
Use of General Repair Tool for Fixing Security
Vulnerabilities

Edwin Lesmana Tjiong
Informatics Department

Kalbis Institute
Jakarta, Indonesia

edwin.tjiong@kalbis.ac.id

Sergey Mechtaev
Department of Computer Science

University College London
London, United Kingdom

s.mechtaev@ucl.ac.uk

Harya Bima Dirgantara
Informatics Department

Kalbis Institute
Jakarta, Indonesia

harya.dirgantara@kalbis.ac.id

Abstract—Automated patch generation approaches have been
shown to address defects in real-world programs, including
security vulnerabilities. On the one hand, general repair tools are
designed to fix common bugs. On the other hand, specific repair
tools targeted security-related vulnerabilities, such as integer
or buffer overflow. However, fewer works focus on assessing
general repair tools’ capabilities to fix security vulnerabilities.
The assessment will be helpful to find out if general repair
tools can fix security vulnerabilities without knowing specific
characterizing patterns of such vulnerabilities in advance, thus
not being subjected to overfitting.

In this paper, we present a detailed analysis of a case study
using the semantic general repair tool, F1X, to fix security-
related vulnerabilities found by the OSS-Fuzz framework. OSS-
Fuzz framework is an automated continuous testing platform
run on Google’s cloud infrastructure, which can pinpoint source
code containing security-related vulnerability and generate its
failing test case. Using a dataset of 240 security vulnerabilities
found in five open source programs from OSS-Fuzz, we compared
and analyzed fix patterns generated by F1X with fixing patterns
in OSS-Fuzz Github repositories. We believe that the result of
this case study will be insightful for developers to strengthen
and optimize their repair tools and security analysts to consider
integrating automated repair tools into production systems.

Index Terms—Program Repair, Automated Software Testing,
Security

I. INTRODUCTION

The complexity of computer software is continuously in-
creasing with tremendous speed. It is common for large-scale
software to have a code base of millions line-of-code (LOC).
The maintenance of large-scale software requires a significant
effort, even for expert programmers. Especially for security-
related bugs, it is desirable to quickly discover and patch
bugs before malicious parties can exploit them. Therefore,
two technologies have been devised to assist maintenance:
automated testing (fuzzing) and automated program repair.

Fuzzing is a technique that uses a program called fuzzer,
containing an initial input test case, to execute the program
under test. The program under test is run, and at the end of
each execution, the input file is mutated, and then the program
is re-executed with a regenerated input file. This process is
repeated until bugs are found or the user terminates the fuzzing

program. The fuzzer is used to automate the bug discovery
process.

By using the fuzzer, many security vulnerabilities have been
found. However, the overwhelming number of bugs found
may not be balanced by the quick response of programmers
assigned to fix the bugs. Therefore, we use automated program
repair to automate the bug fixing process. An excellent auto-
mated repair tool can provide a temporary fix for the system.
At the same time, the programmer analyzes and finds the root
cause of the security bug before applying a more proper patch
accordingly. Afterward, a series of successful human fixes can
be used to assess and improve the quality of fixes generated
by automated repair tools.

II. RELATED WORKS

In this section, we will review past works in fields related to
our work: automated testing, automated repair, and the study
of bugs and their fixes.

A. Automated Testing

For automated testing, there are many fuzzers developed
specialized in discovering security-related bugs, such as integer
overflow [1] [2] [3] and buffer overflow [4]. More advanced
fuzzing, called grey box fuzzing, uses code instrumentation to
guide the mutated test input towards exploring more execution
paths. The grey box fuzzing approach is able to discover more
bugs faster [5] [6] [7]. Using this grey box fuzzing technique,
OSS-Fuzz [8] framework has been developed. This framework
combined grey box fuzzers, such as AFL [5], libFuzzer [6],
and AFLGO [9]. OSS-Fuzz executed these fuzzers continu-
ously against open-source libraries and Chrome components
and discovered hundreds of security vulnerabilities and bugs.

B. Automated Repair

In the field of program repair, tools have been developed
for providing debugging hints [24], automatically grading
assignments [25] [26], and patching security vulnerabilities
[22]. Some of the automatic repair tools are general-purpose,
such as GenProg [10], SemFix [11], PAR [12], Prophet [19],
Angelix [22], F1X [23], designed to repair general bugs. Other



tools are used to repair specific bugs such as integer overflow
or buffer overflow [15] [27] [16] [28].

GenProg [10] used genetic programming technique to gen-
erate fixes. It implements a simple fault localization strategy
by favoring locations visited by negative test cases. It further
limited search space to fixes similar to other parts of the
program. It stops when it finds a repair candidate that passes all
test cases in the test suite. GenProg was evaluated on sixteen
programs in C, which showed an ability to fix various types
of errors.

SemFix [11] is a repair tool that identifies a list of po-
tential erroneous program statements and ranks those based
on their execution frequency for failing test cases. It used
symbolic execution and derived path conditions required to
reach those statements for each failing test case. After that, it
used constraint solving to generate patches that satisfy those
path conditions.

Prophet [19] used a machine learning approach to learn the
features of correct code to select plausible generated patches.
It is based on the hypothesis that valid code shares properties
that can be discovered and exploited to create proper patches
for incorrect applications.

F1X [23] implements the test-equivalence-based program
repair. Generated repair candidates are reduced into their re-
spective equivalence classes. This equivalence-class technique
enables F1X to do faster repairs compared to other tools.

Fix2Fit [33] is a repair tool which prioritizes patches based
on patch partition which are differentiated by new test cases
generated by its fuzzer. Fix2Fit uses sanitizer to get new test
cases as an oracle on the newly repaired program.

C. Study on Bugs and Fixes

Di Franco et al. [29] conducted a survey on 269 numerical
floating point bugs and classified them into four groups ac-
cording to their root causes. A study by Zhong and Su [30]
analyzed more than 9,000 collected real-world bugs in Java
and derived several insights from these bugs, such as fault
distribution, fault complexity, and significant fix patterns (e.g.,
use of mutation operators, APIs, file types for bug fixes). Ye et
al. [31] run three repair tools that use static analysis techniques
(HP Fortify, Checkmarx, and Splint) to fix over given 100
buffer overflow bugs. They analyzed the root causes of false
positives and negatives for these bugs and summarized fix
patterns for guiding repair tools for buffer overflow. Campos
and Maia [32] studied two distinct datasets of four-millions
bug-fix commits from 101,471 projects and 369 bug fixes from
five open-source projects. From these datasets, they identified
the five most common bug fix patterns.

III. EXPERIMENT DESIGN

To collect data for our experiment, we looked first into the
OSS-Fuzz bug tracker list for our target subjects (FFMPEG,
Wireshark, PROJ.4, OpenJPEG, and Libarchive). On the bug

tracker list, OSS-Fuzz list down the necessary configurations
needed to reproduce each bug, as described in the figure 1.

Fig. 1: OSS-Fuzz Bug Report Page

1) Appropriate fuzzer engine to use (shown as number 1
in the figure). Users can only use each fuzzer engine to
reproduce a specific type of bug.

2) Appropriate sanitizer to use (shown as number 2 in the
figure). A sanitizer is a program that checks certain
specified operations inside the source code and triggers
an error message when the error happens during runtime
execution for that program under test. OSS-Fuzz uses
three types of sanitizers: address sanitizer (asan), mem-
ory sanitizer (msan), and undefined sanitizer (ubsan).
Each of them will produce a specific error message for
certain bug types.

3) This is a link to a versioning software site from which
we can find a fix for the specific bug (shown as number
3 in the figure). The commit will contain a message like
’Found by OSS-Fuzz’.

4) A failing test case (shown as number 4 in the figure).
This test case will be used as an input to the F1X repair
tool to validate generated patches.

Using item number 1 and 4, we can construct driver test
file for each bug. The driver test file is the file that contains the
execution command that triggers the target subject, compiled
with a specified fuzzer (item 1), with the parameter of failing
test case (item 4). Upon execution, the specified bug will
appear immediately, as shown in the figure 2 below.

Fig. 2: Error trace obtained by giving failing test case to
program under test

Next, we also developed another web crawler to extract



sanitizer type from the OSS-Fuzz bug tracker to create docker
command file. This file is used to build a docker container
for reproducing each security bug. Analysts can only correctly
produce the error trace for each bug by specifying the correct
sanitizer type.

Fig. 3: A bugfix in Github account for FFMPEG linked to the
OSS-Fuzz bug report

Lastly, we created another web crawler to check the link of
item 3 (containing a range of commits in their Github account)
if any commit has a link to the OSS-Fuzz bug tracker. If
they have the link, the commit is considered a fix for the bug
referred by the OSS-Fuzz bug tracker. A typical example of a
commit for such a bug fix is shown in the figure 3.

From the commit page containing the bug fix, we can
analyze their fix patterns, both for one-line fixes and multiple-
line fixes, for each category of security bugs (such as integer
overflow, buffer overflow, and so on). The bug fix page also
contains source file(s) with its error line(s). Analysts will use
this information for constructing F1X run command file to
run F1X with the input of the error line.

After constructing the driver test and docker command file,
we install both the F1X repair tool [23] and the buggy version
of the target program inside a docker container. We run F1X
to see if it can fix bugs in our dataset. After finish running,
F1X will give statistical figures like number of evaluated patch
candidates and executed test cases, number of execution per
second, number of plausible patch locations and number of
generated patches.

The entire workflow process of our experiment benchmark
can be seen in a workflow in figure 4.

IV. EXPERIMENT DATASET

In this section, we will elaborate and analyze statistical
findings on security vulnerabilities obtained from OSS-Fuzz
and their manual fix patterns.

Fig. 4: Workflow of our repair experiment using OSS-Fuzz
and F1X

A. Selection Process

These target subjects are selected based on the number of
bugs found by OSS-Fuzz and their reproducibility. Initially,
we aimed at the projects with the most significant number
of bugs and then tried to install those projects in our Docker
environment. However, we also found that many security bugs
are not reproducible even after executing it with the correct
code version and failing test cases obtained from OSS-Fuzz
bug trackers. If most bugs are not reproducible, we skipped
such target subjects.

Another factor in consideration is the type of programming
language. F1X can only fix C projects; hence, we only took
target subjects whose majority of codes are written in C. For
some projects, we also encountered difficulties during their
setup because their build script was modified multiple times
across the timeline of the bugs. Each build script includes
different library dependencies and different versions of the
same libraries. The latest build script might not be able to
compile past version code of the target subject and vice versa.

Lastly, there is a compatibility issue related to F1X. Some
target subjects generated errors during code instrumentation
with F1X because they did not recognize its compiler options.
Hence, even if the bugs are reproducible, we skipped them
because they cannot be compiled with F1X, and hence F1X
is unable to generate the fixes.

B. Bug Statistics

After reproducing bugs from OSS-Fuzz, we can categorize
them according to their sanitizer error message and stack
trace content. We collected 240 bugs from five C open-
source projects in OSS-Fuzz: FFMPEG, Wireshark, PROJ4,
OpenJPEG, and Libarchive.

We classified these security bugs according to their manual
fix pattern. Each closed bug is linked to their fix in the online
versioning software, so we can examine them manually. From
the point of view of repair tools, fix with more lines are more
challenging to generate.

It is well-known that most repair tools can only generate a
single line of fix. Hence, we classified all bug fixes into three
types according to the number of inserted and deleted lines:

• One-line fix. This type can be generated by repair tools,
and the fix pattern is also easily recognized by humans.



• Small multiple-line fix. The fixes in this category have no
more than ten modified lines (both insertion and deletion
combined). Repair tools cannot generate the fix in this
category. However, the fix is still simple enough for
a human to recognize its fix pattern and to do some
analysis.

• Large multiple-line fix. This category’s fixes include
fixes with more than ten modified lines or fixes with
multiple files. The complexity makes it infeasible for
repair tools to generate and for humans to recognize fix
patterns.

TABLE I: Security bugs categorized by their types

Bug Types Number of Bugs
Integer Overflow 110
Buffer Overflow 34
Memory Leak 22
Segmentation Fault 22
Division by Zero 14
Out of Memory 11
Deadly Signal 10
Timeout 7
Array Out-of-Bound 5
Stack Use-After-Return 1
Heap Use-After-Free 1
Hang 1
No Category 2
Total 240

The breakdown of the bugs and fix patterns by each category
are displayed in the Table I. As shown from the chart, most
bugs consist of two security bug types: integer overflow and
buffer overflow. Both bug types represent 144 cases out of 240
(60% of all bugs).

Similarly, for most individual projects, the most prevalent
bugs are either integer overflow (in FFMPEG, Wireshark,
and OpenJPEG) or buffer overflow (in Libarchive). Only
for PROJ4, the most pervasive bug is a memory leak. The
breakdown can be seen in Table II.

Table III shows that the bug type with the most common
one-line fix is also an integer and buffer overflow (63 out of
76 fixes). Fix-rate-wise, heap use after free (100%), buffer

TABLE II: Security bugs breakdown in each target project

Bug Types FF WI PR OJ LI
Int Overflow 81 9 4 9 7
Buf Overflow 15 7 2 2 8
Memory Leak 4 4 12 0 2
Seg Fault 5 4 10 2 1
Div By Zero 1 1 12 0 0
Out of Memory 8 2 0 0 1
Deadly Signal 4 0 0 6 0
Timeout 1 4 1 0 1
Out of Bound 5 0 0 0 0
Stack Aft-Ret 0 1 0 0 0
Heap Aft-Free 0 0 1 0 0
Hang 0 0 0 0 1
No Category 0 0 0 1 1
Total 124 32 42 20 22

Note: FF - FFMPEG, WI - Wireshark, PR - PROJ.4, OJ - OpenJPEG, LI -
Libarchive

overflow (47%), and integer overflow (43%) are the most
common bugs with a one-line fix. However, heap use-after-
free only consists of 1 bug, and we do not have sufficient data
for meaningful analysis. Only integer and buffer overflow will
be included in our study.

Out of memory (63.6%), timeout (57.8%), and segmentation
fault (45.4%) are bugs with the most common small multiple-
lines fix. In contrast, deadly signal (70%), memory leak (50%),
and division by zero (50%) are bugs with the most significant
percentage for the large multiple-line fix.

From these statistics, we conclude that integer overflow and
buffer overflow are the bug types with the most potential to be
automatically fixed with repair tools since they have the most
significant percentage of one-line fix.

TABLE III: Security bugs based on their manual fix types

Bug Types One-line Fix Multi-line
Small Fix

Multi-line
Large Fix

Int Overflow 47 39 24
Buf Overflow 16 8 10
Memory Leak 4 7 11
Seg Fault 4 10 8
Div By Zero 1 6 7
Out of Memory 1 7 3
Deadly Signal 1 2 7
Timeout 0 4 3
Out of Bound 1 2 2
Stack Aft-Ret 0 1 0
Heap Aft-Free 1 0 0
Hang 0 1 0
No Category 0 1 1
Total 76 88 76

C. Fix Pattern Analysis

In this section, we will focus on analyzing one-line fix
and small multiple-lines fix. The one-line fix is investigated
because most repair tools can only fix bugs in this category.
We analyzed small multiple-line fixes to deduce fix patterns
by manual observation. For the sake of simplicity, we will not
analyze large multiple-line fixes since it is computationally
too costly for repair tools to generate and validate. It is also
infeasible to explore the pattern without domain knowledge for
individual projects. Specifically, we will analyze one-line fixes
for integer overflow and buffer overflow since they have the
most significant proportion of one-line fix compared to other
bug types.

1) One-Line Fixes: For integer overflow cases, there are
three common fix patterns in the one-line fix category:

• Explicit casting on variable or constant (53.1%)
• Changing if-check (12.7%)
• Changing type declaration (12.7%)
• Others (e.g., edit function parameter, macro, assignment)
In explicit casting and changing type declaration, the most

common pattern is to convert signed integer to unsigned
integer. From the sanitizer error message and stack trace, we
observed that most values of involved variables are positive
numbers, which are cast to a data type with a wider positive



range. For if-check addition, the most common condition is
checking a boundary value for an integer involved in integer
overflow error and returning from operation after an optional
function call for logging.

For buffer overflow, their error root causes can be divided
into out-of-bound array access and incorrect parameter of
memory-related C functions, such as memcpy, malloc, and
sprintf. We observe that there are two common fix types:

• Changing if-condition will check for erroneous values
and return before reaching the error line (25% of fixes).
Either the authors change operators with similar range
(e.g., from x > y to x ≥ y) or their operands slightly
(e.g., x ≥ y to x ≥ y + 1). A lot of times, one of the
operands is an array or pointer index that is used in the
error line.

• Adding if-check will check for erroneous value and return
before reaching the error line (25% of fixes). Like the first
type, one of the operands is an array or pointer index used
in the error line.

However, the fix pattern for a buffer overflow is not as strong
as an integer overflow. A significant proportion of the fixes
(around 50%, compared to only 20% for integer overflow)
cannot be summarized into simple, visible patterns. These fixes
include adding or changing new functions before the error
line. Although they require only one line, we considered this
a complex fix because a function is a sequence of multiple
statements. Hence, it will require deeper analysis and effort
before it can be integrated into automated repair tools.

2) Multiple-Line Fixes: The root causes for integer over-
flow bugs with multiple-line fixes are the same as those with
one-line fixes. The difference is that in many cases, the small
multiple-line fix is the multiple repetitive patterns of a single-
line fix. We called this fix pattern as parallel fix. Their fixes
are classified into the following categories:

• Parallel addition/edit/removal of if-statement (12.8%)
• Parallel explicit casting or change of type declaration

(15.3%)
• Parallel change of operator/statements/functions (10.2%)
• Single addition/edit/removal of if-statement (12.8%)
• Others (Combination of changing if-check, explicit cast-

ing, and change of type declaration)

D. Experiment Result
In this section, we discuss the result of running the F1X

repair tool to fix the bugs and analyze the finding.
1) Fix Statistics: Out of 240 bugs, only in 115 cases

(47.9%) did F1X successfully generate fixes. If we classified
those 115 cases based on their manual fix category, small
multiple-lines fix obtained the highest fix rate at 68.2% (60
out of 88 bugs), followed by large multiple-lines fix at 50%
(38 out of 76 bugs). Surprisingly, although F1X is supposed
to be the best for generating a one-line fix, it performed worst
with those bugs with a one-line manual fix at 22.3% (only 17
out of 76 bugs).

Of the other 125 bugs that F1X cannot fix, 51 (40.8%) are
bugs with a manual one-line fix; a large majority belong to
the integer overflow category. Multiple-line fixes comprise 29
bugs (23.2%), with integer overflow as the most common bug
category.

Another 26 bugs (20.8%) not listed inside the table cannot
be fixed because various issues, such as compilation failures,
project dependencies issues, or F1X’s inability to instrument
header file. And the rests (19 bugs - 15.2%), their manual fixes
are located in multiple files.

TABLE IV: Statistics of fixed and unfixed bugs by F1X

Bug Types One-line Fix Multi-line
Small Fix

Multi-line
Large Fix

Int Overflow 9 (35) 28 (6) 18 (5)
Buf Overflow 8 (5) 7 (2) 5 (1)
Memory Leak 0 (4) 2 (4) 1 (1)
Seg Fault 0 (2) 7 (3) 2 (2)
Div By Zero 0 (1) 4 (1) 3 (1)
Out of Memory 0 (1) 5 (0) 1 (1)
Deadly Signal 0 (1) 3 (0) 4 (1)
Timeout 0 (0) 2 (0) 1 (0)
Out of Bound 0 (1) 1 (1) 2 (0)
Stack Aft-Ret 0 (0) 0 (0) 0 (0)
Heap Aft-Free 0 (1) 0 (0) 0 (0)
Hang 0 (0) 1 (0) 0 (0)
No Category 0 (0) 0 (0) 1 (0)
Total 17 (51) 60 (17) 38 (12)
Fix Percentage 22.3% 68.2% 50%
Unfix Percentage 40.8% 13.6% 9.6%

The breakdown of bugs with successful and unsuccessful fix
generation by F1X is shown in Table IV. Numbers outside and
inside bracket in the table is the number of fixed and unfixed
bugs for specified type of fix, respectively.

2) Finding Analysis: In this section, we report some find-
ings from our fix statistics and challenges we encountered
during our experiment and derive a conclusion based on them.

Technical Challenge. Integer overflow with one-line fix
comprise the majority of unfixed bugs. After some analysis,
we realized that the root cause is that the casting operator
and changing type declaration are not within the F1X operator
template. Hence, F1X failed to generate fixes because it could
not synthesize them. We also found that security-related bugs
are only reproducible if the target projects are compiled with
appropriate sanitizers. This will cause an issue with generate-
and-validate repair tools if they are not designed to include
sanitizers and hence unable to fix them.

Performance Challenge. After implementing the casting
operator into F1X and testing them for a small C program, the
repair tool still failed to generate a fix for the integer overflow
bug. We found that F1X has an optimization algorithm of test-
equivalence in which possible patches are classified during
program execution if those patches have the same execution
traces and result for the same test cases. However, for integer
overflow, it is possible that the patches are not the same even
if they have the same execution traces. One patch could cause
sign-bit overflow, and another does not. In such a scenario,



the F1X test-equivalence algorithm could make itself failed
to find an appropriate patching solution. To resolve this issue,
the test-equivalence algorithm needs to be deactivated, and this
causes performance overhead during the repair process.

Patch Quality Challenge. Using sanitizers during the com-
pilation of target projects broke down the test suite of our
target projects. Many executables always return a sanitizer
error message even when we execute them with default options
using default test files. This error shows that existing open-
source projects are still not developed with proper security in
mind. The availability of a test suite is a means by which
generate-and-validate repair tools can assess the quality of
generated patches. Since the test suite broke down upon being
compiled by sanitizers, we suggest another way repair tools
can assess patch quality. A good example would be to use
previous manual fix patterns, as available from OSS-Fuzz.

E. Conclusion

In this work, we have investigated 240 security-related bugs
and analyzed both manual fix patterns and fixes generated
by the general-purpose repair tool, F1X. We have found that
integer overflow and buffer overflow are the most common
bugs encountered but are also easiest to fix as most of their
manual fixes are single-line fixes.

The single-line fix for integer overflow can be summarized
in three patterns: explicit casting, changing type declaration,
and changing if-condition. The multiple-line fixes can be
summarized into three types: parallel fix, a combination of
single-line fix, and the addition of if-condition. For buffer
overflow, the most common single-line fix is changing if-
condition and adding if-condition for a multiple-line fix.

We also identified three challenges (technical, performance,
and patch quality) after running the repair experiment with
F1X. These findings will be helpful for developers who intend
to optimize their repair tools.

REFERENCES

[1] D. Molnar, X.C. Li, and D.A. Wagner, ”Dynamic test generation to find
integer bugs in x86 binary Linux,” in USENIX Security, 2009.

[2] L.T. Wang, T. Wei, Z.Q. Lin, and W. Zou, ”IntScope: automatically
detecting integer overflow vulnerability in x86 binary, ” in Network and
Distributed System Security (NDSS), 2009.

[3] X. Wang, H.G. Chen, Z.H. Jia, N. Zeldovich, and M.F. Kaashoek, ”Im-
proving integer security for systems with KINT,” in USENIX conference
on Operating Systems Design and Implementation (OSDI), 2012.

[4] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, ”Control-flow
integrity,” in Computers and Communication Security (CCS), 2005.

[5] ”AFL,” 2018. [Online]. Available: http://lcamcuf.coredump.cx/afl/. [Ac-
cessed 3 April 2018].

[6] ”Libfuzzer,” 2018. [Online]. Available:
http://llvm.org/docs/LibFuzzer.html, [Accessed 3 April 2018].

[7] M. Boehme, V.T. Pham, and A. Roychoudhury, ”Coverage-based grey-
box fuzzing as Markov Chain,” in Conference on Computer and Com-
munications Security (CCS), 2016.

[8] ”OSS-Fuzz: continuous fuzzing of open-source software,” Google, [On-
line]. Available: https://github.com/google/oss-fuzz. [Accessed 3 April
2018].

[9] M. Boehme, V.T. Pham, M.D. Nguyen, and A. Roychoudhury, ”Directed
greybox fuzzing,” in Conference on Computer and Communications
Security (CCS), 2017.

[10] W. Weiner, T.V. Nguyen, C. Le Goues, and S. Forrest, ”Automatically
finding patches using genetic programming,” in International Conference
on Software Engineering (ICSE), 2009.

[11] H.D.T. Nguyen, D.W. Qi, A. Roychoudhury, and S. Chandra, ”SemFix:
program repair via semantic analysis,” in International Conference on
Software Engineering (ICSE), 2013.

[12] D.S. Kim, J.C. Nam, J.W. Song, and S.H. Kim, ”Automatic patch gener-
ation learned from human-written patches,” in International Conference
on Software Engineering (ICSE), 2013.

[13] F. Long and M. Rinard, ”Staged program repair with condition synthe-
sis,” in Foundations of Software Engineering (FSE), 2015.

[14] W. Weimer, ”Patches as better bug reports,” in Generative Programming
and Component Engineering (GPCE), 2006.

[15] X. Cheng, M. Zhou, X. Song, M. Gu, and J.G. Sun, ”IntPTI: automatic
integer error repair with proper-type inference,” in Automated Software
Engineering (ASE), 2017.

[16] F.J. Gao, L.Z. Wang, and X.D. Li, ”BovInspector: automatic inspection
and repair of buffer overflow vulnerabilities,” in Automated Software
Engineering (ASE), 2016.

[17] Q. Gao, Y.F. Xiong, Y.Q. Mi, L. Zhang, W.K. Yang, Z.P. Zhou, B. Xie,
and H. Mei, ”Safe memory-leak fixing for C programs,” in International
Conference on Software Engineering (ICSE), 2015.

[18] Q. Gao, H.S. Zhang, J. Wang, Y.F. Xiong, L. Zhang, and H. Mei, ”Fixing
recurring crash bugs via analyzing QA sites (T),” in Automated Software
Engineering (ASE), 2015.

[19] F. Long and M. Rinard, ”Automatic patch generation by learning correct
code,” in ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL), 2016.

[20] X.B. Le, D.H. Chu, D. Lo, C.L. Goues, and W. Visser, ”S3: syntax
and semantic-guided repair synthesis via programming by examples,” in
Foundations of Software Engineering (FSE), 2017.

[21] L. D’Antoni, R. Samanta, and R. Singh, ”Qlose: program repair with
quantitative objectives,” in International Conference on Computer Aided
Verification, 2016.

[22] S. Mechtaev, J.Y. Yi, and A. Roychoudhury, ”Angelix: scalable mul-
tiline program patch synthesis via symbolic analysis,” in International
Conference on Software Engineering, 2016.

[23] S. Mechtaev, S.H. Tan, X. Gao, and A. Roychoudhury, ”Test-equivalence
analysis for automatic patch generation,” in ACM Transactions on
Software Engineering and Methodology (TOSEM), 2018.

[24] Y.D. Tao, J.D. Kim, S.H. Kim, and C. Xu, ”Automatically generated
patches as debugging aids: a human study,” in Foundations of Software
Engineering (FSE), 2014.

[25] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R.
Suzuki, and B. Hartmann, ”Learning syntactic program transformations
from examples,” in International Conference on Software Engineering
(ICSE), 2017.

[26] J.Y. Yi, U.Z. Ahmed, A. Karkare, S.H. Tan, and A. Roychoudhury, ”A
feasibility study of using automated program repair for introductory
programming assignments,” in Foundations of Software Engineering
(FSE), 2017.

[27] S. Ding, H.B.K. Tan, and H.Y. Zhang, ”ABOR: an automatic frame-
work for buffer overflow removal in C/C++ programs,” in International
Conference on Enterprise Information Systems (ICEIS), 2014.

[28] A. Shaw, D. Doggett, and M. Hafiz, ”Automatically fixing C buffer
overflows using program transformations,” in Dependable Systems and
Networks (DSN), 2014.

[29] A. Di Franco, H. Guo, and C. Rubio-Gonzalez, ”A comprehensive study
of real-world numerical bug characteristics,” in Automated Software
Engineering (ASE), 2017.

[30] H. Zhong and Z.D. Su, ”An empirical study on real bug fixes,” in
International Conference on Software Engineering (ICSE), 2015.

[31] Y. Tao, L.M. Zhang, L.Z. Wang, and X.D. Li, ”An empirical study
on detecting and fixing buffer overflow bugs,” in IEEE International
Conference on Software Testing, Verification and Validation, 2016.

[32] E. Campos and M. Maia, ”Common bug-fix patterns: a large-scale
observational study,” in International Symposium on Empirical Software
Engineering and Measurement, 2017.

[33] X. Gao, S. Mechtaev, and A. Roychoudhury, ”Crash-avoiding program
repair,” in Proceedings of the 28th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, 2019.


