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ABSTRACT
Kink oscillations of solar coronal loops are of intense interest due to their potential for diagnosing plasma parameters in the
corona. The accurate measurement of the kink oscillation damping time is crucial for precise seismological diagnostics, such
as the transverse density profile, and for the determination of the damping mechanism. Previous studies of large-amplitude
rapidly-decaying kink oscillations have shown that both an exponential damping model and a generalised model (consisting of
Gaussian and exponential damping patterns) fit observed damping profiles sufficiently well. However, it has recently been shown
theoretically that the transition from the decaying regime to the decayless regime could be characterised by a super-exponential
damping model. In this work, we re-analyse a sample of decaying kink oscillation events, and utilise the Markov Chain Monte
Carlo Bayesian approach to compare the exponential, Gaussian–exponential and super-exponential damping models. It is found
that in seven out of ten analysed oscillations, the preferential damping model is the super-exponential one. In two events, the
preferential damping is exponential, and in one it is Gaussian–exponential. This finding indicates the plausibility of the super-
exponential damping model. The possibility of a non-exponential damping pattern needs to be taken into account in the analysis
of a larger number of events, especially in the estimation of the damping time and its associated empirical scalings with the
oscillation period and amplitude, and in seismological inversions.
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1 INTRODUCTION

Kink oscillations of plasma loops which form active regions of the
corona are among the most studied wave phenomena in the solar
atmosphere (e.g., Nakariakov & Kolotkov 2020; Nakariakov et al.
2021). The oscillations are usually seen as oscillatory transverse dis-
placements of bright loops in the plane of the sky with high-resolution
EUV imagers, such as TRACE, SDO/AIA and SolO/EUI (e.g., As-
chwanden et al. 1999; Nakariakov et al. 1999; Aschwanden et al.
2002; Aschwanden & Schrĳver 2011; Zhong et al. 2022), respec-
tively. Kink oscillations have also been found as periodic Doppler
shifts of coronal emission lines, i.e., as periodic movements of the
emitting plasma along the line-of-sight (LoS) (Tian et al. 2012).
Kink oscillations attract attention as a highly useful tool for probing
physical parameters of coronal active regions, such as the absolute
value of the magnetic field (e.g., Nakariakov & Ofman 2001), den-
sity stratification and the dependence of the magnetic field on height
(e.g., Andries et al. 2005; Ruderman et al. 2008), as well as in the
context of heating of the solar corona (see. e.g., Van Doorsselaere
et al. 2020, for a recent coomprehensive review).

Kink oscillations appear in two distinct regimes, the large-
amplitude rapidly-decaying oscillations (e.g., Nakariakov et al. 1999;
Goddard et al. 2016; Nechaeva et al. 2019), and low-amplitude de-
cayless oscillations (e.g., Wang et al. 2012; Anfinogentov et al. 2013).

★ E-mail: v.nakariakov@warwick.ac.uk (VMN)

In both regimes, the oscillation is a standing wave, with the nodes at
the footpoints. In the majority of cases, kink oscillations have maxi-
mum displacement amplitudes near the loop top, i.e., correspond to
the fundamental harmonic, while higher harmonics have been de-
tected too (e.g., De Moortel & Brady 2007; Andries et al. 2009).
Typical oscillation periods are several minutes. The periods are ob-
served to increase with the increase in the loop length (Nechaeva
et al. 2019; Anfinogentov et al. 2013). The phase speed estimated by
the ratio of the wavelength and the oscillation period. In the major-
ity of cases, decaying oscillations are excited by a displacement of
the loop from an equilibrium by a low coronal eruption (Zimovets
& Nakariakov 2015). Typical initial displacement amplitudes of de-
caying kink oscillations are several Mm. In the decayless regime,
oscillation amplitudes are much lower, typically smaller than a few
hundred kilometres. Nisticò et al. (2013) observed an oscillatory
decay of a displaced loop to a stationary, i.e., decayless oscillation.

There is a wealth of theoretical studies interpreting the damping
of kink oscillations as linear transformation of a collective mode into
highly localised torsional Alfvénic oscillations of individual surfaces
of a constant Alfvén speed (e.g., Goossens et al. 2006, 1992; Ruder-
man & Roberts 2002). According to the theory, in the initial stage of
the kink oscillation, the amplitude decreases as a Gaussian function,
followed by an exponential decay (e.g., Pascoe et al. 2013). The Gaus-
sian decay phase is pronounced in loops with low contrasts of exter-
nal and internal densities. Such a combined, Gaussian–exponential
damping pattern has been observationally confirmed by Pascoe et al.
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(2016b,a, 2017, 2020). However, in the analysis of kink oscillation
the Gaussian decay phase is often neglected, and, in particular, the
damping time is estimated by an exponentially decaying oscillation
envelope, see, for example, Ofman & Aschwanden (2002); Goddard
et al. (2016); Nechaeva et al. (2019), and Dai et al. (2021); Mandal
et al. (2021); Conde C. et al. (2022); Zhang et al. (2022) for some
more recent works. Other damping mechanisms may be wave tun-
neling or leakage, caused by the active region geometry, and other
3D effects (e.g., Brady et al. 2006; Selwa et al. 2011; Hindman &
Jain 2014). Moreover, there is a growing theoretical evidence that the
decay may actually be a nonlinear process such as Kelvin–Helmholtz
instability (KHI) (e.g., Terradas et al. 2008; Magyar & Van Doors-
selaere 2016; Van Doorsselaere et al. 2021; Ruderman & Petrukhin
2022). The nonlinear nature of the damping is also indicated by the
empirically established dependence of the oscillation quality factor,
i.e., the ratio of the damping time to the oscillation period upon
the amplitude (Goddard & Nakariakov 2016; Nechaeva et al. 2019;
Arregui 2021). A nonlinear decay pattern is not necessary an ex-
ponential one. For example, the low-dimensional modelling of the
decay of an impulsively excited kink oscillation to the stationary
oscillation driven by a self-oscillatory mechanism demonstrated its
super-exponential nature (Nakariakov & Yelagandula 2023). Thus,
the choice of the model function for empirical fitting decay patterns
of kink oscillations remains an open question.

The aim of this paper is to compare the exponential, super-
exponential and Gaussian-exponential models, applying them to sev-
eral randomly selected kink oscillation events. An additional aim is
to validate the need for accounting for the super-exponential damping
regime, and the associated re-evaluation of the damping times. We
do this on a small sample of events, before performing a very labo-
rious re-analysis of all 223 oscillations in the catalogue of Nechaeva
et al. (2019). The comparison is performed by assessing the mutual
Bayesian factors of the chosen damping models (e.g., Arregui 2018,
2022; Anfinogentov et al. 2022). In Section 2 we demonstrate the data
and analytical technique used in this study. In Section 3, we compare
oscillation damping with three theoretical models using observed
signals. A summary of the findings and discussions are presented in
Section 4.

2 OBSERVATIONAL DATA ANALYSIS

In the previous work, Nechaeva et al. (2019) created a comprehen-
sive catalogue of decaying kink oscillations of 223 solar coronal
loops, extending from the works of Zimovets & Nakariakov (2015)
and Goddard et al. (2016). The catalogue provides general informa-
tion about each loop, including slit position, starting time of oscilla-
tion, oscillation period and amplitude, exponential damping time and
other physical parameters. For our analysis, we select two events that
have been previously studied by Nisticò et al. (2013); Pascoe et al.
(2016a,b, 2017) for comparison, and eights other randomly selected
events from the catalogue of Nechaeva et al. (2019).

A summary of the key physical parameters of the selected oscilla-
tion events and host loops is given in Table 1. As seen in this table,
all of the oscillating loops are situated off the solar limb. Nine events
are associated with solar flares. For loops L1 and L2, the estimations
of the loop lengths and oscillation amplitudes are given without the
error bars, as it is in the catalogue of Nechaeva et al. (2019).

We use EUV image sequences of the host solar coronal active re-
gions, taken with the Atmospheric Imaging Assembly (AIA; Lemen
et al. 2012) on board Solar Dynamics Observatory (SDO; Pesnell
et al. 2012) to investigate the damping properties of our kink oscilla-

tion events. For each event, 900 image frames at the 171 Å channel
with a spatial resolution of 0.6′′ and a time cadence of 12 s are re-
quested from the Joint Science Operations Center (JSOC). We cut out
image sequences after performing the differential rotation correction
on the processed Level 1.5 data.

The regions of interest are 250 pixels × 250 pixels in size, centred
by the slit midpoints (see Table 1). The time duration of each data
set is 3 hours, covering the full oscillation of each loop.

Then time-distance (TD) analysis is performed to obtain the oscil-
lation signals. To create TD maps, we take linear slits perpendicular
to the oscillating loop in the vicinity of the loop apex, whose posi-
tions are provided by Nechaeva et al. (2019). For each event, slits are
5 pixels in width, and the average value of intensity over this width
is calculated to increase the signal-to-noise ratio.

The decaying oscillating perpendicular displacements are clearly
observed by eye in the TD maps for the considered oscillating loops
(see Fig. 1 and Fig. A1).

2.1 Loop-tracking algorithms

A time series of oscillating displacements of a loop is obtained from
TD map by an automated loop-tracking technique. At each instant of
time in the TD map, we extract the loop’s intensity profile along the
slit (see Fig. 2), and estimate the location of the loop centre or one
of its boundaries mainly by fitting with a prescribed function.

In this study, the following six tracking algorithms (depicted in
Fig. 2) are adopted to obtain the oscillatory displacements of loop
centres or boundaries:

(i) A Gaussian function is applied to fit the loop’s intensity profile,
resulting in a time series for the position of the peak brightness across
the osscillating loop (Fig. 2(a)). The IDL routine Gaussfit.pro
is used here. Since the full width at half maximum (FWHM) is
usually taken as the characteristic loop width (e.g, Wang et al. 2012;
Klimchuk & DeForest 2020) in observations, we set this quantity as
the fitting range for the following algorithms (ii)-(iv).

(ii) A parabolic function is applied to fit the intensity profile within
the FWHM estimated at step (i), thereby determining the position of
the peak brightness by its local maximum (Fig. 2(b)).

(iii) Similar to (ii) but with a cubic parabolic function (Fig. 2(c)).
(iv) An area integral under the intensity curve is calculated, and

positions of the area bisector lines are taken as loop centre positions
(Fig. 2(d)).

(v) A Gaussian function is applied to fit the spatial derivatives
(Anfinogentov et al. 2013) of intensity profile across one-half of the
loop. The Gaussian fitting centre indicates the highest (negative) gra-
dient of the loop’s intensity profile, i.e. the loop boundary (Fig. 2(e)).

(vi) A hyperbolic tangent function, 𝐹 (𝑥) = 𝐴 tanh
(
𝑥−𝑥0
Δ

)
+ 𝐶,

where 𝐴, Δ, and 𝐶 are arbitrary constants determined by the fitting
procedure, is applied to fit intensity profiles across one-half of the
loop. The inflexion point given by 𝑥0 is used to indicate the position
of the loop boundary (Fig. 2(f)). Fitting is performed with the routine
mpfit.pro in IDL.

The dependence of the oscillation properties on the loop-tracking
algorithms is of interest. We take oscillating loops L5, L6, L10 and
L2 (see Fig. 1) as an example to demonstrate the application of the
loop-tracking algorithms described above. For each event, we obtain
a set of six decaying oscillatory signals with these algorithms, each
denoted as 𝜉𝑛 (𝑡), where 𝑛 ranges from 1 to 6, respectively. In addition,
we add the boundary displacement signal obtained manually, by
clicking the TD maps with a cursor, as 𝜉7 (𝑡), for comparison.

MNRAS 000, 1–7 (2023)



Comparison of damping models for kink oscillations 3

Table 1. Kink oscillation events under study, randomly selected from the catalogue (Nechaeva et al. 2019). The loop and oscillation
parameters are taken from the catalogue. The dash means the event is not associated with a flare.

No. Slit Midpoint Date Time Flare Length Period Osc. Amp.
[x,y], arcsec UT Mm minutes Mm

L1a 954.5, 307 2012 May 26 20:36:47 SOL2012-05-26T20:09 162 7.67 ± 0.04 9.4
L2a -980.5, 354 2012 May 30 08:58:57 SOL2012-05-30T08:35 234 4.28 ± 0.02 8.8
L3 1098, 347 2014 Jul 11 23:40:11 SOL2014-07-11T23:38 489 ± 10 11.83 ± 0.38 7.5 ± 1.3
L4 -1010.5, -14.5 2014 Nov 15 12:00:00 SOL2014-11-15T11:47 200 ± 10 9.27 ± 0.13 7.2 ± 0.8
L5 1151.5, 50 2015 Apr 23 16:55:49 SOL2015-04-23T16:38 431 ± 8 20.43 ± 0.47 14.5 ± 2.6
L6 1128.5, -89.5 2015 Oct 02 03:08:58 - 394 ± 20 17.19 ± 0.76 12.8 ± 3.6
L7 1062.5, 304.5 2015 Oct 27 14:42:10 SOL2015-10-27T13:12 328 ± 10 12.81 ± 0.32 6.1 ± 1.3
L8 -1150.5, -90.5 2015 Dec 20 01:11:58 SOL2015-12-20T01:09 436 ± 9 18.59 ± 0.78 13.4 ± 2.1
L9 -1066.5, 388 2016 Jul 10 00:56:46 SOL2016-07-10T00:50 547 ± 11 10.76 ± 0.28 12.1 ± 1.1
L10 949, -306.5 2017 Sep 07 18:08:45 SOL2017-09-07T18:02 326 ± 9 8.32 ± 0.10 21.5 ± 2.4
a Events L1 and L2 are selected from Nisticò et al. (2013); Pascoe et al. (2016a,b, 2017).
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Figure 1. Four typical time distance maps with decaying oscillating displacement signals, corresponding to loop L5 (a), L6 (b), L10 (c) and L2 (d). The white
vertical dashed lines indicate the start time of oscillations. The black, purple, green, and red dots mark the center of the oscillating loop by algorithms (𝑖)–(𝑖𝑣) ,
and the black and cyan triangles mark the edge by algorithms (𝑣) and (𝑣𝑖) . In panel (a), the blue triangles on the edge of loops indicated the signal determined
by eye.

We first manually clicked data points on the upper loop boundary
and performed cubic spline interpolation to achieve 𝜉7 instantaneous
positions in each time frame (see the blue triangles in Fig. 1(a)). Then
we employed the six automated loop-tracking algorithms (𝑖)–(𝑣𝑖) to
compute oscillation signals 𝜉1−6, which are shown in Fig. 1(a) by
different coloured symbols.

For L5, the four series of signals 𝜉1−4 tracking the loop centres
are situated close to each other and almost indistinguishable. Like-
wise, the signals 𝜉5−7 outline the outermost oscillating loop boundary
well. Among them, signals 𝜉5 and 𝜉6 appear to be smoother and more
rounded compared to 𝜉7. L5 has an appropriate width and stands up
against the background clearly without overlapping structures. That
is why the oscillation signals obtained by different algorithms show

good stability, consistency, smoothness, clarity, and data integrity.
For other loops, a user should choose an algorithm that works best in
each particular case. For example, in Fig. 1(b) the centre signals are
contaminated by the overlapped loop structures, so that the boundary-
based algorithms (𝑣)–(𝑣𝑖) are better choices. In Fig. 1(c), the loop
brightness significantly decreases near the end of the oscillation. The
decrease in the loop contrast with the background leads to a more
frequent appearance of outliers in the considered loop-tracking algo-
rithms. Also, some interference between oscillation peaks may occur
if the oscillation period is too short. Hence, the centre signals are
slightly better than the boundary ones in Fig. 1(d). Addressing these
results, various extreme situations with low signal-to-noise, loop

MNRAS 000, 1–7 (2023)
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Figure 2. Six algorithms (𝑖)–(𝑣𝑖) to track the loop oscillation signals, respectively. Blue arrows in panel (a)–(d) show the loop center positions to track 𝜉1–𝜉4,
and those in panel (e)–(f) show boundary positions in 𝜉5–𝜉6. The red dashed lines represent the fitting results in all panels, except in panel (d), where it represents
a bisecting line. The black dotted line in panel (e) represents the derivative of the intensity profile. Intensity profiles are taken from loop L5 as an example.

contrast, etc., have been comprehensively tested on synthetic data,
making sure our methodology is reliable for the following analysis.

2.2 Analysis of oscillation parameters with MCMC Bayesian
inference

In order to analyse the oscillatory loop displacements 𝜉𝑛 (𝑡) derived in
Sec. 2.1 and obtain their parameters, we fit each of them by a decaying
harmonic function with a cubic-parabolic background trend,

𝜉𝑛 (𝑡) = 𝐴𝑀 (𝑡) sin
(
2𝜋
𝑃
𝑡 + 𝜑

)
+ 𝑇 (𝑡), (1)

𝑇 (𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3.

where 𝐴 is the initial displacement amplitude, 𝑀 (𝑡) is the oscillation
damping model, 𝑃 is the oscillation period, and 𝜑 is the initial phase.
The parameters 𝑎0, 𝑎1, 𝑎2, and 𝑎3 are constant coefficients.

In this work, we consider three possible scenarios for the damping
of kink oscillations, proposed hitherto. Namely, these three models
include exponential damping 𝑀e (𝑡) (e.g., Goossens et al. 1992; Rud-
erman & Roberts 2002; Goossens et al. 2006), Gaussian–exponential
damping 𝑀g (𝑡) (Pascoe et al. 2013, 2016a), and super-exponential
damping 𝑀s (𝑡) (De Moortel et al. 2002; Nakariakov & Yelagandula
2023),

𝑀e (𝑡) = exp
(
− 𝑡

𝜏e

)
, (2)

𝑀g (𝑡) =


exp

(
− 𝑡2

2𝜏2
g

)
, 𝑡 ≤ 𝑡s,

𝐴s exp
(
− 𝑡 − 𝑡s

𝜏ge

)
, 𝑡 > 𝑡s,

(3)

𝑀s (𝑡) = exp

[
−

(
𝑡

𝜏s

)𝑑 ]
, (4)

where 𝜏e stands for the exponential damping time; 𝜏g and 𝜏ge are
the characteristic damping times of the Gaussian and exponential
phases in the Gaussian–exponential model, respectively, 𝑡s is the
switch time between these two phases; 𝜏s is the damping time in
the super-exponential model, and 𝑑 is the super-exponential power
index. We set 𝐴s = exp(−𝑡2𝑠/2𝜏2

𝑔) to fulfil the continuity around 𝑡s
for the piece-wise function given by Eq. (3). Note that these three
damping models have different numbers of free parameters, which is
important for their comparison.

We fit the trend 𝑇 (𝑡) using the poly fit.pro. Detrended signals
are best fitted with the expressions given by Eq. (1) with decay
models (2–4) with the Solar Bayesian Analysis Toolkit (SoBAT;
Anfinogentov et al. 2021) implementing the Bayesian inference with
the Markov Chain Monte Carlo (MCMC) sampling method. Best-
fitting examples for the signals obtained by algorithm (𝑖𝑣) or (𝑣𝑖),
described in Sec. 2.1, are shown in Fig. A1. The green, red, and
blue fitting curves stand for the exponential, super-exponential, and
Gaussian-exponential damping model results, respectively. All ten
kink oscillation events are well-identified, tracked and fitted for more
than four consecutive oscillation cycles. The best-fitting oscillation
parameters obtained with this fitting procedure are summarised in
Table 2.
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Table 2. Bayesian factors, damping times and physical parameters for the most probable decay model. Parameters 𝑀e, 𝑀s, and 𝑀g, stands for exponential,
super-exponential, and Gaussian–exponential model, respectively. The period and oscillation amplitude values are taken from the preferred model for each event.

No. 2ln𝐵𝑠,𝑒 2ln𝐵𝑠,𝑔 2ln𝐵𝑒,𝑔 Gaussian-exp. Exp. Super-exp. Preferred 𝑀𝑠 Period Osc. Amp.

𝜏g/𝜏ge 𝜏e 𝜏s model Index 𝑑 minutes Mm

L1 2.13 4.23 2.10 14.75+6.33
−3.84 / 16.85+10.84

−4.30 21.98+9.79
−5.04 23.59+7.20

−2.72 𝑀s 1.72+0.37
−0.62 7.75+0.19

−0.16 8.46+1.60
−1.80

L2 -0.68 2.19 2.07 13.48+0.65
−5.86 / 11.03+4.44

−0.71 13.61+3.43
−2.61 15.77+0.69

−6.86 𝑀e 1.18+0.42
−0.14 4.18+0.28

−0.07 8.06+5.71
−0.02

L3 28.40 4.75 -23.65 27.94+3.55
−3.48 / 9.51+18.66

−7.63 38.76+8.64
−6.43 40.04+3.88

−3.66 𝑀s 2.91+2.15
−0.82 11.56+0.14

−0.13 7.47+0.74
−0.82

L4 -3.75 -1.91 1.84 22.88+12.31
−9.53 / 28.46+22.04

−16.46 40.36+12.77
−7.79 39.59+16.31

−10.28 𝑀e 1.21+0.54
−0.26 8.71+0.09

−0.09 7.95+0.96
−1.03

L5 75.69 14.96 -61.01 30.13+2.07
−1.80 / 10.03+7.44

−1.85 34.29+3.75
−3.34 44.09+2.70

−2.76 𝑀s 2.60+0.43
−0.37 20.42+0.26

−0.23 11.15+0.74
−0.71

L6 27.97 -6.71 -34.68 29.52+5.00
−3.23 / 12.43+14.14

−9.90 50.01+21.12
−11.10 41.61+7.23

−4.58 𝑀g 2.00+0.07
−0.25 17.03+0.56

−0.47 9.91+0.93
−1.22

L7 15.80 5.13 -10.67 25.63+5.17
−4.85 / 13.23+18.66

−9.60 37.05+14.68
−8.12 36.86+6.21

−5.43 𝑀s 2.48+0.47
−0.76 11.90+0.25

−0.27 5.18+0.75
−0.61

L8 123.02 26.35 -96.67 25.90+2.78
−2.76 / 20.85+7.09

−3.04 34.78+3.10
−4.73 38.89+4.43

−3.64 𝑀s 2.14+0.18
−0.27 17.23+0.21

−0.19 8.70+0.66
−0.44

L9 75.01 15.53 -59.47 26.76+2.61
−2.06 / 6.72+10.58

−4.39 33.42+6.94
−4.76 38.35+3.17

−2.60 𝑀s 2.50+0.09
−0.22 13.14+0.20

−0.19 8.16+0.64
−0.67

L10 70.76 20.05 -50.71 15.78+2.23
−3.13 / 5.57+8.26

−3.32 20.71+6.81
−3.54 22.88+2.72

−2.32 𝑀s 2.72+0.08
−0.50 8.17+0.17

−0.15 16.39+1.68
−1.54

3 RESULTS OF DAMPING MODEL COMPARISON

In addition to the reliable estimation of the model parameters and
their credible intervals, the use of SoBAT enables us to quantitatively
compare our three different damping models given by Eqs. (2)–(4) in
the application to our ten kink oscillation events, using the Bayesian
factor 𝐵𝑖, 𝑗 which is the ratio of Bayesian evidence of model “i” to
that of model “j”. The higher value of the Bayesian factor 𝐵𝑖, 𝑗 , in
general, indicates the preference of model “i” over model “j” (see
Sec. 5.2 in Anfinogentov et al. 2021, for details).

3.1 Quantitative comparison for observed events

Using mcmc fit.pro routine from SoBAT package with 106 sam-
ples and loop L5 as an example, signals 𝜉1−6 are independently best
fitted with three damping models given by Eqs. (2)–(4). Bayesian
factors are calculated using mcmc fit evidence.pro routine. For
𝜉1 to 𝜉6, the mean values of their Bayesian factors 𝐵𝑠,𝑒, 𝐵𝑠,𝑔 and
𝐵𝑔,𝑒 are 75.69, 14.69 and -61.01 (see Table 2) respectively, averaged
over the six automated loop-tracking algorithms. As a validation,
the Bayesian factors of 𝜉7 show similar values (42.12, 13.47, and
-28.65). Thus, we obtain strong evidence in favour of the super-
exponential model in comparison to the other two models for loop
L5. Following this approach, the preferred damping model is identi-
fied for each kink oscillation event considered (see Table 2). Namely,
the super-exponential model has stronger evidence in 7 out of all 10
kink oscillation events; exponential damping is preferred in 2 events;
and Gaussian-exponential is preferred in 1 event. For each event, the
model parameters (i.e., the oscillation period and projected ampli-
tude, and damping time, and the super-exponential power index for
the events which are better fitted by that model) are shown for the
preferred damping model, averaged over all loop-tracking methods
applied in this study.

The obtained oscillation periods and amplitudes are consistent
with those from the catalogue of Nechaeva et al. (2019), shown
in Table 1, while the oscillation damping time depends upon the
choice of the damping model and may differ significantly from its
exponential value. We also note that the obtained values of the super-
exponential power index 𝑑 are generally consistent with the value of
about 2 observed by De Moortel et al. (2002).

3.2 Correlation between the oscillation parameters

According to the analysis presented above, we obtain that more than a
half of the analysed events exhibit a preference on super-exponential
model. As revealed in Table 2, the damping time calculated in the
super-exponential model is generally greater than in the exponential
model, which in turn is greater than in the Gaussian-exponential
model.

As our analysis demonstrated the sensitivity of the damping time
estimation to the chosen damping model, we investigate the depen-
dence of the damping time on the oscillation period, and the associa-
tion between the quality factor of the oscillations and their amplitude.
Fig. 3 shows the scatter diagram of the oscillation damping times ver-
sus the corresponding oscillation periods. The 95% credible intervals
of the damping time are indicated by the blue error bars in the fig-
ure. Previous estimations (Aschwanden et al. 2002; Verwichte et al.
2013; Goddard et al. 2016; Nechaeva et al. 2019) have demonstrated
an empirically linear scaling of the damping time with the oscillation
period, which is mainly consistent with our results.

To estimate the scaling of the damping time determined by a
specific model, with the oscillation period , we use the linfit.pro
to fit a power–law function to parameter pairs in a logarithmic scale.
The fitting of ten points estimated by the exponential damping model
in Fig. 3(a), demonstrates a power-law index of 0.66 ± 0.17. This
value is roughly consistent with the result obtained by Nechaeva
et al. (2019) under the assumption of the exponential damping. As
the damping time in the Gaussian–exponential model is not a single
value, and this model has the highest preference in only one event
in our dataset, we exclude that event from estimation. In Fig. 3(b),
the parameters 𝜏g and 𝜏ge from the Gaussian–exponential model are
shown but not included in any fitting process. As demonstrated by
Fig. 3(b), the power-law fit to the preferred model parameters for nine
(with preferences in favour of the exponential and super-exponential
damping models) and seven (the super-exponential damping model
only) cases are similar, with values of 0.73 ± 0.15 and 0.67 ± 0.16
respectively. The exponential damping time 𝜏ge of the Gaussian-
exponential model which is preferred for Loop L6 shown in Fig. 3(b)
(see the black squares) clearly stands out as an outlier from the best-
fitting lines.

Goddard & Nakariakov (2016); Nechaeva et al. (2019) found that
the quality factor 𝑄 defined as the ratio of the damping time to the
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Figure 3. Damping times 𝜏 estimated by different models against oscillation periods 𝑃 in log-log plots. (a): Power-law fit to parameters of 10 loops in exponential
model. (b): Power-law fit to preferred parameters of 9 loops (dashed line) and 7 super-exponential loops (solid line), respectively. Gradients of the power–law
fitting lines in panel (a)-(b), standing for the power law index, are 0.66 ± 0.17, 0.67 ± 0.16 and 0.73 ± 0.15, respectively. Blue bars indicate the 95% credible
intervals of periods and damping times calculated with MCMC method. Two damping times derived from the Gaussian-exponential model are plotted but not
included in the fitting process.

oscillation period depends on the oscillation displacement amplitude,
with the dependence approximated by a power-law. In those studies,
the quality factor was estimated by the exponential damping model.
Scaling of 𝑄 estimated in our study with the oscillation amplitude is
shown in Fig. 4. Only the events which show the preference of the
exponential and super-exponential damping models are shown. The
red dashed curve is the scaling result from Nechaeva et al. (2019). We
see that the quality factor𝑄 decreases with the oscillation amplitude,
as it has been found before. We need to stress that the fitting curve is
determined by the upper-outer boundary of the data cloud because of
the projection effect (Goddard & Nakariakov 2016; Nechaeva et al.
2019).

4 DISCUSSION AND CONCLUSIONS

Using the Bayesian analysis method, we performed a comparison of
three previously proposed models of damping of kink oscillations
in ten randomly chosen coronal loops. In each event, we extracted
oscillatory patterns from a time–distance map by six different loop-
tracking algorithms based on the identification of the instantaneous
location of the centre or boundary of the oscillating loop. We demon-
strated that those six different algorithms produce rather similar out-
comes which do not affect the results. It is found that out of ten kink
oscillations selected for investigation, a super-exponential damping
model is preferred in seven. In two events the damping is more
aptly described by an exponential model. In one event, the preferen-
tial damping model is Gaussian–exponential. This finding indicates
that the super-exponential decay pattern which was recently proposed
theoretically for kink oscillations of a self-oscillatory nature (Nakari-
akov & Yelagandula 2023) is a plausible model. This result, based
on the analysis of a limited number of events, justifies the need for a
much more laborious analysis of a larger number of kink oscillation
events in a similar fashion.
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Figure 4. Quality factor 𝑄 defined as the ratio of the damping time 𝑡𝑒 to
the oscillation period 𝑃 in preferred models, plotted against their projected
oscillation amplitude. The black dashed line shows the power-law scaling
with the index of 0.68, determined in Nechaeva et al. (2019). The symbols
in this figure have same meaning as in Fig. 3, including 2 exponential and 7
super-exponential data points.

According to Nakariakov & Yelagandula (2023), the super-
exponential damping has been found to occur when an impulsively
excited oscillation decays not to a zero amplitude, i.e., to an equilib-
rium, but to a stationary amplitude of a decayless regime. In the data
analysis, the stationary amplitude may be lower than observational
resolution, and hence the oscillation apparently decays to zero. As an
exponential model is a limiting case of the super-exponential model,
corresponding to the index 𝑑 = 1, the exponential model may still
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be sufficiently correct in general. Also, our analysis shows that the
Gaussian–exponential model performs well in most cases, but a large
number of free parameters decreased its advantage in the Bayesian
comparison. In all ten analysed events, longer oscillation periods are
found to correspond to longer damping times. Upon further analy-
sis, this relationship generally confirmed a power-law scaling with a
consistent exponent around 0.6–0.7, established in Nechaeva et al.
(2019).

The damping model which attributes the kink oscillation damping
to the transition to a stationary oscillation in the decayless regime re-
quires further development, including its confirmation by full-MHD
numerical simulations. In particular, it should be investigated whether
the super-exponential function is indeed the best analytical expres-
sion for that process. Other open questions are whether the index 𝑑 is
actually significantly different from unity and if there is a combined
Gaussian–super-exponential decay pattern.

The small number of the analysed events, only ten, does not al-
low us to make rigorous conclusions about the empirical occurrence
rates of various damping regimes. However, our findings indicate the
need for reconsideration of the events presented in the catalogue of
Nechaeva et al. (2019), possibly supplemented by more recent events.
The aim of this reconsideration is to determine the preferential damp-
ing model for each event, choosing from the exponential, Gaussian–
exponential and super-exponential ones, and, possibly, other models
provided by theory. For most preferential models, the corresponding
damping times should be estimated. Analysis of empirical scalings
of various oscillation parameters requires the use of corrected val-
ues of the damping times and quality factors. On the other hand,
theoretical modelling of decaying kink oscillations should provide
us with scalings typical for various damping mechanisms, including
KHI and wave tunnelling and leakage.
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Figure A1. Decaying kink oscillations of 10 coronal loops (L1-L10) and their SoBAT analysis results. The black dots are the oscillatory signals. The green,
red and blue curves represent the MCMC fitting results of the exponential, super-exponential, and Gaussian-exponential models, respectively. The white dashed
curves in each panel represent their background trend. The white and blue vertical dashed lines indicate the start time 𝑡0 of each signal and switch time 𝑡𝑠 in the
Gaussian-exponential model, respectively.
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