
https://doi.org/10.1177/17456916231188000

ASSOCIATION FOR
PSYCHOLOGICAL SCIENCE

Perspectives on Psychological Science
 1 –21
© The Author(s) 2023

Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/17456916231188000
www.psychologicalscience.org/PPS

Humans are endowed with an intrinsic and irresistible 
drive to seek social contact and companionship, lead-
ing them to engage in (sometimes quite complex) 
interactions and relationships with their conspecifics 
(Tomasello et al., 2005). Early on, people are shaped 
by their caretakers’ and teachers’ guidance and by their 
experiences of play and exchange with peers, from 
which they learn how to connect and get along with 
each other (Wertsch, 1979). Unsurprisingly, separation 
from our social environment affects our well-being 
detrimentally, increases the risk of suffering mental- 
and physical-health issues significantly, and even  
raises rates of mortality (Cacioppo et al., 2010; Fowler 

et al., 2013; Hawkley & Cacioppo, 2010; Holt-Lunstad 
et al., 2015).

A large body of research aims to advance our under-
standing of those neural processes and mechanisms 
that enable social interaction and cognition, albeit with 
varying degrees of genuine interaction between par-
ticipants (Hari et al., 2015). The increasingly popular 
scientific approach of second-person neuroscience aims 
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Abstract
Social neuroscience has often been criticized for approaching the investigation of the neural processes that enable social 
interaction and cognition from a passive, detached, third-person perspective, without involving any real-time social 
interaction. With the emergence of second-person neuroscience, investigators have uncovered the unique complexity 
of neural-activation patterns in actual, real-time interaction. Social cognition that occurs during social interaction is 
fundamentally different from that unfolding during social observation. However, it remains unclear how the neural 
correlates of social interaction are to be interpreted. Here, we leverage the active-inference framework to shed light 
on the mechanisms at play during social interaction in second-person neuroscience studies. Specifically, we show 
how counterfactually rich mutual predictions, real-time bodily adaptation, and policy selection explain activation in 
components of the default mode, salience, and frontoparietal networks of the brain, as well as in the basal ganglia. We 
further argue that these processes constitute the crucial neural processes that underwrite bona fide social interaction. 
By placing the experimental approach of second-person neuroscience on the theoretical foundation of the active-
inference framework, we inform the field of social neuroscience about the mechanisms of real-life interactions. We 
thereby contribute to the theoretical foundations of empirical second-person neuroscience.
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to study social cognition in a manner that focuses on 
human social interaction (Becchio et al., 2010; Di Paolo 
& De Jaegher, 2012; Hari et al., 2015; Hari & Kujala, 
2009; Konvalinka & Roepstorff, 2012; Lehmann et al., 
2019; Redcay & Schilbach, 2019; Schilbach, 2010;  
Schilbach et  al., 2013). Second-person neuroscience 
aims to capture the dynamics and mechanisms at play 
in genuinely interactive human behavior in individuals 
and groups. To this end, this paradigm deploys experi-
mental setups that provide participants with opportuni-
ties to engage in reciprocal, ideally real-time, social 
interaction (see Fig. 1). This turn—to the study of the 
neural mechanisms of social interaction—may seem like 
an obvious one, but it has not been undertaken until 
recently: In fact, because of various technological but 
also conceptual limitations, second-person interactive 
methodology remains the exception rather than the rule 
in neuroscience (cf. Bolis & Schilbach, 2020a, 2020b; 
Schilbach et al., 2013).

Several studies have reported differences in behav-
ioral and neural responses between socially interactive 
(second-person) and observational (third-person) con-
texts (for reviews, see Feng et al., 2021; Gomez-Marin 
& Ghazanfar, 2019; Hari et al., 2015; Lehmann et al., 
2019; Redcay & Schilbach, 2019; Risko et  al., 2012, 
2016). To make this more tangible, we discuss two 
examples here. On a behavioral level, Laidlaw and col-
leagues (2011) demonstrated that social attention, as 
indexed by gaze behavior, is significantly decreased 
when a stranger is actually sitting in a chair across from 
the participant, compared with when that stranger is 
merely being displayed on a computer screen and is 
observed passively. In fact, participants showed more 
inclination to direct their gaze in the direction of an 
empty chair than when it was occupied by a person. 
Another exemplary study by Redcay and colleagues 
(2010) examined the impact of interaction at a neural 
level by measuring gaze-based interaction between two 
people, as compared with viewing the same visual 
information without the other participant being able  
to respond. In the interactive condition, the neural-
activation pattern showed a widespread increase in 
activity in the medial prefrontal cortex (mPFC) and 
the temporoparietal junction (TPJ; as part of the 
default mode network); the anterior cingulate cortex 
(ACC) and the anterior insula (AI; as part of the 
salience network); and subcortical areas, including 
ventral parts of the basal ganglia. Across studies, these 
regions have consistently been reported to be acti-
vated in interactive versus observational contexts 
(Cavallo et al., 2015; Rauchbauer et al., 2019; Xie et al., 
2020). A recent large-scale meta-analysis comparing 
social to nonsocial interactions corroborated these 
findings (Feng et al., 2021).

Despite the reported fundamental differences 
between live reciprocal interaction and third-person 
observation, the mechanisms driving these differences 
are not well understood. This is due to the fact that true 
social interaction is hard to control experimentally 
because it is a complex dynamical system that is self-
organized and, therefore, takes on a life of its own (De 
Jaegher et  al., 2010; Froese & Gallagher, 2012). As a 
result, researchers sometimes face difficulties in the 
interpretation of certain activation patterns. For exam-
ple, activation in the mentalizing network in second-
person neuroscience studies often cannot be clearly 
interpreted, as the putative underlying processes had 
not been targeted explicitly (for similar arguments, see 
Alkire et  al., 2018; Redcay & Schilbach, 2019). This 
speaks for a lack of theoretical and methodological 
principles to help explain the cognitive and neural 
mechanisms of social cognition in social interaction. 
Computational approaches could resolve some of these 
problems and help to model interaction dynamics and 
extract precise predictions, which could then be 
brought to experimental testing. Consequently, the turn 
to second-person methods aligns with a recent call for 
“greater theoretical attention to how the emergent prop-
erties of an interaction would be reflected in neural 
activity” (Redcay & Schilbach, 2019, p. 503). The inter-
active approach of second-person neuroscience also 
helps to address the critiques—mainly stemming from 
pragmatist, embodied, and enactive approaches to  
cognitive science—that have encouraged practitioners 
in the field to focus on the neural and cognitive mecha-
nisms of real-time social interactions, thereby going 
beyond the mere observation of social stimuli (Engel 
et  al., 2013; Gallagher, 2005; Newen et  al., 2018;  
Thompson, 2010; Thompson & Varela, 2001).

The aim of this article is to assemble the theoretical 
(i.e., computational) toolboxes of second-person neuro-
science. By doing so, we address the question of what 
the constituents of genuine social interaction really are. 
This could inform the debate in social neuroscience about 
the social specificity of processes involved in social inter-
action (e.g., Lockwood et al., 2020; Suthaharan & Corlett, 
2023). To do this, we leverage the active-inference frame-
work (Friston et  al., 2011), which is an increasingly 
popular approach to computational modeling of com-
plex systems, based on a variational principle called the 
free-energy principle (Ramstead et al., 2018, 2023). The 
active-inference framework provides tools that allow us 
to model how embodied agents interpret and proactively 
interact with salient features of their environment (Bru-
ineberg, Rietveld, et  al., 2018; Friston, 2012, 2013a), 
which, in the case of humans, crucially includes other 
human agents (Bolis & Schilbach, 2020a; Veissière et al., 
2020). Active-inference models formalize the dynamics 
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of the brain, claiming that it instantiates a generative 
model: The networks of the brain, on this view, produce 
predictions of what should be sensed next. These pre-
dictions are compared against sensory input and (sub-
personal Bayesian) beliefs—on which predictions are 
based—are updated when error or discrepancy is 
detected. This results in Bayes-optimal inference about 
the most likely cause of the sensory input (Ramstead 
et al., 2019). Crucially, the causes of sensory input can 
include the agent’s own action, which means actions 
or plans are also inferred, leading to active (planning 
as) inference (Attias, 2003; Botvinick & Toussaint, 2012; 
Da Costa et al., 2020). The ideas behind second-person 
neuroscience and active inference fit together naturally: 
Both promote the idea that cognition always involves 
a kind of proactive engagement and prediction of the 
environment, rather than passive consumption of exter-
nal stimuli (Bolis & Schilbach, 2020a; Friston et  al., 
2016; Schilbach et al., 2013).

The remainder of the paper goes as follows. First, 
we briefly introduce second-person approaches in 
social neuroscience and the active-inference frame-
work. Second, we examine the idea that a participant’s 
ability to act toward an interactive partner results in 

recursive and counterfactual decision-making (i.e., a 
kind of deep tree search) about possible, situationally 
appropriate actions. We review literature that examines 
how this generates patterns of neural activity that one 
observes in second-person neuroscience studies. We 
then examine how these action possibilities recruit 
brain regions that are thought to be responsible for the 
regulation of the interoceptive and proprioceptive 
bodily milieu. In the last section, we provide an integra-
tive overview of our argument and propose that the 
active-inference framework provides a novel perspec-
tive on studying second-person neuroscience.

Second-Person Approaches in Social 
Neuroscience

The central praxis of second-person approaches in 
social neuroscience is to remove the barrier between 
the participant and the social stimuli in such a way that 
the participant’s role shifts from being a passive 
observer to becoming an active social agent that can 
be addressed by another participant in real time (Reddy, 
2003; Risko et  al., 2016; Schilbach et  al., 2013). This 
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Fig. 1. Exemplary setups for social-neuroscience studies. In (a), a classic approach is 
shown employing third-person observation of a social stimulus; in (b) through (e), a 
second-person context is shown in which another person is aware of the participant. In 
(b) and (c), audience-effect setups are displayed in which a participant becomes the object 
of another person’s attention: (b) shows mere observation of the participant, whereas  
(c) shows observation of the participant’s actions, usually visible on a computer screen. 
In (d) through (e), setups for reciprocal social interaction are displayed, with (d) showing 
slowly paced sequential interactions, usually mediated by a virtual interactional space, and 
with (e) showing reciprocal and dynamic social interaction.
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entails that information can flow from one participant 
to another and back. Linguistically speaking, in such a 
social context, another person can be addressed as 
“you” (second-person perspective) rather than referring 
to this person as “she/he/they” (third-person perspec-
tive) (Reddy & Morris, 2004); additionally, the subjective 
first person “I” is also extended to an objective “me” 
(indicating that “I” has become the object of attention) 
and a plural “we.” Classic approaches employing third-
person observation typically present static or dynamic 
displays of social stimuli (e.g., pictures or videos of 
faces or social scenes; Fig. 1a). By contrast, in a second-
person context (Figs. 1b–e), participants are embedded 
in a social situation with another person, who is aware 
of the participant.

Different manifestations of the second-person 
approach in social-neuroscience studies vary strongly 
in the degree to which they resemble real-life social 
interaction in terms of reciprocity and temporal dynam-
ics (Hari et al., 2015; Redcay & Schilbach, 2019; Shamay-
Tsoory & Mendelsohn, 2019). One line of research has 
studied audience effects, investigating how people 
behave when they are an object of another person’s 
attention (Figs. 1b and 1c; Hamilton & Lind, 2016). This 
may be considered a precursor to reciprocal social 
interaction and can be subdivided into contexts in 
which (a) a participant is merely observed (Fig. 1b; e.g., 
via camera; Somerville et al., 2013) and (b) actions of 
a participant are observed (Fig. 1c). In the latter case, 
typically the results of those actions are visible and 
mediated via a virtual space (e.g., the performance in an 
estimation task; Müller-Pinzler et al., 2015). Reciprocal 
social interactions (Figs. 1d and 1e) can vary in the degree 
to which information flow is dynamic. On one end, there 
are rather slowly paced tasks, in which participants act 
sequentially; the task may involve playing a turn-based, 
dyadic game (e.g., the prisoner’s dilemma; Engemann 
et al., 2012; Krach et al., 2009) or exchanging chat mes-
sages (e.g., Warnell et al., 2017), both of which are medi-
ated by a virtual interactional space (Fig. 1d). On the other 
end, reciprocal and dynamic social interaction allows for 
simultaneous behavior and is typically realized via a live 
video feed (Fig. 1e; e.g., Redcay et al., 2010).

Active Inference

The basic idea

In the past decades, there has been a shift away from 
conceptions of the brain as a passive organ that merely 
awaits and reactively processes bottom-up sensory 
input to conceptions that emphasize the fact that cogni-
tion and perception find themselves in a mutual 

embrace with action. These are enactive, ecological, 
pragmatist, and embodied approaches to the study  
of the brain (Bolis & Schilbach, 2020a; Bruineberg, 
Kiverstein, & Rietveld, 2018; Engel et al., 2015; Ramstead 
et al., 2019; Thompson, 2010). One version of this view 
casts the brain as an organ that actively generates pre-
dictions of its environment (Friston, 2013b). In this 
model, the dynamics of the brain are said to embody 
or instantiate a generative model that generates predic-
tions that are compared against sensory input, resulting 
in a Bayes-optimal inference about the most likely 
cause of the sensory input (Ramstead et  al., 2019). 
According to the active-inference framework, these pre-
dictions are compared with sensory input continuously 
throughout the hierarchical networks of the brain 
(Friston, 2005, 2008; Shipp et al., 2013). To model the 
extrapersonal and internal (i.e., bodily) world in an 
optimal way, the brain is thought to minimize predic-
tion error throughout the hierarchical generative model.

Heuristically, in this view, when predictions and sen-
sory data clash, conflict is resolved in one of two ways—
either by updating one’s beliefs in a Bayes-optimal 
manner (perception and learning; i.e., changing the 
internal model to make it more predictive of current 
sensory input) or by changing the world to make future 
data consistent with one’s expectations (i.e., action; Fris-
ton et al., 2010, 2015). In this view, bodily movements 
(and autonomic responses) are mediated by lower-level 
reflexes that fulfil higher-level predictions, forecasting 
how the proprioceptive (and interoceptive) sensorium 
ought to feel (Adams et al., 2013; Seth & Friston, 2016). 
This enactive kind of predictive processing (Clark, 2015) 
is thought to take place unconsciously at all levels of 
brain activity, regulating the entire body in its interaction 
with the environment and allowing it to remain within 
viable states—those congruent with its survival and thriv-
ing (Ainley et al., 2016; Allen et al., 2022; Barrett, 2017; 
Barrett & Simmons, 2015; Hohwy & Michael, 2017).

In this view, the brain is perpetually engaged in a 
recurrent message passing between lower and higher 
levels of the cortical hierarchy. Here, lower levels oper-
ate at smaller spatial and shorter temporal scales (e.g., 
the velocity of people’s movements, or their finer facial 
features during speech), whereas higher levels or 
deeper layers process increasingly abstract information 
at greater spatiotemporal scales (e.g., a person’s tem-
perament and relatively more stable personality traits, 
or the general layout of facial morphology). Accord-
ingly, predictions at a higher level of the hierarchy 
suppress or resolve prediction errors in lower levels, 
as one can observe in the phenomenon of repetition 
suppression (Murray et  al., 2002; Summerfield et  al., 
2008). The balancing act between sensory and prior 
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prediction errors is assumed to be mediated by neuro-
modulatory mechanisms of synaptic gain that encode 
their reliability or precision (H. Feldman & Friston,  
2010; Moran et al., 2013; Parr & Friston, 2017). This is 
known as precision weighting. According to one version 
of this theory, called hierarchical predictive coding, 
deeper layers of the cortical hierarchy issue predictions—
thought to originate from deep pyramidal cells—about 
expectations at a lower level of the hierarchy. The 
resulting prediction errors are, in turn, propagated—by 
superficial pyramidal cells—to higher levels, updating 
expectations and ensuing predictions in order to opti-
mize the representation of the hidden states of the world 
and body (Bastos et al., 2012; Friston & Kiebel, 2009; 
Shipp, 2016).

Generative models and active inference

In this section, we briefly describe the model that gen-
erates predicted observations of the (social) environ-
ment. We want to provide an intuitive account for a 
broad audience but refer the interested reader to pub-
lications that have elaborated more formal descriptions 
(e.g., Friston et al., 2021; Hesp et al., 2021; Sandved-
Smith, 2021). In Figure 2c, we show a graphical model 
of a Markov decision process that is commonly used as 
a generative model for Bayesian inference over discrete 
states.

In this model, observations (o in Fig. 2c, or sensory 
outcomes) are caused by hidden states (s) that are not 
observable and need to be inferred. The relation 
between the sensory outcomes and the hidden states 
is expressed by a likelihood mapping A (which is tech-
nically a matrix) that encodes the likelihood of an 
observation, given a certain state or cause (e.g., how 
likely it is that the sigh of a colleague is indicative of 
stress). The hidden states, on their part, possess tem-
poral dynamics and evolve over time (e.g., from State 
1 to State 2). This transition between states, or rather 
the beliefs about state transitions, is captured by B (also 
technically a matrix). Interestingly, as states can evolve 
from one state to another, the respective transitions 
depend upon action, which has to be inferred. More 
precisely, an agent can only infer her actions based 
upon observable consequences. However, she can also 
have precise prior beliefs about the kinds of actions 
she would engage in—and thereby gain control over 
exchange with the environment. A series of controllable 
state transitions is called a policy (denoted as π). Prior 
beliefs that lead to policy selection are based upon the 
surprise or free energy expected under a particular 
policy. Effectively, this means that agents operating 
under this kind of generative model will act to resolve 

uncertainty and avoid surprising outcomes (e.g., pain, 
embarrassment, disorientation).

Active Inference and Social Action

The most important way of reducing prediction error 
is to act upon the environment to change the states 
we want to infer. This is captured very nicely in idi-
omatic expressions such as the German “Probieren 
geht über Studieren” (literally, “trying is above study-
ing”) or its English equivalent, “the proof of the pud-
ding is in the eating.” To optimally reduce uncertainty 
via action, one has to select the best option among a 
variety of possible actions. The obvious problem is 
figuring out which action will reduce an agent’s uncer-
tainty the most.

The exploration of opportunities  
for action

In active inference, this problem is often solved through 
counterfactual processing (Corcoran et  al., 2020;  
Friston, 2018; Palmer et al., 2015)—that is, imagining 
what the next sensory input would be if I were to 
execute a particular action. Given some prior beliefs 
about the typical sensory consequences of actions, the 
selection among a variety of actions becomes tractable, 
as an agent must only infer how best to get to preferred 
and informative sensory data and then pursue the pol-
icy that leads to those preferred sensory states. Going 
a step further, action selection can become “sophisti-
cated,” in the sense that one does not only select actions 
based on beliefs of the sensory consequences but also 
based on the consequences of an action for future 
beliefs (Friston et  al., 2021; Hesp et  al., 2020). The 
sophistication lies in having beliefs about beliefs (Costa-
Gomes et al., 2001). Sophisticated inference is neces-
sary for resolving epistemic uncertainty, that is, 
uncertainty caused by a lack of knowledge, requiring 
additional information to get to a precise belief about 
the relevant state of the world (Hüllermeier & Waege-
man, 2021). A simple example would be the following. 
You want to bake a cake for a celebration at work, but 
you are unsure whether you have eggs in the fridge. 
Checking whether there are eggs in the fridge (disam-
biguating action 1) informs you about the current envi-
ronmental state and impacts your subsequent 
beliefs—that is, whether you want to bake a lemon 
poppy loaf (sensory consequences of action 2a) if you 
do have eggs or want to make a cheesecake (sensory 
consequences of action 2b) if you do not have eggs.

Potential action trajectories are recursively explored, 
and their sensory consequences of hidden states are 
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Fig. 2. Deep tree exploration of possible policies. The deep tree represents allowable actions (u, depicted as 
red circles) at various time points and their expected sensory outcomes (o, depicted as blue circles). In (a) we 
show deep tree exploration of policies by an agent interacting with a monadic environment; in (b) we show 
deep tree exploration of policies by an agent interacting with another agent (i.e., dyadic environment). The 
recursive nature of policy search additionally becomes nested. Own actions constitute observations by another 
agent (second column), and knowledge about this dependency informs policy selection on a higher level. By 
coupling agents, policy search and selection becomes increasingly complex due to an increased depth. In the 
generative model (c), observations (o, or sensory outcomes) are caused by hidden states (s) that are not observ-
able. The relation between the sensory outcomes and the hidden states is expressed by the likelihood mapping 
A that informs about the likelihood of an observation given a certain state. The hidden states can evolve over 
time (e.g., from State 1 to State 2). This transition between states (or rather the beliefs about state transitions) 
is captured by B. The respective transitions can be controlled via action (u). A series of such state transitions is 
called a policy (denoted as π).

counterfactually imagined. This process can span over 
timescales and has close connections to episodic pros-
pection, rumination, and mind wandering (Christoff 
et  al., 2016; Nolen-Hoeksema et  al., 2008; Schacter 
et al., 2017; Seli et al., 2016). As can be seen in Figure 

2a, the further the deep decision tree goes into the 
future, the higher the number of possible outcomes.

So far, we have focused on action selection in 
monadic contexts (e.g., deciding which kind of cake to 
bake), in which pursuing an action does not affect 
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another person. However, in the dyadic context of 
social interaction, the recursive structure of action 
selection additionally becomes nested (Fig. 2b). To 
unroll the nested structure and give a grasp on what it 
actually means: Agent 1 is engaged to infer the hidden 
states of the pertaining situation. In a dyadic context, 
this involves the mental states or beliefs of an interac-
tive partner (Agent 2). Inferring the mental states of 
another person is commonly termed mentalizing or 
theory of mind1,2 (Lehmann & Kanske, 2022; Premack 
& Woodruff, 1978). However, the interactive partner is 
also inferring the mental state of Agent 1. This leads 
to another higher level of inference: Now, Agent 1 can 
also infer the belief of Agent 2 about the mental state 
of Agent 1. Moreover, Agent 1 can infer how Agent 2 
thinks that Agent 1 thinks about the mental state of 
Agent 2, and so on. All these inferred states are not 
directly accessible and must be deduced from sensory 
observations. Thus, they are furnished with high epis-
temic uncertainty (FeldmanHall & Shenhav, 2019; 
Wheatley et al., 2019). The described inference pro-
cesses target only the current state of affairs. However, 
the exploration of action opportunities that are aimed 
at counterfactually imagined preferred future states all 
entail this kind of nested inferences. For example, in 
a dyadic situation I might be hesitant to look at my 
watch (out of curiosity about how long a colleague 
and I have chatted), as I expect that me looking at my 
watch will lead to my colleague thinking that I intended 
to signal that I do not have time to chat. Selecting 
appropriate actions becomes more complex, as there 
are more paths to compute in parallel (FeldmanHall & 
Nassar, 2021; FeldmanHall & Shenhav, 2019; Fig. 2b).

As opposed to those second-person situations 
described above, in experiments on social cognition, 
mental-state inferences commonly look differently (for 
an overview, see Schurz et al., 2021). A frequent task 
is to have participants view a cartoon and let them infer 
what must be the beliefs of the displayed characters 
(Wimmer & Perner, 1983). It goes without saying that 
the recursive depth of belief inference is limited to the 
first, noninteractive level of participants’ beliefs about 
the beliefs of a cartoon character; the cartoon character 
obviously cannot reciprocate. In contrast, second- 
person experimental contexts capture the idiosyncrasy 
of social interaction, namely that the belief of the par-
ticipant is inferred by another (“I think that you think 
that . . .”; Ramstead et al., 2016). Here, beliefs and infer-
ences evolve from a kind of one-way street, where one 
person monadically predicts the mental states of 
another, to reciprocal predictions between interaction 
partners. By contrast, looking at one’s watch while try-
ing to infer beliefs of cartoon characters would not 

affect the interpersonal context. Thus, selecting an 
action in a second-person context inevitably creates 
mutual historicity.3 At this level of complexity, people 
effectively “think through the minds of others,” filtering 
their own perceptions through what they believe are 
the beliefs of others4 (Ramstead et al., 2016; Veissière 
et al., 2020).

We argue that the recursive exploration of a deep 
tree structure, in the service of action selection, is a 
primary form of information processing in social inter-
action that gains a genuine social aspect by the nested-
ness of reciprocal inferences. This kind of deep tree 
search has recently been proposed as a parsimonious 
explanation for the processes underlying, at least, some 
features of default-mode network activity (Dohmatob 
et al., 2020). More specifically, this information process-
ing can be broken down into two kinds of computa-
tions: first, inferences about current and potential 
hidden states (Fig. 2c) and second, the counterfactually 
imagined sensory observations, given those hidden 
states. At a neural level, it has been shown that (hidden) 
state inference (which entails the evaluation of epis-
temic affordances) yields activity in the medial prefron-
tal cortex (Berkay & Jenkins, 2023; Gershman & Uchida, 
2019; Starkweather et  al., 2018). The sensory conse-
quences of future hidden states are presumably pro-
cessed in the TPJ as a multisensory prediction of 
observable outcomes (Dohmatob et al., 2020; Masina 
et al., 2022). Increased activation in these parts of the 
default-mode network during actual, second-person 
interaction (compared with observing others without 
interacting), in our view, are elicited by an increased 
depth in deep tree search. Importantly, we suggest that 
the recursive exploration of a deep tree structure during 
social interaction is likely—to a large degree—happen-
ing in an automatic and implicit mode, which might 
make social action exploration seem effortless. Contex-
tual or other prior information (e.g., mutual historicity) 
may provide prior expectations that could additionally 
narrow down hypothetical alternative states, either 
through priors on specific states or a more precise 
likelihood mapping (see A in Fig. 2c) between hidden 
states and sensory outcomes. Cognitive phenomena 
such as episodic prospection, mind wandering, and 
mentalizing might draw on this primary form of infor-
mation processing and thus could elicit activity in the 
aforementioned components of the default-mode net-
work (Bzdok et al., 2012; Christoff et al., 2016; Schacter 
et al., 2017; Schurz et al., 2014, 2021; Seli et al., 2016).

Some studies explicitly model recursive interpersonal 
processes by using dyadic games in a virtual interactive 
space (Fig. 1d; Coricelli & Nagel, 2009; Devaine et al., 
2014; Hampton et al., 2008; Hill et al., 2017). Here, the 
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mPFC and the TPJ were shown to be involved in pro-
cessing a higher depth of recursion and in accounting 
for how one’s own actions influence the subsequent 
actions of an opponent (Coricelli & Nagel, 2009; Hampton 
et al., 2008). Disrupting the right TPJ led to diminished 
connectivity between the TPJ and the mPFC, resulting 
in deficits in estimating how one’s own actions affected 
the opponent’s behavior (Hill et al., 2017). Interestingly, 
the engagement of the TPJ and the mPFC—within social 
interaction—varies with the degree to which an oppo-
nent is perceived as “having a mind” (Krach et al., 2008; 
Takahashi et al., 2014). Opponents to which one ascribes 
an increased ability to infer mental states (and, thus, to 
have more recursively nested thoughts) elicit a stronger 
activation within those regions. Also, when a computer 
agent is equipped with and changes between different 
strategies, the increased levels of uncertainty and hid-
den-state inference elicit greater activity in the mPFC 
(Yoshida et al., 2010).

The selection of action

Having explored possible action opportunities, the indi-
vidual concerned faces a nontrivial question, namely, 
which of those actions should I select? In the active-
inference framework, action is usually considered as a 
set of beliefs about which action one is undertaking—
also referred to as a policy (π in Fig. 2c); it models 
action selection as a kind of self-fulfilling prophecy. As 
outlined above, social-information processing is inher-
ently furnished with epistemic uncertainty and ambigu-
ity. Now, a deep tree exploration of possible action 
alternatives and their counterfactually imagined action 
outcomes (and their respective hidden states) might 
point to an action that best resolves ambiguity and 
uncertainty about the state of affairs.

Such a disambiguating policy goes along with a high 
precision—that is, high confidence in one’s own beliefs 
about action outcomes (Corcoran et  al., 2020; Hesp  
et al., 2020). This precision signaling is believed to be 
carried out via dopaminergic transmission in the ventral 
parts of the basal ganglia (i.e., the ventral striatum; 
FitzGerald et al., 2015; Friston et al., 2014; Parr & Friston, 
2017, 2018; Schwartenbeck et al., 2015). Indeed, this view 
is substantiated by phylogenetic considerations, according 
to which a problem as fundamental as action selection 
must have evolved as early as the appearance of basal 
ganglia (Cisek & Kalaska, 2010). Dopaminergic signaling 
may have originally served to arbitrate between local 
exploitation and long-range exploration (Cisek, 2019; Hills 
et al., 2015). Interestingly, the precision of beliefs about 
policies determines how vigorously an action is con-
ducted (Carland et al., 2019; Stephan et al., 2016).

We argue that precision signaling to select actions 
that have been recursively explored in a deep tree 
search is a core computation that plays a crucial role 
in a second-person context. This computation is carried 
out or signaled in ventral parts of the basal ganglia, 
which has been consistently shown to be activated in 
second-person neuroscience studies (for reviews, see 
Feng et al., 2021; Redcay & Schilbach, 2019). Evidence 
supports this idea: For example, in a recent study that 
involved recursive thinking in interpersonal strategic 
interactions, in which participants had to engage in 
higher-order belief inferences about another person, 
both the ventral striatum and the default-mode network 
showed heightened activity (Zhen & Yu, 2021). Impor-
tantly, we do not consider the process of action selec-
tion and precision signaling as a purely rational (i.e., 
context-free) process. Instead, it is tightly linked and 
informed by the affective states of an interacting agent 
that mediate a variety of contextual—and possibly 
hedonic—priors (for a review and formal account, see 
Hesp et al., 2021).

Besides selecting which action is about to bring the 
most favorable sensory input, it is crucial to decide 
when an action ought to be performed. Due to its ever-
evolving nature, interactional behavior carries and con-
veys crucial information on the basis of the timing of 
an action. This makes both the demand on selecting an 
action and the corresponding counterfactual belief 
updates highly dynamic (Schirmer, Meck, & Penney, 
2016). For example, naturally occurring, automatic 
smiles follow a stereotypical temporal pattern (Schmidt 
et  al., 2003). Alterations of this pattern may make a 
smile seem less spontaneous and more forced. During 
interpersonal conversations, longer-than-normal gaps 
in turn-taking signal a semiotic meaning, such as a 
negative response or trouble in understanding an 
intended message (Kendrick, 2015; Levinson & Torreira, 
2015). Similarly, disgust expressions of longer duration 
convey a more negative valence (Schirmer, Ng, et al., 
2016). You might also think of a situation in which you 
are in a conversation with two friends, and you want 
to tell a story (as it matches the current topic of the 
conversation), but the topic quickly evolves in another 
direction (as one of those friends tells of something 
related but with a different twist). As a result of the 
changing context, the story that you wanted to tell now 
seems misplaced. The deep tree in Figure 2b can be seen 
as a snapshot of a particular time that would cover dif-
ferent actions and, thus, look different in the future. 
Social situations are inherently dynamic and volatile, 
which adds a layer of uncertainty. Precision signaling to 
select actions that have been recursively explored in a 
deep tree search, thus, also facilitates real-time 
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second-person interactions in the dimension of time. 
Interestingly, within the default-mode network, the mPFC 
and the TPJ integrate information over longer timescales 
(over tens of seconds) that are relevant for social infer-
ence (Hasson et al., 2015; Hasson & Frith, 2016).

In this section, we have argued that selecting actions 
requires recursive exploration (and their counterfactual 
imagined sensory depiction) of action opportunities in 
components of the default mode network (i.e., the 
mPFC and TPJ). Importantly, because of the nested 
structure of the recursive exploration in interactive, 
second-person contexts, the computational demand on 
action exploration is of higher complexity, which is 
reflected in increased activation of those areas. More-
over, we argued that precision weighting to select 
actions that have been recursively explored in a deep 
tree search goes along with activity in ventral parts of 
the basal ganglia. This activity is increased in second-
person contexts, as there are higher demands on select-
ing an action because of higher nested recursion and 
implicit neural dynamics. A second-person approach 
exposes the unique processes that play a critical role 
in the emergence of social interaction. Adopting an 
active-inference perspective adds foundations about 
computational principles enabling the interaction in 
second-person contexts.

Active Inference and Internal Action

In the previous section, we discussed deep tree explo-
ration of possible action outcomes and the process of 
choosing among them. We argued that such exploration 
is the primary computation behind activity in the mPFC, 
TPJ, and ventral parts of the basal ganglia that have 
been reported in second-person neuroscience studies. 
In this section, we consider commonly reported activity 
in parts of the salience network on the one hand, par-
ticularly the anterior cingulate cortex (ACC) and the 
anterior insula (AI), and parts of the frontoparietal net-
work on the other hand (for reviews, see Feng et al., 
2021; Redcay & Schilbach, 2019). In the following, we 
describe the underlying processes under active infer-
ence. We argue that these computations are closely 
related to internal bodily processes that have been 
largely neglected in traditional spectator approaches 
(Engel et al., 2013; Fotopoulou & Tsakiris, 2017; Thomp-
son & Varela, 2001).

The computation of transition 
uncertainties

In the active-inference framework, the relation between 
actions or beliefs about actions (red circles in Fig. 2) 

and subsequent beliefs about counterfactual observa-
tions (blue circles in Fig. 2) is furnished with uncer-
tainty about state transitions (i.e., “How likely is it that 
a certain state changes from State 1 to State 2 following 
my action?”; B in Fig. 2c). The ACC has consistently 
been associated with the evaluation of transition prob-
abilities, linking actions to states, and with monitoring 
whether the observed state transitions matched the pre-
ceding action (Akam et al., 2021; Behrens et al., 2007; 
Dayan & Yu, 2006; Parr & Friston, 2017, 2018; Payzan-
LeNestour et al., 2013; Sales et al., 2019). It is thought 
that this is realized via noradrenergic projections from 
the locus coeruleus. Accordingly, administering norad-
renergic antagonists has been found to impair the pro-
cessing of transition uncertainty (Marshall et al., 2016). 
Importantly, transition uncertainty (or volatility) can be 
represented hierarchically. Beyond merely evaluating 
volatility at some time, it is also important to know how 
this kind of uncertainty fluctuates over time and across 
contexts (Parr & Friston, 2017).

We argue that in second-person neuroscience studies, 
the observed increase in neural activity in the ACC can 
be explained by appealing to the higher computational 
demands on the evaluation of transition probabilities 
between actions and states. A higher demand might 
entail more action alternatives to evaluate. These have 
at least two sources (compared with observational stud-
ies): first, the nested recursive structure of deep tree 
exploration of action, and second, the dynamic ever-
evolving fluctuation in the action opportunities.

The adaptation of the interoceptive 
bodily milieu

The information that is processed about possible 
courses of action in the external world certainly influ-
ences, and is influenced by, internal bodily cycles (e.g., 
respiratory, visceral, gastrointestinal; Khalsa et al., 2018; 
Petzschner et al., 2017). The relation between internal 
cycles and exteroceptive information—which might 
also be construed as the first-person subjective frame 
(Park & Tallon-Baudry, 2014)—is constantly fluctuating, 
demanding refinement in the budgeting of bodily 
resources. For example, when you want to initiate a 
movement (e.g., getting up from a chair), your bodily 
systems must become attuned to the demands accom-
panying the movement (e.g., raising blood pressure to 
ensure a stable blood circulation in an upright position). 
This alteration of set points to suit the demands of the 
situation is known as allostasis (Corcoran & Hohwy, 
2019; Schulkin & Sterling, 2019; Sterling, 2012). It is 
proposed that interoceptive predictions—originating in 
granular cells of the AI—function as a set point 
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modulator (Gu et al., 2013) that predicts and determines 
in which range a bodily system should operate (Livneh 
et al., 2020). Interestingly, both the AI and the ACC are 
furnished with large spindle-shaped von Economo neu-
rons (VEN) that are particularly suitable to convey neural 
information over longer distances (i.e., to the body; All-
man et al., 2005, 2011; Hodge et al., 2020).

The attunement of interoceptive systems to the 
demands of interacting with the world is evident in 
multiple internal cycles, such as the respiratory tract 
(Park et al., 2020), the digestive system (Levinthal & 
Strick, 2020), or the visceral system (Allen et al., 2022). 
Importantly, this attunement is bidirectional, suggest-
ing a kind of circular causality. For example, voluntary 
movements are more likely conducted during exhala-
tion (Park et al., 2020), while preparing for a move-
ment is accompanied by cardiac slowing ( J. I. Lacey 
& Lacey, 1970). On the other hand, exteroceptive 
information that requires higher levels of attention 
leads to a deceleration of the heart rate, probably 
downregulating internal noise in order to increase 
precision of the external information (B. C. Lacey & 
Lacey, 1978; Sokolov, 1963).

During social interaction, the attunement of internal 
bodily systems to the environmental demands is cru-
cially caused by demands of the exchange between two 
agents. For example, during a conversation between 
you and your interlocutor, you might adjust your body 
(by inhaling) in anticipation of a state transition, which 
is taking your turn to say something (Rochet-Capellan 
& Fuchs, 2014). Although it is possible to attune to 
another person via third-party observation (e.g., when 
watching somebody who is telling a sad autobiographi-
cal story; Kanske et al., 2015, 2016), real interpersonal 
(second-person) situations generate a stronger drive to 
do so, making the relationship between two social 
agents more vivid. Accordingly, during social interac-
tion, multiple internal systems attune to internal sys-
tems of the interactive partner, resulting in synchrony 
(Hoehl et al., 2020; Koole & Tschacher, 2016; Kupper 
et  al., 2015; Mayo, 2020; Tschacher et  al., 2017). For 
example, interacting dyads show more stable and 
shared heart-rate dynamics than noninteracting dyads 
(Fusaroli et al., 2016).

Taken together, we argue that the ACC and AI (as 
parts of the salience network), act in concert to (a) 
compute transition probabilities and track the matching 
between actions and states, and (b) attune internal sys-
tems to environmental demands as a result of fluctuat-
ing states. This aligns well with literature that views the 
salience network as a hub for behavioral adaptation in 
light of changes in environmental contingencies (Poe 
et al., 2020; Uddin, 2015).

The adaptation of the proprioceptive 
bodily milieu

Beside interoception, important bodily functions with 
regard to second-person interaction are captured in the 
proprioceptive domain, such as the sensorimotor com-
munication (Pezzulo et al., 2019). Sensorimotor com-
munication is the aspect of communication that is 
visible to the interactive partner and involves parts of 
the body (muscular, tendon, and articular) that are ori-
ented “toward the world” (Fuchs, 2020, p. 3). As we 
have discussed, in active inference, the motor cortex is 
not viewed as an area that issues motor commands; 
rather, it is involved in issuing predictions (Adams et al., 
2013; Hipólito et al., 2021). Specifically, somatomotor 
predictions about sensory consequences of an action 
are sent to the spinal cord, where they are compared 
with ascending (primary) proprioceptive afferents. The 
comparison of both ascending and descending informa-
tion results in a prediction error that can be resolved 
by action (i.e., classical motor reflexes in the spirit of 
the equilibrium-point hypothesis; A. G. Feldman, 
2009)—fulfilling the issued prediction of the motor cor-
tex. Similar to ACC and AI, the motor cortex harbors 
large spindle-shaped neurons (Betz cells; Rivara et al., 
2003) that are also suitable to convey information over 
long ranges. Additionally, the somatosensory cortex 
receives information about the sensory consequences 
of an action, which enables more refined predictions 
for future actions.

The recursively nested and dynamically changing 
nature of social interaction influences the prediction of 
our bodily actions toward the world, that is, toward inter-
active partners. Because interactive partners have a life 
on their own, which in turn has an influence on us, our 
sensorimotor predictions need to account for a higher 
level of contextual variability. Accordingly, higher levels 
of dynamicity in motor production go along with an 
increase of activity in somatomotor and somatosensory 
cortices (Neely et  al., 2013). Such results can also be 
observed in sensorimotor interaction within a second-
person neuroscience approach (e.g., Chauvigné et al., 
2018; Kokal et al., 2009). For example, Kokal et al. (2009) 
engaged participants in a joint action task, in which the 
participant and another person were required to arrange 
two sticks in a previously indicated assembly. Here, 
somatomotor and somatosensory cortices showed super-
additive activation for joint actions compared with its 
constituents (observing action and executing action 
alone), suggesting a higher complexity due to bidirection-
ality. Similarly, performing improvised joint hand move-
ments with another person also activated somatomotor 
and somatosensory cortices (Chauvigné et al., 2018).
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In this section, we have argued that the nested recur-
sive structure of deep tree exploration of action (drawn 
from the active-inference framework) and the dynamic, 
ever-evolving fluctuation in the action opportunities 
within second-person contexts entails two core things. 
First, it leads to a higher computational demand on the 
evaluation and monitoring of transition probabilities, 
which elicits higher ACC activity. Second, it results in 
more environmental variability and fluctuating states, 
which calls for an increased attunement of internal  
(via the AI) and proprioceptive (via parts of the fron-
toparietal network) systems. Here, a second-person 
approach exposes (interoceptive and proprioceptive) 
bodily processes that enable and transmit social interac-
tion. Adopting an active-inference perspective adds the 
underpinning computational principles in this bodily 
social interaction.

Integrating the Mechanisms of Second-
Person Neuroscience

In the previous sections, we attempted to delineate 
delimited processes underlying social interaction within 
a second-person context. We argued that moving from 
the detached, spectator position (third person) to an 
interactive, second-person perspective introduces nested, 
recursive exploration of action opportunities that mainly 
draws on counterfactual simulation of states and their 
respective sensory outcomes in the mPFC and the TPJ—
which we can model using the tools of sophisticated and 
sociocultural active inference. Furthermore, the implicit 
multitude of action opportunities leads to a higher 
demand on selecting a course of action, which engages 
ventral parts of the basal ganglia. As a result, there 
emerges a higher demand on Bayesian belief updating 
in the ACC, which leads to a more flexible attunement 
of interoceptive bodily systems, conveyed via the AI. 
Similarly, somatomotor and somatosensory cortices are 
engaged in attuning the proprioceptive bodily system, 
in order to act toward the interactive partner.

However, importantly, these processes should by no 
means be considered as unfolding in an isolated man-
ner. Rather, it is their complex interplay that allows us 
to master the hurdles of interaction and lets us navigate 
the social environment (more or less) smoothly. A few 
studies investigated the interplay of these processes and 
delivered valuable insights about their mutual influ-
ence. Hesp et al. (2020) examined how the policy selec-
tion of an artificial agent is influenced by recursively 
sampled action outcomes. Interestingly, the precision 
or the confidence about one’s own actions is reduced 
every time a negative outcome is imagined. The higher 
the engagement in counterfactual iterations, the more 
often negative outcomes are encountered mentally, 

leading to a substantive reduction in confidence—that 
is, overthinking, rumination, and catastrophizing. Tragi-
cally, perhaps, this reduction of confidence affects 
future actions: Imagined outcomes become negatively 
biased, resulting in a vicious circle, effectively leading 
to more caution in action selection.

Interestingly, altered confidence about one’s own 
action models might also affect the degree to which an 
environment is perceived as being volatile. For example, 
in a simple reversal-learning task in which contingencies 
between stimuli and subsequent outcomes were manip-
ulated to be more or less volatile, Weiss et al. (2021) let 
participants either interact with, or merely observe, the 
presented evidence. Having the opportunity to act, reli-
ably led to impressions that the environment was stable 
and less volatile. The relation between volatility and 
action selection can also be looked at from the other 
direction. For example, some have argued that volatility 
expectations affect policy selection—that is, higher envi-
ronmental volatility leads to adopting simpler policies 
(i.e., habits) that bring higher precision on action out-
comes in a more uncertain world (FitzGerald et al., 2014; 
Fradkin et al., 2020). Along these lines, Hesp et al. (2021) 
have proposed that action selection becomes dominated 
by prior policy preferences (i.e., habits) when confi-
dence in one’s action model becomes too low.

The aforementioned interlocking mechanisms play a 
role in real social interaction; for example, counterfactu-
ally overthinking potential interpersonal actions and 
their consequences might diminish one’s confidence in 
interpersonal actions, leading to more passive or apa-
thetic behavior (Hezemans et al., 2020). This, in turn, 
would lead to experiencing the social situation as more 
volatile, which in turn promotes the propensity to enact 
behaviors whose action outcomes are highly predict-
able.5 Predictable action outcomes in social situations 
can be attained by making oneself more predictable to 
the interactive partner and thereby diminishing mutual 
prediction error (i.e., prediction error received from the 
interactive partner; Theriault et al., 2021).

At a neural level, we can note that truly interactive 
interpersonal situations (Figs. 1d and 1e) foster the 
recruitment of all of the brain networks discussed above 
(Cavallo et al., 2015; Chauvigné et al., 2018; Rauchbauer 
et al., 2019; Redcay et al., 2010; Xie et al., 2020). This 
might give credence to the notion of a complex interplay 
between the mechanisms relevant to social interaction 
(nested recursion in mutual and reciprocal mental-state 
inferences, inter- and intrapersonal bodily attunement, 
and policy selection). Importantly, in most cases, the 
brain activity that enables social interaction is contrasted 
with activity derived from either doing a task alone or 
from observing another without interacting. This means 
that the brain shows more widespread activation when 
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being involved in a social interaction. This finding nicely 
fits simulation-based research showing that minimal 
agents exhibited a higher degree of neural complexity 
when interacting with other agents compared with inter-
acting with “ghosts” displaying behavior that was not 
influenced by their environment (Candadai et al., 2019; 
Reséndiz-Benhumea et al., 2020, 2021). Interestingly, the 
level of neural complexity that one observes while inter-
acting with other agents exceeded levels that could be 
generated by an isolated agent, suggesting that single 
agents become parts of a dynamically extended system 
(Froese et al., 2013). The increased brain activity during 
social interaction might indicate such a transition from 
an isolated brain toward a whole brain-body-environment- 
body-brain system (cf. Lewis et al., 2011, 2017; Powell 
et al., 2010).

Concluding Remarks and Future 
Directions

In this article, we have considered the neural mecha-
nisms of second-person social interaction through the 
lens of active inference. The mechanisms that we have 
discussed could be framed as computational operation-
alizations of the core intra- and interpersonal phenom-
ena that intertwine and enable actual social interactions. 
We outlined the neural mechanisms that play a role 
when we move beyond observing and are actually 
engaged in real-time (second-person) social interaction. 
We have argued that being embedded in an interper-
sonal context introduces the interesting phenomenon 
of nested recursive exploration of action opportunities 
that mainly draws on counterfactual simulation of out-
comes under various hidden states in parts of the 
default-mode network. Furthermore, the multitude of 
action opportunities that are ever evolving and fluctuat-
ing leads to a higher demand on selecting a course of 
action, which is processed in ventral parts of the basal 
ganglia. As a result, there emerges a higher demand on 
computing transition uncertainties in the ACC, which 
leads to a more flexible attunement of interoceptive 
bodily systems (conveyed via the AI). Similarly, somato-
motor and somatosensory cortices are engaged in attun-
ing the proprioceptive bodily system in order to act 
toward the interactive partner.

Importantly, these processes are entailed when going 
beyond the mere observation of social stimuli and 
toward an actual engagement in real-time reciprocal 
interaction. As such, the above-mentioned processes 
are here thought of as crucial for the emergence of 
genuine social interaction and vice versa. More con-
cretely, we claim that such processes rely on domain-
general uncertainty-minimizing belief updating, which, 

in turn, has been shaped in—and through—social inter-
action across various scales, ranging from phylogenesis 
and culture to ontogenesis and everyday learning and 
psychophysiology (Bolis & Schilbach, 2020a). Conse-
quently, it is not always easy, or even possible, to make 
a clear distinction regarding what might be uniquely 
social (Bolis et al., 2022; De Jaegher et al., 2010). What 
appears strictly private at times (e.g., self-regulation) 
might have been formed interactively (interpersonal 
regulation; Kiel & Kalomiris, 2015) and thereby presup-
poses the whole historicity of social interactions. Vari-
ous aspects—ranging from conscious decision-making 
all the way down to interoception—might all be thought 
of as interactively formed along development and 
beyond (Bolis & Schilbach, 2020a; De Jaegher et  al., 
2010; Fotopoulou & Tsakiris, 2017). One component 
that arguably constitutes a uniquely social aspect is 
nested recursion, which necessarily requires at least two 
individuals. In our view, nested recursive inferences 
yield a specific profile of uncertainty that mainly 
involves the other processes discussed (higher demand 
on policy selection, higher transition uncertainty, and 
the demand to attune various bodily systems). High 
(epistemic) uncertainty is presumably an aspect in 
which active social engagement converges with passive 
and observational forms of social processes. We empha-
size that active engagement goes along with a dispro-
portionately higher degree of uncertainty that, however, 
can be resolved via action.

In order to apply insights gained from laboratory 
experiments to full-blown social interaction, research-
ers need to adopt a second-person neuroscience meth-
odology. Phenomena that are unique to true social 
interaction—such as the ones operationalized via 
nested recursion in mental-state inferences, transition 
uncertainty, and high demand on action/policy selec-
tion—need not only be preserved but explicitly targeted 
in experimental paradigms. Considering these inter-
locked mechanisms all at once, in nonrestricted and 
free social interaction, might be computationally less 
tractable, but the complexity of certain parameters 
could be diminished. For example, paradigms could 
limit and manipulate action possibilities of interacting 
agents and thereby also get a grasp on the level of 
interpersonal volatility. Importantly, neuroimaging data 
should be complemented by various bodily measures, 
such as heart rate, skin-conductance response, respira-
tory rhythm, and pupil dilation (among others), but also 
by psychological states (cf. two-person and collective 
psychophysiology; Bolis et al., 2022; Bolis & Schilbach, 
2018). Processing these physiological measures from 
two interacting persons might be carried out using 
methods from dynamical-systems theory. Here, for 
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instance, altering states of synchrony and asynchrony 
might be cast as state transitions, targeting the volatility 
parameter. Interdisciplinary efforts of psychologists, 
neuroscientists, and engineers or computer scientists 
could fabricate testable behavioral as well as neuro-
physiological hypotheses derived from generative com-
putational models, harnessing advancements from the 
active-inference framework.

Concrete research questions, for instance, could con-
cern the level of nested recursion. Does a higher need 
for nested hidden-state inferences (i.e., nested recursion) 
lead to a higher level of assigning precision to a certain 
policy (accompanied by higher levels of dopaminergic 
signaling)? Is this relation monotonic, or does policy 
precision start to decrease at a certain level of overthink-
ing? How are these relations altered with increasing or 
decreasing levels of action opportunities? A strong can-
didate for parameter manipulation would also be the 
transition uncertainty (i.e., how likely is it that a particu-
lar action leads to a particular state transition). Does an 
increasing level of transition uncertainty (e.g., due to 
more erratic behavior of an interactive partner) lead to 
more nested hidden-state inferences (thereby accumulat-
ing expected evidence for potentially disambiguating 
policies) or rather to habitual behaviors (i.e., actions that 
have elicited preferred outcomes in the past)? Potentially, 
this relation would also be characterized by a nonlinear 
function. Where is a potential and individualized opti-
mum between balancing nested hidden-state inferences 
with more habitual policies? Here, the impact of manipu-
lated transition uncertainty on bodily variables might be 
explored. Does erratic behavior of an interaction partner 
(i.e., high transition uncertainty) lead to a reduced heart-
rate variability? Also, pharmacological studies could be 
beneficial for the investigation of a second-person active-
inference model. For example, dopamine agonists (e.g., 
dopamine reuptake inhibitors) could lead to assigning 
higher precision in social policies, whereas noradrena-
line agonists might aid learning about the contextual 
variability of another person’s states. Another interesting 
implementation could concern the mutual influences of 
individual parameters. For instance, how does the preci-
sion about policies in one person affect the same param-
eter in an interactive partner (Friston & Frith, 2015; 
Isomura et al., 2019)?

A concrete implementation on a higher and more 
collective level could be pursued in the form of a meta-
Bayesian framework, situated in dynamical-systems 
theory (cf. Bolis & Schilbach, 2017; Brandi et al., 2019). 
Such a multiscale framework will aim to track cognition 
and action via distinct active-inference models, which 
will be targeting each individual in a given interaction 
while still potentially being fused on a collective (meta-
Bayesian modeling) level of behavior. Moving the focus 

from the observation of individual passive observers 
toward a multiscale tracking of dyads and groups of 
interactors could even allow people to assess “whether 
and how interpersonal coordination in real-time social 
interactions might actually serve as a prior and modu-
late the need for inferences about hidden causes of 
social behavior” (Bolis et al., 2017). Such an interper-
sonal active-inference approach might provide a formal 
understanding of not only individual-specific but also 
dyadic and group-level dynamics. These completely 
new avenues of research have the potential to revolu-
tionize our understanding of social interaction at vari-
ous layers and scales, ranging from the individual to 
the collective.
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Notes

1. Addressing critique on the concept of theory of mind, a 
recent theory has referred to this cognitive process as “thinking 
through other minds” (TTOM; Veissière et al., 2020).
2. Sometimes mentalizing or theory of mind is broken down 
into implicit (spontaneous and unconscious) and explicit (con-
trolled and reflective) processes (Evans, 2008). Our consid-
erations apply to both modes; however, we note that during 
real-time social interaction implicit forms of mentalizing are 
predominant.
3. Mutual historicity emerges from action selection within a 
social context. As soon as a person engages in a dyadic inter-
action, the interactive partner engages in inferences about the 
person’s underlying mental states. Those inferences will shape 
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future (person-specific) prior expectations and the precision of 
the likelihood mapping between observations and hidden states 
(A in Fig. 2c), narrowing down a variety of hypothetical states. 
Additionally, one’s own actions will be selected on the basis of 
inferences about the other person’s states and state transitions 
(B in Fig. 2c). Every behavior influences certain parameters in 
this model and will be shaped on the basis of mutual historicity.
4. There are many examples of how an interactive dyadic 
context and its accompanying nested recursive thought pat-
terns alter behavior compared with a noninteractive context. 
For instance, in a joint-attention paradigm, nested recursive 
thoughts (such as “I [don’t] want to let the other guy down” 
or “I [feel] that Alan [is] better at the task than I [am]”; Caruana 
et al., 2017, p. 13) lead to faster reaction times when respond-
ing to—and initiating—gaze shifts (Caruana et  al., 2017). In 
another study, Krishnan-Barman and Hamilton (2019) showed 
that movement patterns were more likely to be imitated by a 
follower when the leader could watch the follower’s action—a 
phenomenon that was, it was argued, due to a desire to affiliate. 
Similarly, kinematic patterns have been shown to be distinct 
when one is acting in isolation compared with the same action 
in a social context (Becchio et al., 2010).
5. Interestingly, the experience of volatility within the social 
environment and the subsequent preference for risk-averse 
behavior have been argued to play an important role in the 
emergence of depressive symptoms (but see Badcock et  al., 
2017, for a comprehensive review). An example of this risk-
averse response to volatility might be withdrawing from the 
volatile environment and consequently experiencing more pre-
dictable outcomes.
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