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Abstract

By investigating a family of log-log type integrals on the unit domain and on the
positive half line, we produce a substantial number of new identities, representing the
value of the integral with the aid of Euler sums. A new family of Euler sum identities
will also be given, thereby extending the current knowledge.

Keywords Euler sums - Definite integral - Log functions - Clausen
functions - Riemann zeta functions

Mathematics Subject Classification Primary 11M06 - 11M35 - 26B15 -
Secondary 33B15 - 42A70 - 65B10

1 Introduction preliminaries and notation

There exists a vast literature in which an exceptionally large number of integral
formula have been developed, refer to [2, 4-6, 10, 12, 13, 23, 26] There are also
many research papers dealing with specific evaluations and analysis of representa-
tions of log-log type integrals, refer to [1, 3, 7, 9, 14, 25, 28] . In this paper the
intention is to extend the knowledge and application of these log-log type integrals
by examining families of the type,

x* logf x log(1 — x4)
[(a,m7p7fZ) :/ (1 _x)m+1

where (p,q) € N, m € Nyg,a € R in both the unit interval x € (0,1) and in the
positive half line x > 0. We shall represent the resulting integral (1.1) in closed form

dx, (L.1)
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1224 A. Sofo

in terms of special functions including the Riemann zeta function, Clausen functions
and harmonic numbers. For example we obtain some difficult to evaluate results of
the form

1
3 3
/ log"x log(l — ¥ )dx—%5(4)—6(§+§ln3>é(2) —Ziaf

*20 (-2’ 108 ¥ V3 (1.2)

+ (% - 13—31113) {((3) - (n +3Cl (23—”> > Ch (%”) -V3cy (231) ,

and on the positive half line

Oolog3xlog(1—x3) _ 812 B 4
/0 ST = L)~ 0+ 83N e "

where Cl,(%) and Cl4 (%) are the Clausen functions. Some special cases of (1.1)
have been considered in [8] and [14] but only for the case m = 0. The m # 0 case
adds some unexpected complexities in the analysis and the need to develop some
new Euler sum identities of the form

n H,

Wiy (Bo) = Zm

n>1

(1.4)

for real parameters (o, f,p) such that W' "(f,c) converges and the harmonic
numbers

.1
anzjsz(nﬂ)
j=1

where y is the familiar Euler Mascheroni constant and for complex values of z, z €
C\{0,—1,-2,----},(z) is the digamma (or psi) function defined by

W)~ loeT() = .

where I'(z) is the Gamma function, see [24] . In this paper we denote C, R, R, Z
and N as the sets of complex numbers, real numbers, positive real numbers integers
and positive integers respectively and let Ny := N U {0} and Z~ := Z\Ny. In (1.2)
we have the appearance of the Clausen function where the generalized Clausen
functions are defined for z € C with R(z) > 1 as,
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Explicit evaluations of log—log integrals 1225

and may be extended to all the complex plane through analytic continuation. When z
is replaced by a non negative integer n, the standard Clausen functions are defined
by the Fourier series

sin(kx)
y o
k>1
cos(kx)
1k

, for n even
Cly(x) = .
, for n odd

g/

k

v

The polylogarithm function Li,(z) is, for |z| <1

. 20, om
Liy(z) = > (1.5)

and in terms of the Polylogarithm,

(Ll (e ) — Li,(e")), for even n
C1,(0) =

N — N~

(Li, (™) + Li, (")), for odd n.

The polygamma function

K 00
Y6 = e} = )RS (16)

has the recurrence

—1)*k!
W+ ) =y +

and can be connected to the Clausen function in the following way. The Clausen

knp
function of rational argument and even integer order Cly,, (%) =3 Smk(z—,,) then,

k>1

for p an odd integer
am = gt (7) = D7) (v g i)

2q

and for p an even integer
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1226 A. Sofo

(2m—1)1(q)2'"c12m< ) ism( ) 2'"*”(’—'). (1.8)

q

From (1.5) we can define the polylogarithm for all non positive integer order, where
Li;(z) = —log(1 — z), Lig(z) = t%and, for n € Ny

a\" z \Jjtl
i = — E |
Lioa() <Zaz> -z IS+ 1,7+ 1)(1 —z) ’ (1.9)

where S(n + 1,j 4 1) are Stirling numbers of the second kind. Equivalently we can
write

Li_,(2) - n+1z< >

where the Eulerian numbers

(M =Ser("T o

J r=0

Some other pertinent papers dealing with Euler sums are [15-17] and the excellent
books [23, 26]. We expect that integrals of the type (1.1) may be represented by Euler
sums and therefore in terms of special functions such as the Riemann zeta function,
the Clausen function and the polygamma functions. A search of the current literature
has found some examples for the representation of the log-log integrals in terms of
Euler sums, see [27]. The following papers [11, 18-21] and [22] also examined some
integrals in terms of Euler sums. The two examples (1.2) and (1.3) will be considered
in detail, moreover, these integrals are not amenable to a computer mathematical
package.

2 Analysis of integrals

Consider the following.

Theorem 1 Let a € R> — 2 and (m,p,q) € Ny, the following integral,

1
I(a,m,p,q /x In”(x) tn(1 — ** )dx (2.1)
0

(1 m+1
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1
m_ M utl—A _ :
q s(u,u+1—2) Lij_, (x4
= [ I’ (x) ( = m)ﬂfj i) g
wxt=a(l — x)
(qn +Jj- 1) (2.2)

m

0 u=1 i=1

+
hg—-
N
=
M-

' X 1
a>1 =1 (gn+j+a—mP"

where H, are harmonic numbers, s(u, pt+ 1 — 4) are signed Stirling numbers of the
first kind and Li;_,(x?) are the polylogarithms at zero or negative integer.

Proof From the definition of the polyogarithm Li;(x?) = —log(1 — x7), a Taylor
series expansion, for x € (0, 1) produces

S )

n>1 Jj=

The m" derivative

d" (Lij(x9) Lij()\"™ &/m\ w( 1 \""
- — — L q\\\#
dx’”(l—x) <1—x #z:; u (L (7)) (1 —x)
m —u)!
— Li (x7))® (m — )
H(u)( T x>'"“ g
Lll x “ Lll x"
=m! ————— + m!
(1 )m-H ;M m-H —u
Li; (x7) “ g s (uy e+ 1 — 2)Li;(x9)
=ml i 1— mrT T 'ZZ Iei(] — x)mTIH ’
(1—x) e e pubxt (1 — x)

Therefore

x“logl (x) (L11(x‘1)> <m): m;w

1 — X (1 _ x)m+l
Sy o st 1 )
! 'x:u(l _ x)WH’l*/"
u=1 =1 K

and integrating both sides for x € (0, 1), we have
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1228 A. Sofo

1
Li; (x4)) ") X log? (x)Li; (4
/x“ logp(x)< lllixx)> dx = Lmdx
0 1 (2.4)
m_ K utl— / _
q s(u, ,u+1 x* log YL, (x7)
Sy / —— ,Mu dx.
u=1 A=1 0
From (2.3),
Li (x)) ™ L (qn+j—1 !
= m! H, Z gn+j m
I—x n>1 =1 m
consequently

n>1 j=1

4 n+j—1 —1)p!
_ an(" )
S m (qn+j+a—m)y

Here we require the exclusion of all terms of the form gn +j +a — m = 0 and for
convergence requirements we put p >m + 1. From the equivalent expressions (2.4)
and (2.5)

m+]

/x"log x)Li; ( )d

1
I gt 1—7) [x“log’(x)Li;_, (x4
+’"!qu s(p, p+ A)/x og’ ()Li;—u(x)
0

X'U'(l _ x)m+1—ﬂ

:’”’ZHHi(W +W/l'— 1) ( (.—1)P,i!m)p+]

gn +j+a

and theorem (1) is proved. O

The next corollary deals with the degenerate case of m = 0 for the representation
of the integral (2.1).

Corollary 1 Leta € R> —2,m =0 and (p,q) € Ny, the following integral,
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1(a,0,p,q) =/xa Inf() (1 = +7) 4 (2.6)
0

o (2.7)
)

p+1

p! Jj+ta
qp+l ZSIP+1< >

for p > 1. We utilize the following notation

HP)
S5 ) = X ey

where
¢(p, H(P :Z sneN,peCacC\{-1,-2,-3,....}
—1

This integral (2.6) is completely determined by (2.7), in terms of special functions,
since it depends on the known value of the Euler sums

Jta Hn(o)
S1+.,p++1 (O’ q ) :Z .

p+1
n>1 (n _|_-/+_”)
q

The following required Euler sum identity appears in [18]. Let o be a real number
a# —1,-2,—1,..., and assume that p € N\{1}. Then

H,
Z (n + a) :Sﬁ;(O, %)

n>1

(W(a) + 7))y P (a)
(—1)

- _ p=2 — . .
P e (7 ) )

J=1

(2.8)
where 7y is the Euler Mascheroni constant.

Proof From the Taylor series (2.3)
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1230 A. Sofo

x*1n? (x) In(1 — x?
I(a,0,p,q) / l_ni x)dx

)=

Hn

n>1

1
/an+1+a llnp )
0

1

=(— p+1p'ZHnZ

n>1 _]:1 qn+1+ap+1

.

p+1 | 4
p- Jjta

qp+1 Z Sty Lp+1 ( )

and proof is complete. O
Two examples are now given.

Example 1 Fora=0,m=0,p=3and g =3

1

3 —
1(0,0.3.3) /ln x) In(1 x)dx
1—x
0
3

o)

2 1 2
-2 (s++ ( , 3> st (0,3> LS, 1)> .
Now we can apply (2.8) then simplify with the aid of (1.8) and (1.7) and eventually

are led to the identity

1
3 3
[0 ) ) - 2 - St

(=]

here Cl, (%) and Cl4(%) are the Clausen functions.

In this next example we shall require Euler sum identities of the form (1.4), the
next proposition will be essential.

Proposition 1 Let o be a real number oo % —1,—2,—1,..., and assume that p €
N\{1}. Then
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n H,
Wi (L) = ———r = 5/1(0,a)

2 (64 w6 + 9 I - @) )

() ),
=

the sum Sﬁ; (0,) is given by (2.8) and y”)(a) are the polygamma functions.

Proof 1In (2.8) we put oo = i, y # 0, differentiate with respect to y and then rename y

as a so that (2.9) follows. Similar analysis allows us to evaluate W, p“fH(B7 a) for

peN. O

Example 2 For this example consider the case a = 0,m =2,p =3 and ¢ =3

1 (3n+]—1)
3
1(0,2,3,3) /ln3 6211”2#

) =1 = Gntj-— 2)*
/ 22: z": 3 st 1= 2) Ligy(6)
- X
0 n=1 i=1 ,U'X'u(l —)C)3 g

1
3Lip(x*)  3Lig(¥*)  9Li_;(x*
= / ln3(x) <x(1 O_(x))z - 2x2((1)( ))C) + 2x2(11(x))> dx
0

e[ )6 )

= |G-t Gt GBn+1)*

We have put in the values of the Stirling numbers of the first kind,
s(1,1)=1,5(2,2) = 1,s(2,1) = —1 (2.10)

and evaluating

(2.11)

we obtain
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1232 A. Sofo
3 3 1 3 2
1(0,2,3,3) = 6 S H, A S
=1 23n—1)" 2(3n)” 2(3n+1)

1 3 ox 3y 3x2
(2.12)

The Euler sums in (2.12) can be evaluated from (2.8) and ( 2.9). The integrals in
(2.12) can be evaluated by standard techniques and we evaluate the first integral to
give a hint of the method used. Consider

s 1
Z/f" 3910 (x)dx

1

/ xln zdx Z

0 1 —x)( n>1 =1y
3 1
— nin - - (2.13)
3; ( Jrl)jz;(?an—3—|-]—|—l)
. nn+1) nn+1) nn+1)
B 3,;((3n—1) * (3n)* +(3n+1)4>’

upon expansion and simplification using (1.8) and (1.7) we obtain

1

xln 2 27 1 8 80
/ - 1_x3 ) —ﬁcu(?)—§c<2>—5(3)+—243ﬁ—m (4).

0

Finally we obtain the identity (1.2),

1
In*(x) In(1 — x ) 895 3 2 2
[t oy S -5

(S (a3 (3) - (5.

3 The positive half line x>0

In this section we analyze the integral

J(a,m,p,q) = /

x>0

x*In?(x) In(1 — x9)
(1 _ x)m+]

and show that, without loss of generality the integral
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J(0,m,p,q) =J(m,p,q) / %dm (3.1)
>0

in certain cases of the parameters (m,p,q) depends on the representation of the

integral (2.2).
Theorem 2 Let (m,p,q) € N and put p>m + 1, then

Jonp.a) = [ %d = 1(0.m,p.q) + (—1)""" ' I(m — 1,m.p.q)

x>0
m+| | m (I’l+ l)m
in, -1 +1)! —
p! Z;B ,,H —q(=1)"(p+1) ,;Om!(wrm)””

(3.2)

where 1(0,m,p,q) and I(m —1,m,p,q) are given by (2.2), (n+1), is the
Pochhammer symbol and i = v/ —1.

Proof Let us put

In”(x) In(1 — x9)

A(m,p,q;x) = 01—

and notice that 1im0 A(m,p,q;x) =0, lim1 A(m,p,q;x) =0, we can write
x— >0t x—>1-

1 00
In” (x) In(1 fxq
J(m,p,q) = El)— T /A m,p; q; X /A m,p;q; X

x>0 x=0

upon making the transformation x# = 1 (and renaming ¢ as x) in the third integral we

obtain
A <m7p7 q; 1> <_ 12> dx
X X

X" n? (x) In(271)
(1 _ x)m+1

l\o

1
m,p,q) /Amp,q, )dx +

x=0 Xx:

dx

= / A(m,p, q;x)dx + (—1)" 7+

x=0 x:

=1(0,m,p,q )Jr(—l)’”‘”+1 I(m—1,m,p,q)

1
1 m—1 +1
(- m+p+1 /xm In” (x +1 _q(_l)m+p+1 / X" ? (x)dx

m (1 _x>m+1

L~

x=0

Expanding the last two integrands in a Taylor series form and then integrating in the
interval x € (0, 1), we have
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J(m,p,q) =1(0,m,p.q) + (=1)" 7" I(m — 1,m,p,q)

n+m n—+m
m+1mplz< ) <1>’"<p+1>!2((+";),,22-

n>0 n+m n>0 n

The Pochhammer symbol (4),, for (4, w) € C can be defined in terms of the Gamma
function I'(+), by

(A)OJ—W_ {/1()“4,1).'.()“{»}1—1),(0_}16 N,2€C

and conventionally understood that (0),= 1. Finally we obtain
J(m.p,q) =1(0,m,p,q) + (=1)" """ 1(m — 1,m,p,q)

n+1) n+1),

+ (=1 m+1in ! (4;”7 '

( ) p nzom!(n+m)p+l q nzom' n+mp+2

and (3.2) is proved. O

The particular case of m = 1 has a complete representation in terms of polygamma
functions and the details are developed in the following corollary.

Corollary 2 Let m = 1,(p,q) € N and put p > 2, then

Hipg) = / I’ (x) In(1 =)

x>0 (1=’
= imp!{(p) +q(p+ D(p +1) pHp'ZS ( 4 ) (3:3)
+7(1+(§;})p)p!zq:<(j— I)W)(]Tl+1> +pgy'?Y (J q1+1)>

J=1

where 1,D<p ) (f%l) are the polygamma functions (1.6) and S ( ,%) are the Sofo—
Cvijovi¢—Euler sums (2.8).

Proof Letm =1,(p,q) € N,
Jpg) = [ PRI g (1 110, 1p0)

2
Zo (1-x)
1 (3.4)
+ inp! q(p+1 _—
A AR e

=(1+ (*1) )10, lyp,q) +imp!{(p) +q(p+ 1)(p +1).

The required evaluation of 7(0, 1, p,g) can be done by applying (2.2) so that
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100,1,p,q) = / wd
=0

(1 -

1

: q

— s(1,1) / lnp(x)]:IO( )dx+ p+1p| an
=0

n>1 Jj=1

qn+]—1

since the Stirling numbers of the first kind s(1,1) = 1 and Liy(x?) =

1
X ‘1nP —1)y 1 E j—1
1(0,1,p,q) q/ )dx—i—( )p Zsﬁ;(m—).
x=0 1 =1 g

A similar evaluation of that used for the integrals in (2.12) yields the result

(1) 'pl (1 pl ji—1
1(0,1,p,q) :722 - )p+1+ g’ ZST‘; O’T

n
qp Jj=1 nZl(n i
q
i — 1
+ 1) —&-pqw(”_l)(J——&- 1))
q
j—1

e
VSR ( e (17
—gr (-0 (5
1Pt P
e Yo (o)
Substituting into (3.4) we have
(—1)P*!

1Y (1
q° ZSLP 0, q

J=1

+Wi((1’— Dy (j_ql+ 1) +pgy' <j_ql+ 1>>

Jj=1

J(1,p,q) = imp!{(p) +q(p + DX (p+1) +

which is the result (3.3). It is evident from (3.4) that in the case of odd integer p, say
2p — 1 then

[ 2 (x)1 1—xq
J(1,2p — /“ (=)
=0

l—x

=in(2p — I(2p — 1) + q(2p)L(2p).

Some examples follow.

Example 3 For m =2,p = 3,9 = 3 and from (3.2)
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1236 A. Sofo

)In(1 —
J(2,3,3) = / ln x)d =1(0,2,3,3)+1(1,2,3,3)
—x
x=0 ( ) (3.5)
n+1
—3in Z 4
n>0 n—|—2 n>0(n+2)

The evaluation of 7(0,2,3,3) is detailed in (2.12), therefore we now indicate the
evaluation of 7(1,2,3,3), from theorem 1

1
2 R +1-14 : 3
3 g(puo 4+ 1 — 24) Lij_y(x°)
_ 3
_/ln (X)ZZ ST B2 dx
0

puhr=a(1

3n+j—1
+62anq:—( 2 )

n>1 jl 3n+.]+1_2)4

Using the Stirling numbers (2.10), the values of Lip(x*) and Li_; (x*) given in (1.9)
we have

3n—1 3n 3n+1
1(1,2,3,3) =3 H, + +
( ) ; ((311)3 (Bn+1)° (3n+2)3>

1
; 3x° 9x> 3%
+o/ln v ((1 —x)*(1 —x3) +2(1 —x)(1 -y 201-x)(0 X3)>dx.

The Euler sums can be evaluated with the aid of (2.8) and (2.9), the integrals here can
be evaluated by the same method as described by (2.13). After some calculations we
find,

1 (3) 1 _ (3) g _M_i—ﬁ
1(1,2,3,3) = C() 486(w <3> W3 729 273 4

L C(3)+—C(3)ln3+23_8g(3)+?c(3)1n3
+ (tﬁ(l)(;) 71 3 —M_D ‘/’m(;) n <¢<1><§)

1 AW
o))

If we know simplify by employing (1.8) and (1.7), and specifically using
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Explicit evaluations of log—log integrals 1237

WG) =27 4 avac (2—”),¢<‘>(§) - _svaan (23—”)

@ (1) _8r @ (2) _ 8
¢3(3> S 162f014(3>¢ <3> 5 162fc14(3)

we get
2n 2n 27 273
1(1,2,3,3) =V3ClL [ = +<3c1 (—) > 1( )——
( ) 4(3) 2\3 \3) 273
127 13 3077 272
=L —{(3)In3 — — 2 3.
+ C( )+ 3 {(3)In3 1944 3 n3

Replacing these values in (3.5) we have

In*(x) In(1 — x%)
J(2,3,3) = — .~ 2ax=1(0,2,3,3)+1(1,2,3,3)
l) (1-x)°
+3in({(3) — £(2)) — 36(L(3) — {(4))

and simplifying we arrive at (1.3).

Example 4 For m =2,p = 4,9 = 4 and employing similar calculations as above,
provides the identity

In*(x) In(1 — x*) 127t 57°
J(2,4,4) = —d =12 —
x>0
257 17972 3 27
here, the Catalan constant
00 n+1
——— =~ 0.91597
2n—

n:l
is a special case of the Dirichlet beta function

n+]

i — Z,forRe() >0

n:l

z—1 z— 3

with functional equation
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1238 A. Sofo

s -2 = (2) sn(Z)rme

extending the Dirichlet Beta function to the left hand side of the complex plane
Re(z) <0.

Concluding Remarks We have studied of a family of integrals having log — log
and polynomial functions in terms of Euler sums, which themselves incorporate
special functions such as Beta functions, Clausen functions and Zeta functions. For
higher values of the parameters m, p and ¢ our results are new in the literature. We
have evaluated four specific examples which are not amenable to a mathematical
computer package. Further work examining integral families containing Polyloga-
rithmic functions will be presented in the near future.
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