by which these models are trained using pairs of
samples and associated labels. At each step of the training process:

1. The input sample is put through the model forwards through the
directed graph of layers to make a prediction (feed-forward).

2. The prediction is compared to the ground truth label, and an
error value is calculated using a loss function, for example mean
squared error (i.e. 𝑙𝑜𝑠𝑠 = (𝑎𝑐𝑡𝑢𝑎𝑙−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2) and cross-entropy
loss (e.g. 𝑙𝑜𝑠𝑠 = −(𝑎𝑐𝑡𝑢𝑎𝑙 × 𝑙𝑜𝑔(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) + (1 − 𝑎𝑐𝑡𝑢𝑎𝑙) × 𝑙𝑜𝑔(1 −
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))) (Kaller, 2019; Brownlee, 2019).

3. Finally, the loss is propagated backwards through the model
using an algorithm like gradient descent (Goodfellow et al.,
2016b).

We use just the encoder part of a transformer to encode the vec-
torised input social media post into a feature map which can be
interpreted by later layers of the model. Transformers handle sequences
in parallel - as in 𝑜𝑢𝑡𝑖 = 𝑓 (𝑖𝑛𝑖). This is achieved by adding a positional
embedding signal (explained below) and then dropping them through
layer normalisations and dense layers, and a self-attention layer, which
enables the model to identify which parts of the input are important for
making the output prediction.

Alternatively, LSTMs (Hochreiter and Schmidhuber, 1997) or GRUs
(Cho et al., 2014) can handle sequenced data. These are called recurrent
models as they have a hidden state, and a system of gates are used to
update the values therein for each element in the sequence, requiring
that each element in a sequence is processed serially — e.g. 𝑜𝑢𝑡𝑖 =
𝑓 (𝑜𝑢𝑡𝑖−1, 𝑖𝑛𝑖).

This is why the transformer architecture enables greater compu-
tational parallelisation when training using a GPU (Vaswani et al.,
2017), since without a recurrent element each sequence element can
be processed independently, as in 𝑜𝑢𝑡𝑖 = 𝑓 (𝑖𝑛𝑖).

Transformers instead rely on dense (fully connected) layers. While
this makes them more parallelisable and hence can train more quickly,
this also means that they are unable to account for context and relative
positioning in input sequences. To alleviate this weakness, a positional
embedding code is added to the input sequence. If the input sequence
(post-embedding layer) is 𝑖𝑛𝑝𝑢𝑡𝑠𝑒𝑞,𝑑𝑖𝑚 (where 𝑠𝑒𝑞 is the sequence length
and 𝑑𝑖𝑚 is the vector size for each element therein), then the positional
embedding can be defined as (Vaswani et al., 2017):

𝑃𝐸(𝑖𝑠𝑒𝑞 ,2𝑖𝑑𝑖𝑚) = 𝑠𝑖𝑛(
𝑖𝑠𝑒𝑞

100002𝑖𝑑𝑖𝑚∕𝑑𝑖𝑚
)

𝑃𝐸(𝑖𝑠𝑒𝑞 ,2𝑖𝑑𝑖𝑚+1) = 𝑐𝑜𝑠(
𝑖𝑠𝑒𝑞

100002𝑖𝑑𝑖𝑚∕𝑑𝑖𝑚
),

...where 𝑖𝑠𝑒𝑞 is the position in the sequence dimension, 𝑖𝑑𝑖𝑚 is the
position in the embedding dimension, and 𝑃𝐸 is the positional embed-
ding for a single value in the 𝑖𝑛𝑝𝑢𝑡𝑠𝑒𝑞,𝑑𝑖𝑚. The embedding dimension
alternates between 𝑠𝑖𝑛 and 𝑐𝑜𝑠 for each successive element, as Fig. 4
shows.
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Fig. 4. The architecture of a transformer. The input sequence (that has already been encoded with GloVe as described in Section 4.1) gets a positional embedding formula added
to it (visualised on the right; words in the sequence are along the vertical axis, and the embedding of those words are along the horizontal axis), which gives the information
about the ordering of items in the sequence. Finally, the transformer itself processes it in parallel.
Fig. 5. Tweet text–image pairs and their similarities, as calculated by CLIP (higher values mean more similar). Although it is correct most of the time, as shown here sometimes
the wording of the tweet confuses CLIP. Where multiple images associated with a tweet, only the first one was chosen.
4.3. Representing text and images jointly

With many users posting many tweets independently, many differ-
ent topics are discussed in an unstructured manner. In some cases,
images associated with tweets contain additional information as illus-
trated in Fig. 1. To explore the effect of images associated with tweets
on sentiment analysis tasks, another model architecture we used in
our comparison is the Contrastive Language-Image Pretraining (CLIP)
architecture.

Similarly to the transformer already discussed, CLIP uses an em-
bedding layer as its first layer. However unlike the plain transformer
model, CLIP handles not only textual input but images as well. CLIP
first has separate encoding layers for textual and image inputs, before
later combining them together and training the two encoders to predict
which textual and which image inputs were paired with each other.
In doing so, CLIP trains to predict how well a textual string and an
associated image pair together (Radford et al., 2021) (Fig. 5).

Fig. 6 outlines how CLIP trains and makes predictions by taking
a contrastive learning approach. Batches of text–image pairs are com-
pared using cosine similarity, which is used to calculate cross-entropy
loss (see Fig. 7).
6

5. Experiments

This section presents the experimental setup we adopted for our
experiments, presents and discusses results as well as some sample
predictions.

5.1. Experimental setup

We compare a set of different methods for predicting sentiments
from tweets given our emoji-based labels from Section 3. Specifically
we compare:

1. LSTM: 2 bidirectional layers, 128 units each, batch normalisa-
tion.

2. Transformer: 1 transformer encoder, 16 attention heads, 32
units, dropout 0.1, gelu.

3. CLIP: Pretrained, ViT-B/32, followed by 2 × 512 unit dense
layers, dropout 0.1.

4. ResNet50: ResNet50 architecture, followed by a softmax dense
layer.

The hyperparameters of these models were chosen after experimen-
tation with different combinations. In all cases where we trained a
model, we used the Adam optimiser.



Computers and Geosciences 178 (2023) 105405L. Bryan-Smith et al.
Fig. 6. A summary of how the CLIP model operates. A batch of text and image pairs are run through different encoders separately to produce a pair of feature maps. Then, the
resulting feature maps are compared using cosine similarity and fed into the loss function which trains the model to learn pairs to be similar to one another (Radford et al., 2021).
When making a prediction, the trained encoders can be used to encode new text–image pairs that are fed into a domain-specific model.
Fig. 7. An outline of CLIP’s contrastive learning loss algorithm.
Source: Adapted from Radford et al. (2021).
We also chose two baseline models for comparison that were shown
to perform well on the task of sentiment analysis in previous work:
(1) VADER (Hutto and Gilbert, 2014), a rule-based model developed
to predict the sentiment of social media posts, and (2) RoBERTa (Liu
et al., 2019), a generic pre-trained transformer based model.

We trained our models on various Nvidia GPUs: GeForce 3060,
Tesla K40m, Tesla P100, and Nvidia A40, depending on availability and
machine learning library requirements (see Table 2).

Accuracies are reported from models with the same architecture. All
models were trained for a total of 50 epochs, and then the checkpoint
from the epoch with the highest validation accuracy was chosen. All
models (except CLIP, which has its own inbuilt word embeddings)
also used GloVe pretrained on Twitter data with a dimension of 200
for word embeddings as it is more computationally efficient, although
other word embeddings do exist (Liu et al., 2019; Lewis et al., 2020;
Devlin et al., 2019). We test the potential of this technique against our
RoBERTa and VADER baselines.
7

Table 2
An overview of the models used.

Model Parameters Validation accuracy

Pretrained RoBERTa 345M n/a
LSTM 731K 81.81%
Transformer 2.6M 80.42%
CLIP (not augmented) 152.1M 89.41%
CLIP (augmented) 152.1M 86.37%
ResNet50 23.6M 73.79%

The transformer encoder (Vaswani et al., 2017) model we trained
predicts the positive/negative sentiment of the tweet text, using the
emojis as labels as described in Section 3. Although emoji-based labels
(see Section 3.1) are required during the training process, emojis are
not required during inference. Fig. 8 shows the architecture of the
transformer encoder model we trained, as well as that of the CLIP-based
model.
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Table 3
Comparison of the sentiment analysis performance against emojis as a ground-truth label.

Model F1 Recall Precision Accuracy Samples Truth Pos Predict Pos Truth Neg Predict Neg

VADER 0.339 0.596 0.506 0.471 15,485 7183 15,224 8302 261
RoBERTa 0.651 0.658 0.651 0.658 15,486 7183 6122 8303 9364
Transformer 0.687 0.694 0.693 0.687 15,486 7183 8674 8303 6812
LSTM 0.676 0.72 0.695 0.682 15,486 7183 10,381 8303 5105
CLIP (augmented) 0.802 0.791 0.817 0.841 2491 641 738 1850 1753
CLIP (not augmented) 0.763 0.752 0.814 0.792 2491 641 978 1850 1513
ResNet 0.697 0.691 0.742 0.734 2315 585 918 1730 1397
Fig. 8. The architectures of our transformer encoder (left) and CLIP (right) models
that we trained. The CLIP model concatenates the feature maps from both the image
and the text encoders.

Like the transformer, labels for training the CLIP model came from
emojis split into positive/negative categories. The CLIP model takes
both text and images as an input at the same time before then producing
a prediction based on both inputs. Fig. 8 shows the architecture of the
CLIP model trained. We discovered that out of the 180K tweets that had
an associated image, only 14K tweets also contained an emoji (i.e. an
output label according to our setup).

To augment the dataset, we used the CLIP model trained on 14K
image–text pairs to annotated each tweet that had an emoji but no
image with a newly associated image that fits the text. Fig. 9 shows
the algorithm that we used to augment the data. This augmentation
process raised the size of the training dataset to 55K text–image pairs,
and improved the F1 score of the model from 76.3% to 80.2% (see
Table 3). Tweets without associated images achieved 0.734 F1 (CLIP-
augmented)/0.766 (CLIP-not augmented), and tweets with images 0.8
F1 (CLIP-augmented)/0.767 (CLIP-not augmented).

5.2. Results

Comparison against emoji labels. To compare the performance of the
models, we used the emoji labels, as we used previously to train
the CLIP and transformer models, as a ground truth. Table 3 shows
the results of this experiment. We used the 15K tweets from the
#NSWFloods hashtag for this emoji-based comparison and any pre-
dictions of neutral were considered positive predictions instead,
as detailed in Section 3.

Comparison against human ratings. To further explore the compara-
tive performances of these models, we also used our random human-
labelled subset of 1938 tweets from the #NSWFloods hashtag and
analyse the performance of our models against them — Table 4 shows
the results of this experiment. As in Table 3, predictions with a class
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of neutral were considered positive. These results show that –
unlike with the emoji labels in Table 3 – our transformer model is
the best performing model, with the CLIP and LSTM models coming
in second place. We speculate this could be because emojis and images
were not used in the human labelling process or due to the small sample
size.

Images-only results. Our ResNet50 model took images associated with
the tweets as an input and classified them as positive or negative,
using labels predicted by the LSTM model from the associated text as
a ground-truth. As this model analyses images rather than text, only a
subset of the tweets in Tables 3 and 4 could be used for the ResNet50
model.

5.3. Discussion

Of all the models we tried, under F1 score our CLIP model appears
to perform best, followed by our ResNet model when compared against
emojis as a ground truth in Table 3, while our transformer model
comes in a close third. Linguistic clues can sometimes be quite subtle
(e.g. sarcasm), often requiring the reader to infer the correct meaning.
Deep learning models find this challenging, so images can help fill
this gap. Tweets T1 and T2 in Table 5 are examples of this, where
the image provides critical context that is otherwise misinterpreted by
other models.

Our baseline model VADER appears to perform worst. We suggest
that this may be because emojis play a key role in identifying the
sentiment of tweets and VADER does not adequately take the context
in which an emoji is used into account, and its rule based approach is
inflexible when compared to models that are trained in a supervised
or semi-supervised manner. This is illustrated by tweets T3 and T4 in
Table 5 — which although it is a negative tweet, it is still considered
neutral by VADER. This is also backed up by the human-labelled tweets,
and an accuracy of 42% (human-labelled)/33.9% (emoji-labelled).

When compared using human-labelled tweets as a ground truth
instead, the story is very different. All scores are generally lower,
indicating that the smaller size of the human-labelled dataset may
not be completely representative of the entire dataset. Despite this,
our Transformer performs best and RoBERTa performs worst, suggest-
ing that the MultiNLI dataset that the RoBERTa model was trained
on (Lewis et al., 2020) is not representative of the target domain of
social media here.

Humans are better at inferring meaning in language than AI, but
with visual information not being present for our human raters this
makes the task more challenging. Given the human-labelled dataset was
small (~2K tweets) and human-labelling tweets is both time consuming
and expensive, labelling tweets automatically via emojis is significantly
more practical.

5.3.1. Sentiment by image
Since images associated with tweets can contain some useful infor-

mation (Said et al., 2020), we used CLIP to explore utilising both text
and images to predict sentiment in order to understand how images
relate to the overall sentiment of a tweet.

With 149.5M more parameters than our Transformer model (ap-
prox. 788K of which are in dense layers we trained after the pretrained
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Fig. 9. The algorithm by which we ranked image associations with tweet texts when augmenting the tweets with CLIP.
Table 4
Comparison of the sentiment analysis models we tried against human-labelled tweets.

Model F1 Recall Precision Accuracy Samples Truth Pos Predict Pos Truth Neg Predict Neg

VADER 0.499 0.501 0.501 0.566 1914 1358 1258 556 656
RoBERTa 0.42 0.521 0.521 0.421 1914 1358 517 556 1397
Transformer 0.591 0.595 0.613 0.623 1914 1358 1095 556 819
LSTM 0.589 0.587 0.595 0.645 1914 1358 1263 556 651
CLIP (augmented) 0.512 0.604 0.602 0.512 320 220 96 100 224
CLIP (not augmented) 0.58 0.607 0.624 0.588 320 220 144 100 176
ResNet 0.54 0.559 0.576 0.577 156 116 84 40 72
Table 5
Some sample tweets from the #NSWFloods dataset labelled by the various models we tested. The Column CLIP refers to the augmented model.

Text Emoji Human Transformer LSTM VADER RoBERTa ResNet CLIP

T1 Hastings
river port Macquarie
#NSWFloods

n/a neutral positive negative neutral negative negative negative

T2 The local Facebook page
is ‘‘delivering’’ today

positive n/a negative negative neutral positive positive positive

T3 Droughts.. Fires.. Floods..
#Australia #NSWFloods
#SydneyFloods
Oh and a bit of #COVID19
Wasn’t 2021 meant to be a
better year?

n/a negative negative positive neutral positive n/a negative

T4 Before and after pics of

Wauchope railway bridge
#NSWFloods credits to

#<name redacted>

negative negative negative negative neutral negative negative negative
CLIP model), it is also significantly more computationally expensive
and may have overfit. The tweet augmentation process is especially
computationally expensive, requiring each tweet to be ranked against
every image in the dataset.

When compared to emojis as a ground-truth label, our CLIP model
easily beats the all the other models that consume only textual data
by a significant margin of at least 11%. However, when we com-
pare it to human-labelled tweets, it does not outperform the text-only
transformer even though CLIP also had associated images as an input.

This illustrates that images associated with tweets contain contex-
tual information that was lost to human raters. Given the small sample
size mentioned earlier, this further shows that it is more practical to use
emojis as labels, and to include images for additional visual context.

To further explore the relationship between images and sentiment,
we can look to our image-only ResNet model, which appears to be the
9

highest performing model in Table 3 with respect to both F1 score
and accuracy. This may be due to a small sample size used in the
comparison as the ResNet only analyses tweets containing at least one
image (2315 samples vs 15,486 samples for the transformer), and the
relatively unbalanced dataset as compared to the text-only models —
suggesting that when people tweet image(s), these images are more
likely to be considered to have a negative sentiment.

5.3.2. Geospatial analysis of tweets
To further improve upon the explainability of the flood sentiment

analysis, geo-spatial analysis was performed using tweets sentiment-
analysed by our Transformer model. Social media systems track the
locations of users, thereby making it possible to determine where a
person was when they posted on the site or application.
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Fig. 10. Graphical user interface for the geo-spatial plotting system. Tweets can be optionally grouped by date, allowing for temporal analysis of geospatial trends.
Table 6
A sample of tweets from 2022-02-18 for the hashtag #StormFranklin, from before the
storm actually hit. In total, there are 11 positive and 24 negative tweets. Tweets classed
as positive generally make light of the storm (P1, P2, P3, P4), while negative tweets
are either sarcastic (N1) or worrying about causes and effects (N2, N3). Additionally,
5 of the positive tweets are written in the Dutch language (Google Translate used for
identification), but were still classified correctly (P4).

Text Label

P1 Before retiring to bed this evening, folks, don’t forget to
make sure your beer’s properly tied down
#StormEunice #StormFranklin #Beer #BeerBods

positive

P2 #StormFranklin on Sunday so don’t give the neighbours
back fences.wheelie bins and trampolines from
#stormeunice just yet"

positive

P3 @cIAD_xsnxg-KiLUkM8tK6 g @oB2hntIJShfk6tmiZZ7z8Q
The next storm will begin with a F. (or is that an F??)
They’re calling it #StormFranklin I’m looking forward
to #StormInATeacup

positive

P4 Ik ben benieuwd wat Eunice ons gaat brengen! Stay
strong! #eunice #storm #StormEunice #StormFranklin

positive

N1 Woohoo! #StormFranklin is due after #StormEunice
takes her hook

negative

N2 How much do these extreme storms make you worry
about climate change?#StormEunice #StormDudley
#StormFranklin

negative

N3 The storm coming in Sun/Mon #StormFranklin could
even more concerning than Eunice. Keep your eyes
peeled. Concern is it will arrive only a day or so after
Eunice. #windy #storm #StormEunice

negative

We developed a program to create geo-spatial visualisations from
geotagged tweets to explore large datasets (shown in Fig. 10).

There are two types of geographical metadata available for tweets
from the Twitter API: the exact location of the origin of the tweet
(from GPS-enabled or GeoIP-enabled devices), and the Place object type
extracted from the tweet text content using named-entity-recognition
which provides a polygon which bounds the area from which the user
posted the tweet.
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We used the exact coordinates where possible, and took the central
point of the polygon bounding-box for tweets without precise location
data. To account for the overlap of points representing tweets from
the same Place region, two distinct methods were employed: increasing
the size of the points as a function of the number of tweets contained
within, and adding Gaussian noise to points superimposed on a single
coordinate.

We used tweets from the #StormFranklin hashtag (see also Table 1)
for our geospatial analysis. This extreme weather event was chosen as
a large number of tweets were available and it was not included in
any data downloaded previously (Hurricane Iota was downloaded sepa-
rately). Our Storm Franklin dataset has 921 geotagged tweets (7%), and
only 28 include precise location information. Sloan and Morgan (2015)
showed that approximately 0.85% of tweets are geotagged, but Twitter
made changes in 2019 to reduce the ways by which precise location
geotagging can be achieved, explaining the proportions found (Hu and
Wang, 2020). 29% of the tweets were classified as having positive
sentiment.

The static plot shows that the vast majority of negative tweets are
found in high-density clusters, significantly more so than the positively
labelled tweets. This is most obvious for tweets originating in Ireland.

Fig. 11 shows the temporal-level distribution of tweets for Storm
Franklin. Tweet sentiments are visualised from 2022-02-18 to 2022-02-
25, and a time-series of tweet frequency - the majority of tweets were
posted over a two day period: 2022-02-19 to 2022-02-20.

Days with most activity correspond with days with the highest
number of tweets posted, and is also slightly before the actual event,
which took place on 2022-02-20 to 2022-02-21 (Deltares, 2022). This
could be because the Met Office’s early warning prompted conversation
on Twitter or because of lingering effects from Storm Eunice, which
took place a few days prior - see Table 6 (Deltares, 2022).

By analysing sentiment-analysed tweets geospatially, real-time in-
formation on the status of flooding events can be obtained. By analysing
the effectiveness several sentiment analysis models in Section 5, we
improve our geospatial analysis of sentiment-analysed tweets. Simi-
larly, by mapping tweets we gain insights into the effectiveness of our
sentiment analysis model.
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Fig. 11. Daily plots of geographically located sentiment-labelled tweets for the #StormFranklin dataset on 18th–25th February 2022.
6. Conclusion

We explored using text and images from Twitter for sentiment
analysis, comparing VADER, RoBERTa, a Transformer encoder, and
CLIP. Our CLIP-based model takes both text and images into account,
which by taking visual information into account can help close the
gap between AI and human raters. We highlighted the importance of
emojis in understanding the sentiment of tweets: both our CLIP and
transformer models outperformed RoBERTa and VADER, neither of
which consider emojis.

Finally, we demonstrate the potential and feasibility of geospatial
analysis of sentiment-analysed tweets in a flooding situation. The scale,
frequency and low-latency allow for rapid analysis of disasters in
real-time, enhancing situational awareness and allowing a human-lead
approach to identification of affected areas in real time.

• An assessment of how our approach could be used to practically
support disaster decision making in-situ is required.

• An alternative approach such as image segmentation (Pally and
Samadi, 2022) or captioning is likely needed to make better use
of images in the context of flooding events.
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• Scope exists for future research to investigate models that con-
sider emojis as well as regular text when predicting sentiment at
inference.

• Correcting for population density, mass evacuations of people,
and potential communication disruption are all challenges. Mak-
ing use of other data modalities such as satellite data, mobile
phone cell tower information, and traffic data may help here.

• Screening tweets from irrelevant and automated sources remains
challenging.

• The relationship between social media response and flood severity
is difficult to study given no consistent metric could be found that
is not limited by country borders. For example, media reporting
may have an effect on social media responses.

CRediT authorship contribution statement

Lydia Bryan-Smith: Conceptualization, Methodology, Data
curation, Software, Investigation, Writing – original draft. Jake
Godsall: Geospatial tweet analysis methodology, Analysis, Visual-
isation. Franky George: RoBERTa methodology, Software. Kelly
Egode: VADER methodology, Software. Nina Dethlefs: Primary
supervision, Writing – review & editing, Conceptualization. Dan
Parsons: Conceptualization, Secondary supervision.



Computers and Geosciences 178 (2023) 105405L. Bryan-Smith et al.

o
s
f
e
f
2

(
t
i

Declaration of competing interest

The authors declare the following financial interests/personal relation-
ships which may be considered as potential competing interests: Lydia
Bryan-Smith reports financial support was provided by University of
Hull. Jake Godsall, Franky George, and Kelly Egode reports financial
support was provided by Natural Environment Research Council. Lydia
Bryan-Smith reports equipment, drugs, or supplies and statistical anal-
ysis were provided by University of Hull Viper High Performance Com-
puting facility. Lydia Bryan-Smith reports a relationship with University
of Hull that includes: employment, funding grants, and non-financial
support. Nina Dethlefs reports a relationship with University of Hull
that includes: employment. Dan Parsons reports a relationship with
University of Hull that includes: employment. Dan Parsons reports a
relationship with Loughborough University that includes: employment.
Lydia Bryan-Smith receives a PhD scholarship from University of Hull.
Jake Godsall, Franky George, and Kelly Egode are students at the
University of Hull. The NERC discipline-hopping grant declared was
for a hackathon they attended. Dan Parsons was employed by the
University of Hull, but has recently moved to Loughborough University.

Data availability

The authors do not have permission to share the original data as per
the Twitter T&Cs. However, model checkpoints etc will be provided on
request.

Acknowledgements

Lydia Bryan-Smith is funded by a PhD stipend from the University of
Hull. We acknowledge the VIPER high-performance computing facility
of the University of Hull and its support team. Some of the results
presented in this article were developed during a Hackathon on Sus-
tainable AI, hosted at the University of Hull, and funded by a NERC
Discipline Hopping grant.

Appendix. Code availability

The code written in support of this paper has been published on
GitHub. The following repositories contain the code in question:

• https://github.com/sbrl/twitter-academic-downloader (Mozilla
Public Licence 2.0): The command line program written to down-
load the tweets from Twitter, using Twitter’s Academic API.

• https://github.com/sbrl/research-smflooding (GNU Public
Licence 3.0): The code written to train and interact with the AI
models tested in this paper.

• https://github.com/jakegodsall/twitter-floods (GNU Public
Licence 3.0): The code written to geolocate and plot the sentiment
of tweets on a map.

• https://huggingface.co/siebert/sentiment-roberta-large-english:
The code used for sentiment analysis with RoBERTa.

Please note that all of these code repositories use other external
pen-source libraries to provide some functionality. For example, Ten-
orflow (TensorFlow Contributors, 2019) is used as an machine learning
ramework. All open source libraries used are open-source, defined in
ither requirements.txt (Python) or package.json (Node.js)
reely downloadable from either PyPi (Python Software Foundation,
022) (Python libraries) or npm (npm Inc, 2020) (Javascript).

Python was used as the main programming language. Javascript
Node.js OpenJS Foundation, 2020) was also used to initially download
he tweets and to manipulate the data. Bash (shell scripting) was used
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n the analysis of the data.
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