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Abstract

In addition to the established postural control role of the reticulospinal tract
(RST), there has been an increasing interest on its involvement in strength, motor
recovery, and other gross motor functions. However, there are no reviews that
have systematically assessed the overall motor function of the RST. Therefore,
we aimed to determine the role of the RST underpinning motor function and re-
covery. We performed a literature search using Ovid Medline, Embase, CINAHL
Plus, and Scopus to retrieve papers using key words for RST, strength, and motor
recovery. Human and animal studies which assessed the role of RST were in-
cluded. Studies were screened and 32 eligible studies were included for the final
analysis. Of these, 21 of them were human studies while the remaining were on
monkeys and rats. Seven experimental animal studies and four human stud-
ies provided evidence for the involvement of the RST in motor recovery, while
two experimental animal studies and eight human studies provided evidence
for strength gain. The RST influenced gross motor function in two experimental
animal studies and five human studies. Overall, the RST has an important role
for motor recovery, gross motor function and at least in part, underpins strength
gain. The role of RST for strength gain in healthy people and its involvement in
spasticity in a clinical population has been limitedly described. Further studies
are required to ascertain the role of the RST's role in enhancing strength and its

contribution to the development of spasticity.
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1 | INTRODUCTION

Strength is defined as the maximal amount of torque that
can be produced by a muscle (Coulson, 2021). It is im-
proved by physical activity and is associated with a 10%-
17% decrease in all-cause mortality, total cancer, diabetes,
and cardiovascular diseases (Momma et al., 2022). Being
active is an integral part of life which improves quality
of life and increases life expectancy (National Institute
on Aging, 2001; Schoenfeld et al., 2021). Globally, 9% of
premature deaths and 6%-10% of major chronic noncom-
municable diseases are caused by physical inactivity (Lee
et al., 2012). Strength training reduces the risk of depres-
sion (Salmon, 2001); minimizes muscle loss during aging
(Tieland et al., 2018); is effective for reducing chronic
pain (Geneen et al., 2017); and is used for rehabilitation
or recovery from disability following stroke and orthope-
dic surgery (Ada et al., 2006) among others. Strength gain
leads to functional independence, improved cognition and
self-esteem (Westcott, 2012). Moreover, strength training
is important for increasing performance in different pop-
ulations (Breese, 2019; Haff & Triplett, 2015). A decrease
in strength leads to muscle weakness and consequent
functional impairment (Visser et al., 2000) or disability
(Rantanen et al., 1999), increased dependency (Janssen
et al., 2002), reduced quality of life (Clark et al., 2015), and
higher risk of fall injury (De Rekeneire et al., 2003) and
mortality (Newman et al., 2006). Therefore, it is imperative
to prevent the loss of strength, and strength training has
been shown to be an effective intervention to counteract
the decline in the force generating capacity of the muscle
because of injury, disease, or aging (Siddique et al., 2022).

Strength gain, a state of getting stronger overtime
(Glover & Baker, 2020), occurs due to both muscular and
neural adaptations (Folland & Williams, 2007). Strength
begins to increase following three to five training sessions
(Del Vecchio et al., 2019; Hortobagyi et al., 2011; Mason
et al., 2020), and these immediate strength gains within
the first few weeks are attributed to neural adaptations
(Pearcey et al., 2021). Neural adaptations that underpin
strength gain likely involve multiple sites in the nervous
system (Gabriel et al., 2006; Lee et al., 2009). However,
the precise site of adaptation remains relatively ambig-
uous, although changes in intracortical inhibition seem
to be commonly reported in many studies (Skarabot
et al., 2021). Increased corticospinal excitability (CSE) fol-
lowing strength training has been reported by some stud-
ies (Goodwill et al., 2012; Mason et al., 2017) while other
studies have reported no changes (Ansdell et al., 2020;
Jensen et al., 2005; Latella et al., 2012). A meta-analysis
by Kidgell et al. (2017) and a study on humans by Nuzzo
et al. (2017) showed that adaptation following strength
training involves reduced short-interval cortical inhibition

(SICI) and cortical silent period but no changes in CSE.
Many of the studies have focused on the motor cortex and
corticospinal tract (CST), and the findings are inconsis-
tent regarding the predominant site of neural adaptation
(Atkinson et al., 2022). Interestingly, studies that have
used a metronome or controlled the repetition timing
(i.e., externally paced strength training) have reported in-
creases in CSE and reductions in SICI, while studies that
have included self-paced strength training have reported
no changes in CSE or SICI (Leung et al., 2015). More im-
portantly, whether the strength training is paced or not,
strength gain still occurs (Leung et al., 2015). Therefore,
there must be other sites, for instance the reticulospi-
nal tract (RST), which might account for the increase
in strength in the absence of changes in CSE and SICI
(Skarabot et al., 2021). In support of this, nonhuman stud-
ies have reported that the RST is a potential site of neural
adaptation to strength training (Glover & Baker, 2020).

The RST, the most important extrapyramidal tract, is
a major descending pathway primarily responsible for
locomotion and postural control (Prentice & Drew, 2001;
Schepens & Drew, 2006). Additionally, the RST regulates
muscle tone during gait (Takakusaki et al., 2016) and con-
trols upper limb muscle activity (Dean & Baker, 2017). In
contrast to the dominant contralateral CST that innervate
smaller motoneuron pools (Buys et al., 1986) responsible
for fine movements (Zaaimi et al., 2018), the RST oper-
ates bilaterally in the spinal cord, supplying larger groups
of neurons in a synergistic pattern (Peterson et al., 1975).
The involvement of the RST in gross motor function has
been confirmed through studies conducted on nonhuman
subjects, such as macaque monkeys. These studies have
shown that surgical lesions to the CST lead to the loss of
fine movement, whereas lesions to the RST result in the
loss of gross motor function. Importantly, recovery of
gross motor function has been observed following a lesion
to the RST (Lawrence & Kuypers, 1968).

The RST also has a role for the recovery of gross motor
functions following contralateral CST lesioning. Zaaimi
et al. (2012) showed that post-recovery medial longitudi-
nal fasciculus (MLF) stimulation, a technique to assess
the RST function, resulted in increased amplitude of post-
synaptic potentials elicited from motoneurons innervating
forearm flexor muscles while ipsilateral pyramidal stim-
ulation resulted in weak responses in forearm and hand
muscles (Zaaimi et al., 2012), implying the important role
of the RST in functional motor recovery.

In addition to the studies on nonhumans, stroke pa-
tients also showed the role of RST in gross motor func-
tion and resistance training (Alagona et al., 2001; Li
et al., 2019; Pineiro et al., 2001). In stroke patients with
a lesion to the CST, the RST undergoes adaptation in-
volving increased synaptic efficacy, and strengthens its
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connectivity to preserve motor function or compensate for
the loss of motor function of the CST (Alagona et al., 2001;
Li et al., 2019; Pineiro et al., 2001). In patients with spi-
nal cord injury (SCI), there was increased excitability of
the reticular system to partly restore motor function in
the upper limb, compensating for injury to the spinal cord
(Baker & Perez, 2017; Sangari & Perez, 2019). Taken to-
gether, in experimental animals and in humans, the excit-
ability of the RST appears to be important for the recovery
of motor function following injury and/or disease.

Despite the absence of reviews that have systematically
assessed the overall motor function of RST, the limited
number of studies available and their heterogeneity pose
challenges in synthesizing the data for a meta-analysis.
Therefore, we conducted a scoping review with the aim
to systematically assess the overall motor function of the
RST. Specifically, this scoping review, appraised all exper-
imental animal and human studies on the role of the RST
in strength gain, gross motor function, development of
spasticity, and motor recovery following neurological in-
jury. The findings of this review will provide a synthesis
of information on the RST and guide future efforts to in-
vestigate the RST in the context of strength training and
motor recovery.

2 | MATERIALS AND METHODS

2.1 | Search strategy

This scoping review followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses exten-
sion for Scoping Reviews (the PRISMA-ScR) reporting
guideline. The search was performed using four data-
bases: Ovid Medline, Embase, CINAHL Plus, and Scopus
to retrieve papers for this scoping review. For the search,
key terms were used for our main objective or research
question to access important studies. Alternative terms
for each key word were also searched in the index terms,
title, and abstract of each database. Search results of each
key word and their alternative terms were combined by
the Boolean operator “OR”, and the sets of key words and
their alternative terms were combined by the Boolean op-
erator “AND”. We limited our search to English language.
The search strategy for OVID Medline and Embase da-
tabases (The search strategies for all used databases are
attached as Data S1) were ((“Reticulospinal tract*” OR
“Reticulospinal outflow®” OR“Ipsilateral motor-evoked
potential*” OR “Ipsilateral MEP*” OR “Acoustic startle*”
OR “StartReact”®) and ((“Hand strength*” OR “Muscle
strength*” OR “Muscle force*” OR “Maximum volun-
tary contraction®*” OR “Balance*” OR “Motor Recover*”
OR “voluntary elbow flexion*” OR “Grip strength*” OR
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“Sarcopenia” OR “Isometric contraction*” OR “wrist
flexor muscle*” OR “hand muscle*” OR “dorsal interos-
seous muscle*”).

2.2 | Study eligibility criteria

2.2.1 | Types of participants

All studies which focused on humans aged older than 18
and on experimental animals involved in the assessment
of the role of RST were included.

2.2.2 | Concept

Studies on the function of and changes in the connectiv-
ity of the RST during different circumstances including
motor recovery (i.e., restoration of motor performance
following insult to the nervous system), strength training
and aging were included.

2.2.3 | Context

Studies conducted on experimental animals in the labora-
tory or in human subjects, male or female, in the com-
munity undergoing strength training or without strength
training, on patients with SCI or stroke resulting in mus-
cle weakness or motor impairment were included in this
scoping review. Studies that did not assess or report the
RST changes or function were excluded.

2.3 | Types of evidence sources

Primary studies, quantitative or qualitative, were included
in this scoping review. Systematic and narrative reviews
were excluded but their reference lists were checked man-
ually for any relevant study.

2.4 | Evidence screening and selection

Selected studies for the scoping review were based on our
inclusion and exclusion criteria. Any study on nonhu-
man or human reporting on the role of RST was included.
No publication year or geographical restriction was ap-
plied. Studies written in English and published before our
search, 20 March 2023, were included. All search results
were transferred to Endnote Version 20 reference man-
ager and then exported to Covidence to remove duplicates
and for title and abstract screening, and full-text review
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by two independent reviewers (YA and DJK). During
full-text review, studies with an appropriate design (to an-
swer our research questions) and reporting or assessing
the change, role, contribution, and effect of the RST were
considered relevant and selected for the final data extrac-
tion. Studies which did not clearly and specifically state
the role of RST were excluded. Five studies were excluded
during full-text review due to: wrong outcome/different
outcome of interest (Fujiyama et al., 2011); failure to state
the role of RST for strength or motor function/motor re-
covery (Chen et al., 2016), inaccessible paper (Choudhury
et al., 2017); lack of clarity whether the sound elicited a
StartReact response and the intensity of sound not known
(Aluru et al., 2014); nonspecific report on RST, rather on
extrapyramidal tract contribution for motor impairment
(Paul et al., 2022). During the screening process, disagree-
ments were resolved by a third reviewer (MR).

2.5 | Data charting

After selection of relevant studies, the following data were
extracted using Microsoft Excel: author name, country,
publication year, population type (experimental animal
[Rat or monkeys] or human, healthy participant or pa-
tients with stroke, SCI), sample size, aim of the study,
intervention, motor tasks, type of muscle used for elec-
tromyography (EMG) recording, target muscle or nerve
for intervention for interventional studies, measure-
ment method of outcome variable or technique of RST

assessment (e.g., StartReact, ipsilateral motor-evoked po-
tential [IMEP] or other) and the role of RST or key electro-
physiological findings.

3 | RESULTS

3.1 | Search results and studies’
characteristics

A total of 1946 studies were accessed using Medline (1618),
Embase (156), CINAHL (Valls-Sole, 2012), and Scopus
(172) databases. We also acquired 30 additional papers di-
rectly from reference lists of review papers. After removal
of duplication (262 papers), 36 relevant studies were iden-
tified by title and abstract screening. From these relevant
studies, four were excluded during full-text review. One of
the relevant studies was inaccessible and hence excluded
(Choudhury et al., 2017). Finally, 32 papers were included
for the analysis (Figure 1 PRISMA). From the total of 32
studies, 22 were human studies (Tables 1-4).

3.2 | Identifying the function of the
reticulospinal system

Different experimental animal and human studies exam-
ined the function of the RST for motor recovery (12 studies),
maximum force production or strength gain (11 studies),
and gross motor function and neural drive (seven studies).

[ Identification of studies via databases

(n=262)

[

-.9.. Records identified from Records remov Ed_ before
© screening:

2 Databases > Duplicate records removed
S (n =1946) P

[

3

M I
Records screened Records excluded
——-
(n =1803) (n=1766)
o
i=
H
2 v 5 studies excluded
& o e Wrong outcome (n = 1)
Reports assessed for eligibility « Did not state the role of RST on strength or motor
(n=37) » function/recovery rather on M1 (n = 1)
e Unclear whether the sound elicit StartReact
response and the intensity of sound not known (n
=1)
e Reported about the extrapyramidal tract but did FIGURE 1 The process of
_ not specifically report on the reticulospinal tract (n identifying, screening, and assessing
=1 . . .
N Y «  Notaccessible (n = 1) the included studies according to the
3 Studies included in review PRISMA-ScR 2018 guidelines. M1:
B (n=32) . . .
z Primary motor cortex; RST: Reticulospinal
tract.
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TABLE 4 Role of RST for gross motor function, neural drive and spasticity.

Author, year of  Type of
S.no publication population Measurement undertaken
1 Grosse & Healthy subjects EMG recorded from upper limb muscles
Brown, (2003)
2 Honeycutt Healthy humans ~ EMG recording
etal. (2013)
3 Lietal. (2014) Hemiplegic chronic StartReact responses assessed
stroke patients
4 Riddle et al. (2009) Monkeys Intracellular recording
5 Sangari & SCI patients and MEPs, MVCs, and the Start React response
Perez, (2019) normal healthy
individuals
6 Schucht Adult rats Locomotor outcome was compared with
et al. (2002) lesion depth, spared total white matter,
and spared ventrolateral funiculus
7 Tapia et al. (2022) Macaca mulatta Extracellular recordings from corticospinal
monkeys neurons in M1, RF, and from the spinal
cord C5-C8 segments
8 Tazoe & Healthy adults EMG recording
Perez, (2017)
9 Valls-Solé Healthy participant EMG recording

etal. (1999)

Intervention

No intervention

No intervention

No intervention

Stimulation of descending
fibers in the region
of the

MLF of the medulla

No intervention

Dorsal and ventral lesions
of different severity
were made in adult rats

Stimulation of motoneuron
pools receiving
different proportion
of input form the M1
and RF

No intervention

No intervention

Motor task(s)

Contraction of deltoid, biceps,
finger flexors, and FDI,
bilaterally upon startle
(<50% of MVC)

Abduction of index finger or
a grasp task, flexion of
fingers at
metacarpophalangeal joint.

Rest task, ASR task and 10%,
50%, and 100% of maximum
voluntary contraction task

Not reported

Voluntary knee extension
(MVC)

Grid walk

Elbow flexion/extension
movements

Index finger abduction,
precision grip,
and power grip

Wrist flexion or extension
or rising onto tiptoe from
a standing position.

Abbreviations: ASR, acoustic startle reflex, BBB, Basso, Beattie and Bresnahan; CMEP, cervicomedullary motor evoked potential; CST, corticospinal tract;
EMG, electromyography; EPSPs, excitatory post synaptic potential; FDI, first dorsal interosseous; M1, primary motor cortex; MVC, maximum voluntary
contraction; MEP, motor evoked potential; MLF, medial longitudinal fasciculus; MVC, maximum voluntary contraction; RF, reticular formation; RST,

reticulospinal tract; SCI, spinal cord injury.

Further, two studies examined the contribution of the RST

recovery. Except for one study (Alagona et al., 2001),
all the studies (Baker & Perez, 2017; Ballermann &
Fouad, 2006; Choudhury et al., 2019; Coppens et al., 2018;
Darling et al., 2018; Engmann et al., 2020; Herbert, 2010;

for the development of spasticity in stroke and SCI patients.
From a total of 32 human and experimental ani-
mal studies, 12 examined the role of the RST for motor
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Assessment of RST Finding/outcome/role of RST
StartReact Gross motor function

« Coherence in the 10-20-Hz band was significantly greater and above 95% confidence level in the startle reflex than during

voluntary tonic contraction for deltoid, but not FDI muscles.
StartReact Gross motor function

« Anincreased EMG amplitude of grasp task when startle was present while the amplitude of the finger task remained the same
(p<0.0001).

« Startle stimuli resulted in a reduced latency during coordinated grasp but not individual finger movements.

StartReact Spasticity

« In subjects without spasticity, StartReact responses were less frequent, 10% on impaired side, and had normal duration of
<200ms.

« In subjects with spasticity, the responses were more frequent, 58.3% on impaired side, and longer lasting, up to 1 min.

« Electromyographic activity of the resting nonimpaired limb increased proportionally in subjects with spasticity, but no such
correlation in subjects without spasticity.

Intracellular recording Gross motor function

« Significant numbers of motoneurons projecting throughout the upper limb received short latency synaptic input from the
RST.

« Motoneurons received monosynaptic and disynaptic reticulospinal inputs, including monosynaptic excitatory connections to
motoneurons that innervate intrinsic hand muscles.

« Excitatory reticulo-motoneuronal connections are as common and as strong in hand motoneuron groups as in forearm or
upper arm motoneurons.

« Stimulation of MLF elicited powerful, short-latency monosynaptic EPSPs (amplitude: 0.81 mV, latency: 0.9 ms) while
stimulation of pyramidal tract resulted in a monosynaptic EPSP of shorter amplitude and longer latency (0.6 mV in amplitude,
latency: 0.9 ms).

StartReact Spasticity

« Participants with SCI with spasticity showed smaller corticospinal responses and MVC's and larger reticulospinal gain
compared with participants with no or low spasticity and control subjects.

« Reticulospinal gain was increased in spastic (2.3+0.9) compared with controls (1.8 +0.4, p <0.03) and non-spastic (1.7 +0.2,
p <0.02) participants.

BBB open-field locomotor Gross motor function
score « Preservation of a small number of fibers in the ventral or lateral funiculus was related to stepping abilities and overground
locomotion, whereas comparable tissue preservation in the dorsal funiculus resulted in complete paraplegia.
« The strongest relation to locomotor function was between BBB score and the spared white matter tissue in the region of the
RST.
« Dorsal component containing corticospinal fibers are required for locomotion on the grid.

Reticular formation Neural drive
recording done using - Startling stimuli suppressed firing rate of cells from M1 (latency: 70-200 ms). However, for the RF cells it increased firing rate
headpiece incorporated ~ (70-80ms) followed by a significant decrease (140-210 ms).
recording chambers « When >60% of motoneuron drive derived from RF (<40% from M1), loud sound shortened reaction time.
« The extent of shortening increased as more drive came from RF.
« If RF provided <60% of drive, loud sound lengthened the reaction time.

StartReact Gross motor function
« A startling stimulus suppressed MEP size during power grip (87.0+20.0%, p <0.05) to a lesser extent than during index finger
abduction (62.2 +17.8%) and precision grip (78.4 +21.8%, p <0.05) and was positively correlated with changes in intracortical
inhibition.
« A startle cue decreased intracortical inhibition, but not CMEPs, during power grip.
StartReact Neural drive
« The startling stimulus almost halved the latency of the voluntary response but did not change the configuration of the EMG
pattern.
« Insome subjects the reaction times were shorter than the calculated minimum time required for processing of sensory
information at the cerebral cortex (the shortening was by more than 70 ms).
« Most subjects reported that the very rapid responses were produced by something other than their own will.

Herbert et al., 2015; Sangari & Perez, 2020; Weishaupt of the RST for motor recovery were nonhuman studies
et al., 2013; Zaaimi et al., 2012) revealed that the retic- (four on monkeys and three on rat), whereas the other
ular system had an important role for motor recovery. five were among human participants (three stroke and
The majority (seven) of studies examining the function two SCI patients) (Table 2).

85U8017 SUOWIWIOD) 8AITER1D) 3edldde sy Ag peusenob afe seoiie YO ‘8sn JO Sa|ni Joj Areiqi8uljuO A8 |1 UO (SUOTIPUOD-pUe-SULBYLI0O" A3 1M ARe.q [T |UO//SANY) SUOIPUOD PUe SWB | 8U1 88S *[£202/20/0€] Uo ARiqiTaulluo A8|IM ‘89 L Aq §92GT ZAUd 7 T8 T 0T/I0p/w0d A8 | imAtelq puluo-oosAydy/:sdny wolj pepeojumod ‘¥T ‘€202 ‘X T8TS02



AKALU ET AL.

Eleven of the 32 studies examined the role of the
RST for strength or maximum force production. From
the 11 studies, 5 were on healthy participants (Anzak,
Tan, Pogosyan, & Brown, 2011; Colomer-Poveda
et al., 2023; Fernandez-Del-Olmo et al., 2014; Maitland &
Baker, 2021; Skarabot et al., 2022), three on stroke patients
(Hammerbeck et al., 2021; Li et al., 2017; Xu et al., 2017),
two on nonhumans (i.e., monkeys) (Glover & Baker, 2020;
Glover & Baker, 2022) and one on a Parkinson's disease
patient (Anzak, Tan, Pogosyan, Djamshidian, et al., 2011).
The findings in 10 of the studies (Anzak, Tan, Pogosyan,
& Brown, 2011; Anzak, Tan, Pogosyan, Djamshidian,
et al., 2011; Colomer-Poveda et al., 2023; Fernandez-
Del-Olmo et al.,, 2014; Glover & Baker, 2020; Glover
& Baker, 2022; Li et al., 2017; Maitland & Baker, 2021;
Skarabot et al., 2022; Xu et al., 2017) suggested that the
RST had a significant role for strength or maximum force
production while one study on stroke patients reported
that the RST had no role for strength recovery/gain
(Hammerbeck et al., 2021) (Table 3).

We identified seven studies (Grosse & Brown, 2003;
Honeycutt et al., 2013; Riddle et al., 2009; Schucht
et al., 2002; Tapia et al., 2022; Tazoe & Perez, 2017; Valls-
Solé et al., 1999), two on experimental animals, inves-
tigating the role of the RST for neural drive and gross
motor function. Two studies (Tapia et al., 2022; Valls-
Solé et al., 1999) reported that the reticular system had a
role for neural drive for motor tasks while the other five
studies demonstrated that the reticular system is im-
portant for gross motor function (Grosse & Brown, 2003;
Honeycutt et al., 2013; Riddle et al., 2009; Schucht
et al., 2002; Tazoe & Perez, 2017) (Table 4). Conversely,
two studies (Sangari & Perez, 2019, Li et al., 2014) iden-
tified that hyper-excitability of the RST was a possible
cause for spasticity in stroke and SCI patients. The stud-
ies were among hemiplegic chronic stroke patients (Li
etal., 2014), and incomplete SCI (Sangari & Perez, 2019)
patients (Table 4).

4 | DISCUSSION

Although the RST is known to be responsible for pos-
tural control (Mtui et al., 2020), there has been an
emergence of new evidence identifying the reticulospi-
nal responses during strength gain and motor recovery
(Atkinson et al., 2022; Baker, 2011; Baker et al., 2015).
However, there are no reviews that have systematically
assessed the role of the RST for strength gain, gross
motor function, motor recovery, and spasticity devel-
opment. Therefore, we aimed to determine the role of
the RST by reviewing the body of evidence relating to
both human and experimental animal studies. Given the

nature of the studies that have examined the RST, it was
not feasible to conduct a meta-analysis (due to heteroge-
neity), therefore we conducted a scoping review instead.
This scoping review identified 32 studies that examined
the role of RST and revealed that the excitability of the
RST is important for motor recovery, strength gain, and
gross motor function. In light of this, there is limited
human evidence for the role of the RST for strength
gain. Only two studies reported increased RST connec-
tivity in stroke and SCI patients, potentially underpin-
ning spasticity in these populations.

Reticulospinal output is assessed by noninvasive and
invasive measures. Invasive measures are used only for
experimental animals and it is impossible to use such
techniques for humans. The paucity of human evidence
concerning the RST primarily stems from the challenge
of directly assessing its function through noninvasive
stimulation methods. As the reticular system is located
deep within the brainstem, it is not feasible to stimulate
it directly using techniques such as transcranial magnetic
stimulation (TMS) or any other available means (Glover
& Baker, 2020). Therefore, other indirect measure be-
come mandatory to elucidate the function of the RST.
Two methodologies, the “StarReact” Paradigm and iMEP,
have been shown to probe the excitability of the RST in
humans. The StartReact paradigm is a simple measure
of latency or reaction time to a preplanned action. It in-
volves the simultaneous presentation of two stimuli: an
imperative visual stimulus and an unexpected loud sound
or startling stimuli (Carlsen & Maslovat, 2019). The visual
stimulus serves as a cue for executing a preplanned action
or response. The unexpected startle stimulus, transmitted
via the cochlear nerve, directly activates the motor nuclei
in the caudal pontine reticular formation. Additionally,
it indirectly stimulates the reticular formation through
the lateral lemniscus, leading to the rapid initiation of
the preplanned action (Yeomans & Frankland, 1995).
This will add to the corticospinal input, thereby increas-
ing the overall excitatory input to the lower motoneurons
which speed the initiation of the preplanned response
(Valls-Sole, 2012; Yeomans & Frankland, 1995). The
other noninvasive technique to assess the excitability of
the RST is to record iMEPs. The iMEP is elicited by ap-
plying single-pulse TMS over the primary motor cortex
with a near maximum or maximum stimulatory output
and strong back background muscle contraction (Tazoe
& Perez, 2014; Wassermann et al., 1991; Wassermann
et al.,, 1994). Transcranial magnetic stimulation triggers
the primary motor cortex, leading to the activation of the
cortico-reticular pathway. These pathways, in turn, stim-
ulate the RST that project bilaterally to the spinal cord,
subsequently exciting the lower motoneurons to elicit
iMEPs from the corresponding ipsilateral muscle (Fisher
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et al., 2012; Ziemann et al., 1999). Nevertheless, the elic-
itation of iMEPs has been observed to be more readily
achieved in older adults (Maitland & Baker, 2021), and
stroke patients (Alagona et al., 2001). It has proven to be
less successful in evoking iMEPs in young and healthy par-
ticipants (Alagona et al., 2001; Maitland & Baker, 2021).
Therefore, the StartReact paradigm appears to be a more
effective technique for assessing the excitability of the RST
in humans.

4.1 | Function of the RST for
motor recovery

This scoping review demonstrated that the RST under-
pins motor recovery. Eleven out of 12 studies (Baker &
Perez, 2017; Ballermann & Fouad, 2006; Choudhury
et al.,, 2019; Coppens et al., 2018; Darling et al., 2018;
Engmann et al., 2020; Herbert, 2010; Herbert et al., 2015;
Sangari & Perez, 2020; Weishaupt et al., 2013; Zaaimi
et al.,, 2012) demonstrated increased RST activity sug-
gesting the excitability of the RST is important for motor
recovery. For example, a study on SCI patients provided ev-
idence of increased excitability of the RST by the enhanced
StartReact CMEP facilitation (StartReact + CMEP) and
maximal voluntary contractions (MVCs) in biceps brachii
(as compared to the controls), but not in triceps, of SCI
patients with recovered elbow flexion but not extension
(Sangari & Perez, 2020). These data suggest that during
motor recovery of the biceps brachii, there isincreased RST
input to the biceps brachii to restore and preserve motor
function. At a minimum, this suggests that the RST com-
pensates for the spinal cord lesion and provides a neural
pathway to innervate the biceps brachii. Interestingly, the
absence of recovery in elbow extension could potentially
be attributed to the decline in CST drive and diminished
input from the RST to the triceps muscle. This discrepancy
in recovery may arise from the distinct pattern of innerva-
tion by the RST to the elbow flexors and extensors. This
line of enquiry is consistent with the shorter reaction time
following the startling cue during the power-grip action of
SCI patients (Baker & Perez, 2017). Overall, these findings
suggest that increased activity of the RST is important for
motor recovery in humans following SCI. The absence of
a decrease in StartReact following the precision grip im-
plies that enhanced activity of the RST plays a significant
role in gross motor function and recovery, rather than
fine motor control. This is most likely as a result of the
RST supplying a large group of muscles in a synergistic
manner (Peterson et al., 1975) that enables gross function,
whereas the CST supplies a smaller group of motoneuron
pools (Buys et al., 1986) suited for fine-grade movement
(Zaaimi et al., 2018). In addition to the recovery of the
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power grip, recovery of muscle coordination has also been
reported as the other possible role of RST. For example, in
chronic stroke patients, increased RST activity improved
automatic postural responses by startling acoustic stimuli.
Moreover, startling acoustic stimuli was shown to reduce
the latency of automatic postural responses in both stroke
patients and healthy controls (Coppens et al., 2018). As
the automatic postural responses is a measure of mus-
cle coordination, these preliminary data suggested that
the recovery of muscle coordination could be due to the
intrinsic arrangement, extensive collaterals, of the RST
(Peterson et al., 1975) supplying many motor units and
thereby controlling muscle coordination. The above find-
ings in humans are supported by experimental animal
studies (Ballermann & Fouad, 2006; Engmann et al., 2020;
Zaaimi et al., 2012).

In experimental animals that have recovered follow-
ing CST lesions, there is evidence to show enhancement
and increased size of MLF derived mono and disynaptic
excitatory postsynaptic potentials onto motoneurons of
intrinsic hand muscles and forearm flexors. Importantly,
this was not accompanied by changes in the lesioned ipsi-
lateral pyramidal tract which again implies a limited role
of the CST tract for motor recovery, but an important role
of the RST for motor recovery of the forearm flexors and
intrinsic hand muscles (Zaaimi et al., 2012). Moreover,
studies on experimental animals (i.e., female Lewis rats)
support this finding. For example, the sprouting of the
spared RST below the level of a hemisection at L2 of the
spinal cord following 42days of recovery was observed.
In addition, a positive correlation between the density
of sprouted spared RST and the degree of locomotor re-
covery was reported (Ballermann & Fouad, 2006). Other
correlations exist between the degree of recovery and pro-
nounced rewiring/plasticity of the injured neurons and
the compensatory overgrowth of spared neurons in the
gigantocellularis reticularis (Engmann et al., 2020). These
data imply an emerging role for the RST to modulate as-
pects of motor recovery. Contrary to the aforementioned
findings, motor recovery in lesioned (unilateral) Lewis rat
was found to be associated with a decrease in the number
of reticulospinal fibers below the level of the lesion (C4)
(Weishaupt et al., 2013). Experimental errors may well ac-
count for the observed contradictory findings. Moreover,
the difference in site of the induced lesion may have a
different outcome of recovery, as the RST has diverse
neurotransmitters and projections (Peterson et al., 1975).
Therefore, tracing different reticulospinal fibers may per-
haps result in a different outcome between experimental
animals. Further, it is plausible to propose that inflam-
matory processes in the vicinity of surviving fibers might
adversely influence their growth, resulting in a decrease
in reticulospinal fiber density specifically on the side of
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the lesion. Although the later contradictory study has
acknowledged and addressed these conceivable causes
of variation, they still have the potential to influence the
final outcome.

Two studies, one human study on chronic stroke pa-
tients (Engmann et al., 2020), and the other on experimen-
tal animal (Herbert et al., 2015), revealed that the recovery
role of the RST is affected by the degree of severity of the
cortical lesion. Reaction time was faster, showing greater
involvement of the reticular system in severely impaired
patients than in the mildly affected patients (Choudhury
et al., 2019). In the case of the experimental animal (i.e.,
monkey), with severe lesion of the M1, recovery of a
reaching task was achieved after 12-weeks of intensive
rehabilitation training without any ipsi-lesional and/or
contra-lesional cortical plasticity, excluding the possibility
for the CST to be a site for recovery. However, Evidence of
spontaneous recovery and cortical plasticity was observed
in monkeys with mild lesions in the M1 after a 2-week pe-
riod, without any intervention. Conservatively, these data
implied that recovery occurs at the level of the cortex. On
the contrary, the RST likely modulates motor recovery
when the cortical lesion is severe, whereas the surviving
CST continues to function and maintain motor function
during mild lesions. Therefore, the RST or the reticular
system strengthened to compensate for the loss of func-
tion of the CST, by maintaining motor function.

In support of the above, there is evidence to suggest
that the RST increases its excitability, a mechanism asso-
ciated with plasticity. For example, experimental animals
(i.e., Rhesus monkeys) with lesions to the M1, lateral pre-
motor cortex, primary somatosensory cortex (S1), and
anterior partial cortex exhibited elevated activation levels
of the cortico-reticular projection. This projection orig-
inates from the supplementary motor cortex and targets
the reticular formation in the medulla. Furthermore, the
lesioned monkeys showed an increase in the total number
of cortico-reticular projection buttons within the reticular
formation gigantocellularis when compared to monkeys
without lesions, serving as control subjects. Furthermore,
the number of cortico-reticular projection buttons was
strongly correlated with the degree of motor recovery of
the hand (Darling et al., 2018). Likewise, intensive rehabil-
itative training in lesioned monkeys resulted in recovery of
gross reaching by the 16th week with a representation of
right arm at the left pontomedullary reticular formation,
while no recovery of arm representation was observed at
the lesioned M1 (Herbert, 2010). Similarly, reaching was
recovered substantially without recovery of the contra or
ipsi-lesional cortical representation in monkeys (Macaca
fascicularis) with severe lesion to their M1 after 12-weeks
of intensive rehabilitation training (Herbert et al., 2015).
These findings provide evidence for the possibilities for

the reticular system/RST to be the site for motor recovery
in clinical populations including stroke and SCI patients.
Therefore, targeting the connectivity of the RST with spe-
cific neurorehabilitation training could be the key to treat-
ment for improving motor recovery.

Overall, in regard to determining the site and mech-
anism underlying motor recovery following injury, many
of the studies imply that neuroanatomical plasticity of the
reticular system occurs specifically at the gigantocellularis
reticularis. However, a single study on lesioned female
Lewis rat (Weishaupt et al., 2013) revealed that motor re-
covery is not the result of anatomical change, but rather a
change in plasticity at cellular level. The authors reported
that the improvement in a single pellet reaching task by
Week 6 was accompanied by only a minimal increase in
density and number of RST projections without sprout-
ing of CST projection beyond the level of injury and de-
creased RST projection below the level of the injury. This
suggests that other mechanisms could be involved, such
as increased firing rates of neural cells at the reticular for-
mation and RST activation.

In contrast, only one study (Alagona et al., 2001) re-
ported that the RST had no role for motor recovery in
acute stroke patients. It stated that the source of the iMEP,
which was a good prognostic indicator of motor recovery
in acute stroke patients by the sixth month, was the hyper-
activated premotor area, whereas the cortico-RST was the
source of iMEP for healthy participants. However, we sug-
gest that the source of iMEP for the stroke patients might
be the activated cortico-reticular projection from the hy-
peractivated supplementary motor cortex (Li et al., 2019).
Furthermore, because of the bilateral nature of the RST,
it was suggested that increased connectivity of the RST,
occurs post stroke to preserve motor function and to act as
an accessory motor pathway to compensate for the loss of
function of the CST (Li et al., 2019).

4.2 | Role of RST for strength gain

Based on the limited experimental animal and human
studies, the reticular system seems to have an important
role for strength gain. The findings in two experimental
animals and eight human studies (Anzak, Tan, Pogosyan,
& Brown, 2011; Anzak, Tan, Pogosyan, Djamshidian,
et al.,, 2011; Colomer-Poveda et al., 2023; Fernandez-
Del-Olmo et al., 2014; Glover & Baker, 2020; Glover &
Baker, 2022; Li et al., 2017; Maitland & Baker, 2021;
Skarabot et al., 2022; Xu et al., 2017) suggest that RST ac-
tivity is important for the expression of strength or max-
imum force production. For example, four studies on
healthy adults (Anzak, Tan, Pogosyan, & Brown, 2011;
Colomer-Poveda et al., 2023; Fernandez-Del-Olmo
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et al., 2014; Skarabot et al., 2022) revealed that startle
stimuli, which activates the RST, resulted in a shorter
reaction time, increased motor discharge per motor
unit per second (maximum motor output), increased
rate of force development and greater force production,
when compared to the visual acoustic and visual only
stimuli. Moreover, a cross-sectional study on healthy
humans (Maitland & Baker, 2021) showed that older
adults with better strength had greater RST connec-
tivity than weaker, older adults. In support of these
findings in healthy participants, two studies on stroke
patients (Li et al., 2017; Xu et al., 2017) and one study
on a Parkinson's disease patient (Anzak, Tan, Pogosyan,
Djamshidian, et al., 2011) reported a role of the RST for
strength gain. For example, startling acoustic stimulus
resulted in a shorter reaction time and induced greater
force generation in the impaired biceps brachii when
compared to the non-impaired biceps brachii of stroke
patients and healthy controls (Li et al., 2017). The star-
tling stimulus elicited a greater increase in force produc-
tion on the impaired side compared to the non-impaired
side. Furthermore, in ischemic stroke patients with
lesion to the hand area of the M1, the excitability of
the CST was not correlated with force production, but
rather, was correlated with individual motor control of
each finger (individuation). This finding suggests the
presence of other tracts, possibly the RST, responsible
for the restoration of muscle strength and contributing
to force production (Xu et al., 2017). In support of this, a
loud startling stimulus was found to increase peak rate
and magnitude of force development in a Parkinson's
disease patient (Anzak, Tan, Pogosyan, Djamshidian,
etal., 2011).

The findings in human studies are supported by
monkey studies; for example, strength gain after resis-
tance training in two Macaque monkeys was accompa-
nied by a post-training increase in RST excitability, but
there was a variable change in the excitability of the CST
(Glover & Baker, 2020). This increased RST output was
attributed to increased synaptic efficacy at the level of the
(monosynaptic) reticulo-motoneuron and (di-synaptic
connection) reticulo-inter neuron levels. Overall, the
RST's bilateral nature (Davidson et al., 2007), its exten-
sive collaterals, and high degree of divergence, appear
to enable the coactivation of several muscles in syner-
gistic patterns (Peterson et al., 1975), making the RST
well suited to modulate maximum force production and
execution of forceful movements, thereby modulating
strength gain.

Both the RST and CST were found to contribute to
force generation, with the RST being important for force
production and the CST being important for fine-force
scale adjustment (Glover & Baker, 2022). These distinct
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functions are likely to be attributed to the neuroanatom-
ical nature of these tracts, that is, the RST supplies large
group of muscles (Peterson et al., 1975) well-matched for
force production while the CST controls small group mus-
cles or small motor units (Buys et al., 1986) appropriate
for controlling fine movements. Finally, one study among
stroke patients reported that the presence or absence of
RST connectivity had no effect on strength, rather CST
connectivity was found to be responsible for force produc-
tion (Hammerbeck et al., 2021). This difference could be
attributed to the difference in the target muscle or nerve
used to assess the contribution of the RST and CST for
strength or maximum force production. Triceps and del-
toid muscle were used as target muscles by the latter study,
which reported that the RST had no role for strength. The
RST has been shown to have less contribution to elbow
extensor connectivity (Sangari & Perez, 2020).

4.3 | Role of RST for gross motor
function and neural drive

It has been also reported that the reticular system has a
role for neural drive for motor activities (Tapia et al., 2022;
Valls-Solé et al., 1999) and gross motor function (Grosse
& Brown, 2003; Honeycutt et al., 2013; Riddle et al., 2009;
Schucht et al., 2002; Tazoe & Perez, 2017). Experimental
evidence indicates that the reduction in latency observed
during StartReact, which is even shorter than the time re-
quired for sensory processing, strongly suggests extensive
activation of the reticular formation and an amplification
of motoneuron activation (Valls-Solé et al., 1999). Further,
this line of inquiry is supported by experimental animal
studies. The reaction time in monkeys was shown to be
shortened by the startling stimuli when neural drive was
derived (>60%) from the reticular formation but length-
ened when the neural drive was derived (>60%) from M1
(Tapia et al., 2022). These findings highlight the possibil-
ity for the reticular system to be, at least in part, the site for
storage of instructions for movement. During StartReact,
the motor instruction to achieve the movement goal will
possibly be stored in the brain stem and will be triggered
rapidly and automatically in response to the startle or loud
sound (Rothwell, 2006).

Synchronization of the bilateral homologous muscles
of the proximal upper limb muscles was the other reported
function of the RST which was evidenced by the synchro-
nization of EMG recordings that were significantly higher
or had better coherence during startle than voluntary
contraction alone, between homologous bilateral mus-
cles in biceps brachii but not in first dorsal interosseous
muscle (Grosse & Brown, 2003). The involvement of the
reticular system for the synchronization of the bilateral
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homologous muscle is because of the neuroanatomical
features of the RST. It has highly divergent postsynap-
tic connections (Riddle et al., 2009) thereby innervating
many motor units allowing it to control coordination and
synchronization of homologous muscles.

The findings above have been confirmed in nonhu-
mans rats. Lesions made at different sites of the brainstem
and sparing of small white matter tissue in lateral and
medial funiculus, the site where the RST originates, pre-
serves movement, whereas sparing of a comparable mass
of tissue at the dorsal funiculus resulted in paraplegia
(Schucht et al., 2002). In addition, MEPs, when obtained
during the StartReact paradigm, are suppressed to a lesser
extent during a power-grip task than during a precision-
grip task (Tazoe & Perez, 2017). In experimental animals
(monkey), the extensive number of excitatory synaptic in-
puts from the reticular system to motoneurons of a hand
muscle upon stimulation of the MLF in monkeys (Riddle
et al., 2009) provides evidence for the involvement of
the RST in gross motor control of the hand. Similar ob-
servations have been made in humans, consistent with
the findings in monkeys. It has been reported that the
RST contributes input to intrinsic hand muscles, facili-
tating the control of coordinated gross hand movements
or whole hand movements, rather than individual finger
movements (Honeycutt et al., 2013). Taken together, these
findings in experimental animals and human studies pro-
vide emerging evidence which confirms the role of the
RST for gross hand function. The role of the RST in gross
function is because it connects large groups of muscles in
a synergetic manner that enables gross function (Peterson
et al., 1975), whereas the CST supplies small groups of
motoneuron pools (Buys et al., 1986) suited for fine-grade
movement (Zaaimi et al., 2018).

Even though most of the studies revealed that the
RST has an important role for motor recovery, strength,
and gross functions or movements, hyper-excitability of
the RST was purported to be the possible cause of spas-
ticity in stroke and SCI patients (Li et al., 2014; Sangari
& Perez, 2019). The presence of an exaggerated and pro-
longed acoustic startle reflex (lasting up to 1min) in the
spastic biceps brachii, coupled with a reduced frequency
compared to the normal acoustic startle reflex in the
non-spastic impaired limb of hemiplegic chronic stroke
patients, provides compelling evidence for the potential
involvement of RST hyper-excitability as the underlying
cause of spasticity (Li et al., 2014). Increased EMG ac-
tivity of the unaffected limb of a patient with spasticity
(compared to non-spasticity patients) was thought to be
attributed to contralateral overflow of the hyperexcitable
RST (Sangari & Perez, 2019). Similarly, SCI patients with
spasticity (compared to controls and non-spasticity pa-
tients) were found to have shorter reaction time which

correlated with the degree of spasticity, less corticospinal
response, larger StartReact, larger maximum voluntary
contraction and reticulospinal gain. This finding implies
that the spasticity in stroke and SCI patients can be at-
tributed to the hyper-excitability of the reticulospinal
system leading to increased excitability of muscle stretch
reflexes or muscle tone.

4.4 | Limitations

Included studies were not assessed for quality which could
potentially impact the robustness of our conclusions, but
it is important to note that quality assessment is not a
requirement for scoping reviews. The variations in RST
function, assessment technique and type of population,
the presence or absence of an intervention, and variation
in duration of intervention among studies are further lim-
itations that should be considered. Lastly, the inclusion of
experimental animal studies restricts the generalizability
of findings to humans; however, their incorporation was
crucial in illustrating the physiological aspects of the RST
underpinning motor recovery, strength gain and other
roles of the RST.

5 | CONCLUSIONS AND FUTURE
DIRECTIONS

The overall findings of this scoping review suggest that the
RST has an important role in motor recovery. Therefore,
the RST is a promising target for neurorehabilitation ena-
bling stroke and SCI patients to recover successfully. Based
on a limited number of studies, it appears that the connec-
tivity of the RST, at least in part, underpins strength gain
and force production. Moreover, the excitability of the
RST is important for the control of gross motor function,
neural drive, and the spasticity in stroke and SCI patients
might be attributed to the hyper-excitability of the RST.
Further research is necessary to obtain more robust
evidence and gain a comprehensive understanding of the
role of the RST in strength enhancement and force pro-
duction in humans. To better comprehend the sites and
neural mechanisms underlying strength gains and motor
recovery, future studies should focus on investigating the
entire neural axis or specifically the cortico-RST. In par-
ticular training interventions that target the RST, such
as coupling a loud acoustic stimulus with TMS or adding
acoustic stimuli during strength training, may enhance
the excitability of the RST. In addition, the way in which
the strength training is performed, for example paced ver-
sus self-paced may lead to different neural adaptations,
with paced strength training leading to a corticospinal
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tract response, while self-paced training may increase the
excitability of the RST. However, there are no studies to
date that have examined this hypothesis. Further, addi-
tional studies are needed to explore the involvement of the
RST in the development of spasticity in individuals with
SCI, and stroke patients, and other conditions resulting in
spasticity. These investigations have the potential to yield
compelling evidence and hold significant implications for
designing targeted strength training and neurorehabilita-
tion programs. Such interventions can promote strength
improvements in the general population, facilitate suc-
cessful motor function recovery in patients, and enhance
performance in sport-specific activities.
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