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Featured Application: Deep learning-based diagnosis of a suspicious lesion using a simple hand-
held device such as smartphone. Awareness and frequency of diagnosis of malignant melanoma
will be increased thereafter, increasing the chances of detection of skin cancer at an early stage.
Out motivation is to deploy the deep learning algorithm using a smartphone application.

Abstract: Melanoma is the deadliest type of cancerous cell, which is developed when melanocytes,
melanin producing cell, starts its uncontrolled growth. If not detected and cured in its situ, it might
decrease the chances of survival of patients. The diagnosis of a melanoma lesion is still a challenging
task due to its visual similarities with benign lesions. In this paper, a fuzzy logic-based image segmen-
tation along with a modified deep learning model is proposed for skin cancer detection. The highlight
of the paper is its dermoscopic image enhancement using pre-processing techniques, infusion of math-
ematical logics, standard deviation methods, and the L-R fuzzy defuzzification method to enhance the
results of segmentation. These pre-processing steps are developed to improve the visibility of lesion
by removing artefacts such as hair follicles, dermoscopic scales, etc. Thereafter, the image is enhanced
by histogram equalization method, and it is segmented by proposed method prior to performing
the detection phase. The modified model employs a deep neural network algorithm, You Look Only
Once (YOLO), which is established on the application of Deep convolutional neural network (DCNN)
for detection of melanoma lesion from digital and dermoscopic lesion images. The YOLO model is
composed of a series of DCNN layers we have added more depth by adding convolutional layer
and residual connections. Moreover, we have introduced feature concatenation at different layers
which combines multi-scale features. Our experimental results confirm that YOLO provides a better
accuracy score and is faster than most of the pre-existing classifiers. The classifier is trained with 2000
and 8695 dermoscopic images from ISIC 2017 and ISIC 2018 datasets, whereas PH2 datasets along
with both the previously mentioned datasets are used for testing the proposed algorithm.

Keywords: skin cancer; melanoma; YOLO; fuzzy logic; melanoma detection

1. Introduction

Rapid growth of atypical skin cells due to alteration or inherited abnormality of
damaged Deoxyribonucleic acid (DNA) causes skin cancer, which is the deadliest type of
cancerous cell, contributing to 1/3 of total cancer cases worldwide as reported by World
Health Organization (WHO) [1]. Skin cancer is caused due to genetic and environmental
factors such as prolonged exposure to harmful ultraviolet (UV) radiation, collectively
UV-A (with long wavelength) and UV-B (with short wavelength), from the sun which
led to unresistant growth of melanocytes-the pigment producing cell of skin. Malignant
melanoma (MM), basal cell carcinoma (BCC) and Squamous cell carcinoma (SCC) are
commonly reported skin cancerous cells [2]. Among these various skin lesions, BCC and
SCC are non-melanocytic cancer and are considered to be innocuous, whereas the malignant
melanoma is most threatening with maximum death cases [3]. According to the reports
by the National Skin-Cancer Institute, the highest number of diagnoses cases is for skin
cancer, with most cases being reported in the USA [4]. According to the reports of federal
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data, 63,000 melanoma lesions were diagnosed in the USA from 2007 to 2011. According to
the American cancer society’s (ACS) 2017 report, every 54–60 min a person passes away
due to melanoma [5]. ACS’s annual report of 2019 estimates 96,480 new melanoma cases
with 7230 deaths from melanoma [6]. However, melanoma can be cured if diagnosed and
detected at an early stage [7]. The survival rate of melanoma is 95% when diagnosed in
situ (Stage 0), whereas the rate decreases below 15% if diagnosed in an advance stage [8],
if the tumor is not treated at its early state, it might metastases to lung or liver tumor,
thereby decreasing the mortality rate to less than 20% even after surgery. The report draws
a clear conclusion that timely identification and treatment of melanocytic lesion is directly
proportional to survival rate. Thereby, identification of melanoma lesions in its premature
phase is imperative (although the nature and intense growth of the lesion makes this a
formidable task).

As stated by dermatologists, the melanoma lesion can be visually similar to a mole,
pigmentation or/and non-melanocytic lesions, which makes it difficult to detect. Malignant
lesions are irregular and ameboid surfaced, rapidly growing lump, generally more than
5 mm in dimension, asymmetrical in shape, and can appear in shades of brown, black,
or deep gray. Lesion visually appears such as a contour of various color pigmented as a
cluster. Rapid development of the melanoma lesion may lead to itching, inflammation,
ulceration, or even bleeding. However, dermatologists also agree that a melanoma lesion
might not show any systematic sign and can grow in any area irrespective of exposure to
sun’s direct radiation. The dawn of twentieth century has witnessed traditional methods of
diagnosis and identification of skin cancer by physical screening and visual examination of
lesions. Clinical inspection of skin cancer by dermatologists depends on visual changes
in size, shape, and/or color. These conventional approaches are complex, susceptible,
and time consuming due to the visual complexities of skin lesions. Physical inspection
demands a proficient specialist for accurate detection of the lesion. However, the reports
for a particular lesion varies for different dermatologist due to inter observation variation.
Thus, the accuracy of lesion detection ranges between 74% and 85% when diagnosed by an
untrained dermatologist [9]. Thereafter, the process of manual diagnosis was replaced with
radioscopy, immunotherapy and invasive methods such as anatomical pathology, which
is a surgical incision for detection of malignant tumor wherein skin tissues are incised
and examined by a pathologist. Invasive methods are not preferred to be practiced by
clinical patients as these are painful and might take 3–12 weeks. Thus, with passing years,
non-invasive methods have gained significance, and modern economical equipment such
as Epiluminescence microscopy and dermoscopy are employed more often which produces
superior accuracy over previous methods [10]. Various in state-of-the-art (SOTA) noninva-
sive diagnosis techniques have been described such as digital photography, dermatoscopy,
multispectral imaging, optical coherence tomography (OCT), magnetic resonance imaging
(MRI), confocal laser scanning-microscopy, laser-based systems, ultrasound, conventional
microscope, and multiphoton tomography. However, dermatoscopy is much efficient
device for lesion detection. Dermoscopic devices are used to magnify and illuminate the
images of effected skin region, thereby increasing the clarity of the diagnosed pigment and
reducing reflection on the skin surface. Diagnosis performances are improved significantly
with the use of these modern dermoscopy devices.

Visual inspection is standardized and modernized with the help of contemporary
methods and algorithms such as CASH (color, architecture, symmetry, homogeneity),
ABCDE rule (asymmetry, border, color, diameter, evolving), Menzies method, and Seven-
point checklist [11–14]. Although dermatologists use modern dermoscopy devices and
visual inspection methods are unable to gain high accuracy marks due to low contrast
images between skin and lesion which makes it difficult to differentiate a melanoma from
non-melanoma skin lesion. In addition, various skin conditions such as hair, blood vessels,
skin tone, and the presence of air bubbles and ruler marks in the dermoscopy image
makes it challenging for a dermatologist to detect the lesion accurately. Thus, the processes
of identification of a lesion can become slow and time consuming for a dermatologist.
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Therefore, our predominant goal should be the development of a swift, efficient, and
accurate method for diagnosis of malignant lesion in its early stage. Thus, a noninvasive
computer aided diagnosis (CAD) system must be considered for regular practice, which
will not only relieve the patients from complication of invasive pathology but also increase
the accuracy and speed of diagnosis [15]. Advancement in machine learning algorithms
and segmentation techniques has ameliorated CAD systems and classification of deadly
skin cancerous lesion over past decade. CAD systems have shifted from workstations and
desktops to smart phones and enables the pathologist to detect malignant lesion which are
not visible to human eyes [16].

Banerjee et al. has proposed a deep learning method for digital diagnosis of melanoma
where the lesion is segmented using neutrosophic logic and convolutional neural net-
work (CNN) is used for classification [17]. The CNN based architecture is not efficient as
it primarily focuses on local features within repetitive field of each convolutional layer,
therefore it does not capture enough contextual information. Moreover, the CNN models
are sensitive to variations such as the presence of hair follicle or other artifacts along
with noise in the image. A fully deep learning-based CAD method is employed by
Alenezi et al., where VGG net based fully connected network (FCN) is used for segmenta-
tion of lesion and a series of convolutional, pooling and fully connected layers are used to
classification [18]. However, it has some limitation, FCN models down samples the input
image multiple times to extract high-level features and generate segmentation maps. This
down sampling reduces the spatial resolution of the segmentation output, making it chal-
lenging to accurately capture fine details and boundaries of small melanoma lesions. The
loss of spatial information can affect the segmentation accuracy, especially when dealing
with small or intricate lesions. Khan et al. has used an intelligent fusion-based method for
smart healthcare with 30 CNN layers [19]. Encapsulation of series of CNN layers tends to
overfit the model and effect the speed of overall system thereby making it ineffective to be
used as real-world application. InceptionNet is being employed by Gajera et al. extraction
of patch based local features [20]. The InceptionNet architecture relies on convolutional
operations of varying kernel sizes to capture information at different scales. However, it
struggles to capture global contextual information and long-range dependencies that are
important in melanoma classification. The lack of explicit modelling of spatial relationships
and context does limit its ability to accurately classify melanoma lesions based on complex
patterns and structures. Therefore, a robust and accurate deep learning-based CAD system
is the need of the hour, which can not only capture the global contextual information but
also able to classify the lesion without overfitting the model.

This research paper utilizes a computer-vision approach to diagnose malignant lesions.
The process involves three sequential steps: pre-processing of the lesion, segmentation
of the pre-processed lesion image, and classification of the lesion. The algorithm’s flow
is visually represented in Figure 1 through a flowchart. In the initial pre-processing step,
the image undergoes hair and artifact removal using the dull razor method, followed by
histogram equalization. The novel segmentation algorithm proposed in the paper employs
dynamic threshold calculation using standard deviation techniques and L-R fuzzy logic.
For classification, a deep convolutional neural network called YOLO is utilized, which
outperforms other CNN models [21]. Although the research relies on conventional methods
of CAD system for melanoma lesion identification, its originality lies in the integration of
modern aspects with well-established algorithms in malignant diagnosis. The proposed
method offers two significant advantages: (i) the utilization of a publicly available deep
learning-based neural network called YOLO, which accelerates the classification process
and reduces the false detection error rate; and (ii) the introduction of a segmentation
method based on standard deviation, which roughly separates the affected region from
the surrounding skin. This algorithm operates independently on all three colour channels,
and an ensemble logic is employed to combine the segmented marks. To further enhance
the segmentation results, a second iterative procedure incorporating L-Function fuzzy
number and improved defuzzification technique is introduced. The threshold series is
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adjusted using fuzzy theory to achieve better results compared to the first iteration. The
L-Function fuzzy number is used to handle the indistinctness aspect, and an adapted
threshold assessment rate is employed. These valuable algorithms significantly contribute
to the detection of melanoma lesions [22–24]. The remaining sections of the paper are
organized as follows: the next section provides a brief introduction to fuzzy logic in the
context of the research, followed by a description of the dataset and the implementation of
YOLO. Then, the proposed method is presented and supported by the results and analysis
sections. Our contributions can be summarised as follows:

1. We have introduced a two-phase segmentation by using a novel method of fuzzy
logic where triangular fuzzy number is used to calculate the threshold of the lesion.

2. We have modified the architecture of YOLO to achieve higher accuracy for classifi-
cation of melanoma lesion. We have increased the depth of YOLO architecture by
adding more residual network to allow the model to learn more complex features. We
have also introduced skip connections from different layers to combine multi-scale
information, this helps the model to capture local and global features which enhances
the classification accuracy.

3. We have demonstrated the effectiveness of the proposed pipeline for classification of
lesion using publicly available datasets (PH2, ISIC 2017, and ISIC 2018) against the
state-of-the-art algorithm.
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Figure 1. Flowchart of the proposed method for digital diagnosis of melanoma.

2. Preliminaries

In this section, we delve into the introduction of fuzzy logic, covering topics such
as fuzzy sets, fuzzy numbers, and triangular fuzzy numbers. The section provides a con-
cise overview of fuzzy logic, offering both mathematical and graphical explanations to
help readers grasp the concept. An interval U is designated between U = [UL, UR] =
{x : UL ≤ x ≤ UR, x ∈ R}, where R is the set of real number and UL and UR usually
denoted the left and right range of the interval respectively. A fuzzy set S̃ is defined
as S̃ =

{(
x, αS̃(x)

)
: xεS, αS̃(x)ε[0, 1]

}
which is usually presented by this ordered pair(

x, αS̃(x)
)
, here x is an element of the set S and 0 ≤ αS̃(x) ≤ 1

A fuzzy number S̃ ∈ F(R) is defined where R denotes the set of real number if
(i) S̃ is normal. that is, x0 ∈ R exists such that αS̃(x0) = 1.
(ii) For all α ∈ (0, 1], Aα is a closed interval.
A triangular fuzzy number P̃ = (p1, p2, p3) should gratify the following situations:
(1) αS̃(x) is a continuous function which is in the interval [0,1]
(2) αS̃(x) is strictly increasing and continuous function on the intervals [p1, p2].
(3) αS̃(x) is strictly decreasing and continuous function on the intervals [p2, p3].
A linear triangular fuzzy number denoted as P̃TFN = (p1, p, p3) can be represented

with the following definition of its membership function [22]. Figure 2 shows a graphical
representation of linear TFN along the x and y-axis.
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µ p̃TFN (x) =


x−p1
p2−p1

i f p1 ≤ x ≤ p2

1 i f x = p2
p3−x
p3−p2

i f p2 ≤ x ≤ p3

0 Elsewhere

(1)
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Parametric form of TFN or α-cut is defined as Aα =
{

x ∈ X
∣∣∣αS̃TFN

(x) ≥ α
}

=

{
SL(α) = p1 + α(p2 − p1) for α ∈ [0, 1]
SR(α) = p3 − α

(
p3 − p2

)
for α ∈ [0, 1]

(2)

where the decreasing function with respect to α is SR(α) and increasing function with
respect to α is SL(α).

3. Proposed Method

This section is divided into three subheadings (i.e., preprocessing of the lesion, seg-
mentation of lesion, and classification of the suspected lesion). A novel method for each
subcategory of computer aided diagnosis is noted below.

3.1. Preprocessing

The initial stage of the CAD system involves pre-processing the lesion image, which
encompasses the elimination of noise and other artifacts. First phase includes intensity
adjustment, morphological operation, binarization, color gray-scaling and data augmen-
tation. More specifically, this stage deals with the removal of noises and other artefacts
and enhancement of the raw images by adjusting contrast and histogram curves [25]. This
research paper proposes three notable steps for the pre-processing of dermoscopic images.
In the first step, the Dull razor algorithm [26] is utilized to remove digital hair from the
lesion image. A gray-morphological operation is employed to identify the hair’s location in
the dermoscopic image, which is then validated by removing adjacent pixels based on the
hair follicle’s thickness and length. To restore the affected pixels, a bilinear interpolation
algorithm is used, followed by the application of an adaptive-median filter to smoothen
them. In the second step, histogram equalization is employed to adjust the image’s contrast
and brightness, thereby enhancing the overall quality of the dermoscopic image. The
sequential outputs of these steps are depicted in Figure 3. Figure 3a represents the input
dermoscopic image, which undergoes the hair removal algorithm to produce Figure 3b.
Subsequently, histogram equalization is applied to improve the image’s quality, resulting
in well-defined lesion features, as shown in Figure 3c.
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Figure 3. Illustrates the pre-processing of a skin lesion, showcasing the following stages: (a) the
original dermoscopic image (arrows shows hairs on skin lesion), (b) the removal of hair using the
Dull Razor algorithm (arrows reflect to same points where hairs are removed digitally), and (c) the
image enhancement achieved through histogram equalization (the contrast of the lesion is increased
and the outer skin is brightened in this enhanced image such that a visual distinction between skin
and malignant lesion can be drawn).

3.2. Segmentation

Segmentation involves identifying the boundary of a lesion from the pre-processed
dermoscopic image. This step aims to digitally dissect the affected area from the sur-
rounding regular skin with a high level of correlation and focus on the region-of-interest
(RoI). There are seven categories of segmentation methods, which include thresholding,
clustering, active contours, quantization, pattern clustering, merging threshold, and fuzzy
methods. However, literature suggests that conventional segmentation methods such as
region enhancing, thresholding, and clustering face challenges when processing complex le-
sion images due to their computational and time complexity, leading to algorithmic failures.
To address this limitation, many researchers have turned to segmentation methods based
on deconvolutional networks, fuzzy methods, saliency, and k-mean algorithms [27,28].
Juanjuan et al. have employed GAN based method for segmentation of CT scan image for
classification COVID-19 [29]. Chen et al. have integrated feature pyramid with U-Net++
model for automatic segmentation of coronary arteries invasive coronary angiography [30].
The proposed method described here adopts a segmentation approach that involves two
iterations. To reduce the computational burden, a sub-matrix window of size 5 × 5 is
utilized for processing.

Phase-1
Step 1: The input image can be expressed as a matrix of size (I × J), where the location

of each pixel can be identified as:

(i, j) ∈ I ≡ {(1, 2, 3, . . . , I)× (1, 2, 3, . . . , J)}

Step 2: The process is executed on the R, G and B planes and the instance of the red
plane ri,j be the intensity value of the pixel location(i, j). Concurrently a (I × J) binary flag
image is created taking all of the values of the pixels fr(i, j) = 0.

Step 3: A 5 × 5 window will be created taking center pixel taking (i, j) where
i = (3, 4, . . . , I− 2)& j = (3, 4, . . . , J− 2)

Step 4: For a specific window having center (k, l) the pixel values are rk−2,l−2; . . .; rk,l;
. . . rk+2,l+2;

Step 5: If (|rk−2,l−2 − rk,l| ≥ T) where T = σ then fr(k−2,l−2) = 1 else fr(k−2,l−2) = 0,
where, selected region’s standard deviation is represented as σ.

Step 6: Thereafter, If (|rk+2,l+2 − rk,l| ≥ T) then fr(k+2,l+2) = 1 else fr(k+2,l+2) = 0
Step 7: By following this procedure, updated binary flag images will be generated

from the Green (fg) and Blue (fb) planes. These flag images will be used to create the final
binary flag image (ff) using the following operation.

Step 8: If the condition (fr(a,b) && fg(a,b) && fb(a,b)) == 1) is satisfied, then ff(a,b) will
be set to 1, indicating the presence of the segmented region in the pre-processed image.
The border line of the segmented region can be identified by performing the following
operation: If ff(a,b) = 0, mark the region; otherwise, continue the process. Here, a = (1, 2,
. . ., I) and b = (1, 2, . . ., J).
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Figure 4 illustrates the visual depiction of the initial stage of segmentation for an
example image. The pre-processed image undergoes segmentation using dynamic thresh-
old calculation based on standard deviation methods and ensemble logics. This process
generates a binary mask (depicted in Figure 4b) and identifies the segmented region of the
lesion (shown in Figure 4a) through the utilization of the algorithm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 20 
 

Figure 4 illustrates the visual depiction of the initial stage of segmentation for an ex-
ample image. The pre-processed image undergoes segmentation using dynamic threshold 
calculation based on standard deviation methods and ensemble logics. This process gen-
erates a binary mask (depicted in Figure 4b) and identifies the segmented region of the 
lesion (shown in Figure 4a) through the utilization of the algorithm. 

  

(a)    (b) 

Figure 4. The segmentation outcome following the initial iteration is depicted as follows: (a) The 
segmented output of the lesion, and (b) the segmented mask representing the lesion. 

Phase-2 
Once we have evaluated the affected area, we proceed to perform additional accurate 

image segmentation. Initially, we choose a threshold for phase-1 assessment based on the 
assumed ground truth. However, we observe that some non-affected regions are still in-
cluded in the image segmentation results. In order to reduce this, we introduce an addi-
tional threshold assessment with a value lower than T, which defines the completely af-
fected region. The following question remains, however: how much of the affected region 
lies in between the phase-1 and phase-2 threshold assessment rate? It is difficult to deter-
mine what should be the definite threshold assessment rate such that we can address the 
affected section and dispose of the highest non-affected region. To address the inherent 
uncertainty and imprecision in human perception, we introduced the concept of L-Func-
tion fuzzy number during the second iterative step of the image segmentation technique. 
By incorporating the L-Function fuzzy number, we aimed to tackle the uncertainty and 
improve the overall outcome compared to the first iteration. Additionally, we developed 
a defuzzification scheme specifically for the L-Function fuzzy number to convert it into a 
crisp value. This defuzzified result serves as the threshold assessment rate for the second 
phase of the segmentation process. 

A fuzzy number S is said to be an L-R type fuzzy number if:  

𝜇 (𝑥) = L ( ) , for i a, j 0R ( ) , for i a, k 0  (3)

Here, L is for left and R for right reference functions. 𝑗, 𝑘 are called left and right 
spreads, respectively. 

A fuzzy number S is said to be an L- type fuzzy number if: 

L(i; j, k) = 1,        i j( ) , j i k0,     i k   (4)

Figure 5 illustrates the representation of the L-function fuzzy number. On the other 
hand, Figure 6a,b depict the left and right regions respectively during the process of de-
fuzzification.  

Figure 4. The segmentation outcome following the initial iteration is depicted as follows: (a) The
segmented output of the lesion, and (b) the segmented mask representing the lesion.

Phase-2
Once we have evaluated the affected area, we proceed to perform additional accurate

image segmentation. Initially, we choose a threshold for phase-1 assessment based on
the assumed ground truth. However, we observe that some non-affected regions are still
included in the image segmentation results. In order to reduce this, we introduce an
additional threshold assessment with a value lower than T, which defines the completely
affected region. The following question remains, however: how much of the affected
region lies in between the phase-1 and phase-2 threshold assessment rate? It is difficult to
determine what should be the definite threshold assessment rate such that we can address
the affected section and dispose of the highest non-affected region. To address the inherent
uncertainty and imprecision in human perception, we introduced the concept of L-Function
fuzzy number during the second iterative step of the image segmentation technique.
By incorporating the L-Function fuzzy number, we aimed to tackle the uncertainty and
improve the overall outcome compared to the first iteration. Additionally, we developed a
defuzzification scheme specifically for the L-Function fuzzy number to convert it into a
crisp value. This defuzzified result serves as the threshold assessment rate for the second
phase of the segmentation process.

A fuzzy number S̃ is said to be an L-R type fuzzy number if:

µP̃(x) =

{
L (a−i)

j , for i ≤ a, j > 0

R (i−a)
k , for i ≥ a, k > 0

(3)

Here, L is for left and R for right reference functions. j, k are called left and right
spreads, respectively.

A fuzzy number S̃ is said to be an L- type fuzzy number if:

L(i; j, k) =


1, i < j

(i−j)
k−j , j ≤ i < k

0, i ≥ k
(4)

Figure 5 illustrates the representation of the L-function fuzzy number. On the other
hand, Figure 6a,b depict the left and right regions respectively during the process of de-
fuzzification.
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De-fuzzification of L-Fuzzy Number: A linear L-fuzzy number S̃FN can be trans-
formed into a crisp number using the area approximation system. The mathematical
formulation is,

∅ = AL(j) + AR(j) (5)

where, AL (j) = Area of left Zone (Rectangular shape (Figure 6a))

= 1.j = j

AR (j) = Area of Right Zone (Triangular area (Figure 6b))

=
1
2
(k− j). 1 =

(k− j)
2

Thus, Defuzzification value:

∅ = AL(j) + AR(j) =
(k + j)

2
(6)

Figure 7 showcases the outcome of the second sub-stage of segmentation, along with
its corresponding mask. The mask in Figure 7 demonstrates a more suitable and precise
representation compared to the output of the first sub-stage of segmentation.
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3.3. Classification
3.3.1. YOLO

In this rapidly advancing technological era, the field of medical vision has experienced
significant growth, leading to the development of impressive and capable strategies to
handle various complexities. Object detection algorithms in computer vision encompass
innovative ideas for identifying and locating multiple targets within an image [31]. On
the other hand, classification algorithms focus on determining the presence of a specific
subject in an image. These classification algorithms employ CNN classifiers passed through
predefined boxes, effectively removing the need for complex processes and enhancing
the performance of the image analysis. In contrast, object detection algorithms employ
a more advanced technique involving deep learning, which simplifies the process by
directly conceiving the boxes encompassing the entire image rather than focusing on
individual segments. As a result, this algorithm provides faster processing compared to
the previous approach. YOLO [32] is an exceptional and ground-breaking approach in the
field of computer vision, specifically designed for real-time object detection. Researchers
have prioritized passing classifiers over the entire image instead of fragmented sections,
enabling YOLO to process data at a remarkable rate of 45 video frames per second. YOLO
incorporates CNN layers with collapsing and merging techniques, yielding unparalleled
speed in object detection. This is achieved using regression and neural network techniques
during the initial learning phase. The YOLO algorithm’s effectiveness is further enhanced
by leveraging the knowledge of diagnostic tensors, which can be expressed mathematically
as an equation.

(M×M) ∗ B ∗ (5 + C) (7)

In this context, (M ×M) refers to the non-overlapping grid cells obtained by dividing
the specific image. The bounding boxes, denoted as B, rely entirely on the grid cells for
their predictions and calculation of confidence scores. The confidence score is represented
by C. By examining the confidence score, we can determine the presence or absence of an
object within the bounding box. If there is no prior existence of the object, the confidence
score will be zero. This can be expressed as follows:

C = Presence (Object) ∗ IoUgroundtruth
predicted (8)

According to the Google-Net YOLO architecture, there is a convolution layer with
a total of 24 counts, resulting in tensors of size (7, 7, 1024). These tensors serve as the
final output shape. Following this, there is a fully connected layer with two parameters,
producing 7 × 7 × 30 parameters, which are reshaped as (7, 7, 30). This indicates that
there are two boundary boxes for each location. The workflow of YOLO is summarized in
Figure 8, where an input image of size M ×M is depicted in Figure 8a. Bounding boxes are
generated in Figure 8b. Probabilistic mapping of classes is shown in Figure 8c, and the final
detection of the lesion is presented in Figure 8d.
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To determine the arrangement of numerous bounding boxes within each grid cell,
YOLO utilizes the Intersection over Union (IoU) metric to identify the highest value.
The loss function in YOLO encompasses the classification loss, localization loss, and
confidence loss, calculated using the sum squared error technique. YOLO also prioritizes
spatial diversity to minimize false positives during its operation. The YOLO algorithm has
undergone several versions, including YOLO v1, YOLO v2, and YOLO v3, each addressing
limitations from previous iterations and offering effective solutions. Extensive analysis has
led to the realization that class and object confidence estimations should be derived from
logistic regression, a crucial innovation introduced in YOLO v3 that was absent in earlier
versions. Furthermore, the practice of selecting the group of Melanoma (classes) with the
highest-class scores, a key step in previous versions, has been replaced with multilabel
classifications in YOLO v3. Notably, the latest version, YOLO v3, achieves exceptional
speed and performance, setting a benchmark with a COCO mAP 50 score that surpasses
previous versions [33].

In YOLO, the input image is divided into a grid of cells. Each cell is responsible for
predicting bounding boxes and class probabilities for objects within its boundaries. Prior to
training, anchor boxes are defined to capture the various aspect ratios and sizes of objects.
The anchor boxes are assigned to cells based on their overlap with ground-truth objects
during training. For each grid cell, YOLO predicts multiple bounding boxes along with
their associated class probabilities. Each bounding box consists of coordinates (x, y, width,
height) relative to the grid cell. The class probabilities represent the likelihood of the object
belonging to different predefined classes (e.g., melanoma, non-melanoma). YOLO typically
uses a deep convolutional neural network (CNN) as its backbone architecture, such as
Darknet or Darknet-53. The CNN processes the input image and extracts a feature map that
is shared across all of the grid cells. YOLO uses a combination of localization loss and clas-
sification loss to train the network. The localization loss measures the accuracy of bounding
box predictions, while the classification loss measures the accuracy of class probabilities.
The loss function is designed to penalize errors in both bounding box coordinates and
class predictions. After prediction, YOLO applies non-maximum suppression (NMS) to
eliminate duplicate and overlapping bounding box detections. It selects the most confident
bounding boxes based on their class probabilities and removes redundant detections that
have significant overlap.

To apply YOLO for melanoma lesion detection, the algorithm needs to be trained on a
dataset of melanoma and non-melanoma skin lesion images. The training process involves
annotating the images with bounding box coordinates and corresponding class labels. The
algorithm learns to detect and classify melanoma lesions based on the provided training
data. During inference, the trained YOLO model takes an input image, passes it through the
CNN backbone to obtain a feature map, and then applies the prediction process described
above. It outputs bounding boxes and class probabilities for potential melanoma lesions
in the image. NMS is subsequently applied to remove duplicate detections and retain the
most confident and non-overlapping predictions.

YOLO is known for its speed and efficiency, as it avoids the need for exhaustive
sliding window searches. The grid-based approach of YOLO allows for parallel processing
and significantly reduces the computational complexity compared to sliding window
approaches. This allows YOLO to capture global context and dependencies among objects,
contributing to accurate predictions. YOLO is highly efficient and fast compared to CNN-
based models. YOLO considers the entire image while making predictions for each grid
cell. This global context enables YOLO to capture dependencies and relationships between
objects and their surroundings. In the context of melanoma classification, global context
can provide valuable information about the lesion’s spatial relationship with other skin
regions, aiding in accurate classification. Since YOLO optimizes both the localization and
classification losses simultaneously, it requires fewer iterations to converge. This can be
advantageous when working with limited training data or resource constraints.
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We have modified the YOLO architecture by increasing the depth of the YOLO archi-
tecture by adding more convolutional layers and residual connections. This allows the
model to learn more complex features and potentially improve its accuracy. Enhance the
feature fusion mechanism in YOLO. We have introduced additional feature concatenation
from different layers to combine multi-scale information. This helps the model capture
both local and global context, leading to better classification. We have utilized binary
cross-entropy loss function for melanoma classification.

3.3.2. Training and Implementation

In the proposed algorithm, all dermoscopic images with varying resolutions are resized
to 512 × 512 pixels before undergoing the training process. This resizing step is performed
to reduce computational usage. The YOLO classifier is trained using the reshaped dataset
with the following parameters: a batch size of 64, a subdivision of 16, a decay rate of 0.0005,
a momentum of 0.9, a learning rate of 0.001, and 50,000 epochs. The weights of the classifier
are saved after every 10,000th epoch to ensure efficient location detection of dermoscopic
lesions. The trained classifier is then utilized to test the proposed algorithm, where the
output from the last sub-stage of segmentation serves as input for the classifier to detect
the lesion. Figure 9 demonstrates the detection process of the classifier, which identifies
malignant lesions and forms bounding boxes around them, enabling the precise location
detection of melanoma lesions.
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During the accuracy testing of the classifier, the dermoscopic image undergoes a series
of pre-processing and segmentation steps, which enhance the performance of the classifier.
This process is further detailed in the results and analysis section. It is important to note
that the classifier is trained by solely resizing the image to 512× 512 pixels while modifying
the last layer of the YOLO classifier.

4. Results and Discussion
4.1. Dataset

Medical image processing has emerged as a crucial domain for research, particularly
in the field of diagnosis of malignant lesion. The collection of relevant lesion images and
training the classifier with suitable dataset is a perplexing task. The proposed algorithm
was trained, tested and evaluated on three most commonly used, publicly available dataset:
PH2 [34], International Skin Imaging Collaboration (ISIC) 2017 [35] and ISIC 2018 [36]
datasets. Both the ISIC datasets are used for training the classifier and testing the proposed
algorithm, whereas the PH2 datasets are only used for testing and evaluating the proposed
method, thereby intending it as a holdout dataset for our algorithm. These images are
composed by specialized dermatologists after performing a series of dermoscopic analysis
on dots, pigmented region, and streaks of the lesion image. These publicly available datasets
were developed with the aim to aid researcher for their specialized research on analysis
of skin lesion, classification and segmentation. The PH2 datasets are published from
dermatology department of Pedro-Hispano hospital. A sum total of 200 dermoscopic lesion
images are present in this dataset, with 40 instances of melanoma lesion and remaining
160 instances of atypical nevi and normal nevi divided equally into two halves. These
dermoscopic images are of 768 × 560 pixels in resolution, captured with 20×magnification.
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Whereas a dermoscopic image resolution of ISIC 2017 dataset rages from 540 × 722 pixels
to 4499 × 6748 pixels. A total number of 2000 RGB image of 8-bit are used for training the
classifier and remaining 600 and 150 dermoscopic lesion images for testing and validation
respectively. ISIC 2018 dataset embodies 10,015 lesion images, where 1320 images are
assigned for testing and 8695 lesion images for training. Grouped dermoscopic images are
of 24-bit RGB and are sourced from ISIC library and HAM10000 dataset. These datasets
are annotated by expert dermatologist and have ground truth values for classification and
segmentation which make it favorable for research. Table 1 provides an overall tabulated
figure of each data used for training, testing, and validation.

Table 1. List of Skin Lesion Datasets used in this paper.

Dataset
Training Testing Validation Total

M NM M NM M NM M NM

PH2 --- --- 40 160 --- --- 40 160
ISBI17 374 1626 197 403 30 120 601 2149
ISIC18 779 7916 334 986 --- --- 1113 8902

4.2. Performance Evaluation Metrics

The proposed method has been evaluated in two phases; First, detection performance
of the location of the lesion using sensitivity, specificity score and IoU metric are presented.
The assertion of the recognised location is possible only if the score is more than 80% for
the IoU. Secondly, segmentation performance is investigated based on pre-defined metrics
to assess the functionality of the proposed methods. The measures used for validation can
be described as follows:

• Sensitivity (Se)—The measure of accurate segment lesions.
• Specificity (Sp)—The segmented ration for the non-lesion areas.
• Dice Coefficient (Dc)—This measure is used for the purpose of quantifying the seg-

mented lesions along with explaining the ground truth connection.
• Jaccard Index (JI)—The Jaccard Index is a metric used to measure the overlap or

similarity between the obtained segmentation results and the ground truth mask.
• Accuracy (Ac)—The overall performance of pixel-wise segmentation. It quantifies

how accurately the segmented pixels correspond to the ground truth labels.

The evaluation metrics mentioned above could be formulated in an equation for
calculation purpose, which is as below:

IoU =
Area under intersection

Area under Union
(9)

Ac =
True positive + True negalive

True positive + False negative + True negative + False positive
(10)

Se =
True positive

True positive + False negative
(11)

Sp =
True negative

True negative + False positive
(12)

Dc =
(2∗True positive)

(2∗True positive) + False positive + False negative
(13)

JI =
True positive

True positive + False negative + False positive
(14)

True Positive (TP) is considered by a lesion pixel in the image if it was detected and
segmented correctly. False Negative (FN) is referred when it is not detected correctly. The
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True Negative (TN) is referred when a non-lesion pixel is predicted as lesion one. Finally,
if the non-lesion pixel is been detected correctly as non-lesion than it is regarded as False
Positive (FP).

4.3. Analysis of Results

This section focuses on evaluating the performance of the proposed algorithm in the
research paper. The system configuration used for all operations and computations consists
of a Core-i7 processor, 16 GB RAM, and the Ubuntu 18.10 operating system. Python and
OpenCV framework are employed for image processing, forming the basis of the entire
system development. The performance analysis of the algorithm is based on four key
parameters: Competency of Lesion Location Detection, Segmentation Performance, Accu-
rateness of Feature Extraction, and Computational Time. Three publicly available datasets,
namely PH2, ISIC 2017, and ISIC 2018, are utilized in the detection and segmentation pro-
cesses.

To determine the effectiveness of lesion location detection, three parameters are con-
sidered: sensitivity, specificity, and intersection over union (IoU). The PH2 dataset achieves
a sensitivity score of 95%, specificity score of 96.25%, and IoU value of 94%. The ISIC
2017 and ISIC 2018 datasets exhibit notably high sensitivity and specificity scores. Table 2
provides an analysis of detection using YOLO v3. A high IoU score indicates accurate
lesion location detection, while elevated sensitivity and specificity scores signify precise
identification of melanoma and non-melanoma lesions, respectively.

Table 2. The performance evaluation of lesion detection using the YOLO algorithm.

Dataset Se (%) IoU (%) Sp (%)

ISIC 2018 95.51 90 95.54
ISIC 2017 95.43 91 95.78

PH2 95 94 96.25

After pre-processing the dermoscopic images, the segmentation process is applied
to each dataset. The performance of segmentation is assessed using the metrics, namely
accuracy, specificity, sensitivity, Jaccard score, and Dice index score. It is important to
note that our approach involves two phases for segmentation. In the first phase, the
primary objective is to select a significant area of the lesion mask to ensure that no features
of melanoma are lost during this process. Subsequently, in the second phase, a fuzzy-
based probabilistic thresholding method is employed to generate a more precise and
accurate segmented mask, resulting in improved segmentation outcomes. Table 3 provides
an overview of the results obtained from the first phase of our proposed segmentation
method, while Table 4 showcases the outcomes of the second sub-stage. Figure 10 visually
illustrates the steps involved in our approach. The evaluation metric scores generally
indicate higher performance in the second phase, as the LR-based fuzzy logic allows
for more precise and effective segmentation of the lesion. The average accuracy score
after the first sub-stage of segmentation is around 95%, which significantly increases to
an average of approximately 96% after the second sub-stage. This notable improvement
clearly demonstrates the significance of employing L-R fuzzy logic and fuzzy thresholding
in the segmentation process.

Table 3. Segmentation results of first phase.

Dataset Ac (%) Sen (%) Spe (%) Jac (%) Dic (%)

ISIC 2018 95.08 90.12 96.75 82.24 90.25
ISIC 2017 95.16 90.86 97.27 86.06 92.51

PH2 95.00 92.50 95.63 78.72 88.10
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Table 4. Segmentation results of second phase.

Dataset Acc (%) Sen (%) Spe (%) Jac (%) Dic (%)

ISIC 2018 95.91 91.62 97.36 85.00 91.89
ISIC 2017 96.16 91.88 98.26 88.73 94.03

PH2 96.50 97.50 96.25 84.78 91.76
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Figure 10. (a) Initial image input. (b) Lesion after undergoing hair removal and image enhance-
ment pre-processing. (c) Result of segmentation after the first phase. (d) Result of segmentation
after the second phase. (e) Detection and bounding box formation of melanoma lesion using the
YOLO classifier.

The proposed algorithm has achieved outstanding results compared to existing models
through proper dataset collection, preprocessing steps, and iterative segmentation methods.
In a comparison with similar datasets, our algorithm consistently demonstrates superior
performance. A detailed analysis of the projected algorithm based on metrics such as
Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Jaccard score (Jac), and Dice index
score (Dic) for PH2, ISIC 2017, and ISIC 2018 datasets is presented in Table 5, Table 6 and
Table 7, respectively. The highest and second highest scores are highlighted as bold and
underlined text so that the tables are more readable. Our proposed method achieves the
highest sensitivity and specificity score when compared to recent published works. The
segmentation results for PH2, ISIC 2017, and ISIC 2018 datasets exhibit better accuracy
values than existing approaches. This can be attributed to the highly specialized pre-
processing steps and novel segmentation methods employed, which contribute to the
exceptional evaluation metric scores.
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The proposed work is compared with several inspiring and successful segmentation
methods for the PH2 dataset, including multi-staged fully convolutional network (FCN)
with parallel integration (mFCN-PI) [37], semi-automated grab cut algorithms [38], se-
mantic segmentation techniques [39], and synchronized segmentation with classification
methods using a bootstrapping convolutional neural network model [40]. Ahmed et al.
have integrated MaskRCNN and RetinaNet for the segmentation of lesions [41]. How-
ever, our proposed method achieves an accuracy score of 98.50%, surpassing most of the
well-known approaches. Additionally, for the remaining four evaluation parameters, the
proposed method achieves the highest scores of 97.50% for sensitivity, 98.75% for specificity,
92.86% for Jaccard score, and 96.30% for Dice score.

For the ISIC 2017 dataset, the proposed algorithm is compared with several models
including deep convolutional deconvolution neural network (CDNN) [42], fully convolu-
tional network (FCN) [43], a fully convolutional-residual network (FCRN) [44], segmenta-
tion by assembling crowdsourced results of ISIC 2017 challenge [45], transfer learning with
pre-trained VGG16 or ResNet50 [46], a fully convolutional network (FCN) architecture
with ResNet18 and AlexNet in encoder and three deconvolution layers in decoder part [47],
and FrCN model for simultaneous segmentation and classification [48]. Among these, the
accuracy performance of Hasan et al. [39] is the second-best in the table with a score of
95.3%, while our proposed method achieves an accuracy score of 96.17%.

In the case of ISIC 2018 dataset, the proposed method is compared with several
works including Encoder-Decoder with pyramid pooling modules [49], DilatedSkinNet
architecture [50], encoder-decoder network with CRF [51], and Encoder-decoder algorithm
with Deeplab and PSPNet [52]. The comparative study reveals that the proposed algorithm
achieves the highest scores for accuracy, Jaccard index, and dice coefficient, which are
95.9%, 85.00%, and 91.9% respectively. The specificity score for the ISIC 2018 dataset is
97.4%, which is similar to that of Shahin et al. [49]. Our novel method for segmentation of
lesion using fuzzy logic proved to be effective and quick when compared with other deep
learning method which employs complex architecture of ResNet34, deep convolutional
neural network (DCNN), autoencoders, and fully convolutional neural networks (FRCN).

Table 5. Comparison of the segmentation results obtained from the proposed method with a recent
study conducted on the PH2 dataset.

SOTA Year Ac (%) Se (%) Sp (%) JI (%) Dc (%)

Proposed method 2021 98.50 97.50 98.75 92.86 96.30
Ahmed [41] 2023 ----- 93.20 96.10 92.90 94.3

Hasan et al. [39] 2020 98.70 92.90 96.90 ----- -----
Xie et al. [40] 2020 96.50 96.70 94.60 89.40 94.20

Unver et. al. [38] 2019 92.99 83.63 94.02 79.40 88.13
Bi et al. [37] 2019 95.03 96.23 94.52 85.90 92.10

Table 6. Comparison of the segmentation results obtained from the proposed method with a recent
study conducted on the ISIC 2017 dataset.

SOTA Year Ac (%) Se (%) Sp (%) JI (%) Dc (%)

Proposed method 2021 96.17 91.88 98.26 88.73 94.03
Barin et al. [47] 2022 93.47 79.25 97.8 77.54 87.35
Hasan et al. [39] 2020 95.3 87.5 85.5 ---- ----

Al-Masni et al. [48] 2020 81.57 75.67 80.62 ---- ----
Soudani et al. [46] 2019 94.95 85.87 95.66 78.92 88.12

Li et al. [44] 2018 93.2 82 97.8 76.2 84.7
Sarker et al. [45] 2018 93.6 81.6 98.3 78.2 87.8
Yuan et al. [42] 2017 93.4 82.5 97.5 76.5 84.9

Bi et al. [43] 2017 93.4 80.2 98.5 76.0 84.4
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Table 7. Comparison of the segmentation results obtained from the proposed method with a recent
study conducted on the ISIC 2018 dataset.

SOTA Year Ac (%) Se (%) Sp (%) JI (%) Dc (%)

Proposed method 2021 95.9 91.6 97.4 85.0 91.9
Ahmed [41] 2023 ----- 91.6 97.8 91.4 90.7

Barin et al. [47] 2022 94.65 95.85 87.86 84.17 91.40
Shahin et al. [49] 2019 ----- 90.2 97.4 83.7 90.3

Ji Y et al. [50] 2018 94.3 91.8 96.4 83.4 90.0
Koohbanan NA et al. [51] 2018 94.5 94.0 94.2 87.7 90.3

Qian C et al. [52] 2018 94.2 90.6 96.3 83.8 89.8

The segmentation of melanoma lesion is difficult due to its asymmetrical shape,
irregular border, and varied colour. We have not employed deep learning models for the
segmentation of lesions as they are computationally expensive and require significant
computational resources, whereas threshold based fuzzy logic for segmentation of lesion is
computationally lightweight and is thus more efficient for real-time or resource-constrained
environments. Moreover, fuzzy logic-based methods can handle noise and uncertainties in
the image data effectively. By incorporating fuzzy sets and membership functions, we can
account for variations and imperfections in the input image. Deep learning models, on the
other hand, are more sensitive to noisy or imperfect input data.

We compared our proposed recognition algorithm with several well-established clas-
sifiers, namely decision tree, Support Vector Machine (SVM), k-nearest neighbor (KNN),
and YOLO v3. The comparison between our method using YOLO and these classifiers
was conducted using various metrics. In addition to metrics such as sensitivity, specificity,
precision, accuracy, and area under curve (AUC), we also considered the time taken (in
seconds) as a measure to assess the speed of our method. For the same set of datasets,
we employed different variants of SVM, including Lagrangian Support Vector Machine
(LSVM), Consensus Support Vector Machine (CSVM), Quantum Support Vector Machine
(QSVM), and Medium Gaussian Support Vector Machine (MGSVM), to classify malignant
lesions. Similarly, we utilized various methods of KNN, such as Fuzzy k-nearest neighbor
(FKNN), Modified k-nearest neighbor (MKNN), Weighted k-nearest neighbor (WKNN),
Cosine KNN, and Cubic KNN. Despite using similar datasets for the classification of
melanoma lesions, our YOLO classifier outperformed the others in terms of accuracy and
AUC value. Furthermore, it accomplished the classification task in just 7.01 s. Table 8
presents a tabular representation of the different classifiers, along with the various methods
used and the evaluation parameters.

Table 8. Contrast between the modified YOLO classifier and other widely recognized classifiers.

Clasifier Method Ac (%) Se (%) Sp (%) Pr (%) AUC Time

TREE
CT 91.5 87.82 93.30 86.5 0.95 8.79
ST 88 88.33 87.84 78.03 0.92 12.65

SVM

LSVM 96.5 93.91 97.77 95.36 0.96 11.21
CSVM 86.5 85.28 87.10 76.36 0.91 142.76
QSVM 97 94.42 98.26 96.37 0.97 21.41

MGSVM 96.33 94.92 97.02 93.97 0.98 14.64

KNN

FKNN 93.83 92.39 94.54 89.22 0.91 10.45
MKNN 97.33 94.42 98.76 97.38 0.97 10.1
Cosine 97 93.91 98.51 96.86 0.98 11.02
Cubic 96.66 93.40 98.26 96.34 0.97 101.42

WKNN 98.16 96.45 99.01 97.94 0.98 12.94

YOLO PM 98.16 95.43 99.50 98.95 0.99 7.01
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We have benchmarked the proposed method with classical method such as Tree, SVM,
and KNN for classification of melanoma lesion. The pre-processed and segmented lesion
images are passed through to each classifier for classification of lesion. We have employed
classical algorithms which can handle noisy data and outliers. As is known, decision
trees can handle noisy features by creating multiple splits and finding alternative paths.
Similarly, SVMs can also handle noisy data by using a soft-margin approach that allows
for some misclassification. This robustness is advantageous for melanoma detection as the
data quality is noisy and irregular. On the other hand, deep learning models are sensitive
to noisy data. Moreover, the classical methods are interpretable and valuable for medical
applications. Additionally, the availability of training limited data has obligated us to
employ classical methods as they perform well will limited data without a fear of exploding
or vanishing gradient.

The comparison among various classifiers and our suggested method has clearly
demonstrated improved efficiency and reduced detection time. As shown in Table 8,
the proposed method achieved an accuracy of 98.17% with a sensitivity of 95.43% and
specificity of 99.50%. The detection time for melanoma using our method was 7.01 s,
which is significantly lower compared to most classifiers. Moreover, the implementation
of automatic hair removal and image enhancement through pre-processing models has
contributed to the enhanced accuracy of our proposed method.

The importance of segmentation is demonstrated in Tables 9 and 10, where the ac-
curacy, sensitivity, and specificity values are higher when the proposed segmentation
is applied before the classification of lesions. The advantage of our pre-processing (PP)
method is shown in Table 11, which lights the accuracy, sensitivity, and specificity of
classification of lesion. The table clearly shows the importance of digitally removal of
artefacts from the images and enhancement of images. This highlights the significance and
advantage of the proposed pre-processing and segmentation steps. When segmentation
and pre-processing techniques are employed prior to classification, the YOLO classification
achieves significantly higher performance metrics. This is attributed to the enhanced image
quality of the lesions and the exposure of their features, enabling more accurate detection.

Table 9. Performance analysis of detection of lesion using YOLO without proposed segmentation.

Dataset Se (%) Ac (%) Sp (%)

ISIC 2018 92.00 91.29 90.97
ISIC 2017 91.00 91.00 90.32

PH2 90.00 93.00 93.75

Table 10. Performance analysis of detection of lesion using YOLO with proposed segmentation.

Dataset Se (%) Ac (%) Sp (%)

ISIC 2018 95.51 95.19 95.54
ISIC 2017 95.43 95.58 95.78

PH2 95.00 96.83 96.25

Table 11. Performance analysis of detection of lesion with/without proposed pre-processing method.

Dataset Se (%) Ac (%) Sp (%)

With PP 95.43 98.16 99.50
Without PP 94.42 97.00 98.26

The proposed pipeline outperforms the state of art method for segmentation and
classification of melanoma lesion. However, we have trained and tested our model on
limited dataset and moreover an enhanced algorithm for pre-processing should be proposed
to deal with removal of digital artefacts more effectively. The availability of limited data
from ISIC 2017 and 2018 dataset have limited the training set, and we aim to use generative
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adversarial networks (GAN) for the task of high-quality synthetic data generation (which
will increase the size of dataset and thereby increase the accuracy of classification). We also
aim add a clinical feature extraction method (based on principles of ABCD rule) which will
help decrease the specificity and assure the medical practitioners to use our algorithm.

5. Conclusions

The incidence of melanoma has been steadily increasing over the past few decades
and is projected to continue rising worldwide. The characteristics of melanoma are unpre-
dictable and influenced by factors such as age, sex, ethnicity, and geography. Our work
aims to make a significant contribution to the timely and accurate detection of melanoma
by proposing a custom-designed pipeline for classification of melanoma lesion wherein
the dermoscopic image of a lesion is pre-processed and passed to segmentation algorithm.
Threshold for segmentation of lesion is calculated by standard deviation method in phase
one and by L-fuzzy logic in phase two. Furthermore, the segmented lesion image is clas-
sified by the modified YOLO classifier, which has more depth and is able to concatenate
multi-label features to produces enhanced and more accurate results. By utilizing the deep
learning-based YOLO classifier, we can increase the speed of the detection process without
compromising the validity of the output. Our modified YOLO classifier achieves optimal
results with faster detection times. We conducted testing and training on three well-known
publicly available datasets: PH2, ISIC 2017, and ISIC 2018. Our work was evaluated against
other notable research in the field and demonstrated moderate improvements in the evalu-
ation parameters. While the mortality rate among melanoma patients has shown a decline,
there is still a need for further advanced research to benefit all patients, regardless of the
nature of their lesions.
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