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A B S T R A C T

Intravascular ultrasound (IVUS) is recommended in guiding coronary intervention. The segmentation of
coronary lumen and external elastic membrane (EEM) borders in IVUS images is a key step, but the manual
process is time-consuming and error-prone, and suffers from inter-observer variability. In this paper, we
propose a novel perceptual organisation-aware selective transformer framework that can achieve accurate
and robust segmentation of the vessel walls in IVUS images. In this framework, temporal context-based
feature encoders extract efficient motion features of vessels. Then, a perceptual organisation-aware selective
transformer module is proposed to extract accurate boundary information, supervised by a dedicated boundary
loss. The obtained EEM and lumen segmentation results will be fused in a temporal constraining and fusion
module, to determine the most likely correct boundaries with robustness to morphology. Our proposed methods
are extensively evaluated in non-selected IVUS sequences, including normal, bifurcated, and calcified vessels
with shadow artifacts. The results show that the proposed methods outperform the state-of-the-art, with a
Jaccard measure of 0.92 for lumen and 0.94 for EEM on the IVUS 2011 open challenge dataset. This work
has been integrated into a software QCU-CMS1 to automatically segment IVUS images in a user-friendly
environment.
1. Introduction

According to the World Health Organization (WHO), cardiovascular
disease is the number one cause of death worldwide (Kaptoge et al.,
2019). Statistics show that about 18.6 million people died of cardio-
vascular disease globally in 2019 (Roth et al., 2020). Symptoms of
vascular-related diseases often appear in the late stage and is asso-
ciated with poor prognosis. Therefore the accurate risk stratification
of patients with established coronary artery disease is essential as it
will enable a personalised therapy of high risk individuals with novel
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therapies targeting disease progression. Evaluation of the lumen and
vessel wall dimensions and plaque burden is essential for treatment
planning and stratifying risk in patients with established coronary
artery disease. This can be achieved using non-invasive techniques like
computer tomography (CT), and invasive such as optical coherence
tomography (OCT), coronary angiography (CA), and intravascular ul-
trasound (IVUS) (Rosales et al., 2009). CT has high sensitivity in the
detection of coronary atheromatous lesions, however, it falls short in
assessing the components of the plaque and does not provide accurate
quantification of the plaque burden. CA provides a luminal projection
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Fig. 1. (a) Demonstration of a IVUS catheter taking image on a vessel; (b) A typical
IVUS image.

of the long axis of the vessel, which is the key information for the
determination of the length and degree of stenosis of the coronary
artery lesions. Nevertheless, it also cannot be used to assess plaque
components and has limited accuracy. IVUS can obtain cross-sectional
images of blood vessels, show the histomorphological characteristics of
the vascular lumen, wall, and atherosclerotic plaque (Fig. 1), making
it easier to guide coronary intervention with more accurate sizing of
the length of lesion and dimensions of the vessel and guiding the need
for plaque modification such as in the case of calcific lesions (Blanco
et al., 2022). Thus, IVUS is currently one of the most effective imaging
modalities that aids interventional cardiologists to diagnose and treat
coronary disease. A visual illustration of IVUS capturing pullback and
a resulting IVUS image are shown in Fig. 1.

Moreover, the segmentation of the IVUS images and the detection
of the lumen and external elastic membrane and the quantification
of the plaque burden also provides useful prognostic information and
allows evaluation of the effects of novel pharmacotherapies on plaque
evolution (Tufaro et al., 2023). Currently, the segmentation of IVUS
is performed manually. An IVUS pull-back sequence contains a large
volume of images, making the segmentation process extremely time-
consuming. An automated solution for IVUS image segmentation is
highly desirable.

Automated IVUS segmentation has been studied for decades and
most of the published IVUS segmentation methods rely on hand-
designed features (Balocco et al., 2003; O’malley et al., 2007; Ünal
et al., 2008; Taki et al., 2008). In 2011, a dedicated IVUS segmentation
dataset (IVUS-2011) was published in the ‘‘Lumen + External Elastic
Laminae Border Detection in IVUS Challenge’’ in MICCAI (Essa et al.,
2012), to offer a platform for validating and comparing systems devel-
oped for this task. This consists of around 500 groups of 5 consecutive
frames, with about 25% of the data manually annotated. In recent
years, deep learning technology has shown great success in the field
of medical image segmentation tasks (Li et al., 2020; Sun et al., 2021;
Cui et al., 2021). Several works have attempted to segment vessel
walls of the IVUS sequences based on fully convolution networks
(FCNs) (Blanco et al., 2022; Yang et al., 2018; Vercio et al., 2019; Xia
et al., 2020), and have shown promising results. To our knowledge,
most of the data-driven FCN based IVUS segmentation methods rely on
a large number of training samples. Meanwhile, IVUS-2011 is the only
published dataset to date, and its size is relatively small.

Several challenges remain in the IVUS segmentation task including
the lack of well-annotated data, and the intrinsic variations, artifacts
and large shadowed regions in vessels (Sheet et al., 2014). The shapes
of vessel walls and plaques are various and complicated to outline.
Shadowed regions are widely distributed throughout the blood vessels,
along with artifacts, side-branches, and guide wire effect, as shown in
Fig. 2(a)–(d), respectively. These intrinsic features make it extremely
challenging even for human experts to precisely determine the EEM
and lumen borders. The dark area is usually caused by the presence of
calcified plaques, as shown in Fig. 2(a). The appearance of calcification
in blood vessels leads to signal deflection and attenuation resulting
in acoustic shadowing and the inability to visualise the area behind.
Depicting the boundaries across the shadowed region requires referring
2

to the other parts of the boundaries and making sensible inferences.
Side-branch is another challenge for IVUS segmentation, as shown
in Fig. 2(c). When a side-branch flows into the main branch at the
junction, the two vessels slowly merge into one, the probe will detect
both vessels without apparent boundary features. In this case, it is
challenging to segment the EEM, because the identification of the
vessel wall of the side-branches cannot rely on texture features, and
thus requires leveraging the shape of vessels to infer the approximate
position of the boundary. The blood vessels move back and forth due
to the heartbeats, and the frame containing side-branches will appear
intermittently for an extended period.

In order to tackle these challenges, we start by observing how cardi-
ologists predict the boundaries in large shadowed regions where little
visual information can be found. Human vision has excellent ability
to perceive the visual organisations as a whole by mentally filling up
the missing parts. This process is also guided by human’s experience,
which tends to interpret the incomplete structures in the way that
it makes the most semantic sense. Thus, when a cardiologist tries to
draw out the EEM and lumen boundaries, based on the boundary
sections that are clear to depict, they can naturally complete the gaps
in the boundaries, where a shadow is crossed. We mimic this process
and propose a Perceptual Organisation-aware Selective Transformer
framework for IVUS segmentation, namely, the POST-IVUS framework,
which balances the requirement for highly accurate boundary detection
based on suitable, representative dynamic visual features, and the need
for logical predicting missing boundaries by simulating the perceptual
organisation principle of human vision. Although human vision is
imperfect and visual illusions commonly exist, particularly in shadowed
regions, our POST-IVUS framework aims to closely resemble human
predictions to provide the most reasonable estimations. By annotating
a large number of images containing calcifications and improving our
model’s predictive capabilities, we acknowledge the potential inaccura-
cies in ground truth annotations while striving to advance segmentation
performance in these challenging areas. The framework entails three
main components:

The temporal context-based feature encoders: Two temporal
context encoding schemes are designed to extract motion features
that can effectively reveal the lumen border, including a rotational
alignment encoder and a visual persistence encoder. The rotational
alignment encoder eliminates the vessel’s rotation motion introduced
by heart beats and allows the encoder to focus on relevant vessel
movement. The visual persistence encoder encodes the residual visual
features in frame sequences that are particularly useful in identify-
ing lumen borders in human visual examination. Our experiments
show that the encoded features play an essential role in facilitating
subsequent segmentation methods to accurately depict the boundaries.

A Selective Transformer Recurrent U-Net with discriminator:
We propose Selective Transformer Recurrent U-Net (STR U-Net) as the
backbone of POST-IVUS framework, based on our newly designed Se-
lective Transformer Recurrent Residual (STRR) Block. The STRR Block
is able to infer borders in dark regions while remain high accuracy in
other areas. On top of that, we apply generative adversarial learning
with a dedicated loss as the penalty standard, to effectively improve
the ability of boundary inference. during the training stage, we added
a discriminator to further strengthen the inference ability of STR U-Net.

A Temporal constraining and Fusion module (TF Module): The
post-processing module specifically designed for IVUS segmentation
task includes temporal constraint and late spatial augmentation fusion
steps that enable improved annotation accuracy in side-branch and
calcium areas where prediction is required and effectively eliminated
incorrect annotation.

In this paper, experiments are performed and the results are re-
ported to demonstrate the influence of the encoders, STR U-Net and TF
modules. Overall, the POST-IVUS framework achieves excellent results
on our private IVUS sequence dataset, and outperforms the state of
the art on the public IVUS-2011 dataset. Especially, superior accuracy
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Fig. 2. Special cases of IVUS image sample, the red dotted line represents the expert annotation of EEM and lumen. Yellow arrow indicates the location of particular areas, and
blue arrow indicates the location of predicted boundaries.
is achieved in the predicted EEM and lumen borders in the cases of
side-branch, calcified plaques and artifacts. In lumen segmentation, our
automatic method compares favourably to the inter-agreement among
experts.

This method has been integrated into commercial Software QCU-
CMS (Version 4.69, Leiden, University Medical Centre, Leiden, The
Netherlands) along with an automated IVUS end-diastolic (ED) frame
detection method. The average time for an experienced cardiologist to
manually label EEM and lumen borders on all ED-frames of an IVUS
pullback sequence, which normally consists of 5000–6000 frames, is
8-10 h. By using our proposed method, the same expert only needs
about 10 min to briefly verify the automatically obtained segmentation
boundaries, with few necessary corrections.

The main contributions of this research are summarised as follows:
- The POST-IVUS segmentation framework is proposed, which

achieves over the state-of-the-art performance on IVUS-2011 dataset
B, and exceeds the performance of human experts on our private
NIRS-IVUS dataset.

- Two IVUS encoding schemes are proposed to extract the most rel-
evant motion features by exploiting the temporal context information
for lumen border prediction. IVUS motion features are enhanced by
minimising the effect of irrelevant vessel rotation, and simulating visual
residuals of human vision.

- A novel selective transformer (STRR) block is proposed. The
resulting selective transformer recurrent residue U-Net (STR U-Net)
encapsulates the excellent feature representations of recurrent residue
blocks along with the enhanced prediction ability due to the large
vision field introduced by Swin Transformer.

- An adversarial learning scheme is developed to guide and regulate
the training segmentation models with perceptual organisation infor-
mation. The adversarial objective is re-designed to force the model to
simulate the human’s visual perception ability of virtually completing
semantic structures, and thus better predict boundaries in dark regions
where little visual features can be captured.

- A new IVUS multi-class segmentation coding method and a loss
that can utilise the topological relation between lumen and EEM bor-
ders, and a dedicated post-processing module, which can substantially
eliminate network errors and bring more reasonable results in regions
3

that require inference.
More background and related works are reviewed in Section 2. The
proposed methods are described in detail in Section 3. The experiments
are presented in Section 4, with a comprehensive evaluation in two
datasets. An in depth discussion is provided in Section 5 and the paper
concludes with Section 6.

2. Related work

Several types of traditional segmentation methods have been used
to solve the IVUS vessel wall segmentation task, including knowledge-
based methods (Sonka and Zhang, 1995), probabilistic and statistical
methods (Gil et al., 2001), (Mendizabalruiz et al., 2010), filter based
methods (Gil et al., 2006) and Wavelet-transform methods (Katouzian
et al., 2010). Sonka and Zhang incorporated a priori knowledge of
coronary artery anatomy and ultrasound image characteristics into the
method for IVUS border detection (Sonka and Zhang, 1995). Gil et al.
proposed a probabilistic approach to initialise a first approximation of
an elliptical model which has a high probability of being close to the
inner wall (Gil et al., 2001), then refine this ellipse using an adaptive
threshold computed for each image. The same group later proposed
blending advanced isotropic filtering operators and statistical classifi-
cation techniques into a vessel border modelling strategy (Gil et al.,
2006). Mendizabalruiz et al. introduced a sum of Gaussian functions
that are deformed by the minimisation of a cost function formulated
using a probabilistic approach to extract lumen contours (Mendizabal-
ruiz et al., 2010). Katouzian et al. constructed the relative magnitude
phase histogram of complex brushlet coefficients to determine luminal
borders (Katouzian et al., 2010). All these above methods highly rely
on feature engineering and lack of robustness and generalisability.

Active contour, also named snake or deformable contour, is wildly
applied to solve IVUS segmentation tasks. Bourantas et al. used a
deformable model and smoothed initial estimations for the external
elastic membrane border (Bourantas et al., 2005). Iskurt et al. utilised
an enhanced level set technique to derive the evolution of two cou-
pled contours as the zero level sets of a single higher dimensional
surface (Iskurt et al., 2006). Ginestar et al. used synthesised parametric
curves within an image domain and allowed them to move towards

the edges drawn by internal and external forces (Ginestar et al., 2014).
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Fig. 3. The POST-IVUS framework architecture including a training pipeline (a) and a segmentation pipeline (b).
Fig. 4. Two example IVUS frames. (a) The lumen border cannot be seen in a single static frame. (b) When 3 consecutive frames are superimposed, the lumen border starts to
appear. (c) The encoded feature map from the alignment encoder (AE), with a texture boundary of lumen shown. (d) The encoded feature map from the visual persistence encoder
(VE), with a texture boundary of lumen shown. (e) The lumen border annotation by cardiology experts.
These active contour-based methods have good ability for denoising but
are sensitive to the initial segmentation solutions.

In recent years, deep learning based segmentation methods surpass
earlier conventional methods in segmentation accuracy (Destrempes
et al., 2014). FCNs show excellent capabilities in tasks including lumen
and out vessel wall segmentation in IVUS images. Destrempes et al.
proposed a U-shape FCN architecture, called IVUS-Net (Yang et al.,
2018), followed by a postprocessing contour extraction step, to auto-
matically segment lumen and EEM boundaries of the human arteries.
Li et al. developed an FCN model using three modified U-Nets to form
cascaded networks to prevent errors in the detection of calcification on
an IVUS dataset (Li et al., 2021). Bargsten et al. systematically investi-
gated different capsule network architecture variants and improved the
segmentation performances on IVUS sequences (Bargsten et al., 2021).

Generative Adversarial Networks (GAN) based methods attract a
lot of attention in medical image segmentation (Goodfellow et al.,
2014; Dai et al., 2017; Odena et al., 2017). Conditional GAN (cGAN)
involves using prior information during the generation, driving cGAN
to generate detailed segmentation results (Mirza and Osindero, 2014).
The adversarial paradigm between the generator and discriminator
enables boundaries to be predicted when visual features are lacking,
and can accurately resemble the manually drawn boundaries. The GAN-
based methods achieve remarkable results in various medical image
processing tasks (Cui et al., 2021; Lei et al., 2020; Nie and Shen, 2020),
but to our knowledge, its application to IVUS segmentation has not yet
been considered.

Vision transformers show great potential in various vision tasks.
By stacking multiple transformer blocks with vanilla attention, ViT
4

processes non-overlapping image patches and obtains superior classi-
fication performance (Dosovitskiy et al., 2020). TransU-Net proposed
by Jieneng Chen et al. in 2021 is the first network framework to
apply Transformers to medical image segmentation (Chen et al., 2021).
TransU-Net encodes the feature blocks output by the feature extraction
network as the input sequence of Transformers to extract features
taking into account the global context. Meanwhile, taking advantage of
the structure of U-Net, the decoder upsamples the encoded features and
then fuses them with high-resolution feature maps to achieve semantic
segmentation of medical images. Compared to TransU-Net, which uses
Transformers attention at the bottom of the network, UTnet (Gao et al.,
2021) uses Transformers at the upsampling position. However, vanilla
attention with quadratic complexity over the input length is hard to
adapt to vision tasks with high-resolution images as input due to the
expensive computational cost. To alleviate such issues, window-based
attention is proposed to partition the images into local windows and
conduct attention within each window to balance the performance,
computation complexity, as well as memory footprint (Liu et al., 2021).
This mechanism enables vision transformers to make great success in
many downstream visual tasks. Recently, the attention mechanism has
become a milestone technology for computer vision tasks. Some cate-
gories of attention modules achieve efficient performance for medical
image segmentation tasks and indicate further directions for research
on the IVUS segmentation task, such as SKNet (Li et al., 2019) and
SENet (Hu et al., 2018). The attention-based paradigm is able to cali-
brate the weight for each class, but is not yet applied in the challenging
task of IVUS segmentation.
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Fig. 5. The network structure of STR U-Net.
3. Methodology

IVUS segmentation is unconventional among medical image seg-
mentation tasks. It shares the same requirement for accurate pixel-level
segmentation masks. However, the common presence of dark regions
where no image feature can be picked up, along with various types
of artifacts, introduces unusual challenges, as illustrated in Fig. 2.
While computer vision is being hampered by such challenges, these
are not a problem to human experts, who have the superior ability
in ‘guessing’ the boundaries across the shadowed regions, and not be
confused by artifacts. This ability of human vision is summarised in
Gestalt psychology, i.e., humans perceive the form of objects in a way
that the overall organisation makes the most sense. More specifically,
an important aspect of Gestalt visual perception is reification, in which
the organisation as perceived contains more spatial information than
what is actually present, and thus we find a near match and then
mentally fill in the gaps in the actual structure. Moreover, humans can
blend in their knowledge in this process, to help infer the perceptual
organisation of the actual structure with missing parts. We observe how
the expert cardiologists outline the lumen and EEM boundaries in IVUS
frames where large shadows and artifacts are present, and design a
series of methods that mimic their awareness of the visual perceptual
organisation, and infer the complete, accurate boundaries. The aim is to
perform a perceptual organisation-based inference, by leveraging visual
information from neighbourhood regions, blending in prior anatomical
knowledge, and conducting logical reasoning about the boundaries.

Inspired by the perceptual organisation awareness of human vi-
sion, we propose a perceptual organisation-aware selective transformer
framework (POST-IVUS) for segmenting EEM and lumen boundaries in
IVUS frames. In this section, we first give an overview of the framework
architecture, and then present each main module in detail and discuss
their design rationale.

3.1. POST-IVUS framework

The POST-IVUS framework consists of a training pipeline and a
segmentation pipeline, as illustrated in Fig. 3. To tackle the lumen
and EEM segmentation tasks effectively, the segmentation pipeline is
the combination of two sub-pipelines, one dedicated for lumen border
segmentation and the other for EEM. Since the detection of lumen
border requires temporal features, we propose two temporal context-
based feature encoders to exploit temporal information to strengthen
the features for detecting the lumen border. We propose a new Selective
Transformer Recurrent U-Net (STR U-Net) network as the segmentation
backbone which imposes a Selective Transformer (ST) scheme on top of
a recurrent residual convolution unit, in an overall U-shaped structure.
Moreover, the adversarial training paradigm is utilised by adding a
discriminator in the training stage to improve the perceptual inference
ability in dark regions. Finally, temporal constraint and late spatial
augmentation fusion are applied to improve the network robustness,
and a temporal constraint is applied to eliminate erroneous areas.
5

3.2. Temporal context-based feature encoders

The lumen, in other words, the inner wall between the vessel
and the blood, can hardly be seen on a single static IVUS frame, as
illustrated in Fig. 4(a). To be able to identify the border, cardiologists
tend to browse through a few frames before and after the target end-
diastolic (ED) frame, and use the visual residue during the browsing to
help visualise the lumen border. This is because the texture of vessels
is relatively static, while the texture of the blood changes faster, so
quickly browsing through a set of consecutive frames can help expose
the lumen border. Similarly, in computer vision, the identification of
lumen borders requires considering the visual cues in the temporal
context, instead of looking at an ED frame statically. As shown in
Fig. 4(b), when 3 consecutive frames are simply superimposed, a
texture boundary representing the lumen border starts to show, in
line with the expert annotation in Fig. 4(e). Here, we propose two
temporal context-based feature encoders, to produce highly descriptive
representations of the frames in lumen segmentation. The encoded
features blend in the temporal context and enable capturing the subtle
difference in texture changes of blood and vascular wall.

To take into account the temporal context, we consider two frames
before an ED frame and two frames after as the keyframes. For an ED
frame 𝐼𝑛, its group of key frames are denoted as

{

𝐼𝑛−2, 𝐼𝑛−1, 𝐼𝑛, 𝐼𝑛+1,
𝐼𝑛+2

}

. Between any two frames 𝐼𝑞 and 𝐼𝑝, a similarity score can be
defined as follows:

Sim
(

𝐼𝑝, 𝐼𝑞 , 𝜃
)

=
𝑥
∑

𝑖

𝑦
∑

𝑗

[

𝐼𝑞(i, j) − 𝐼𝜃𝑝 (i, j)
]2

, (1)

where 𝜃 is a rotation factor that can be used to find the best rotational-
aligned version of 𝐼𝑝 to 𝐼𝑞 .

To explore the motion feature for detecting lumen border, we
proposed two temporal context-based feature encoders, namely, an
alignment encoder (AE) and a visual persistence encoder (VE). The
encoded features are used as the input to the STR U-Net.

Alignment Encoder: Each heartbeat introduces motion of the
vessels, including a rotation and a back-and-forth motion. The rotation
feature is not relevant to lumen border detection. Thus, to extract the
actual relevant vessel movement features, the rotation change between
every two consecutive frames need to be eliminated, i.e. the frames
need to be aligned rotation-wise.

In AE, an original frame 𝐼𝑝 is rotated between −20 and 20 degrees
with a step size of 0.5 degrees around its centre and a rotated image is
referred to as 𝐼𝜃𝑝 . Then, to calculate the best alignment 𝐼 �̂�𝑝 with respect
to a reference frame 𝐼𝑞 , the aim is to find a �̂� such that:

�̂�(𝑝,𝑞) = arg min
𝜃∈[−20◦ ,20◦]

Sim
(

𝐼𝑝, 𝐼𝑞 , 𝜃
)

. (2)

The alignment of 𝐼𝑝 to 𝐼𝑞 is achieved by rotating 𝐼𝑝 by �̂�𝑝 degrees,
obtaining 𝐼 �̂�𝑝 . For the sake of simplicity, we denote 𝐼 �̂�𝑝 as 𝐼𝑝 in the
following text. Based on 𝐼𝑝, three feature channels are defined to
represent the original image.
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Denote Laplacian sharpening as 𝑆(𝐼) = ∇2𝐼(𝑖, 𝑗), where 𝐼(𝑖, 𝑗) are a
pixel’s coordinates in image 𝐼 . The first channel 𝐴𝐸(1)

𝑛 is defined as:

𝐴𝐸(1)
𝑛 = [S(𝐼(𝑛−2,𝑛−1)) + S(𝐼(𝑛−1,𝑛)) + S

(

𝐼𝑛
)

+S(𝐼(𝑛+1,𝑛)) + S(𝐼(𝑛+2,𝑛+1))]∕5
(3)

The second channel 𝐴𝐸(2)
𝑛 is the original ED frame. The third chan-

el 𝐴𝐸(3)
𝑛 is defined follows. We derive the overall difference between

he target frame 𝐼𝑛 and the average of the three consecutive frames
fter Laplacian sharpening as 𝐷:

=
S(𝐼(𝑛−1,𝑛)) + S

(

𝐼𝑛
)

+ S(𝐼(𝑛+1,𝑛))
3

− 𝐼𝑛. (4)

The values in 𝐷 fall in the range of (−255,255), and are normalised
into a range of (0,255). This normalised signal is the input to channel 3
𝐴𝐸(3)

𝑛 . The three channels altogether form the output of the alignment
encoder: [𝐴𝐸(1)

𝑛 , 𝐴𝐸(2)
𝑛 , 𝐴𝐸(3)

𝑛 ].
Visual Persistence Encoder: This encoder’s aim is to imitate the

visual residuals of human vision for visualising the lumen border. Due
to the visual residual effect, the relatively static blood vessel edges and
the randomly changing blood texture can be separated by a visible
border. We design two methods for visual persistence encoding, and
corresponding outputs are fit into the first and third channel, while the
middle channel is the original image.

The first channel in this encoder is designed to capture the temporal
context in the neighbouring frames, by calculating the average of the
five sharpened keyframes around an ED frame 𝐼𝑛. This channel is
denoted as 𝑉 𝐸(1)

𝑛 = [𝑆(𝐼𝑛−2) + 𝑆(𝐼𝑛−1) + 𝑆(𝐼𝑛) + 𝑆(𝐼𝑛+1) + 𝑆(𝐼𝑛+2)]∕5.
The second channel simply takes in the original ED frame, 𝑉 𝐸(2)

𝑛 = 𝐼𝑛.
The third channel 𝑉 𝐸(3)

𝑛 encodes the change data around 𝐼𝑛 from its
previous frame to its subsequent frame. We define 𝑉 𝐸(3)′

𝑛 = (𝐼𝑛−1 + 𝐼𝑛 +
𝐼𝑛+1)∕3 − 𝐼𝑛. 𝑉 𝐸(3)′

𝑛 is then normalised into the range of [0,255] to ob-
tain 𝑉 𝐸(3)

𝑛 , for capturing temporal changes by considering the previous,
current, and subsequent frames, as well as filtering out high-frequency
noise. This approach provides a more comprehensive understanding of
the temporal dynamics and ensures that the output remains within the
original image range, making it easier to interpret and utilise in the
model.

The output of VE is [𝑉 𝐸(1)
𝑛 , 𝑉 𝐸(2)

𝑛 , 𝑉 𝐸(3)
𝑛 ].

3.3. STR U-Net: Selective transformer U-Net with recurrent residual blocks

IVUS segmentation requires not only highly precise, pixel-level de-
lineation of lumen and EEM in conventional images, but also relies on
further inferring the boundaries in challenging areas where visual cues
are missing or misleading. For that purpose, the STR U-Net is proposed
as the backbone of the POST-IVUS framework. This network inherits
the strong segmentation power of U-Net, while it also possesses the
inference ability that traditional segmentation networks do not have.

STR U-Net, akin to a U-Net, is a five-layer fully connected convo-
lutional neural network. From the second layer onwards, a Selective
Transformer Recurrent Residual (STRR) Block is incorporated as the
encoder. The STRR Block integrates two feature extraction branches,
one is called an ’inference branch’ with a Swin Transformer, and the
other is a ‘segmentation branch’ that entails a recurrent residual con-
volutional unit. The segmentation branch is designed to concentrate on
pixel-level information, capturing the descriptive features in the local
area for effective segmentation. However, relying on the local features
is inadequate to solve the intrinsic problems in this task. As mentioned
above, the IVUS images often include regions with obscured or absent
visual information, such as the dark areas due to calcific plaques, or
areas where side branches present, but the lumen and EEM boundaries
run across such areas. We notice human vision system is particularly
able to infer the missing part of boundaries in challenging areas by
expanding the analysis to the whole images and mentally closing the
gaps in the overall boundaries. The Swin Transformer is known to be
6

T

powerful in capturing information from a larger receptive field. There-
fore, we design the ‘inference branch’ with a Selective Transformer
unit, to complement the segmentation branch and mimic the ‘inference’
process for the missing part of an organisational structure in human
visual perception.

The two branches generate complimentary feature maps, which are
merged in the succeeding layer. In the experiment evaluation, it is
shown that this dual branch design in the STRR block is able to enhance
the overall segmentation performance in various challenging scenarios
in the IVUS segmentation task. A detailed illustration of the STR U-Net
and the STRR Block structure can be seen in Fig. 5.

3.3.1. Segmentation branch
In the segmentation branch, shown as the purple flow in the STRR

block in Fig. 5, we replace the convolution layer in the traditional U-Net
with a recurrent residual convolutional unit (RRCU). Recurrent units
improve the memory capacity of the network and help learn better
feature representations for vision-related tasks. RRCU has been proven
effective and efficient in training deep neural networks in Alom et al.
(2018).

In the 𝑙𝑡ℎ layer of STR U-Net, at time step 𝑡, the output of the
improved residual network is denoted as 𝑂𝑖𝑗𝑘𝑙(𝑡), which corresponds
to the pixel coordinates 𝑖, 𝑗 in the 𝑘𝑡ℎ feature map. The mathematical
expression of the output is:

𝑂𝑖𝑗𝑘𝑙(𝑡) = (𝑤𝑓
𝑘 )

𝑇
∗ 𝑥𝑓 (𝑖,𝑗)𝑙 (𝑡) + (𝑤𝑟

𝑘)
𝑇 ∗ 𝑥𝑟(𝑖,𝑗)𝑙 (𝑡 − 1) + 𝑏𝑘. (5)

𝑥𝑓 (𝑖,𝑗)𝑙 (𝑡) and 𝑥𝑟(𝑖,𝑗)𝑙 (𝑡−1) are the inputs to the standard convolution layer
nd the recurrent convolutional layer, respectively. 𝑤𝑓

𝑘 represents the
eights of the standard convolutional layer of the 𝑘𝑡ℎ feature map;
𝑟
𝑘 represents the weights of recurrent convolutional layer of the 𝑘𝑡ℎ

eature map; and 𝑏𝑘 is a bias. The final output of segmentation branch
𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 is represent as:

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑎𝑥(0, 𝑂𝑖𝑗𝑘𝑙(𝑡)) (6)

.3.2. Inference branch
The inference branch is indicated in red in the STRR Block in Fig. 5.

he field size is a crucial factor to the inference ability of a segmen-
ation model. In order to infer the boundaries in regions where little
nformation presents, i.e. the dark areas and side-branches areas, it is
ecessary to involve the visual information from adjacent context areas
y mimicking the perceptual organisation property of human vision.
e propose a Selective Transformer structure to perform segmentation

nference by taking into account larger visual fields, inspired by the
KNet (Li et al., 2019). The structure of the selective transformer is
epicted in Fig. 6(a).

The global self attention mechanism offers a large field of view.
herefore, we use Swin Transformer as the backbone of the inference
ranch (Liu et al., 2021). Swin Transformer introduces connections
etween areas by dividing images into different patches and calculates
ierarchical representation. Then, key neighbour patches can be ex-
loited when speculating patches have insufficient information. The
elective transformers is designed to find patches containing relevant
ontext information in an adaptive way.

Here, a Swin Transformer group is built to explore patch-based
elationships on two split feature maps from different convolution
ernels. There are three stages in the selective transformer: splitting
tage, fusing stage and selecting stage.
Splitting stage: For a given feature map 𝑥𝑙 of size [𝐻𝑙 ,𝑊𝑙 , 𝐶𝑙], by

efault we first place two Swin blocks T1 ∶ 𝑥𝑙 → 𝑈1 ∈ R𝐻×𝑊 ×𝐶 and
2 ∶ 𝑥𝑙 → 𝑈2 ∈ R𝐻×𝑊 ×𝐶 . The structure of a Swin block is shown

n Fig. 6(b). The input feature map in layer 𝑙 of the STR U-Net are
efined as [𝐵,𝐶𝑙 ,𝐻𝑙 ,𝑊𝑙], where 𝐵 denotes the batch size, 𝐶, 𝐻 and 𝑊
enote the feature channels, height and width of the input feature map.

o allow a Swin block to serve its purpose, the input feature map is
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Fig. 6. Key modules in the STRR block. (a) The proposed selective transformer structure in STRR block’s inference branch. (b) The structure of a Swin block, i.e., T1 or T2 in the
splitting stage of ST. (c) The structure of each Swin Transformer group.
first partitioned into non-overlapping patches. We extract the high-level
features as ‘tokens’ from the original patches.

Denote the side length of a square input image as 𝐿, the patch size
is defined as:

𝑃𝑙 =

{

𝐿
2𝑙×10 𝑙 = 2, 3, 4
𝐿

2𝑙−1×15 𝑙 = 5.
(7)

In stage 1 of the Swin block in Fig. 6(b), the number of tokens remains
(𝐻𝑙
𝑃𝑙

× 𝑊𝑙
𝑃𝑙

). The attention heads are set to 4 for each layer. The patch
embedding layer resizes the feature dimension to 𝐶 ′

𝑙 = 3 × 28−𝑙, while
the feature map becomes deeper and smaller in each layer.

Then in stage 2, the patch merging layer concatenates features of
neighbouring 2 × 2 patches in each group, so the output dimension
becomes to 2𝐶 ′

𝑙 , and the number of tokens reduces to 𝐻𝑙
2𝑃𝑙

× 𝑊𝑙
2𝑃𝑙

. Then,
a few Swin Transformer groups are applied for feature transformation.
Finally, the same process is repeated in stage 3, but with only one Swin
Transformer group. The output resolution reduces to 𝐻𝑙

4𝑃𝑙
× 𝑊𝑙

4𝑃𝑙
. Thus,

the shape of the Swin block’s output in layer 𝑙 is [ 𝐻𝑙
4𝑃𝑙

, 𝑊𝑙
4𝑃𝑙

, 4𝐶 ′
𝑙 ]. So the

dimensions of the hidden states in each layer 𝑙 is 4𝐶 ′
𝑙 = 4 × 3 × 28−𝑙.

In each Swin Transformer group, as illustrated in Fig. 6(c), the
Window-based Multi-head Self Attention module (WMSA) evenly di-
vides an input feature map into windows to reduce computational
complexity, on top of the original Multi-head Self Attention module
(MSA) (Vaswani et al., 2017). The Shifted Window-based Multi-head
Self Attention module (SWMSA) then changes the order of the embed-
ded patches in WMSA. The process always starts by going through a
LayerNorm (LN) layer before every MSA or a 2-layered Multi-Layer Per-
ception (MLP) module. The first WMSA module partitions an original
feature map of [ 𝐻𝑙

4𝑃𝑙
, 𝑊𝑙
4𝑃𝑙

, 4𝐶 ′
𝑙 ], and window size is set to 7 for T1 and

9 for T2. The second MSA module (SWMSA) shifts the output of the
previous layer, rights-wards and down-wards for half a window size.
The process in a Swin Transformer group can be formally defined as
the following:

𝑧1 = 𝑊𝑀𝑆𝐴(𝐿𝑁(𝑥𝑙)) + 𝑥𝑙 ,

𝑧2 = 𝑀𝐿𝑃 (𝐿𝑁(𝑧1)) + 𝑧1,

𝑧3 = 𝑆𝑊𝑀𝑆𝐴(𝐿𝑁(𝑧2)) + 𝑧2,

𝑧4 = 𝑀𝐿𝑃 (𝐿𝑁(𝑧3)) + 𝑧3,

(8)

where 𝑥𝑙 is the input to the Swin Transformer group, 𝑧1, 𝑧2, 𝑧3 and 𝑧4 is
the output features of the WMSA module, the MLP module, the SWMSA
module and the final output of Swin Transformer group, respectively. In
the Swin block of T1, there are two Swin Transformer groups in its stage
2 and that of T2 contains three. For thicker vessels, a big window size
in T1 can cover a larger area, adequately exploring the characteristics
of both EEM and lumen boundaries. Meanwhile, more fine-grained
information is required for segmentation in small vessels, assisted by
inference in the areas with guide wire artifacts and small plaques.
Therefore, T2 with a smaller window size can focus on collecting useful
features for the inference process.

Fusing stage: A series of gates are employed to control the weights
of multiple feature maps in order to find the most relevant patches
7

for inference. We first calculate a fused feature map 𝑈 from the two
branches: 𝑈 = 𝑈1 + 𝑈2.

Then the global information is embedded by global average pooling
to generate the statistics feature map matrix channel-wise as 𝑀 . For
every element in feature channel 𝑘, we compress the feature map 𝑈𝑘
to 𝑀𝑘 by down-sizing 𝑈𝑘 through spatial dimensions 𝐻𝑙

4𝑃𝑙
× 𝑊𝑙

4𝑃𝑙
:

𝑀𝑘 = 1
𝐻𝑙
4𝑃𝑙

× 𝑊𝑙
4𝑃𝑙

𝐻𝑙
4𝑃𝑙
∑

𝑖=1

𝑊𝑙
4𝑃𝑙
∑

𝑗=1
𝑈𝑘(𝑖, 𝑗) (9)

The size of 𝑀 is [1 × 4𝐶 ′
𝑙 ] in layer 𝑙. Then a linear layer and a

normalisation layer are applied on 𝑀 , to generate a feature map 𝑃 of
shape [1 × 4𝐶 ′

𝑙 ].
Selecting stage: Here, a softmax operation is applied to feature map

𝑃 of each channel. This step enables the network to select the most
relevant patches for inference. The 𝑘th feature in 𝑃 are denote as 𝑃𝑘.
For each feature map 𝑈1 and 𝑈2, the weight 𝑊 of feature 𝑃 is calculate
as:

𝑊1,𝑘 = 𝑒𝑃1,𝑘

𝑒𝑃1,𝑘 + 𝑒𝑃2,𝑘
,𝑊2,𝑘 = 𝑒𝑃2,𝑘

𝑒𝑃1,𝑘 + 𝑒𝑃2,𝑘
, (10)

where 𝑊1,𝑘 +𝑊2,𝑘 = 1. Then we can obtain the overall feature map 𝑉𝑘:

𝑉𝑘 = 𝑊1,𝑘 ⋅ 𝑈1,𝑘 +𝑊2,𝑘 ⋅ 𝑈2,𝑘, (11)

where 𝑉𝑘 ∈ R𝐻×𝑊 , and 𝑉 = [𝑉1, 𝑉2,… , 𝑉𝑘]. Each output feature map
𝑉𝑘 is reshaped to [𝐻2 ,

𝑊
2 , 4𝐶 ′

𝑙 ]. At last, the features are reduced by a
convolutional layer to obtain the final output of the inference branch
𝑉𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒, of shape [𝐻2 ,

𝑊
2 , 2𝐶].

The overall feature map of the STRR block 𝑉𝑙 for layer 𝑙 is generated
by concentrating 𝑉𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 and 𝑉𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, as illustrated in Fig. 5.

3.4. Adversarial learning

To further improve the capability of perceptual organisation based
inference in segmentation, we employ the generative adversarial learn-
ing scheme to guide and regulate the training of segmentation models.
The learning process will force the model to simulate the way cardiol-
ogists predict sensible boundaries in shadowed, confusing regions and
outline the complete inner and outer vessel walls. When the network
generates unreasonable segmentation, the discriminator will be able to
identify it and penalise the aberrant area with its loss. As shown in
Fig. 7, a second area is mis-detected due to the influence of pericardium
and side-branch, and this false area will be suppressed by adversarial
learning.

An adversarial learning based segmentation network includes two
main parts, as depicted in Fig. 3(a): a generative network 𝐺 and a
discriminative network 𝐷. 𝐺 is used to generate segmentation masks,
and 𝐷 is used to judge whether a mask is real or generated by the
generative network. Specifically, given an image 𝐼 , the generative
network aims to learn a mapping from 𝐼 to a mask 𝑀 , namely, 𝐺 ∶
𝐼 → 𝑀 . In the setting of adversarial learning, the generator 𝐺 aims to
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Fig. 7. Some examples of U-Net predictions for EEM regions. Green area: predicted
results, red dash lines: expert annotations. The main reason for detecting multiple
regions is due to the presence of side-branch and pericardium.

generate accurate segmentation results to fool the discriminator 𝐷 so
that it cannot distinguish a generated mask 𝑀 from the corresponding
real mask �̂� . The objective can be expressed as:

min
𝐺

max
𝐷

𝐺𝐴𝑁 (𝐺,𝐷) =

E
[

log(𝐷(𝑀)] + E
[

log (1 −𝐷(𝐺(𝐼))]
(12)

E[⋅] represents the expected value over all data instances. We also
apply 𝐿1 (L1 loss) to train the generative network 𝐺:

𝐿1(𝑀,�̂�) = ‖𝑀 − �̂�‖1 = ‖𝐺(𝐼) − �̂�‖1 (13)

Given a coefficient 𝜆 between 𝐿1 and 𝐺𝐴𝑁 , the final objective is:

 = min
𝐺

max
𝐷

𝐺𝐴𝑁 (𝐺,𝐷) + 𝜆𝐿1(𝐺(𝐼), �̂�). (14)

By adding the discriminator to the POST module, the network will
force STR U-Net to resemble the most likely annotation of human
experts and generate reasonable edges in areas where inference is
needed. At the same time, it can strengthen the correlation between
EEM and lumen boundary and ensures the inference is reasonable. In
the POST-IVUS framework, the discriminator is essential for enhancing
segmentation accuracy by guiding the generative network to produce
more accurate and realistic segmentation masks. We use the discrimi-
nator during training in all instances, except for select ablation study
experiments. In these ablation studies, the discriminator is excluded
to assess individual components or variations within the framework,
allowing us to understand their contributions to overall segmentation
performance. Through the consistent application of the discriminator
during training, the generative network is encouraged to generate
segmentation masks that closely mimic expert annotations, leading to
improved segmentation outcomes.

3.5. Spatial constraint and losses

Lumen and EEM represent the inner and outer walls of the vessel,
respectively. Therefore, the lumen region is always enclosed in the EEM
region. This prior knowledge can be exploited in network design as
a spatial constraint for defining both boundaries. Thus, we design a
training strategy in which both segmentation ground truth are consid-
ered jointly, i.e., for lumen segmentation, both lumen and EEM masks
are used for training, and vice versa. In the learning process, the two
predicted segmentation boundaries need to satisfy the constraint that
lumen is enclosed inside the EEM border.

For multi-class segmentation tasks, two types of losses are com-
monly used: distribution-based losses, such as 𝐶𝐸 , or region-based
losses, such as  and  . The annotation of each class occupies
8

𝐷𝑖𝑐𝑒 𝐼𝑂𝑈
a channel, and a total of 𝑛 + 1 channels are required for 𝑛 classes. In
this way, each channel is independent, and the final output is obtained
by the softmax of all channels. This approach does not impose the
relationship between EEM and lumen borders as the mutual influence
between channels is small, and thus the resulting boundaries unavoid-
ably contain errors. To address this issue, we put these two categories
into one channel for training, where the vascular position is grey and
the lumen interior is white. 𝐿1 is utilised, as it does not require
softmax operation. In this way, the 𝐿1 features can generate sharp
boundaries (Isola et al., 2017), the segmentation accuracy of lumen
borders is improved. The experimental results also prove that IVUS
segmentation can benefit from the spatial relationship between the two
classes. In dark regions, as the shape of vessels defined by the EEM
is relatively fixed, the lumen boundary can be better demarcated by
taking advantage of the spatial relation constraint.

3.6. Temporal constraint and fusion module

A temporal constraining and fusion (TF) module is designed as a
post-processing stage in the POST-IVUS framework. Due to the presence
of side-branches, noise and artifacts in IVUS videos, the segmentation
results are often unstable, and the predicted region masks may dif-
fer greatly from the target segmentation regions. To solve this series
of problems and improve the performance robustness, we propose a
temporal constraining and fusion module, which includes two parts:
temporal constraint and late spatial augmentation fusion.

3.6.1. Temporal constraint
First, we proposed an IVUS temporal context constraint approach

to eliminate false positives caused by side-branch and noise. The pro-
posed adversarial learning approach for segmentation is capable of
eliminating the false positive regions detected due to the presence of
side-branch and pericardium, as shown in Fig. 7. However, in some
cases, small regions of a few pixels, as an effect of noise, will remain. To
address this issue, we propose to seek for additional temporal context
information from neighbouring frames to help eliminate the unwanted
areas in the mask. This is designed as a post-processing step, in which
the temporal context constraint is applied on the initial masks obtained
by the segmentation networks, identifying and keeping the most likely
correct regions according to the temporal context, while eliminating
the rest that are likely to be false positives due to side-branches and
noise.

More specifically, if the segmentation mask 𝑀𝑛 of frame 𝐼𝑛 contains
more than one disconnected region 𝑅𝑡, 𝑡 > 1, define a function Area

(

𝑅𝑡
)

that calculates the area of a region, then the final mask 𝑀 ′
𝑛 can be

express as:

𝑀 ′
𝑛 =

⎧

⎪

⎨

⎪

⎩

arg max
𝑅𝑡∈𝑀𝑛

{

Area
(

𝑅𝑡
)}

,𝑛 = 1

arg max
𝑅𝑡∈𝑀𝑛

{

Area
(

𝑅𝑡 ∩𝑀 ′
𝑛−1

)}

,𝑛 > 1
(15)

Now, the final mask 𝑀 ′
𝑛 of frame 𝐼𝑛 contains only one EEM region.

3.6.2. Spatial augmentation fusion
To further enhance the segmentation accuracy, the robustness

against morphological variances and stability in the challenging areas,
we developed a spatial augmentation fusion step in post-processing.
Based on a segmentation mask 𝑀 ′

𝑛 for ED frame 𝐼𝑛, the centre of the
vessel, i.e., the masked EEM region, can be calculated. In the first type
of augmentation, the ED frame 𝐼𝑛 is rotated by a certain degree with
respect to its image centre to generate a few new versions of the frame.
In the second type of augmentation, the frame is shifted so that the
vessel centre is aligned with the image centre. Then the shifted frame is
rotated by a certain degree with respect to its image centre to generate
a few new versions of the frame. In the third type of augmentation, the
original and shifted frames are transposed. In total ten varied frames
are obtained including the original.
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First, a frame 𝐼𝑛 is translated by aligning the vessel centre to the
mage centre, and the resulting image is denoted 𝐼 ′𝑛.

Then, 10 varied versions of the original image 𝐼𝑛 is acquired by the
following operations: {𝐼𝑛, 𝐼 ′𝑛, 𝐼90

◦

𝑛 , 𝐼 ′90◦𝑛 , 𝐼180◦𝑛 , 𝐼 ′180◦𝑛 , 𝐼270◦𝑛 , 𝐼 ′270◦𝑛 ,
[

𝐼𝑛
]𝑇 ,

𝐼 ′𝑛
]𝑇 }, where 𝑇 represents the transpose operation and 𝐼𝜃𝑛 represents

𝑛 rotated by 𝜃 degrees. The missing corners generated by frame
ranslation and rotation are all zero-padded so that the images keep
he same scale.

For each of the images, a segmentation mask can be acquired using
he above described method. The resulting 10 masks are reversely
otated, translated and transposed to obtain masks at the same position
s that of the original image.

Define 𝑀𝑠𝑢𝑚
𝑛 as the overlay of the 10 masks in the form of a

80 × 480 matrix, in which every pixel is a vote value telling how
any masks include this pixel inside the segmentation region. Apply

hreshold 𝐻 on the vote values and a final segmentation result �̂�𝑛 is
chieved for image 𝐼𝑛. For every pixel 𝑀 sum

𝑛 (𝑥, 𝑦) in 𝑀 sum
𝑛 :

M̂𝑛(𝑥, 𝑦) =
{

1, 𝑀 sum
𝑛 (𝑥, 𝑦) ≥ 𝐻

0, 𝑀 sum
𝑛 (𝑥, 𝑦) < 𝐻

. (16)

In the experiments of this paper, empirically, the thresholds are set
to 𝐻 = 7 for EEM and 𝐻 = 5 for lumen.

4. Experiments and results

In this section, we present the experiment results with quantita-
tive and qualitative evaluations. The influences of different method
selections and setups are analysed.

4.1. Evaluation datasets

The POST-IVUS framework is evaluated on a private dataset (NIRS-
IVUS) and a public dataset (IVUS-2011). These datasets are described
in the following.

4.1.1. NIRS-IVUS dataset
We analysed IVUS data from a total of 70 patients who participated

in the ‘‘Evaluation of the efficacy of computed tomographic coronary
angiography in assessing coronary artery morphology and physiology’’
study (NCT03556644). In the major epicardial vessels in these 70
patients, 197 near-infrared spectroscopy (NIRS)-IVUS sequences were
captured by Infraredx 2.4F 50 MHz Dualpro system. The pullback was
performed by an automated device with a fixed speed of 0.5 mm/s, and
the frame rate of the IVUS video was 30 frames per second. The frame
resolution is 480 × 480 pixels.

In total 197 vessels were assessed providing a total of 26,678 end
diastolic frames, and annotated by four experts over a period of two
years. According to our dataset acquisition standards and previously
published guidelines (Mintz et al., 2001), we excluded images in which
the EEM borders in obscured regions for an arc > 90◦. This dataset,
reported in the literature (Bajaj et al., 2021), is currently the largest
dataset for training lumen and EEM border segmentation. The amount
of data and the associated data acquisition workload far exceeds the
magnitude of those in existing datasets based on public information.
The statistics and division of the NIRS-IVUS test set are shown in
Table 1.

In this dataset, we use 23,774 fully annotated ED frames from 177
vessels for training. The neighbouring frames before and after the ED
frames are needed in the lumen boundary segmentation, therefore,
a total of 118,870 frames are involved in training. For independent
testing, 2,437 tagged ED frames from 20 vessels are used, including
241 side-branch and 229 calcification cases. The training and test sets
are collected from different patients. On the test set, two experienced
cardiologists performed annotation to evaluate the inter-observer vari-
ability. Finally, a senior expert with more than 10,000 h of experience
in this work selected the best label and manually modified it to obtain
9

the gold standard.
Table 1
Statistics and division of the NIRS-IVUS test set.

Normal Side-branch Calcium

Test set 1987 (81.5%) 241 (9.9%) 229 (9.4%)

4.1.2. IVUS-2011 dataset
This dataset was first published with the IVUS 2011 open challenge

and is widely used in the literature (Balocco et al., 2014). It consists of
two subsets, the first having 77 in-vivo coronary artery frames captured
using a 40 MHz Atlantis SR40 Pro catheter from 22 patients, while
the second has 435 in-vivo coronary artery frames are taken from 10
patients by a Si5 Volcano Corporation device equipped with a 20 MHz
Eagle Eye probe. The latter is one of the most widely used in the IVUS
segmentation field. Following most of the research, this paper only
considers the second subset for experiments and evaluation. Among the
435 frames in the dataset, each sized 384 × 384 pixels, 60 include the
presence of bifurcation (side-branches), 94 have side vessels and 108
contain shadow artifacts (mainly due to calcific plaques). According to
the challenge requirements, 109 frames are used as the training set,
and the remaining 326 are used as the testing set. The ground truth
was established by four clinical experts, and this dataset also provides
four adjacent frames for each end-diastolic frame.

4.2. Evaluation metrics

For the two datasets, different evaluation criteria are used. For
IVUS-2011 dataset, there are three widely used measurements: Haus-
dorff distance (HD), Jaccard measure (JM) and percentage of area
distance (PAD). To analyse the results in further detail, four parameters
are used for the NIRS-IVUS dataset: Hausdorff distance, mean distance
(MD), Dice index (Dice) and Jaccard measure. Wherein, HD and MD
are distance-based measurements; JM, PAD and Dice are area-based
measurements. For the NIRS-IVUS dataset, the actual distance for one
pixel is 0.0222 mm (22.2 μm), and 0.026 mm (26 μm) for IVUS-
2011 dataset B. The distance in NIRS-IVUS dataset is measured in
micrometres (μm), and millimetres (mm) for IVUS-2011 dataset. The
Dice, PAD and JM are measured in percentage.

Hausdorff distance estimates the maximum distance between a
point in the ground truth boundary and its nearest point in the pre-
dicted boundary. Denote the predicted boundary as 𝐵auto and the
manually annotated boundary 𝐵man. The Hausdorff distance 𝐻𝐷 is
alculated as:

𝐷 = max
𝑝∈𝐵auto

{

min
𝑞∈𝐵man

{dist(𝑝, 𝑞)}
}

, (17)

where 𝑝 and 𝑞 are a point in 𝐵auto and in 𝐵man, respectively, and dist(𝑝, 𝑞)
is a function that calculates the distance between the two points.

Similarly, the mean distance is often used to measure the accuracy
of a segmentation boundary, calculated as:

𝑀𝐷 =

(

∑

𝑝∈𝐵man

min
𝑞∈𝐵auto

{dist(𝑝, 𝑞)}

)

∕ |
|

𝐵man
|

|

, (18)

where |

|

𝐵man
|

|

is the number of pixels in manually annotated boundary.
Denote the area of a manually annotated segmentation as 𝐴man, and

that of the model-predicted segmentation as 𝐴auto. A Jaccard measure is
also referred to as the Intersection over Union (IoU), and it is calculated
as:

𝐽𝑀 =
|

|

𝐴man ∩ 𝐴auto||
|

|

𝐴man ∪ 𝐴auto||
× 100% (19)

he Dice coefficient, also known as the dice similarity coefficient or F1
core, is denoted as:

𝑖𝑐𝑒 =
2 |
|

𝐴man ∩ 𝐴auto|| × 100% (20)

|

|

𝐴man| + |𝐴auto||
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Table 2
EEM segmentation results on the NIRS-IVUS dataset, with the comparison of losses. All results are generated based on U-Net.

All Normal Side-branch Calcium

HD MD Dice JM HD MD Dice JM HD MD Dice JM HD MD Dice JM

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 184.6 64.4 97.532 95.411 139.0 50.3 97.964 96.163 515.3 185.7 94.335 89.983 257.4 63.9 96.654 93.754
𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 + 𝐷𝑖𝑐𝑒 183.3 53.6 97.422 95.210 138.7 42.8 97.831 95.932 491.1 136.5 94.409 90.030 274.5 67.0 96.585 93.599
𝐼𝑂𝑈 173.2 49.2 97.802 95.801 119.8 36.9 98.246 96.585 531.4 135.2 94.895 90.715 293.8 72.7 96.666 93.735
𝐶𝐸 172.8 46.1 97.868 95.927 119.3 33.5 98.298 96.684 539.9 134.1 94.886 90.743 278.8 69.4 96.944 94.212
𝑇 𝑣𝑒𝑟𝑠𝑘𝑦 174.2 46.7 97.896 95.992 121.2 34.2 98.360 96.809 536.5 132.8 94.801 90.607 281.4 70.4 96.747 93.904
𝐷𝑖𝑐𝑒 168.2 46.0 97.811 95.810 115.9 34.4 98.252 96.589 523.4 125.2 94.855 90.652 281.5 69.5 96.710 93.796
𝐿1 164.3 42.3 97.369 95.096 124.2 33.2 97.743 95.767 435.9 102.0 94.690 90.408 251.7 62.8 96.584 93.563
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Table 3
EEM segmentation by using only lumen annotations and lumen annotations in training.
All results were generated based on U-Net + Dis. + TF (𝜆 = 100), 𝐿1, NIRS-IVUS
ataset.
EEM segmentation Input HD MD Dice JM

1 Frame Lumen 166.4 43.7 97.686 95.563
1 Frame Full 143.8 37.6 97.992 96.123

Lumen segmentation Input HD MD Dice JM

Aliment Encoder Lumen 238.6 73.4 94.891 90.470
Visual Persistence Encoder Lumen 220.0 67.8 95.230 91.066
Aliment Encoder Full 199.1 60.4 95.761 95.761
Visual Persistence Encoder Full 194.9 57.6 95.897 95.897

The percentage of area distance is defined as:

𝑃𝐴𝐷 =
|

|

𝐴man − 𝐴auto||
𝐴man

× 100% (21)

In order to estimate the level of agreement between different ob-
ervers, and between the model and observers, we employ the modified
illiams Index (mWI) and 95% confidence interval for the modified
illiams index (Chalana and Kim, 1997). WI is a metric designed to
easure the ratio of the observer-to-observer or computer-to-observer

greement. For two annotations by the 𝑖𝑡ℎ and 𝑗𝑡ℎ observers, 𝑖, 𝑗 ∈ [0, 𝑛],
the proportion of disagreement is denoted as 𝐷𝑖,𝑗 . For HD, MD and area,
the proportion of disagreement 𝐷𝑖,𝑗 equals to the difference between
the distance measurements of observers 𝑖 and 𝑗. For the Dice index and
Jaccard measurement, the proportion of agreement between observers
𝑖 and 𝑗 are denoted as 𝑃𝑖,𝑗 , and 𝐷𝑖,𝑗 =

1
𝑃𝑖,𝑗

. The modified Williams index
s defined as:

𝑊 𝐼 ′ =

1
𝑛
∑𝑛

𝑖=1
1

𝐷0,𝑖

2
𝑛(𝑛−1)

∑

𝑗
∑

𝑖′∶𝑗≠𝑖
1

𝐷𝑖,𝑗

, (22)

or a total number (𝑛 + 1) observers, from 0 to 𝑛. The mWI compares
he degree of agreement between the computer-generated boundaries
nd each observer’s manual annotations against the level of agreement
mong the observers themselves. When the mWI is greater than 1, it
mplies that the computer-generated boundaries are more agreeable
o each expert compared to their agreements, thus signifying that the
omputer-generated results better represent the consensus among the
xperts.

.3. Experimental setting

All the experiments are carried out in the same hardware and
oftware environment: eight Lenovo SR670 servers, each include 2 of
4 cores Intel Xeon Platinum 8268 CPU, 384 GB memory and four of
VIDIA A100 40 GB GPU. We build the entire project based on Python
.8 and PyTorch 1.8.1.

The processing speed after loading the pullback video is 2 frames
er second. The optimiser is Adam (Kingma and Ba, 2014) and the
earning rate is 0.00001. The model’s weight is initialised randomly,
nd the training epoch has been set to 200. For the two datasets,
he input sizes have been configured to 480 ×480 and 384 × 384,
espectively. A full segmentation of the test set is performed at every
poch, and the batch size is set to 32. The training data is enhanced
y flipping, rotating, translating, panning, zooming, adding Gaussian
oise, elastic distortion, and randomly adjusting image brightness.
10

t

.4. IVUS segmentation results

First, we explore the performance differences of annotation meth-
ds, losses and models in the NIRS-IVUS EEM border segmentation
ask, to find the best parameter combination. We also compare our
roposed STR U-Net with other well-known segmentation networks.
hen NIRS-IVUS lumen segmentation results are reviewed to explore
he best encoder for lumen segmentation. We then compare the best
ethod with the annotations of two experts to evaluate Computer-

o-observer and inter-observer variability. Finally, we compare our
roposed method with other publicly available methods since 2018 on
he IVUS-2011 dataset B.

.4.1. Loss and spatial constraint
Using both lumen and EEM annotations in the EEM segmentation

ipeline can effectively improve segmentation performance, and vice
ersa. Based on Table 3, in each segmentation pipeline, the perfor-
ance is improved due to the existence of both types of annotations.
his is especially evident with the segmentation on the lumen border,
s the EEM boundary can effectively constrain the lumen boundaries
n side-branch areas. At the same time, We quantitatively evaluate
he performance of all segmentation losses on the EEM segmentation
ask in Table 2 to determine the extent to which each loss can take
dvantage of this constraint. Fig. 9 presents sample masks for qual-
tative assessment. In terms of critical indicators such as Hausdorff
istance and mean distance, 𝐿1 outperforms other losses significantly.
t produces more stable borders and fewer errors. In the side-branch
nd calcium cases that require prediction, 𝐿1 can generate more
easonable and stable predicted boundary that resembles the ground
ruth. As described in Section 3.5, the use of 𝐿1 allows the training
f both classes to be carried out in a single channel simultaneously,
he inherent spatial constraints between EEM and lumen boundaries
an be adequately taken into account. This is the main reason why 𝐿1
oss leads to superior results compared to other losses. Both the EEM
nd lumen annotations are jointly applied in training. In particular, the
table EEM border can constrain the position of lumen boundaries, and
nhance the performance of lumen segmentation.

For the other losses, 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (Kervadec et al., 2019), 𝐶𝐸 , 𝐼𝑂𝑈 ,
𝑇 𝑣𝑒𝑟𝑠𝑘𝑦, and 𝐷𝑖𝑐𝑒, three-channel masks are required. As illustrated in

he examples in Fig. 9, the resulting boundaries are less satisfactory and
re easier to be influenced by shadows and side-branches.

Overall, this set of experiments verifies that applying the spatial
onstraint and placing all boundaries in one channel leads to more
easonable results. Therefore, 𝐿1 is selected as the main loss in the
OST-IVUS framework, and is applied in all subsequent experiments.

.4.2. NIRS-IVUS EEM segmentation
In this study, we design the STR U-Net, which combines the

trengths of the selective transformer (ST) and the Recurrent Residual
onvolutional Unit (RRCU). While both ST and RRCU are capable of
xtracting hierarchical information, they serve complementary roles in
he segmentation process. On the one hand, ST captures long-range
ependencies and global context, which is particularly beneficial for
andling complex structures and larger visual fields. On the other
and, RRCU focuses on learning local features and maintaining spa-

ial information, which is crucial for detailed boundary delineation.
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Table 4
EEM segmentation results on NIRS-IVUS, comparison between the proposed ST U-Net, STR U-Net and previous segmentation models.

Network All Normal Side-branch Calcium

HD MD Dice JM HD MD Dice JM HD MD Dice JM HD MD Dice JM

SegNet 182.7 76.6 97.629 95.544 125.5 50.2 98.099 96.354 496.8 188.8 94.704 90.515 451.7 258.0 95.596 92.183
PSPNet 138.0 39.1 97.972 96.098 102.9 30.7 98.311 96.699 383.8 98.4 95.590 91.922 218.3 59.4 97.094 94.521
DeepLab V3+ 143.0 39.4 97.970 96.076 105.5 30.9 98.322 96.712 393.5 94.7 95.677 91.961 236.0 63.6 96.957 94.236
ENet 151.8 41.3 97.698 95.610 114.0 33.1 98.054 96.242 414.8 98.0 95.143 91.143 240.8 64.0 96.825 94.010
GCN 141.2 39.0 97.909 95.979 106.8 31.3 98.278 96.631 377.3 91.1 95.346 91.507 220.4 58.8 97.023 94.326

ST U-Net 141.9 36.2 98.168 96.466 102.0 27.6 98.544 97.141 405.1 90.9 95.789 92.196 250.3 62.6 96.986 94.347
STR U-Net 129.1 34.9 97.945 96.141 96.3 28.0 98.258 96.710 356.0 82.1 95.603 92.002 203.4 51.5 97.308 94.869
Table 5
Ablation study on backbones and modules of the POST-IVUS framework, include the discriminator (Dis.) and TF module, based on EEM segmentation on NIRS-IVUS. The 𝜆 in
discriminator Without specific description is set to 100.

All Normal Side-branch Calcium

HD MD Dice JM HD MD Dice JM HD MD Dice JM HD MD Dice JM

U-Net 164.3 42.3 97.369 95.096 124.2 33.2 97.743 95.767 435.9 102.0 94.690 90.408 251.7 65.0 96.584 93.563

U-Net + Dis. (𝜆 = 10) 162.2 43.1 97.598 95.457 125.1 33.4 98.048 96.226 394.2 106.6 94.710 90.642 266.9 67.8 96.044 92.726
U-Net + Dis. (𝜆 = 50) 163.4 42.5 97.132 94.626 129.2 34.6 97.526 95.329 395.1 94.2 94.381 89.832 242.0 62.4 96.060 92.639
U-Net + Dis. (𝜆 = 100) 159.6 42.0 97.757 95.676 127.1 34.6 98.103 96.294 378.6 91.1 95.379 91.489 234.5 60.9 96.934 94.135

U-Net + TF 151.6 41.2 97.862 95.902 117.1 33.8 98.200 96.515 385.0 90.3 95.570 91.791 228.6 59.5 97.045 94.374
U-Net + Dis. + TF 143.8 37.6 97.992 96.123 112.6 30.6 98.331 96.731 349.3 82.7 95.695 92.064 223.6 56.9 97.136 94.516

ST U-Net 141.9 36.2 98.168 96.466 102.0 27.6 98.544 97.141 405.1 90.9 95.789 92.196 250.3 62.6 96.986 94.347
STR U-Net 129.1 34.9 97.945 96.141 96.3 28.0 98.258 96.710 356.0 82.1 95.603 92.002 203.4 51.5 97.308 94.869
ST U-Net + Dis. + TF 131.8 34.8 98.220 96.565 96.4 27.0 98.569 97.191 364.7 83.8 96.013 92.599 228.9 58.5 97.100 94.562
STR U-Net + Dis. + TF 119.8 32.0 98.289 96.705 90.0 25.4 98.616 97.292 325.5 76.9 95.966 92.596 185.2 47.3 97.562 95.326
Fig. 8. A few EEM segmentation results in challenging areas, comparison between the proposed ST U-Net, STR U-Net and previous segmentation models on the NIRS-IVUS dataset:
(a) SegNet (b) DeepLab V3+; (c) ENet; (d) GCN; (e) PSPNet; (f) ST U-Net; (g) STR U-Net; (h) ST U-Net + Dis. + TF; (i) STR U-Net + Dis. + TF. For all discriminators, 𝜆 = 100.
This combination of components ensures that STR U-Net addresses
both the overall shape and intricate delicate boundary details in the
segmentation task.

A comparative analysis is presented on the EEM segmentation task
since it does not require temporal encoding and is more suitable for
popular segmentation networks. Besides, the NIRS-IVUS EEM dataset
provides a large number of stable annotations of EEM. Table 4 shows
the results of several state-of-the-art networks on the IVUS segmen-
tation task. We also develop ST U-Net, by replacing the Recurrent
Residual convolutional unit by two convolutional layers to demonstrate
the performance of RRCU in the segmentation branch. As it can be
observed, the proposed ST U-Net and STR U-Net slightly improve the
segmentation accuracy in normal class where no calcific plaque or
side-branch is present. While in these tricky cases that require some in-
ference ability, the two networks significantly improve the performance
compared to the existing methods. As Hausdorff distance is considered
the most important metric in this task, we uniformly use STR U-Net as
the backbone in the following tasks due to its excellent performance
11
in HD. The advantage of the proposed method can also be observed
in Fig. 8, showing cases with shadow and side-branch regions, the
proposed STR U-Net generates the most reasonable boundaries.

We also perform an ablation study on this task, results presented
in Table 5. The aim is to reveal the impact of different modules on
the performance of EEM segmentation. The POST-IVUS framework
achieves superior segmentation accuracy due to its inference ability in
side-branch and calcium cases. Specifically, the Temporal constraint
and Fusion (TF) module slightly increase the overall accuracy, but
due to its ability in suppressing errors in a single prediction, it sig-
nificantly improves the performance in the side-branch and calcium
cases. Compared to the original U-Net, the proposed ST U-Net and
STR U-Net backbones improve the segmentation accuracy in all classes
by a large margin. This improvement can also be observed from the
visual results depicted in Fig. 10. Based on the original U-Net’s results
(a), adding the discriminator (b), the TF module (c)(d), and utilising
the STR U-Net all bring improvements. Overall, the proposed scheme,
namely, STR U-Net with the discriminator and TF module (e) achieve
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Table 6
Lumen segmentation result for NIRS-IVUS dataset, comparison between different backbone, input data and encoders. For all discriminators, 𝜆 = 100.

Encoder All Normal Side-branch Calcium

HD MD Dice JM HD MD Dice JM HD MD Dice JM HD MD Dice JM

U-Net 1 Frame 245.7 75.5 94.592 90.018 216.1 66.9 95.170 90.979 467.1 137.5 90.854 83.875 292.3 93.2 92.682 86.844

U-Net 3 Frame 220.2 68.9 95.265 91.231 191.5 60.7 95.869 92.224 435.7 129.9 91.170 84.639 274.4 93.0 93.261 88.013
U-Net AE 217.8 69.6 95.237 91.242 186.6 58.3 95.942 92.354 447.6 147.6 91.187 84.758 303.7 120.4 92.134 86.678
U-Net VE 215.3 65.2 95.244 91.241 187.3 57.4 95.931 92.347 426.9 121.9 90.928 84.301 253.3 79.4 92.955 87.625

U-Net + Dis. 3 Frame 215.7 64.0 95.505 91.584 190.5 57.6 95.982 92.388 418.7 114.5 92.116 85.935 237.0 71.0 94.427 89.710
U-Net + Dis. AE 219.6 66.4 95.342 91.330 192.9 58.8 95.919 92.295 421.0 120.1 91.815 85.465 259.8 82.1 93.406 88.116
U-Net + Dis. VE 213.7 62.8 95.565 91.707 185.5 55.3 96.121 92.639 430.3 118.5 91.877 85.585 246.7 74.7 94.028 89.104

U-Net + TF 3 Frame 197.6 59.3 95.800 92.125 170.9 52.6 96.333 93.017 406.0 110.6 92.047 85.953 225.8 68.5 94.628 90.050
U-Net + TF AE 197.4 59.5 95.762 92.036 174.1 53.1 96.256 92.879 369.6 105.4 92.592 86.694 236.8 72.6 94.168 89.295
U-Net + TF VE 196.6 58.9 95.850 92.212 169.4 51.8 96.376 93.099 411.9 112.4 92.260 86.231 228.6 69.5 94.454 89.821

U-Net + Dis. + TF 3 Frame 201.3 60.6 95.787 92.090 174.0 53.2 96.279 92.914 422.7 120.2 92.209 86.178 221.1 66.1 94.777 90.309
U-Net + Dis. + TF AE 199.1 60.4 95.761 92.044 175.1 53.8 96.263 92.897 380.0 108.3 92.501 86.549 234.5 72.1 94.268 89.485
U-Net + Dis. + TF VE 194.9 57.6 95.897 92.288 169.9 51.0 96.421 93.168 390.3 107.7 92.260 86.266 223.1 67.1 94.611 90.051

ST U-Net 3 Frame 184.1 56.9 96.094 92.635 156.0 50.1 96.586 93.476 408.9 109.8 92.603 86.764 206.2 64.1 95.054 90.762
ST U-Net AE 192.8 59.4 95.922 92.310 165.0 52.8 96.401 93.138 405.2 109.3 92.727 86.798 225.9 68.3 94.669 90.145
ST U-Net VE 173.6 53.5 96.294 92.959 147.3 47.2 96.717 93.698 378.6 100.9 93.334 87.844 202.8 61.7 95.240 91.099

STR U-Net 3 Frame 176.1 55.1 96.126 92.689 152.1 48.8 96.575 93.466 357.0 102.5 93.021 87.374 210.4 65.4 94.897 90.557
STR U-Net AE 186.4 58.3 95.947 92.375 159.3 50.6 96.452 93.238 394.6 116.9 92.535 86.618 218.4 69.0 94.476 89.844
STR U-Net VE 173.0 54.8 96.200 92.849 146.7 46.7 96.691 93.677 358.1 101.1 92.987 87.426 228.1 82.1 94.710 90.361

ST U-Net + Dis. + TF 3 Frame 172.2 52.8 96.317 93.032 145.4 46.6 96.790 93.840 386.4 101.7 92.865 87.192 194.9 58.0 95.466 91.510
ST U-Net + Dis. + TF AE 182.4 56.7 96.060 92.563 156.3 50.2 96.537 93.384 387.4 106.9 92.795 86.956 206.5 63.4 94.967 90.678
ST U-Net + Dis. + TF VE 165.5 50.5 96.446 93.250 141.6 44.9 96.873 93.984 359.3 95.9 93.316 87.897 186.7 55.7 95.598 91.724

STR U-Net + Dis. + TF 3 Frame 164.2 50.7 96.406 93.206 141.0 45.0 96.852 93.968 348.0 96.7 93.112 87.663 187.6 57.8 95.446 91.497
STR U-Net + Dis. + TF AE 172.8 53.7 96.214 92.854 148.6 47.5 96.685 93.662 358.4 100.7 92.936 87.310 203.6 63.9 94.978 90.679
STR U-Net + Dis. + TF VE 162.2 49.9 96.447 93.262 139.4 44.2 96.888 94.021 341.7 94.2 93.225 87.817 188.8 57.8 95.438 91.481
Table 7
Computer-to-observer difference and inter-observer agreement analysis.

Lumen EEM Plaque area

HD (μm) MD (μm) Dice (%) JM (%) Area (mm2 ) HD (μm) MD (μm) Dice (%) JM (%) Area (mm2 ) Area (mm2 )

Expert 1 - Expert 2 198.9 ± 147.2 58.5 ± 43.8 95.9 ± 3.0 92.3 ± 5.1 0.099 ± 0.534 133.8 ± 139.7 34.3 ± 35.9 98.2 ± 1.7 96.6 ± 2.9 −0.076 ± 0.660 0.174 ± 0.744
Expert 1 - Proposed 167.3 ± 128.8 51.8 ± 35.8 96.3 ± 3.0 93.0 ± 5.0 −0.035 ± 0.777 119.3 ± 151.3 31.6 ± 34.6 98.3 ± 2.1 96.8 ± 3.5 0.070 ± 0.617 −0.105 ± 0.697
Expert 2 - Proposed 169.2 ± 143.5 52.2 ± 37.3 96.3 ± 2.8 93.0 ± 4.7 0.064 ± 0.717 123.8 ± 139.7 34.3 ± 34.9 98.2 ± 1.7 96.6 ± 2.9 −0.005 ± 0.710 0.070 ± 0.516

modified Williams index 1.182 1.125 1.004 1.007 1.176 1.126 1.071 1.000 1.001 1.049 1.248
95% Confidence Interval 1.182, 1.183 1.124, 1.125 1.004, 1.004 1.007, 1.007 1.175, 1.177 1.125, 1.127 1.071, 1.072 1.000, 1.000 1.001, 1.001 1.047, 1.051 1.247, 1.248
Fig. 9. Segmentation results based on different losses, on the NIRS-IVUS dataset: (a)
ground truth, green: EEM border, red: lumen border; (b) 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦; (c) 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 +𝐷𝑖𝑐𝑒,
green: prediction of EEM border, red: expert’s annotation of EEM; (d) 𝐶𝐸 ; (e) 𝐷𝑖𝑐𝑒;
(f) 𝐼𝑂𝑈 ; (g) 𝑇 𝑣𝑒𝑟𝑠𝑘𝑦, green: prediction of EEM area, red: prediction of lumen area;
(h) 𝐿1, white representing lumen and grey EEM. All results are generated based on
U-Net.

the best EEM boundaries in normal cases. Furthermore, the advantage
of the proposed method is even more evident in calcific plaque and
side-branch cases, where baseline methods are influenced in tricky
regions while our method demonstrates excellent ability in inferring
the boundaries when visual features are lacking or misleading.

4.4.3. NIRS-IVUS lumen segmentation
Lumen segmentation results are presented in Table 6. As it can

be observed, the use of discriminator and TF modules also improves
performance, similar to the EEM segmentation results. The lumen
segmentation task is more challenging due to the insufficient features
12
in static frames. The TF module can eliminate some of the errors by
considering the temporal context, thus providing the most performance
gains in lumen segmentation.

Furthermore, experiments demonstrate that lumen boundaries can-
not be predicted accurately based on only one frame. This aligns with
our rationale for exploiting temporal features from neighbouring frames
for lumen segmentation. We test the two proposed encoders and use
three adjacent frame inputs as controls. Based on Table 6, the alignment
encoder (AE) performs slightly inferiorly to the approach that combines
three frames together (3 Frames). This could be because the rotation
of the original image introduces errors. The visual persistence encoder
(VE) is designed to mimic the annotation method of human experts
and effectively capture motion information. This design contributes to
enhanced lumen segmentation results compared to other methods.

The same performance can be observed in Fig. 11. Comparing
results in (b) to (a), it can be seen that including EEM annotation in
training improves the boundary quality of lumen. Further enhancement
can be observed in (c) and (d) when three consecutive frames are added
for feature extraction. In (e) and (f), the alignment encoder is applied
together with the STR U-Net, with or without the discriminator and
the TF module. Finally, (g) and (h) shows the result when the visual
persistence encoder is involved in the process, with STR U-Net, with
and without discriminator and the TF module. Overall, the proposed
method, i.e., the STR U-Net with discriminator, the TF module and the
visual persistence encoder (h), achieves the best lumen boundaries that
well resemble human annotation.

4.4.4. Computer-to-observer agreement and inter-observer agreement
To evaluate the agreement between the computer model and the

observers, as well as the agreement between the observers themselves,
two experts independently annotate the test set. Modified William
index is calculated for every pair of results between expert 1 and expert
2, expert 1 and the proposed model, and expert 2 and the proposed
model. According to the results reported in Table 7, the 𝑚𝑊 𝐼 of the
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Fig. 10. Some examples of EEM segmentation results on the NIRS-IVUS dataset: (a) U-Net; (b) U-Net + discriminator, 𝜆 = 100; (c) U-Net + TF; (d) U-Net + discriminator + TF,
𝜆 = 100; (e) STR U-Net + discriminator + TF, 𝜆 = 100. Light green solid lines indicate machine annotation, red dash lines represent human expert 1’s annotation.
Fig. 11. Lumen segmentation results on NIRS-IVUS dataset. Red lines: ground truth; green dash line: predicted boundaries. (a) single frame input, only lumen annotation (STR
U-Net); (b) single frame input, both lumen and EEM annotation (STR U-Net); (c) with 3-frames input (STR U-Net); (d) with 3-frames input (STR U-Net + Dis. + TF); (e) with
alignment encoder (STR U-Net); (f) with alignment encoder (STR U-Net + Dis. + TF); (g) with visual persistence encoder (STR U-Net); (h) with visual persistence encoder (STR
U-Net + Dis. + TF). For all discriminators, 𝜆 = 100.
proposed method is greater than 1 in all cases, which indicates that
the predicted boundaries by the model are highly likely to be consis-
tent with the manual annotation. The width of the 95% confidence
interval, representing the sample variability, is small, and both the
lower and upper limits of the interval are above 1 in all cases. The
level of computer-to-observer agreement is greater than inter-observer
agreement, meaning the model’s predicted boundaries represent the
consensus of the two experts. The advantages of the proposed method
are more evident in the lumen segmentation task. This indicates that
the proposed perceptual organisation based inference and encoding
13
schemes are able to produce boundaries that highly resemble human
annotations that are sketched by utilising their semantic understanding
and expertise knowledge.

More specifically, the computer-to-observer and inter-observer vari-
ability distributions in terms of Hausdorff distance are illustrated in
Fig. 12. The green bars demonstrate that the variances between the
model results and expert annotations is smaller compared to that
between the two experts. The pink violin plots show that the major
distribution of the variability between the model results and expert
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Table 8
A comparison of results of the proposed method and other reported methods since 2018 on the IVUS-2011 dataset B, in the three metrics utilised by the benchmark. The Hausdorff
distance is in millimetres.

Yang et al.
(2018)

Faraji et al.
(2018)

Hammouche
et al. (2019)

Kermani
et al.
(2019)

Lo Vercio
et al.
(2019)

Yang et al.
(2019)

Huang et al.
(2020)

Gao et al.
(2020)

Xia et al.
(2020)

Szarski
et al.
(2021)

Huang et al.
(2021)

Blanco et al.
(2022)

Proposed

Al
l Lu

m
en HD 0.26 (0.25) 0.30 (0.20) 0.31 (0.16) 0.38 (0.26) 0.32 (0.25) 0.25 (0.20) 0.28 (0.17) 0.22 (0.15) 0.27 (0.13) 0.29 (0.22) 0.30 (0.25) 0.241 (0.164) 0.21 (0.13)

JM 0.90 (0.06) 0.87 (0.06) 0.90 (0.05) 0.84 (0.07) 0.88 (0.08) 0.90 (0.05) 0.89 (0.05) 0.92 0.90 (0.04) 0.90 (0.08) 0.87 (0.06) 0.902 (0.049) 0.92 (0.04)
Pad – 0.08 (0.09) 0.06 (0.06) 0.10 (0.08) 0.09 (0.10) – 0.10 (0.08) – 0.06 (0.06) – 0.10 (0.11) 0.058 (0.058) 0.05 (0.04)

EE
M

HD 0.48 (0.44) 0.67 (0.54) – 0.64 (0.41) 0.57 (0.31) 0.30 (0.35) 0.47 (0.31) 0.29 (0.22) 0.37 (0.31) 0.32 (0.30) 0.37 (0.20) 0.205 (0.152) 0.19 (0.18)
JM 0.86 (0.11) 0.77 (0.17) – 0.82 (0.11) 0.83 (0.10) 0.92 (0.07) 0.84 (0.11) 0.92 0.90 (0.07) 0.91 (0.09) 0.85 (0.08) 0.930 (0.041) 0.94 (0.05)
Pad – 0.19 (0.18) – 0.13 (0.11) 0.13 (0.09) – 0.13 (0.13) – 0.06 (0.06) – 0.11 (0.09) 0.041 (0.048) 0.04 (0.05)

N
o

Ar
te

fa
ct

Lu
m

en HD 0.21 (0.09) 0.29 (0.17) 0.26 (0.11) 0.36 (0.21) 0.29 (0.16) 0.25 (0.17) – – – – – – 0.20 (0.14)
JM 0.91 (0.03) 0.88 (0.05) 0.90 (0.04) 0.85 (0.07) 0.89 (0.05) 0.91 (0.04) – – – – – – 0.92 (0.04)
Pad – 0.08 (0.07) 0.05 (0.04) 0.10 (0.08) 0.07 (0.07) – – – – – – – 0.05 (0.04)

EE
M

HD 0.27 (0.23) 0.31 (0.23) – 0.43 (0.23) 0.38 (0.24) 0.17 (0.08) – – – – – – 0.15 (0.10)
JM 0.92 (0.05) 0.89 (0.07) – 0.87 (0.05) 0.89 (0.06) 0.95 (0.02) – – – – – – 0.95 (0.03)
Pad – 0.07 (0.08) – 0.11 (0.06) 0.06 (0.05) – – – – – – – 0.02 (0.03)

Bi
fu

rc
at

io
n

Lu
m

en HD 0.50 (0.58) 0.53 (0.34) 0.40 (0.21) 0.47 (0.32) 0.44 (0.33) 0.46 (0.38) 0.48 (0.33) – – – 0.37 (0.17) – 0.31 (0.18)
JM 0.82 (0.11) 0.79 (0.10) 0.85 (0.07) 0.83 (0.07) 0.84 (0.09) 0.85 (0.10) 0.83 (0.10) – – – 0.85 (0.04) – 0.89 (0.06)
Pad – 0.15 (0.17) 0.08 (0.10) 0.12 (0.08) 0.12 (0.13) – 0.17 (0.19) – – – 0.11 (0.07) – 0.08 (0.06)

EE
M

HD 0.82 (0.60) 1.22 (0.45) – 0.99 (0.53) 0.68 (0.34) 0.60 (0.35) 0.58 (0.36) – – – 0.49 (0.17) – 0.32 (0.23)
JM 0.78 (0.11) 0.57 (0.13) – 0.74 (0.13) 0.79 (0.12) 0.86 (0.10) 0.81 (0.14) – – – 0.83 (0.07) – 0.92 (0.05)
Pad – 0.32 (0.19) – 0.22 (0.20) 0.15 (0.11) – 0.17 (0.17) – – – 0.11 (0.06) – 0.06 (0.07)

Si
de

Ve
ss

el
s

Lu
m

en HD 0.23 (0.12) 0.24 (0.11) 0.25 (0.12) 0.34 (0.32) 0.31 (0.27) 0.20 (0.12) 0.36 (0.36) – – – 0.24 (0.24) – 0.19 (0.10)
JM 0.90 (0.04) 0.87 (0.05) 0.88 (0.05) 0.85 (0.08) 0.88 (0.09) 0.91 (0.04) 0.87 (0.11) – – – 0.89 (0.05) – 0.92 (0.03)
Pad – 0.06 (0.05) 0.05 (0.04) 0.11 (0.09) 0.09 (0.11) – 0.15 (0.13) – – – 0.08 (0.07) – 0.04 (0.03)

EE
M

HD 0.59 (0.49) 0.74 (0.18) – 0.77 (0.46) 0.61 (0.29) 0.35 (0.36) 0.52 (0.31) – – – 0.44 (0.24) – 0.23 (0.23)
JM 0.83 (0.14) 0.73 (0.60) – 0.77 (0.12) 0.81 (0.11) 0.91 (0.08) 0.81 (0.11) – – – 0.84 (0.06) – 0.93 (0.06)
Pad – 0.21 (0.18) – 0.16 (0.13) 0.14 (0.09) – 0.18 (0.18) – – – 0.13 (0.09) – 0.05 (0.06)

Sh
ad

ow Lu
m

en HD 0.27 (0.25) 0.29 (0.20) 0.28 (0.13) 0.36 (0.22) 0.28 (0.19) 0.25 (0.20) 0.29 (0.26) – – – – – 0.20 (0.11)
JM 0.87 (0.06) 0.86 (0.07) 0.86 (0.07) 0.83 (0.07) 0.87 (0.06) 0.89 (0.05) 0.88 (0.08) – – – – – 0.91 (0.05)
Pad – 0.08 (0.09) 0.06 (0.06) 0.11 (0.07) 0.07 (0.07) – 0.12 (0.14) – – – – – 0.05 (0.05)

EE
M

HD 0.80 (0.45) 1.24 (0.39) – 1.01 (0.39) 0.67 (0.36) 0.48 (0.48) 0.56 (0.33) – – – – – 0.27 (0.24)
JM 0.76 (0.12) 0.58 (0.13) – 0.72 (0.12) 0.77 (0.12) 0.88 (0.10) 0.76 (0.13) – – – – – 0.92 (0.06)
Pad – 0.37 (0.15) – 0.12 (0.13) 0.16 (0.11) – 0.23 (0.19) – – – – – 0.06 (0.07)
Fig. 12. The violin plot and box plot of Hausdorff distance. Compare all three
annotations with each other. Q1 and Q3 are also denote as 25th percentile and 75th
percentile. The IQR can be calculated by 𝑄1 −𝑄3.

annotations is smaller (lower in values) than that between the two
experts.

Experts’ visual assessment on representative samples also agrees
with this conclusion. Our models are integrated into QCU-CMS software
and used by cardiology teams at multiple institutions in their daily
work. According to the experts’ feedback, they find the predicted
boundaries by the POST-IVUS platform highly agreeable, compared to
other observers’ annotations, and little modification to the predicted
boundaries is needed before it can be considered the gold standard.

4.4.5. Results on IVUS-2011 dataset
The POST-IVUS framework proposed in this paper is also evaluated

on the open IVUS-2011 dataset of coronary artery images (dataset
B, 20MHz), in which 109 frames are used as the training set, and
14
Fig. 13. Some segmentation results from IVUS-2011 dataset. Light green solid lines:
machine annotation, red dash lines: expert annotation.

the remaining 326 frames are used as the test set. This experiment
allows fair performance comparison against the existing state-of-the-art
methods. We summarise the evaluation results of POST-IVUS as well as
the major methods reported since 2018 in Table 8.

The table shows that the proposed POST-IVUS segmentation frame-
work achieves a new state-of-the-art performance on this task, with
the best scores in almost all evaluation metrics. The class with ’no
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Table 9
Comparison of network size, training time, and evaluation time for various segmenta-
tion methods, including the proposed approach (Encoder + STR U-Net + Dis. + TF).

ll the time evaluations are based on a single image, and the time unit is seconds.
Method Network size Training time Evaluating time

U-Net (Ronneberger et al., 2015) 8M 0.011 s <0.1 s
SegNet (Badrinarayanan et al., 2017) 16M 0.020 s <0.1 s
PSPNet (Zhao et al., 2017) 84M 0.054 s <0.1 s
DeepLab V3+ (Chen et al., 2018) 54M 0.022 s <0.1 s
ENet (Paszke et al., 2016) 0.4M 0.013 s <0.1 s
GCN (Kipf and Welling, 2016) 23M 0.013 s <0.1 s

ST U-Net 41M 0.089 s <0.1 s
STR U-Net 42M 0.090 s <0.1 s

STR U-Net+Dis. 42M 0.090 s <0.1 s
STR U-Net+Dis.+TF 42M 0.091 s 0.45 s
Encoder+STR U-Net+Dis.+TF 42M 0.091 s 0.45 s

artifacts’ is relatively easy to address with a high segmentation ac-
curacy on the pixel level, and thus many traditional segmentation
networks can achieve the same high scores in some metrics. Overall,
POST-IVUS achieves the best scores with a small margin. However,
in more challenging cases of bifurcation, side vessels, and shadow
classes, POST-IVUS shows an evident advantage due its inference abil-
ity in tricky regions. Superior results are scored in all three metrics
considered in this dataset.

Some visual results are shown in Fig. 13. In IVUS segmentation
tasks, the correctness of the boundaries is considered as the most
important indicator instead of region overlap. This is the reason why
Hausdorff distance is often used as the main metric. As it can be ob-
served in this figure, the predicted boundaries by POST-IVUS resemble
the annotated boundaries even in dark areas with no obvious visual
features available. This is the main added value of the proposed method
on top of the existing pixel-level segmentation methods.

4.5. Network size and time analysis

In this section, we provide a comparative analysis of the network
size, training time, and evaluation time for various methods, including
our proposed approach, as shown in Table 9:

Based on Table 9, we analyse the relationship between network size,
training time, and evaluation time. The proposed method (Encoder +
STR U-Net + Dis. + TF) has a network size of 42M, which is relatively
moderate compared to some other methods like PSPNet and DeepLab
V3+. Although the Transformer-based methods, i.e., in rows 7 to 11,
exhibit improved performance and have smaller Network sizes, their
training efficiency is lower compared to other models. This is primarily
due to the self-attention mechanism employed in Transformers, which
increases the computational complexity and memory requirements,
ultimately resulting in longer training times. The inclusion of the
Discriminator during training does not lead to a significant increase
in training time due to its simple structure, which does not impose a
substantial burden on the GPU. Additionally, the proposed Encoders do
not considerably affect runtime as they are computationally efficient.

In this task, evaluation time is more critical than training time.
While an extended training period may be acceptable, once deployed,
hospitals will need to analyse blood vessels with limited computational
resources, making the evaluation time more crucial. For evaluating
time, the model itself is not the primary bottleneck, as it only involves
forward propagation, which is relatively fast. The most significant
bottleneck lies in the post-processing computation, especially the TF
module. It requires numerous complex evaluations and fusion strate-
gies, leading to an extended evaluation time of around 0.45 s per frame.
However, compared to the accuracy gains provided by post-processing,
15

the additional time spent is considered worthwhile.
5. Clinical impact

We have integrated the proposed POST-IVUS framework into the
QCU-CMS software and applied it to pullbacks generated by several
types of IVUS catheters. This advances have enabled fast analysis of
large datasets and more reproducible evaluation of atheroma burden
in longitudinal studies. For a typical vessel, the average segmentation
time is reduced from about 10 h to 10 min. Due to the dedicated designs
in the POST-IVUS framework that imitate the perceptual organisation
ability of human vision, the resulting boundaries achieve superior
segmentation accuracy compared to previously proposed methods. The
boundaries are very close to the manually annotated ones, and are
found even more agreeable by multiple experts than their estima-
tions. Furthermore, the robustness of the POST-IVUS framework en-
sures that most common errors are eliminated, and little editing efforts
are required to finalise analysis.

Based on the inter-observer variability evaluation between the
model and expert results, the model surpasses the performance of
expert annotations in some areas, especially when demarcating the
lumen border. The output of POST-IVUS saves time and resources for
the clinical and research teams, improves the diagnosis procedures and
has a potential for clinical translation.

6. Conclusion

This paper presented a universal POST-IVUS segmentation frame-
work based on EEM and lumen borders. This framework includes
a dedicated set of temporal context-based feature encoders for ex-
tracting descriptive temporal features for lumen boundary, a selective
transformer recurrent U-Net that achieves high-resolution segmenta-
tion, inference-based segmentation on challenging areas, an adversarial
learning scheme to ensure that the boundary inference is aware of
the perceptual organisation property of human vision, and a temporal
constraint and fusion module to further eliminate errors and improve
the robustness of results. The POST-IVUS framework is superior to
previous methods in segmenting EEM and lumen areas under challeng-
ing conditions like when calcification, side-branch, and other artifacts
are present. According to the estimation of model-observer and inter-
observer variability, the model-predicted boundaries reached a high
consensus with the observers that was superior to the agreement of the
experts. The method has been integrated into the QCU-CMS software to
provide cardiologists with high-precision EEM and lumen segmentation
which form a good foundation for their subsequent IVUS-based analy-
sis. We are working jointly with additional vascular imaging modalities
such as IVUS-OCT and histology to further expand plaque segmentation
and analysis in the future.
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