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The Turán density of an r-uniform hypergraph H, denoted π(H), is the limit of the

maximum density of an n-vertex r-uniform hypergraph not containing a copy of H, as

n → ∞. Denote by C� the 3-uniform tight cycle on � vertices. Mubayi and Rödl gave

an “iterated blow-up” construction showing that the Turán density of C5 is at least

2
√

3 − 3 ≈ 0.464, and this bound is conjectured to be tight. Their construction also

does not contain C� for larger � not divisible by 3, which suggests that it might be

the extremal construction for these hypergraphs as well. Here, we determine the Turán

density of C� for all large � not divisible by 3, showing that indeed π(C�) = 2
√

3 − 3.

To our knowledge, this is the first example of a Turán density being determined where

the extremal construction is an iterated blow-up construction. A key component in our

proof, which may be of independent interest, is a 3-uniform analogue of the statement

“a graph is bipartite if and only if it does not contain an odd cycle”.

1 Introduction

For an r-uniform hypergraph H, the Turán number of H, denoted ex(n,H), is defined

as the maximum number of edges an n-vertex r-uniform hypergraph can have without

containing a copy of H as a subgraph. For (2-uniform) graphs, we have a fairly good

understanding of Turán numbers. The first theorem proved about them is Mantel’s
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2 N. Kamčev et al.

theorem [23], which says that, for the triangle, we have ex(n, K3) = ⌊
n2/4

⌋
. This was

generalised by Turán [32] who showed that ex(n, Kr)≈(1 − 1
r−1 )

(n
2

)
. For non-complete

graphs we know less, and usually only know what the Turán number of a graph is

asymptotically, up to o(n2) terms. Because of this, we study the Turán density of an

r-uniform hypergraph H, denoted π(H), and defined as π(H) = limn→∞
ex(n,H)

(n
r)

. This limit

is known to exist, and, moreover, it is clear that π(H) ∈ [0, 1] for every H. The Turán

densities of (2-uniform) graphs were completely determined by Erdős and Stone [8], who

showed that every graph H satisfies π(H) = 1 − 1
χ(H)−1 .

The special case of the Erdős–Stone theorem for bipartite graphs can be gener-

alised to higher uniformities, as follows (see [7]): every r-partite r-uniform hypergraph H
satisfies π(H) = 0. (An r-uniform hypergraph H is said to be r-partite if its vertices can

be r-coloured so that every edge has one vertex of each colour.) Nevertheless, in general,

our understanding of Turán numbers in higher uniformities is very limited, and there

are only a small number of hypergraphs whose Turán densities are known; see Keevash

[18] for a comprehensive survey of the topic listing a number of such hypergraphs. A

notable, relatively early example is a result of de Caen and Füredi [6], showing that the

Turán density of the Fano plane is 3/4 (see also [13, 19]). More recently, the impactful

computer-assisted “flag-algebra”technique has been used to obtain a number of sharpest

known upper bounds on Turán densities (see [1, 18, 29] and the references therein).

Given the sporadicity of hypergraphs whose Turán densities are known, it is

unsurprising that there are many conjectures about Turán densities of specific hyper-

graphs. The most famous of these is Turán’s conjecture [33], that the Turán density of

the tetrahedron K(3)
4 is 5/9. Frankl and Füredi [12] conjectured that the Turán density

of the 3-edge subgraph of K(3)
4 (usually denoted K−

4 ) is 2/7. A particularly relevant

conjecture for us concerns tight cycles. The r-uniform tight cycle of length �, denoted

Cr
� , is defined to be the hypergraph with vertex set {1, . . . , �} and hyperedges all sets of

the form {x, x + 1, . . . , x + r − 1 (mod �)}. The following conjecture, usually attributed to

Mubayi and Rödl, appears for instance in [10, 24].

Conjecture 1.1. π(C3
5) = 2

√
3 − 3.

The lower bound π(C3
5) ≥ 2

√
3 − 3 ≈ 0.464 was found by Mubayi and Rödl (see

Example 1.2 below for a description of their example), and the best upper bound is due

to Razborov [27], who showed π(C3
5) ≤ 0.468.

One basic reason why hypergraphs are more difficult than graphs is that the

extremal H-free hypergraphs can be much more complicated than the extremal graphs.
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Turán Density of Tight Cycles 3

Fig. 1. An illustration of the hypergraph H(x1, x2, x3, x4).

In the 2-uniform case, the Erdős–Stone theorem shows that all optimal graphs are

close to being complete multipartite. For higher-uniformity hypergraphs, there have

been numerous papers discovering more complicated possible extremal hypergraphs,

for instance [2, 3, 12], as well as Conjectures 1.1 and 7.1. For some hypergraphs, such

as K(3)
4 , the conjectured extremal constructions are even non-unique and very different

from each other [3, 11, 20, 28].

One class of extremal examples, which does not occur for graphs, is an “iterated

blow-up construction”. The conjectured extremal example for Conjecture 1.1 is an

instance of such a construction.

Example 1.2 (Iterated blow-up construction with no copies of C3
5 ). Consider nested

vertex sets V1 ⊇ . . . ⊇ Vt with |Vi| − |Vi+1| = xi for i ∈ [t], with the convention |Vt+1| = ∅.

Let H(x1, . . . , xt) be a 3-uniform hypergraph on the vertex set V1, where xyz is an edge

whenever x, y ∈ Vi \ Vi+1 and z ∈ Vi+1 for some i (see Figure 1).

We claim that there is no copy of C3
5 . To see this, say that an edge with two vertices

in Vi\Vi+1 and one vertex in Vi+1 has type i, and observe that if two edges e and f intersect

in two vertices, they are of the same type. Thus, if C = (u1 . . . u5) is a cycle, then its edges

all have the same type, say i. Without loss of generality, u1, u2 ∈ Vi \ Vi+1 and u3 ∈ Vi+1.

It follows that u4 ∈ Vi \ Vi+1, and thus u5 ∈ Vi \ Vi+1. But then u4u5u1 is not an edge of

H(x1, . . . , xt), a contradiction.

Thus, π(C3
5) ≥ e(H(x1, . . . , xt))/

(n
3

)
for all choices of x1, . . . , xt with x1 + . . .+xt = n.

Let f (n) denote the maximum number of edges that such a hypergraph on n vertices can

have that is, f (n) := max(e(H(x1, . . . , xt) : x1, . . . , xt ≥ 1, x1 +· · ·+xt = n). It is possible to

show limn→∞ f (n)/
(n

3

) = 2
√

3 − 3 (see Section 4 for details), which gives π(C3
5) ≥ 2

√
3 − 3.
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4 N. Kamčev et al.

Let Gn = H(x1, . . . , xt) for a choice of x1 ≥ . . . ≥ xt such that n = x1 + . . . + xt and

e(Gn) = f (n).

Note that in the above construction, Gn has no tight cycles of lengths � ≡ 1 or 2

(mod 3) either. So it is plausible that Conjecture 1.1 could be strengthened to say that

π(C3
� ) = 2

√
3 − 3 for all � ≥ 5 with � ≡ 1 or 2 (mod 3) (notice that C3

4 = K(3)
4 , and there are

known examples of K(3)
4 -free 3-uniform graphs with density at least 5/9 > 2

√
3 − 3). The

main result of our paper is to show that this is true for sufficiently large �.

Theorem 1.3. Let � be sufficiently large with � ≡ 1 or 2 (mod 3). Then π(C3
� ) = 2

√
3 − 3.

To our knowledge, this is the first example of a Turán density being determined

where the extremal construction is an iterated blow-up construction, and could be a

step towards Conjecture 1.1. This is also one of the few examples of hypergraphs with

irrational Turán densities. Such hypergraphs were recently found by Yan and Peng [35], as

well as Wu [34], motivated by the work of Chung and Graham [5], Baber and Talbot [1], and

Pikhurko [26]. We remark that Conjecture 1.1 would imply Theorem 1.3 via Theorem 2.1

below (using the same argument as in the proof of Theorem 1.3 in Section 6).

One of our main tools, which may be of independent interest, is a 3-uniform

analogue of the statement “a graph is bipartite if and only if it does not contain an odd

cycle”; see Theorem 2.4. Thus, we characterise 3-uniform hypergraphs H, which do not

contain homomorphic images of cycles C3
� with 3 � �, in terms of certain colourings of

V(H)2, as explained in the proof overview.

Throughout the paper, we will informally refer to 3-uniform cycles of length � ≡ 1

or 2 (mod 3) as odd cycles, and we will often refer to 3-uniform hypergraphs as 3-graphs.

Related results

As we mentioned, there are very few hypergraphs with a known Turán density, but let

us state some recent results on Turán-type problems for tight cycles. A well-studied

hypergraph parameter is the so-called uniform Turán density, the infimum over all d

for which any sufficiently large hypergraph with the property that all its linear-size

subhypergraphs have density at least d contains H. This line of research was initiated by

Erdős and Sós [9] and, parallel to the classical Turán densities, the motivating questions

in the area are determining the uniform Turán densities of the tetrahedron K(3)
4 and its

3-edge subgraph K−
4 . The latter was found to be 1/4 by Glebov, Kráľ, and Volec [14] and

later by Reiher, Rödl, and Schacht [30] with a different proof. In 2022, Bucić, Cooper, Kráľ,
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Turán Density of Tight Cycles 5

Mohr, and Munha Correia showed that for � ≥ 5 and not divisible by 3, the uniform Turán

density of C3
� is 4

27 [4].

Another question that has attracted a lot of interest in the past few years is, what

is the extremal number of tight cycles (the maximum number of edges in an n-vertex r-

uniform hypergraph containing no tight cycles)? For r = 2, the answer is of course n − 1,

but it turns out that the behaviour is rather different for r ≥ 3. More specifically, after

a series of results [16, 17, 21, 31], we know that the extremal number of tight r-uniform

cycles lies between �
(
nr−1 log n/ log log n

)
and O

(
nr−1 log5 n

)
.

2 Proof Overview

For an r-uniform hypergraph H, the t-blow-up of H, denoted H[t], is defined to be the r-

uniform hypergraph with vertex set V(H) × [t] and edges all r-tuples {(x1, i1), . . . , (xr, ir)}
with {x1, . . . , xr} ∈ E(H). The starting point of our proof is the following theorem, which

asserts that the blow-up of a hypergraph H has the same Turán density as H.

Theorem 2.1 ([18], Theorem 2.2). Let t be an integer and let H be an r-uniform hyper-

graph. Then π(H[t]) = π(H).

It shows that, rather than focusing on the Turán density π(C3
k) for an odd cycle C3

k,

we can instead work out the Turán density of π(H) for any hypergraph H whose blow-up

H[t] contains C3
k for some t. We refer to such hypergraphs H as pseudocycles, and they

can be equivalently defined as follows.

Definition 2.2. A pseudocycle of length � in a 3-uniform hypergraph H is a sequence

of (not necessarily distinct) vertices v1, . . . , v�, such that for each i ∈ [�], we have that

{vi, vi+1 (mod �), vi+2 (mod �)} is an edge ofH. A pseudopath of order � is defined analogously.

It is easy to show that for a hypergraph H, the properties “H[t] contains a C3
k for

some t” and “H contains a length k pseudocycle” are equivalent.

Thus, the starting point of our approach is, what is the maximum number of

edges that a 3-uniform hypergraph can have without containing an odd pseudocycle?

Later (after Corollary 2.6), we will discuss how to forbid only short pseudocycles. To

understand our approach to this question, consider the analogous question about graphs

— what is the maximum number of edges in a (2-uniform) graph with no odd circuits?

By Kotzig’s Lemma, a graph has no odd circuit if, and only if, it is bipartite. Thus, the

maximum number of edges in an n-vertex bipartite graph is
⌊

n2

4

⌋
.
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6 N. Kamčev et al.

Our approach to the 3-uniform case is analogous to this. We first find the relevant

generalisation of bipartite graphs, and then maximise the number of edges over this

class of graphs. To define this generalisation, recall that a graph is bipartite if, and only

if, it has a proper 2-vertex-colouring. In our context, we will be colouring the shadow

of a 3-uniform hypergraph. The shadow of a hypergraph H, denoted ∂H, is the graph on

vertices V(H) whose edges are pairs xy that are contained in an edge in H.

Definition 2.3. A good colouring of a 3-uniform hypergraph H is a colouring of its

shadow, such that each edge xy in the shadow is either coloured blue or coloured red

and given an orientation, and every edge e in H can be written as xyz where xy and xz

are red and directed from x and yz is blue.

The key first step of our proof is to show that the notion of “good colouring” is

exactly equivalent to H not containing an odd pseudocycle.

Theorem 2.4. A 3-uniform hypergraph H has a good colouring if, and only if, H has no

pseudocycle of length � with 3 � �.

This theorem is proved in Section 3. Having established the above theorem, we

next wish to maximise the number of edges in a hypergraph with a good colouring. To

this end, we define a coloured graph to be a complete graph whose edges are either

coloured blue or coloured red and oriented. A cherry in a coloured graph G is a triple

xyz such that xy and xz are red and directed from x and yz is blue. Denote by c(G)

the number of cherries in G. Notice that if we have a good colouring of the shadow

of H (and the remaining vertex pairs can be coloured arbitrarily), then all edges of H
will be cherries in the resulting coloured graph. Thus, let mcherry(n) be the maximum

number of cherries in an n-vertex coloured graph. The quantity mcherry(n) has been

studied before by Falgas-Ravry and Vaughan [10], who used flag algebras to show that

limn→∞ mcherry/
(n

3

) = 2
√

3 − 3. Huang [15] worked on the area further and determined

the maximum number of “induced out-stars” of size t in an n-vertex coloured graph.

We remark that the afore-mentioned authors used an equivalent reformulation—they

studied the maximum number of “induced out-stars” in an uncoloured directed graph,

and there is a clear correspondence between a coloured graph (in our sense) and a

directed graph. The following special case of their results is relevant for us.

Theorem 2.5 (Falgas-Ravry–Vaughan [10]; Huang [15]). Every coloured graph on n

vertices contains at most f (n) cherries.
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Turán Density of Tight Cycles 7

Combining Theorem 2.4 and Theorem 2.5 already yields the following weakening

of Theorem 1.3.

Corollary 2.6. If H is a 3-uniform hypergraph on n vertices that does not contain a

pseudocycle of length � for any � with 3 � �, then e(H) ≤ f (n).

Notice that in Theorem 1.3 we forbid odd pseudocycles of a single length,

whereas in Corollary 2.6 odd pseudocycles of all lengths are forbidden. Thus, the next

goal is to prove a version of the above corollary, which holds when forbidding short

odd pseudocycles, yielding a finite family of forbidden hypergraphs. This is done by

controlling the diameter of the hypergraph H.

Definition 2.7. The diameter of a hypergraph H is the minimum � such that the

following holds: for every x, y, z, w ∈ V(H) (where x, y are distinct and z, w are distinct)

whenever there is a pseudopath from xy to zw, there is such a pseudopath of order at

most �.

In Section 6, we show that, for �  ε−1, every 3-uniform hypergraph H contains

a subhypergraph H′ with e(H′) ≥ e(H) − εn3 such that H′ has diameter at most � (see

Proposition 6.4). Then we show that in every 3-uniform hypergraph of diameter �, if there

is some odd pseudocycle, then there is also an odd pseudocycle of length at most 4� (see

Proposition 6.3). Combining these with Corollary 2.6 shows the following:

Corollary 2.8. Let 1/n � 1/� � ε � 1, and let H be an n-vertex hypergraph with no odd

pseudocycles of length at most �. Then e(H) ≤ f (n) + εn3.

Note that this is still not strong enough to combine with Theorem 2.1 to yield

Theorem 1.3. The issue is that the length of the cycle � depends on ε—therefore, when

combined with Theorem 2.1, we would only get that limm→∞ π(C3
m) = 2

√
3 − 3. To go

further, we prove a “stability version” of Theorem 2.5. We show that if a coloured graph D

on n vertices contains more than f (n)−εn3 cherries, then D must have a very constrained

structure similar to the iterated blow-up construction (see Theorem 5.2 for the precise

statement). Once we have this, we can obtain the following strengthening of Corollary 2.8:

Theorem 2.9. There exists L > 0 such that the following holds. If H is a 3-uniform

hypergraph on n vertices that does not contain a pseudocycle of length � for any � ≤ L

with 3 � �, then e(H) ≤ f (n) + O(1).
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8 N. Kamčev et al.

Fig. 2. A cherry xyz with apex x.

This theorem easily combines with Theorem 2.1 in order to give our main result,

Theorem 1.3 (see Section 6).

3 Finding a Good Colouring

Recall that a pseudocycle of order m (or m-pseudocycle) is a sequence v1 . . . vm of not

necessarily distinct vertices such that vivi+1vi+2 is an edge for i ∈ [m] (indices taken

mod 3). A pseudopath of order m is defined analogously. A hypergraph is called tightly

connected if there is a pseudopath between any two edges. Given vertices x, y, z, w (not

necessarily distinct), a pseudopath from xy to zw (where xy and zw are ordered pairs) is

a pseudopath whose first two vertices are x and y (in this order) and the last two vertices

are z and w. The shadow of a hypergraph H, denoted ∂H, is the graph on vertices V(H)

whose edges are pairs xy that are contained in an edge in H.

Recall that a good colouring of a hypergraph H is a colouring of its shadow,

such that each edge xy in the shadow is either coloured blue or coloured red and given

an orientation, and every edge e in H can be written as xyz where xy and xz are red and

directed from x and yz is blue. Such an edge is called a cherry, and the vertex x is called

its apex.

In this section, we will prove Theorem 2.4, restated here.

It is easy to see that a hypergraph with a good colouring has no pseudocycles of

length � with 3 � �, so the main effort will be put into proving the “if” direction. Namely,

we need to show that every hypergraph with no odd pseudocycles has a good colouring.

Before specifying such a colouring, let us give some intuition. Any proper path (i.e., with

no repetitions) v1 . . . vk has a good colouring, and this colouring is unique given the colour

of v1v2 (see Figure 3 for the three good colourings of a path of order 9, and notice that

each such colouring colours each edge in the shadow differently).

A proper cycle has a good colouring if and only if it is tripartite (i.e., the number

of vertices is divisible by 3). See Figure 4 for a good colouring of a cycle of length 18 and

notice that every third vertex is an apex.
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Turán Density of Tight Cycles 9

Fig. 3. The three good colourings of a path of order 9.

Fig. 4. A good colouring of a cycle whose length is divisible by 3.

Moreover, if there is a path P = xy . . . yx, then the order of P uniquely determines

the colour of xy. This fact will be used to construct a good colouring of our hypergraph

H—we will start from a specific pair xy and extend the colouring uniquely along

pseudopaths. The difficulty is to show that this colouring is well defined, so the actual

colouring definition will involve some more formalism. For a pseudopath P = v1 . . . vk,

define P̃ by

P̃ := vk−1vkvk−2vk−1vk−3 . . . v4v2v3v1v2; (1)

note that P̃ is a pseudopath from vk−1vk to v1v2 of order 2k − 2 (because every vertex but

v1 and vk appears twice).

Proof of Theorem 2.4. Whenever we talk about a path or cycle in this proof, we mean

a pseudopath or pseudocycle.

As we said above, it is easy to show that a hypergraph with a good colouring

has no odd cycles, so it suffices to show that if H has no odd cycles then H has a good

colouring. Note that we may assume that H is tightly connected, by adding edges if

necessary.

Let P0 be a shortest path with the property that its first two vertices are the same

as the last two but in reversed order, if such a path exists. Write P0 := v0 . . . vk and denote

x := v0 = vk and y := v1 = vk−1.
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10 N. Kamčev et al.

Define σ ∈ {0, 1, 2} by

σ ≡ 2k (mod 3). (2)

Intuitively, σ is defined so that if P0 has a good colouring, then the apexes in this

colouring are at index σ (mod 3). If P0 does not exist, define σ = 2.

Let {z, w} be an edge in the shadow of H, and let P = xyv2v3 . . . vk be a path from

xy whose last three vertices contain z and w. Let iw ∈ {k − 2, k − 1, k} be the index of w

(namely, viw = w), and define iz analogously, and note that iw �= iz. Define the index

η(P, {z, w}) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w, iw ≡ σ (mod 3),

z, iz ≡ σ (mod 3),

∗, otherwise.

In particular, this defines η(xy, {x, y}). We claim that η(P, {z, w}) is independent

of the choice of the path P.

Claim 3.1. Let z, w ∈ V(H) be distinct. Let P = v0 . . . vp and Q = u0 . . . uq be two paths

starting at xy such that z and w are among their last three vertices. Then

η(P, {z, w}) = η(Q, {z, w}).

�

Proof. Let iz ∈ {p − 2, p − 1, p} such that viz = z, and define jz similarly with respect

to Q. It suffices to prove that iz ≡ σ (mod 3) if and only if jz ≡ σ (mod 3). Indeed, this

implies the same equivalence for w, thus showing that η(P, {z, w}) = ∗ if and only if

η(Q, {z, w}) = ∗.

First, we modify P so as to assume that P ends with zw or wz. If this is not the

case, then up to swapping z and w we have that P ends with either zw∗ or z ∗ w. In the

former case remove the last vertex of P, and in the latter case append z to P. It is easy to

see that the statement of the claim holds for the original P if and only if it holds for the

modified path. Similarly, we may assume that Q ends with zw or wz.

Assume first that P and Q both end with zw. Then Q̃ (defined as in (1)) is a

path from zw to xy of order 2(q + 1) − 2 = 2q. Hence, v2v3 . . . vp−2Q̃ is a cycle, and

by assumption, its order is divisible by 3. That is, p − 3 + 2q ≡ 0 (mod 3), and thus
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Turán Density of Tight Cycles 11

p ≡ q (mod 3). Since iz = p − 1 and jz = q − 1, this proves Claim 3.1. The same argument

holds when P and Q both end with wz.

Secondly, assume that P is a path from xy to zw and Q is a path from xy to wz.

Note that this case only arises if P0 is defined, as v0v1 . . . vp−2zwuq−2 . . . u0 is a path

from xy to yx. Then consider the cycle v2 . . . vp−2zwuq−2 . . . u2P̃0. This is indeed a cycle

because u1u0 = yx, v0v1 = xy and P̃0 is a path from yx to xy. The order of this cycle is

p − 3 + 2 + q − 3 + 2k ≡ p + q + 2 + σ (mod 3), using (2). Now substitute p = iz + 1 and

q = jz. We have iz + jz + σ ≡ 0 (mod 3), so iz ≡ σ (mod 3) if and only if jz ≡ σ (mod 3). �

Note that for every edge {z, w} in the shadow of H there is a path P starting at

xy whose last three vertices contain z and w. Indeed, as H is tightly connected, there is

a path Q such that x and y are among its first three vertices and z and w among its last

three vertices. Using a modification as in the proof of Claim 3.1, we may assume that Q

starts with xy or yx. If it starts with xy we are done, and otherwise the reverse of the

path Q̃ satisfies the requirements.

Given an edge {z, w} in the shadow of H, define η(zw) = η(P, {zw}), where P is any

path from xy whose last three vertices contain z and w (which exists by the previous

paragraph). This parameter is well defined by Claim 3.1. Now define χ as follows: let zw

be blue if η(zw) = ∗, and let it be red and oriented away from η(zw) otherwise.

Finally, we show that χ is a good colouring. To see this, consider an edge uvw of

G. Let P be a path from xy whose last three vertices are u, v, w (in some order); such a path

exists by the paragraph above. Write P := xyv2v3 . . . vp−2vp−1vp, let i ∈ {p−2, p−1, p} with

i ≡ σ (mod 3), and we may assume that vi = u. Then η(uv) = η(uw) = u and η(vw) = ∗,

which implies that uvw is a cherry with apex u.

Remark. Our proof actually shows that if G does not contain a path P0 starting and

ending with xy and yx, respectively, then the graph is tripartite.

Notice that a good colouring of H can be extended from the shadow of H to

Kn with no restrictions. Thus, in what follows, it will suffice to analyse colourings of

complete graphs by blue edges and red oriented edges (we will call such graphs coloured

graphs).

4 Maximising the Number of Cherries

The results of the previous section establish a connection between maximising the

number of edges in an odd-pseudocycle-free hypergraph and maximising the number of

cherries in colourings of Kn (formally defined below). It will turn out that both problems
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12 N. Kamčev et al.

have the same extremal construction, which yields the maximum f (n). Recall that we

have defined f (n) as the maximum number of edges in a hypergraph H(x1, . . . , xk) with∑
i xi = n. An explicit expression for f is

f (n) = max
k≥1

max
x1,...,xk≥1:

x1+...+xk=n

⎧⎨
⎩

∑
1≤i<j≤k

(
xi

2

)
· xj

⎫⎬
⎭ . (3)

Equivalently, we have the recursive characterisation

f (1) = 0,

f (n) = max
k∈[n−1]

(
k

2

)
(n − k) + f (n − k) for n ≥ 2.

(4)

Write

β = 3 − √
3

2
≈ 0.634 and α = β(1 − β)

2(3 − 3β + 3β2)
=

√
3

3
− 1

2
≈ 0.077. (5)

The following proposition will be proved in Section 5.2.

Proposition 4.1. f (n) = αn3 + o(n3).

We remark that the density of the corresponding hypergraph Hn is 6α = 2
√

3−3,

as already noted by Mubayi and Rödl [25].

As in Section 2, we call a graph G coloured if it is a complete graph whose edges

are either coloured blue or coloured red and oriented. A cherry in a coloured graph G is

a triple xyz such that xy and xz are red and directed from x and yz is blue. Denote by

c(G) the number of cherries in G. Theorem 2.5 states that c(G) ≤ f (n) for any n-vertex

coloured graph G. Recall that this was originally proved by Falgas-Ravry and Vaughan

[10] (who used flag algebras and also proved a similar result for out-directed stars on four

vertices) and by Huang [15] (who used a symmetrisation argument, and proved a similar

result for out-directed stars on k vertices, for every k ≥ 3). Nevertheless, we provide a

proof, both for completeness and because we need most of the groundwork to prove a

stability version of Theorem 2.5.

As mentioned in the proof overview (Section 2), Corollary 2.6, which is a weak

version of our main result and is restated here, follows directly from Theorem 2.5 (proved

in the next section) and Theorem 2.4 (proved in the previous section).
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Turán Density of Tight Cycles 13

5 Stability With Symmetrisation

Most of the work in this section will go into proving the following lemma, providing a

stability version of Theorem 2.5. It will then be iterated to prove a stability result about

cherries in coloured graphs; recall that β = (3 − √
3)/2 (see (5)).

We point out that this stability result is somewhat similar to a general result

due to Liu–Pikhurko–Sharifzadeh–Staden [22], which allows one to obtain stability

versions of a class of extremal results that can be proved using a symmetrisation

argument. However, while we indeed prove the extremal result in Theorem 2.5 using

a symmetrisation argument, the result in [22] does not apply to automatically convert it

into a stability result.

Lemma 5.1. Let 1/n � ε � 1 and let G be a coloured graph on n vertices satisfying

c(G) ≥ f (n) − ε2n3. Then there is a coloured graph G′ on V(G) satisfying: c(G′) ≥ c(G);

the graphs G and G′ differ on at most 800ε1/2n2 edges; moreover, there is a set Q ⊆ V(G)

satisfying
∣∣|Q| − βn

∣∣ ≤ 100εn; Q is a blue clique in G′; and all other edges in G′ that are

incident with Q are red and oriented towards Q.

The proof consists of two main parts: first we show that G has a blue almost-

clique on a vertex set Q′ of size roughly βn. Then we show that most (V \Q′, Q′) edges are

red and point towards Q′. In both parts, we make use of a “symmetrisation procedure”,

which builds blue cliques without decreasing the number of cherries.

A blue clone-clique in a coloured graph G is a set of vertices Q such that Q is a

blue clique in G, and for any v /∈ Q, either all edges between v and Q are blue, or they are

all red and have the same orientation (namely, they all point towards v or all point away

from v). A full blue clone-clique is a blue clone-clique Q such that all (V \ Q, Q) edges

are red.

The symmetrisation procedure, which will be described in detail in the next

section, receives as input a vertex x in a graph G, and produces a graph G′ on the same

vertex set, which has at least as many cherries as G and has a full blue clone-clique Q in

G′ that contains x.

The symmetrisation procedure can be applied repeatedly to a coloured graph G

to find a coloured graph G′ with at least as many cherries as G, and whose vertices can

be partitioned into full blue clone-cliques. Some calculus (detailed in Section 5.2) will

show that such a G′ contains a full blue clone-clique Q′ of size approximately βn.

To proceed we need two lemmas (Lemma 5.6 and 5.7; see Section 5.3) that

together tell us the following. Suppose that a symmetrisation procedure on G resulted
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14 N. Kamčev et al.

in a full blue clone-clique Q, of size approximately βn. Then (even before performing

symmetrisation) almost all edges in G[Q, V \ Q] are red and point towards Q, and almost

all edges in G[Q] are blue.

Applying these lemmas to the previously found blue clone-clique Q′, we conclude

first that G[Q′] is almost fully blue. We then show that there is a particular instance of the

symmetrisation procedure that results in a graph G′ and full blue clone-clique Q such

that Q and Q′ differ on only few vertices. Lemma 5.6 implies that almost all G[Q′, V \ Q′]
edges are red and point towards Q′. This essentially completes the proof. This part is

detailed in Section 5.4.

In Section 5.5, we iterate Lemma 5.1 to prove the following result.

Theorem 5.2. Let 1/n � ε1 � ε2 � 1. Let G be a coloured graph on n vertices

satisfying c(G) ≥ f (n) − ε1n3. Then there exists a coloured graph G′ on the same vertex

set, satisfying:

(a) c(G′) ≥ c(G),

(b) G and G′ differ on at most ε2n2 edges,

(c) the vertices of G′ can be partitioned into Q1, . . . , Qt such that:

(i) |Q1| ≥ . . . ≥ |Qt|,
(ii) all edges in Qi are blue, for i ∈ [t],

(iii) all edges in (Qi, Qj) are red and directed towards Qi, for 1 ≤ i < j ≤ t,

(iv)
∣∣|Qi| − β · |Qi ∪ . . . ∪ Qt|

∣∣ ≤ ε2n for i ∈ [t].

In a coloured graph G, let N−
G (x) be the red in-neighbourhood of x and let N+

G (x)

be the red out-neighbourhood of x (we sometimes omit the subscript G).

5.1 The symmetrisation procedure

Given x ∈ V(G), the symmetrisation procedure SG(x) (or S(x) in short) builds a blue clone-

clique containing x; see Figure 5 for a detailed description. The result of the procedure

depends on the choice of xk+1 in step 4, but we suppress this dependence in the notation

SG(x).

We now show that the procedure SG(x) does not decrease the number of cherries.

In fact, we prove a stronger quantitative claim.

Claim 5.3. Let x1, . . . , xt, y1, . . . , yt and G1, . . . , Gt be sequences produced by SG(x), let

k ∈ [t − 1], and use N−(u) as a shorthand for N−
Gk

(u). Then, one of the following holds.
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Turán Density of Tight Cycles 15

Fig. 5. Description of the symmetrisation process SG(x).

(i) yk+1 = x1 and c(Gk+1) − c(Gk) ≥ k+1
4 · ∣∣N−(x1)� N−(xk+1)

∣∣,
(ii) yk+1 = xk+1 and c(Gk+1) − c(Gk) ≥ k(k+1)

4 · ∣∣N−(x1)� N−(xk+1)
∣∣.

In particular, c(Gk+1) ≥ c(Gk).

Proof. Let c(xi) denote the number of cherries in Gk containing xi and no other vertices

in x1, . . . , xk. Recall that for y ∈ {x1, . . . , xk+1} the graph Gk+1(y) is obtained from Gk by

replacing x1, . . . , xk+1 by copies of y that form a blue clique. Write j := c(Gk+1(xj)) −
c(Gk). We claim that

j = (k + 1)c(xj) −
∑

i∈[k+1]

c(xi) +
(

k + 1

2

)∣∣N−(xj)
∣∣ − 1

2

∑
i1 �=i2

∣∣N−(xi1) ∩ N−(xi2)
∣∣.

Indeed, the first two terms account for the triples with only one vertex in {x1, . . . , xk}. For

the second two terms, notice that a triple (xi1 , xi2 , v) with 1 ≤ i1 < i2 ≤ k+1 is a cherry in

Gk+1(xj) if and only if v ∈ N−(xj), and it is a cherry in Gk if and only if v ∈ N−(xi1)∩N−(xi2).
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16 N. Kamčev et al.

Summing over j ∈ [k + 1], we obtain

∑
j

j =
(

k + 1

2

) ∑
j

∣∣N−(xj)
∣∣ − k + 1

2

∑
i�=j

∣∣N−(xi) ∩ N−(xj)
∣∣

= k + 1

2

∑
i�=j

∣∣N−(xj) \ N−(xi)
∣∣.

In particular, since {x1, . . . , xk} is a blue clone-clique,

k1 + k+1 = k(k + 1)

2
· (∣∣N−(xk+1) \ N−(x1)

∣∣ + ∣∣N−(x1) \ N−(xk+1)
∣∣)

= k(k + 1)

2
· ∣∣N−(x1)� N−(xk+1)

∣∣.

Now, max(k1, k+1) is at least one half of the RHS. Thus, if yk+1 = xk+1, then

k+1 ≥ k1 and so k+1 = max(k1, k+1) ≥ k(k+1)
4 · ∣∣N−(x1)� N−(xk+1)

∣∣, and if y1 = x1

then k1 > k+1 and so 1 = max(k1, k+1) ≥ k+1
4 · |N−(x1)� N−(xk+1)

∣∣. �

Theorem 2.5 follows easily from the above claim.

Proof of Theorem 2.5. Let G be a coloured graph on n vertices. Run the following

process: starting with G′ = G, as long as there is a vertex x, which is not in a full

blue clone-clique in G′, run SG′(x) and replace G′ by the resulting graph. Let Gfinal be

the graph G′ at the end of the process (notice that the process will indeed end, because

SG′(x) keeps full blue clone-cliques intact). Then c(Gfinal) ≥ c(G) by Claim 5.3, and the

vertices of Gfinal can be partitioned into full blue clone-cliques Q1, . . . , Qt; for convenience

suppose that |Q1| ≥ . . . ≥ |Qt|. Replace Gfinal by the graph G′
final obtained by directing the

red edges between Qi and Qj towards Qi, for 1 ≤ i < j ≤ t. It is straightforward to

verify that c(G′
final) ≥ c(Gfinal), as the number of cherries in Qi ∪ Qj is larger when the

arcs in (Qi, Qj) point towards the larger clique. Finally, denoting qi := |Qi|, observe that

c(G′
final) = ∑

i≤j

(qi
2

)
qj ≤ f (n) (see (3)). Thus, c(G) ≤ f (n), as claimed.

�
5.2 Optimising the clique size

Before proceeding to analyse the symmetrisation procedure, we prove the following

lemma regarding the structure of a graph whose vertices are partitioned into full blue

clone-cliques, mostly using calculus; recall that α and β are defined in (5).
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Turán Density of Tight Cycles 17

Lemma 5.4. Let 1/n � ε � 1. Let G be a coloured graph on n vertices whose vertices

can be partitioned into full blue clone-cliques, and suppose that c(G) ≥ f (n)−ε2n3. Then

G has a full blue clone-clique Q satisfying
∣∣|Q| − βn

∣∣ ≤ 100εn.

Define a function g : [0, 1] → R as follows.

g(x) = x(1 − x)

2(3 − 3x + x2)
. (6)

It will be convenient to note the following equation.

(
1 − (1 − x)3

)
· g(x) = 1

2
· x2(1 − x). (7)

One can check that g′ is decreasing and g′(β) = 0, showing that

g(x) ≤ g(β) = α for x ∈ [0, 1]. (8)

We first prove Proposition 4.1 regarding the value of f (n).

Proof of Proposition 4.1. We show that f (n) ≤ αn3 by induction on n. This is true for

n = 1. Suppose that f (m) ≤ αm3 for m < n.

Given k ∈ [n − 1] that maximises the LHS in (4), write x = k/n. The recursive

definition of f implies that f (n)

n3 ≤ 1
2 · x2(1 − x)+α(1 − x)3. Subtracting α and using (7), we

obtain

f (n)

n3 − α ≤ 1

2
· x2(1 − x) − α(1 − (1 − x)3) = (1 − (1 − x)3)(g(x) − α) ≤ 0,

as required.

To verify that f (n) ≥ (α + o(1))n3, set xi = �β(1 − β)in� in (3). �

Proof of Lemma 5.4. Let Q1, . . . , Qt be the full blue clone-cliques in G, arranged in

descending order according to their sizes. Let G′ be obtained from G by orienting the

(Qi, Qj) (red) edges towards Qi, for 1 ≤ i < j ≤ t. As explained before and by assumption

on G, c(G′) ≥ c(G) ≥ f (n) − ε2n3.

Notice that |Q1| ≥ 0.01n, because otherwise c(G) ≤ n2|Q1| ≤ 0.01n3 < f (n)−ε2n3

(recall that f (n) ≈ 0.077n3, by Proposition 4.1).
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18 N. Kamčev et al.

Write |Q1| = θn. Then, using f (n) = αn3 + o(n3) = g(β)n3 + o(n3) (which follows

from Proposition 4.1 and the definition of α in (5)),

c(G′) ≤
(|Q1|

2

)
(n − |Q1|) + f (n − |Q1|) ≤ 1

2
θ2(1 − θ)n3 + g(β)(1 − θ)3n3 + o(n3).

Thus, using (7),

ε2 ≥ f (n) − c(G′)
n3 ≥ g(β) − g(β)(1 − θ)3 − 1

2
θ2(1 − θ) + o(1)

= θ · (3 − 3θ + θ2) · (g(β) − g(θ)) + o(1)

≥ 0.02 · (g(β) − g(θ)) + o(1).

For the last inequality, we used θ ≥ 0.01, which implies θ(3−3θ +θ2) ≥ 0.02. By bounding

the o(1) term by ε2/2 and using Claim 5.5 below, we get

100ε2 ≥ g(β) − g(θ) ≥ min{0.05(β − θ)2, 0.005}.

Since ε is very small, we get 100ε2 ≥ 0.05(β − θ)2, which implies |β − θ | ≤ 100ε. �

Claim 5.5. For x ∈ [0, 1],

g(β) − g(x) ≥ min{0.05(β − x)2, 0.005}. (9)

Proof. We use the following facts that can be checked easily.

• The function g(x) is increasing on [0, β] and decreasing on [β, 1]. In particular,

its maximum is attained at β, and g′(β) = 0.

• g(β) − g(0.5) ≥ 0.005.

• The second derivative g′′(x) (which is −x(2x2−9x+9)

(x2−3x+3)3 ) is non-negative and

decreasing on [0, 1]. In particular g′′(x) ≤ g′′(0.5) ≤ −0.4 for x ∈ [0.5, 1].

• By Taylor’s expansion: g(x) = g(β) + 1
2g′(β)(x − β) + 1

6g′′(cx)(x − β)2 for every

x ∈ [0, 1] and some cx between x and β.

By the first and second items (using β > 0.5), if x ∈ [0, 0.5], then

g(β) − g(x) ≥ g(β) − g(0.5) ≥ 0.005.
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Turán Density of Tight Cycles 19

By the first, third, and fourth items, if x ∈ [0.5, 1], then

g(β) − g(x) ≥ 0.4

6
(x − β)2 ≥ 0.05(x − β)2.

The two inequalities prove the claim. �

5.3 Blue clone-cliques before and after symmetrisation

The next two lemmas show that if a symmetrisation procedure on G produces a full blue

clone-clique Q of size approximately βn, then almost all edges in G[Q, V \ Q] are red and

oriented towards Q and almost all edges in G[Q] are blue.

Lemma 5.6. Let 1/n � ε � 1. Let G = (V, E) be a coloured graph on n vertices with

at least f (n) − ε2n3 cherries. Suppose that G′ and Q are the output of a procedure SG(x),

and suppose that |Q| ≥ 0.55n. Then all but at most 10εn2 edges in G[Q, V \Q] are red and

directed towards Q.

Proof. Set U := V \ Q, let Vin be the set of vertices u in U for which uq is a red arc in

G′ for every q ∈ Q, and let Vout := U \ Vin. We will show that Vout is small, and that not

many pairs incident to Vin were recoloured during the symmetrisation procedure SG(x).

First, we show |Vout| ≤ 40ε2n. Let G′′ be obtained from G′ by reorienting the edges

in G′[Q, Vout] to point towards Q. Notice that the cherries in G′ that contain an edge in

(Q, Vout) consist of one vertex in Q and two in Vout, and thus their number is at most

|Q|(|Vout|
2

)
. Also, every set consisting of two vertices in Q and one in Vout is a cherry in G′′

but not in G′. Thus, using |Q| ≥ 0.55n, which implies |Q| − |Vout| ≥ 0.1n,

c(G′′) − c(G′) ≥
(|Q|

2

)
|Vout| −

(|Vout|
2

)
|Q| = 1

2
|Q||Vout|(|Q| − |Vout|)

≥ 1

2
· n

2
· n

10
· |Vout| = n2

40
· |Vout|.

Recall that c(G) ≥ f (n)− ε2n3 by assumption, c(G′) ≥ c(G) by Claim 5.3, and c(G′′) ≤ f (n)

by Theorem 2.5. Altogether, this implies c(G′′) − c(G′) ≤ ε2n3 and thus |Vout| ≤ 40ε2n, as

claimed.

Let R be the set of edges qv in (Q, V \ Q) that are red and oriented towards Q in

G′ but not in G. We now upper-bound |R|. Notice that each such edge in R was recoloured

to a red arc oriented towards Q at some point during SG(x) (possibly more than once).

Let G = G1, . . . , Gt = G′ be the graphs obtained during the symmetrisation process on Q
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20 N. Kamčev et al.

and let x1, . . . , xt be the corresponding sequence of vertices. For each v ∈ V and k ∈ [t],

let Ak(v) be the set of ordered pairs vq, which changed to red arcs in step k (so they were

recoloured from Gk−1 to Gk).

We claim that
∑

k≥εn
∑

v∈Vin
|Ak(v)| ≤ 4εn2. To see this, fix k ≥ εn and consider the

k-th step. If yk = x1, then Ak(v) = {vxk} for v ∈ N−(x1) \ N−(xk) and Ak(v) = ∅ otherwise,

where N−(·) refers to the in-neighbourhood with respect to Gk−1. Thus, using Claim 5.3

(i),

∑
v∈Vin

|Ak(v)| ≤ ∣∣N−(x1) \ N−(xk)
∣∣ ≤ 4

k
· (

c(Gk) − c(Gk−1)
)
.

If yk = xk, then Ak(v) = {vx1, . . . , vxk−1} for v ∈ N−(xk) \ N−(x1) and Ak(v) = ∅ otherwise.

Thus, by Claim 5.3 (ii),

∑
v∈Vin

|Ak(v)| ≤ (k − 1) · ∣∣N−(x1) \ N−(xk)
∣∣ ≤ 4

k
· (

c(Gk) − c(Gk−1)
)
,

In either case, we get that for k ≥ εn,

∑
v∈Vin

|Ak(v)| ≤ 4

εn

(
c(Gk) − c(Gk−1)

)
.

Summing over k ≥ εn, we obtain the required inequality

∑
k≥εn

∑
v∈Vin

|Ak(v)| ≤ 4

εn

(
c(G′) − c(Gεn)

) ≤ 4εn2,

Where the last equality holds since c(G′) − c(Gεn) ≤ ε2n2.

Note that |R| ≤ εn2 +∑
k≥εn

∑
v∈Vin

|Ak(v)| ≤ 5εn2. In total, all but at most (40ε2 +
5ε)n2 ≤ 10εn2 pairs in (Q, V \ Q) are red and oriented towards Q. �

Lemma 5.7. Let 1/n � ε � 1. Let G be a coloured graph on n vertices with at least

f (n) − ε2n3 cherries. Suppose that G′ and Q are the graph and full blue clone-clique

produced by the procedure SG(x), and suppose that 0.55n ≤ |Q| ≤ 0.65n. Then all but

1200εn2 edges in G[Q] are blue.

Proof. Let F and F ′ be the graphs obtained from G and G′ by colouring all (Q, V\Q) edges

red and orienting them towards Q. Notice that F ′ can be obtained from F by colouring

all edges in Q blue.
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Turán Density of Tight Cycles 21

We will first derive an upper bound on c(F ′) − c(F). By Lemma 5.6, the graphs G

and F differ on at most 10εn2 edges and thus |c(G) − c(F)| ≤ 10εn3. Similarly, |c(G′) −
c(F ′)| ≤ 10εn3 (the lemma is still applicable, as SG′(x) does not change the graph G′). By

assumption on G we also have c(G′) − c(G) ≤ ε2n3. Altogether,

c(F ′) − c(F) ≤ c(G′) − c(G) + 20εn3 ≤ (ε2 + 20ε)n3 ≤ 30εn3. (10)

We now obtain a lower bound on the same quantity. Let e be the number of red

edges in G[Q]. The number of cherries in F that are not cherries in F ′ is at most
( ∑

q∈Q
d+(q)2

)
,

where d+(q) denotes the red out-degree of q in F[Q]. Notice that

∑
q∈Q

(
d+(q)

2

)
≤ 1

2

∑
q∈Q

(d+(q))2 ≤ 1

2
e|Q|,

because d+(q) ≤ |Q| and e = ∑
q d+(q).

On the other hand, the number of cherries in F ′ that are not cherries in F is exactly

e(n − |Q|). Thus,

c(F ′) − c(F) ≥ e(n − |Q|) − 1

2
e|Q| = e · (n − 3

2
|Q|) ≥ en

40
, (11)

using |Q| ≤ 0.65n.

By (10) and (11), we have e ≤ 1200εn2, as claimed. �

5.4 Proof of Lemma 5.1

Finally, we start with the actual proof of Lemma 5.1. The first step is to find a set Q′ of

the right size almost all of whose edges in G are blue.

Lemma 5.8. Let 1/n � ε � 1. Let G be a coloured graph on n vertices, satisfying c(G) ≥
f (n) − ε2n3. Then there is a set Q′ ⊆ V(G) such that

∣∣|Q′| − βn
∣∣ ≤ 100εn and all but at

most 1200εn2 edges in G[Q′] are blue.

Proof. Similarly to the proof of Theorem 2.5, start with G′ = G, and, as long as G′ has a

vertex x that is not in a full blue clone-clique, run the symmetrisation procedure SG′(x),

and replace G′ by the resulting graphs. Denote by Gfinal the graph at the end of the process

(as before, the process is guaranteed to end). Then the vertices of Gfinal can be partitioned

into full blue clone-cliques Q1, . . . , Qt.
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Let Q′ be the vertex set of the largest clone-clique. By Lemma 5.4, we have
∣∣|Q′| −

βn
∣∣ ≤ 100εn. In particular, |Q′| ∈ [0.55n, 0.65n].

Let F1 be the graph created just before the symmetrisation procedure was started

on an element of Q′, and let F2 be the graph just after Q′ was built. Notice that c(F2) ≥
c(F1) ≥ c(G) ≥ f (n) − ε2n3. By Lemma 5.7, all but at most 1200εn2 edges in F1[Q′] are

blue. Notice that during the above process, the edges in Q′ remain untouched until right

before a symmetrisation process is started on an element of Q′. It follows that all but at

most 1200εn2 edges in G[Q′] are blue. �

Now we can complete the proof by running a symmetrisation procedure in two

phases. The first phase generates a blue clique Q, which contains almost all the vertices

of Q′. The second phase allows us to show that Q cannot be much larger than Q′ and to

control the remaining edges incident to Q.

Proof of Lemma 5.1. Apply Lemma 5.8 to find Q′ such that
∣∣|Q′|−βn

∣∣ ≤ 100εn and G[Q′]
has at most δ2n2 red edges (with δ2 = 1200ε).

Claim 5.9. We can run a symmetrisation procedure on G, which results in a graph G′

and a full blue clone-clique Q satisfying |Q′ \ Q| ≤ 3δn. �

Proof. Let A be the set of vertices in Q′ with more than δn red (in- or out-) neighbours

in G[Q′]. The bound on the number of red edges in Q′ gives |A| < 2δn. Define Q′′ := Q′ \ A.

We will run a symmetrisation procedure on G, but with a specific ordering of

vertices. We start with x1 ∈ Q′′ (chosen arbitrarily). Assuming that {x1, . . . , xk} are defined

and contained in Q′′, if possible we pick xk+1 to also be in Q′′ (we can do this as long as

there is a vertex in Q′′ \ {x1, . . . , xk} whose edges to {x1, . . . , xk} are blue). Once this is

no longer possible, we continue with the symmetrisation procedure using an arbitrary

order of vertices. Let Q be the full blue clone-clique built by this procedure.

Let k be largest such that {x1, . . . , xk} ⊆ Q′′. It is easy to see that throughout the

procedure, until at least step k, every vertex in Q′′ has at most δn non-blue neighbours

in Q′′ \ {x1, . . . , xk}. Thus, k ≥ |Q′′| − δn ≥ |Q| − 3δn, as otherwise we could find a suitable

xk+1 in Q′′, contradicting the choice of k. It follows that |Q′ \ Q| ≤ 3δn. �

Let G′ and Q be as in the above Claim. We claim that |Q| ≤ (β + 100ε)n. Indeed,

this follows from Lemma 5.4 by running symmetrisation procedures repeatedly, starting

from G′, until the vertices can be partitioned into full blue clone-cliques (one of which
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Turán Density of Tight Cycles 23

is Q). It follows that |Q \ Q′| ≤ 3δn + |Q| − |Q′| ≤ (3δ + 200ε)n ≤ 5δn. In particular, the

number of red edges in G[Q] is at most the number of red edges in G[Q′] plus the number

of edges incident with Q \ Q′, which amounts to a total of at most (δ2 + 5δ)n2 ≤ 10δn2

red edges in G[Q].

By Lemma 5.6, all but at most 10εn2 edges in G[Q, V \ Q] are red and oriented

towards Q, and similarly for G′[Q, V \ Q].

Since Q is a full blue clone-clique in G′, the vertices in V \ Q can be partitioned

into Vin and Vout, where vq is a red arc for every v ∈ Vin and q ∈ Q and qv is a red arc for

v ∈ Vout and q ∈ Q. Thus, by the previous paragraph and because |Q| ≥ n/2, |Vout| ≤ 20εn.

Let G′′ be obtained from G′ be reorienting all (Q, V \ Q) edges towards Q. Then

c(G′′) − c(G′) ≥
(|Q|

2

)
|Vout| −

(|Vout|
2

)
|Q| = |Q||Vout| · (|Q| − |Vout|) ≥ 0.

It follows that c(G′′) ≥ c(G′) ≥ c(G). Moreover, G′′ and G′ differ on at most |Vout|n ≤ 20εn2

edges, and thus G and G′′ differ on at most (20ε + 10ε + 10δ)n2 ≤ 20δn2 edges. Since G′′

has the required structure, this proves Lemma 5.1.

5.5 Full stability result

Proof of Theorem 5.2. Let ε1 � η � ε2. The idea is simply to iterate Lemma 5.1. We will

find graphs G1, . . . , Gs and sets Q1, . . . , Qs, satisfying the following conditions, for k ∈ [s]

(for convenience set G0 := G, Q0 := ∅ and V := V(G)).

(1) Gk is a coloured graph on vertex set V \ (Q1 ∪ . . . ∪ Qk−1).

(2) Qk is a blue clique in Gk, all other edges incident with Qk in Gk are red and

point towards Qk.

(3)
∣∣|Qk| − β|Gk|∣∣ ≤ η|Gk|.

(4) Gk and Gk−1 \ Qk−1 differ on at most η|Gk|2 edges.

(5) c(Gk) ≥ c(Gk−1 \ Qk−1).

(6) c(Gk \ Qk) ≥ f (|Gk \ Qk|) − ε1n3.

To see how such a sequence can be built, suppose that G1, . . . , Gk−1 and

Q1, . . . , Qk−1 are defined and satisfy the above conditions. If |Gk−1 \ Qk−1| ≤ ηn,

we stop the process and set s := k − 1. Otherwise, we apply Lemma 5.1 to the

graph Gk−1 \ Qk−1. Notice that by (6) and the assumption on |Gk−1 \ Qk−1|, we have

c(Gk \ Qk) ≥ f (|Gk \ Qk) − ε1η−3|Gk \ Qk|3. Since ε1η−3 � η, the lemma is applicable. The

lemma produces a graph Gk on vertex set V(Gk−1)\Qk−1 = V \ (Q1 ∪ . . .∪Qk−1) satisfying
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items (1) to (5). It remains to verify (6). Note that

c(Gk) =
(|Qk|

2

)
· |Gk \ Qk| + c(Gk \ Qk).

Also

c(Gk) ≥ c(Gk−1 \ Qk−1) ≥ f (|Gk−1 \ Qk−1|) − ε1n3

= f (|Gk|) − ε1n3

≥
(|Qk|

2

)
|Gk \ Qk| + f (|Gk \ Qk|) − ε1n3,

where the last inequality follows from the definition of f . The two inequalities imply (6).

To finish, run a symmetrisation procedure on Gs\Qs repeatedly, to obtain a graph

H whose vertices are partitioned into full blue clone-cliques Qs+1, . . . , Qt (arranged in

decreasing size); the edges between any two of them point towards the larger clique;

and c(H) ≥ c(Gt \ Qt). Let G′ be the graph on vertex set V, such that Q1, . . . , Qt are blue

cliques and the edges between any two of them are red and point towards the larger

clique (note that Q1, . . . , Qt partition V).

To complete the proof of Theorem 5.2, we need to show that properties (a) to (c)

hold. For (a), define G′
k to be the graph on vertex set V, obtained from G′ by replacing

V \ (Q1 ∪ . . . ∪ Qk−1) by a copy of Gk (this makes sense due to (1)). It is easy to see that

c(G′
k) − c(G′

k−1) = c(Gk) − c(Gk−1 \ Qk−1) ≥ 0 for k ∈ [s], using (5). Similarly, c(G′) ≥ c(G′
s).

Altogether, c(G′) ≥ c(G′
1) = c(G), as required for (a).

Before continuing, we derive an upper bound on s. By (3), we have |Qk| ≥ 0.55|Gk|
for k ∈ [s], so |Gk| ≤ 2−(k−1)n. Since |Gt| ≤ ηn, this implies that s ≤ 2 log(1/η) ≤ η−1/2, say.

By (4), we find that G′ and G differ on at most ((sη + η)n2 ≤ 2η1/2n2 ≤ ε2n2 edges.

Property (b) follows.

Notice that the estimate |Qk| ≥ 0.55|Gk|, which follows from (3) implies |Q1| ≥
. . . ≥ |Qs|. Thus (i) to (iii) clearly hold. Finally, (iv) holds trivially for k > s and, for k ≤ s,

it follows from (3) and η ≤ ε2. �

6 Hypergraphs With No Short Odd Pseudocycles

In this section, we leverage the stability result about cherries, Theorem 5.2, and the con-

nection between hypergraphs with no odd pseudocycles to good colourings (Theorem 2.4)

to prove the following result regarding the structure of a dense hypergraph with no
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short odd pseudocycles. In case of cycles and pseudocycles, the length (number of edges)

and order (number of vertices) coincide, so, since there is no danger of confusion, we

prefer the term length. Given vertex sets X1, X2, X3 ⊂ V(H), an X1X2X3-triple in H is an

(unordered) edge x1x2x3 ∈ E(H) with xi ∈ Xi for i ∈ [3].

Theorem 6.1. Let n  �  1. Let H be a 3-uniform hypergraph on n vertices, which

contains no odd pseudocycles of length at most �, and which maximises the number of

edges under these conditions. Then there is a partition {A, B} of the vertices of H into

non-empty sets such that all AAB triples are edges of H (and there are no AAA and ABB

triples).

By iterating the above result, we prove Theorem 2.9, restated here, which gives

an upper bound on the number of edges in a hypergraph with no short odd pseudocycles.

Proof of Theorem 2.9 using Theorem 6.1. Let L and n0 be such that Theorem 6.1 holds

for � = L and n ≥ n0. Denote by g(n) the maximum number of edges in an n-vertex

hypergraph with no odd pseudocycles of length at most L. Then for every n ≥ n0, there

exists an ∈ [n − 1] such that g(n) ≤ (an
2

)
(n − an) + g(n − an). Iterating this and recalling

the definition of f (n) implies that g(n) ≤ f (n) + (n0
3

)
. �

Recall that Theorem 2.9 is tight, up to the additive O(1) error term, as evidenced

by H(x1, . . . , xk) for a suitable choice of xi’s.

We next show how Theorem 2.9 implies our main result, Theorem 1.3,

restated here.

Recall that the t-blow-up of an r-uniform hypergraph H, denoted H[t], is the

hypergraph with vertex set V(H) × [t] and edges all r-sets {(x1, i1), . . . , (xr, ir)} such that

{x1, . . . , xr} ∈ E(H). For a family F of hypergraphs, we denote by F [t] the family of t-

blow-ups of members of F . Recall that Theorem 2.1 (whose proof can be found in [18])

asserts that taking the t-blow-up of a hypergraph does not change its Turán density. The

following generalisation for finite families of hypergraphs can be proved similarly.

Theorem 6.2 ([18], Theorem 2.2). Let s and t be integers, and let F be a family of r-graphs

with |F | ≤ s. Then π(F [t]) = π(F).

To prove Theorem 1.3, we will note that an odd cycle C(3)
m is contained in an

m-blow-up of any odd pseudocycle of length at most m/2, and apply the last theorem.
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Proof of Theorem 1.3 using Theorem 2.9. Let m be an integer with m ≥ 2L and 3 � m,

where L is the constant from Theorem 2.9. Recall that f (n) = (2
√

3 − 3 + o(1))
(n

3

)
. Let

ε > 0 and let H be an n-vertex 3-uniform hypergraph with e(H) ≥ (2
√

3 − 3 + ε)
(n

3

)
and n

sufficiently large. We claim that H contains a copy of C(3)
m .

Theorem 2.9 and Theorem 6.2 imply that H contains F[m] for some �-pseudocycle

F with � ≤ L and 3 � �. It suffices to show that F contains an m-pseudocycle, because then

C(3)
m will be contained in F[m]. To see this, let v1 . . . v� be an ordering of V(F) such that

vivi+1vi+2 ∈ E(F), with the indices taken modulo �.

In case m ≡ � (mod 3), consider the sequence

(v1v2v3)
m−�

3 v1v2 . . . v�,

where (v1v2v3)x stands for x repetitions of the sequence v1v2v3. This is a sequence of

order m certifying that F contains an m-pseudocycle.

Otherwise, if m ≡ 2� (mod 3), the same is certified for instance by the sequence

(v1v2v3)
m−2�

3 (v1v2 . . . v�)
2.

�

All that remains now is to prove Theorem 6.1. We will state and prove some pre-

liminary results in the following subsection, and then prove the theorem in Section 6.2.

6.1 Preparation

The diameter of a hypergraph H is the minimum � such that the following holds: for

every x, y, z, w ∈ V(H) (where x, y are distinct and z, w are distinct) whenever there is a

pseudopath from xy to zw, there is such a pseudopath of order at most �.

We have already shown that n-vertex hypergraphs with no odd pseudocycles

have at most f (n) edges. To prove the same for pseudocycles of bounded length, we will

pass to a subhypergraph with bounded diameter, which is the purpose of the following

two propositions.

Proposition 6.3. Let H be a 3-uniform hypergraph of diameter � ≥ 4. If H has an odd

pseudocycle, then it has an odd pseudocycle of length at most 4�.

Proof. Let C be the shortest odd pseudocycle in H. Assuming that its length is at least

3� + 4, we may index it by xyv1 . . . vkabu1 . . . ut with t ≥ 2�, k ≥ �. Note that the length of

C is k + t + 4 �≡ 0 (mod 3).
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Turán Density of Tight Cycles 27

Since H contains a pseudopath from xy to ab, it also contains such a pseudopath

P = xyw1 . . . wrab with r ≤ � − 4. The pseudocycle xyw1 . . . wrabu1 . . . ut is shorter than

C, so it must not be odd, that is, r + t + 4 ≡ 0 (mod 3).

Now consider the pseudocycle C1 = v1 . . . vkP̃. Recall that P̃ is a (2r + 6)-vertex

pseudopath from ab to xy (see (1)), so C1 is indeed a pseudocycle. The length of C1 is

k + 2r + 6 ≡ k − r ≡ k + t + 4 �≡ 0 (mod 3). Noting that k + 2r + 6 ≤ k + 2� − 2 ≤ k + t, this

contradicts the minimality of C. �

Proposition 6.4. Let 1/� � ε � 1, and let H be an n-vertex hypergraph. Then there is a

subgraph H′ ⊆ H with e(H′) ≥ e(H) − εn3 whose diameter is at most �.

Proof. First we form a subgraph H′ ⊆ H in which each vertex pair has codegree either

0 or at least εn, as follows. If there are vertices u, v whose codegree in the current

hypergraph is smaller than εn, delete all edges containing uv. Repeat this step until

each pair has codegree degree either 0 or at least εn. Denote the resulting hypergraph by

H′. Observe that the number of deleted edges is at most εn·(n
2

)
since the edges containing

each pair were removed at most once. Hence, e(H′) ≥ e(H) − εn3.

Given ordered pairs uv and u′v′, which are connected by a pseudopath in H′, let

P = uvx0x1 . . . xtu
′v′ be a shortest such pseudopath. For each i, let Bi be the set of ordered

pairs ab such that xixi+1ab is a tight path in H′. We claim that the sets B10i are mutually

disjoint for 0 ≤ i < t
10 . Suppose not, and take ab ∈ B10i ∩B10j for some 0 ≤ i < j < t

10 . Then

xixi+1abxj+1axjxj+1 is a pseudopath with only five vertices between xi and xj, which can

be used to form a shorter pseudopath than P connecting uv and u′v′, contradiction. Now

since |Bi| ≥ ε2n2/2 for every i (using the fact that the codegree of each pair in H′ is either

0 or at least εn), we have

⌊
t

10

⌋
· ε2n2

2
≤ n2,

so t ≤ 20
ε2 . Hence the diameter of H′ is at most � := 20

ε2 + 4, as required. �

As alluded to in Section 2, we can already prove Corollary 2.8, restated here,

which is a weakening of Theorem 2.9, with only an asymptotic upper bound, which

depends on �, on the number of edges.

This bound will be used in the proof of Proposition 6.6. Note that the analogous

bound on the extremal number of proper odd tight cycles follows from Theorem 6.2.
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Proof of Corollary 2.8. Assume the opposite, that e(H) ≥ f (n) + εn3. Applying Propo-

sition 6.4 with the parameters �/4 and ε/2, we obtain a hypergraph H′ ⊆ H with at

least f (n)+ εn3/2 edges whose diameter is at most �/4. H′ contains no odd pseudocycles

of length at most �, so by Proposition 6.3, it contains no odd pseudocycles. Hence, we

may apply Theorem 2.4 to obtain a good colouring of ∂H′ with e(H′) > f (n) cherries,

contradicting Theorem 2.5. �

The following proposition gives a near-optimal lower bound on the vertex degrees

in a largest hypergraph on n vertices with no short odd pseudocycles.

Proposition 6.5. Let 1/n � 1/� � ε � 1, and let H be an n-vertex hypergraph with no

odd pseudocycles of length at most �, which maximises the number of edges under these

conditions. Then d(u) ≥ (3α − ε)n2 for every vertex u.

Proof. Given vertices u and v in H, consider the hypergraph Huv obtained from H by

removing all edges containing v and then adding the edge e − u + v, for each edge e that

contains u but not v. Observe that H has no odd pseudocycles of length at most �; indeed,

if there were such a cycle then we could replace each instance of v by u to obtain an odd

pseudocycle of the same length in H (whereby it is important that Huv has no edges

containing both u and v), a contradiction. Since e(Huv) ≥ e(H) − d(v) + d(u) − n and by

maximality of H, we have d(v) ≥ d(u) − n. Since u and v were arbitrary, this implies

that the maximum and minimum degrees of H differ by at most n. In particular, using

e(H) ≥ f (n) = αn3 + o(n3), which follows from the maximality of H and Proposition 4.1,

δ(H) ≥ 3e(H)

n
− n ≥ 3f (n)

n
− n ≥ (3α − ε)n2.

�

Next, we prove a stability version of the previous proposition.

Proposition 6.6. Let 1/n � 1/� � ε1 � ε2 � 1, and let H be an n-vertex 3-uniform

hypergraph with no odd pseudocycles of length at most �. If e(H) ≥ f (n) − ε1n3, then

d(u) ≤ (3α + ε2)n2 for every vertex u.

Proof. Let μ = √
ε1 ≤ ε2/10. Let X be the set of vertices x with d(x) ≤ 3(α + μ)n2. Then

e(H) ≥ (n − |X|)(α + μ)n2. By Corollary 2.8 (and the properties of f (n)), we also have
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Turán Density of Tight Cycles 29

e(H) ≤ (α + ε1)n3. Putting the two inequalities together, we get

(α + ε1)n3 ≥ (n − |X|)(α + μ)n2

�⇒ |X| ≥ (α + μ)n − (α + ε1)n

α + μ
= μ − ε1

α + μ
· n ≥ μn.

Let u be a vertex of maximum degree in H, and let X ′ be a subset of X of size t := μn. We

may assume u /∈ X ′ because otherwise dH(u) ≤ (3α + 3μ)n2 ≤ (3α + ε2)n2, as required.

Now consider the hypergraph H1 formed in two steps as follows. First, define H0 = H\X ′;
then e(H0) ≥ e(H)−t·3(α+μ)n2 and dH0

(u) ≥ dH(u)−tn. Second, letH1 be the hypergraph

obtained by adding |X ′| copies of u to H0. Then

e(H1) ≥ e(H0) + t · dH0
(u)

≥ e(H) − t · 3(α + μ)n2 + t · (dH(u) − tn)

≥ f (n) − ε1n3 + t · (dH(u) − tn − 3(α + μ)n2)

= f (n) − ε1n3 + μn · (dH(u) − (3α + 4μ)n2).

Notice that H1 has no odd pseudocycles of length at most �. Thus, by Corollary 2.8, we

have e(H1) ≤ f (n) + ε1n3. Hence, using μ = √
ε1 ≤ ε2/10,

dH(u) ≤ (3α + 4μ)n2 + (2ε1/μ)n2 ≤ (3α + ε2)n2,

as required. �

6.2 The structure of odd-pseudocycle-free graphs

We now prove the main result in the section, Theorem 6.1. The starting point of the proof

uses the relation between hypergraphs with no odd pseudocycles and good colourings of

Kn, as well as the stability result about cherries from the previous section, to conclude

the following: there is a coloured graph G with a nice structure such that almost all

cherries in G are triples in H and vice versa. This readily implies the existence of a

partition {A, B} of the vertices such that |A| ≈ βn and for almost every vertex u in H the

following holds: almost all vertices in A are joined to almost all A × B pairs, and almost

all vertices in B are joined to almost all A(2) pairs. The main difficulty of the proof lies

in showing that there is such a partition for which every vertex in A is joined to almost

all pairs in A × B, and similarly for vertices in B. This is achieved in Claim 6.7 and the

main idea is to compare several graphs obtained by modifying the triples containing a
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given vertex. Given a partition as above, to conclude the proof, we argue (using the fact

that H has no short odd pseudocycles) that the number of AAB “non-edges” exceeds the

number of AAA and ABB edges, unless all of these numbers are 0. The maximality of H
implies that all these numbers are indeed 0, meaning that H has all AAB edges and no

AAA, ABB edges.

Proof of Theorem 6.1. Let ε7 = 0.1 and let ε1, . . . , ε6, and � satisfy

0 < 1/� � ε1 � . . . � ε7.

Let H′ be a subgraph of H on the same vertex set with at least e(H) − ε1n3 edges, which

has diameter at most �/4; such H′ exists by Proposition 6.4. By Proposition 6.3, H′ has

no odd pseudocycles, so by Theorem 2.4, there is a good colouring of ∂H′.
Extending the good colouring of ∂H′ arbitrarily to also cover vertex pairs that are

not in the shadow, we obtain a coloured graph (recall that this is a complete graph whose

edges are either blue or oriented and red) G′ on vertex set V := V(H), such that every

edge in H′ is a cherry in G′. By maximality of H, we have c(G′) ≥ e(H′) ≥ e(H) − ε1n3 ≥
f (n) − ε1n3.

Thus, by Theorem 5.2, there is a graph G satisfying (a)–(c) in Theorem 5.2 on vertex

set V. That is, G has at least as many cherries as G′, all but at most ε2n3 cherries in G

are cherries in G′, and V can be partitioned into sets X1, . . . , Xk such that: G[Xi] is blue

for i ∈ [k]; |Xi| = (β ± ε2)n · (|Xi| + . . . + |Xk|) for i ∈ [k]; and all Xi × Xj pairs in G are red

and oriented towards Xi, for 1 ≤ i < j ≤ k. Recall that β = 3−√
3

2 was defined in (5).

Define X>i := Xi+1 ∪ . . . ∪ Xk, and define X≥i analogously. Let H be the subgraph

of G whose edges are either pairs in Xi × Xi that are in at least (|Xi+1| + . . . + |Xk|) − ε3n

triples in (Xi ×Xi ×X>i)∩E(H), or pairs in Xi ×Xj, where i < j, that are in at least |Xi|−ε3n

triples in (Xi × Xi × Xj) ∩ E(H).

Denoting the number of non-edges in H by ē(H), we have that the number of

cherries in G that are not edges in H is at least ē(H) · ε3n/3. Recall that e(H′) ≥
e(H) − ε1n3 ≥ f (n) − ε1n3 and that all edges in H′ are cherries in G′. But c(G′) ≤ f (n)

(by Theorem 2.5), so all but ε1n3 cherries in G′ are edges in H′ and thus in H. Since there

are at most ε2n3 cherries in G that are not cherries in G′, it follows that all but at most

(ε1 + ε2)n3 ≤ 2ε2n3 cherries in G are edges in H. Hence, ē(H) · ε3n/3 ≤ 2ε2n3, showing

ē(H) ≤ (6ε2/ε3)n3 ≤ ε3n2.

Let k0 be the maximum i such that |Xi| ≥ ε4n. Define subsets X ′
i ⊆ Xi as follows:

if i < k0, let X ′
i be the set of vertices in Xi that have degree at least |Xi| − ε4n in H[Xi] and
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degree at least |X>i| − ε4n in H[Xi, X>i]; if i ≥ k0, define X ′
i := ∅. Since (ε4n/2)

∑
i<k0

|Xi \
X ′

i| ≤ ē(H) ≤ ε3n2 and |X≥k0
| ≤ 10ε4n (using (iv)), we have

∑
i∈[k]

|Xi \ X ′
i| ≤ 10ε4n + (2ε3/ε4)n ≤ 20ε4n.

Let X := X ′
1 ∪ . . . ∪ X ′

k and Y := V \ X. We have seen that |Y| ≤ 20ε4n ≤ ε5n.

For v ∈ V, let N(v) be the link of v, namely the graph spanned by pairs uw such

that uvw ∈ E(H). Write A := X ′
1 and B := X \ X ′

1.

Claim 6.7. One of the graphs N(u)[A] and N(u)[A, B] has at most ε6n2 non-edges, for

every u ∈ V. �

Proof. Let ε5 � μ � ε6. Note that the claim holds for all u ∈ X, so it suffices to prove it

for u ∈ Y. Fix such u.

Let F be the hypergraph on vertex set X whose edges are all X ′
iX

′
iX

′
j triples with

1 ≤ i < j ≤ k0. We will construct two hypergraphs F+
i (for i ∈ {1, 2}), which consist of

F with one additional vertex ui, which is a suitable modification of u, and that have no

odd pseudocycles of length at most �/10. We will argue that if both N(u)[A] and N(u)[A, B]

have at least ε6n2 non-edges then dF+
i
(ui) > (3α + μ)n2 for some i ∈ [2], contradicting

Proposition 6.6.

Let F0 be the graph on vertex set X with edges E(H)∩E(N(u)). Recall that vertices

in X ′
i have at most 2ε4n non-neighbours in H[X ′

>i]. Thus, using Proposition 6.5 for a lower

bound on dH(u), we have e(F0) ≥ dH(u)−|Y| ·n−|X| ·2ε4n ≥ (3α −10ε5)n2. We modify F0

as follows, while possible: remove each edge xy satisfying: x, y ∈ A and x has degree 1

in A; or x ∈ A, y ∈ B, and x has degree 1 into B or y has degree 1 into A. Call the resulting

graph F and notice that |E(F0) \ E(F)| ≤ 2n, implying that

e(F) ≥ (3α − 20ε5)n2. (12)

Recall that F is the hypergraph on vertex set X whose edges are all X ′
iX

′
iX

′
j triples

with 1 ≤ i < j ≤ k0, and let F+ be the hypergraph obtained by adding the vertex u to F
along with all edges uvw such that vw ∈ E(F). We argue that F+ has no odd pseudocycles

of length at most �/10. To do so, we prove the following.

Let xy, vw ∈ E(H), and let P be a pseudopath in F from xy to vw on t vertices. Then

there is a pseudopath P′ in H from xy to vw of order t (if t ∈ {2, 3}) or t + 3 (otherwise).

(13)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad177/7240726 by C

atherine Sharp user on 22 August 2023



32 N. Kamčev et al.

We prove (13) by induction on t. If t = 2 we can take P′ = P. Suppose that t = 3,

so P = xyw. Let i1, i2, i3 be such that x ∈ X ′
i1

, y ∈ X ′
i2

and w ∈ X ′
i3

. Since xy ∈ E(H), we

know that for almost every a ∈ X ′
i3

the following holds: xya ∈ E(H) and ya ∈ E(H); pick

such an a with a �= w. Similarly, yab and ywb are edges in H for almost every b ∈ X ′
i1

;

pick such b. The path xyabyw satisfies the requirements.

Next, suppose that t = 4, so P = xyvw. Let i1, i2, i3, i4 be such that x ∈ X ′
i1

, y ∈ X ′
i2

,

v ∈ X ′
i3

and w ∈ X ′
i4

. As xy ∈ E(H), almost all a ∈ X ′
i3

satisfy xya ∈ E(H) and ya ∈ E(H);

fix such a. Similarly, almost all c ∈ X ′
i2

satisfy cvw ∈ E(H), cv ∈ E(H) and ac ∈ E(H);

fix such c. Finally, almost every b ∈ X ′
i3

satisfies yab, abc, bcv ∈ E(H); fix such b. Then

P′ = xyabcvw satisfies the requirements.

Finally, suppose that t ≥ 5, and write P = v1 . . . vt, so x = v1, y = v2, v = vt−1

and w = vt. Let ij be such that vj ∈ X ′
ij

for j ∈ [t]. As usual, since xy = v1v2 ∈ E(H),

almost all a ∈ X ′
i3

satisfy: v2a ∈ E(H) and v1v2a ∈ E(H). Let Q = v2av4 . . . vt. Then Q is a

pseudopath in F of order t − 1 that starts and ends with edges in H. By induction, there

is a pseudopath Q′ in H from v2a to vt−1vt of order t + 2. Then we can take P′ = v1Q′,
completing the proof of (13).

Now suppose that C = v1 . . . vt is a pseudocycle in F+, where t ≤ �/10. We need

to show that t is divisible by 3. If C does not go through u, then C is in F , implying that

t is indeed divisible by 3. So we may assume that C goes through u at least once. This

shows that C can be written as uP1u . . . uPk, where Pi is a pseudopath in F whose first

two vertices and last two vertices form edges in F. It follows from (13) that for each i ∈ [k]

there is a pseudopath P′
i in H whose first two vertices and last two vertices match those

of Pi and whose order satisfies |P′
i| − |Pi| ∈ {0, 3}. Then C′ := uP′

1u . . . uP′
k is a cycle in H

with |C′| ≤ |C| + 3k ≤ 4|C| ≤ � and |C′| ≡ |C| (mod 3). By the properties of H, we have that

|C′| is divisible by 3, implying that |C| is divisible by 3, as required.

Let A0 and A1 be the sets of vertices in A incident with AA and AB edges in F,

respectively (that is, a0 ∈ A0 if F contains an edge a0x with x ∈ A). To show that A0 and A1

are disjoint, assume that a1 ∈ A0 ∩ A1, so that there is a path a0a1b0 in F with a0, a1 ∈ A

and b0 ∈ B. By construction of F, b0 has an F-neighbour a2 ∈ A−A1, so a0a1b0a2 is a path

in F. Let a3 and b1 be arbitrary vertices in A and B, respectively (distinct from previously

chosen vertices). Then a0a1ub0a2a3b1 is cycle of length 7 in F+, a contradiction.

Let B1 be the set of vertices in B incident with AB edges in F. We claim that B1

is independent in F. Indeed, otherwise there is a path a1b1b2a2 in F, using a similar

argument to the above paragraph. Now, choosing a3, a4 ∈ A and b3 ∈ B to be arbitrary

unused vertices, we obtain a cycle a1b1ub2a2a3b3a4 of length 8 in F+ and reach a

contradiction.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad177/7240726 by C

atherine Sharp user on 22 August 2023



Turán Density of Tight Cycles 33

Let F1 and F2 be graphs on vertex set X, defined as follows: E(F1) = A × B and

E(F2) = A(2) ∪ E(F[B]). Now define F+
i to be the graph obtained from F by adding a new

vertex ui and edges uivw such that vw ∈ E(Fi), for i ∈ [2]. Thus,F+
i and F+ differ only on

edges touching ui or u. We claim that F+
i has no odd pseudocycles of length at most �/10.

Indeed, this is easy to see for i = 1, because we can think of F+
1 as obtained by extending

X ′
1 by one vertex. To see that this also holds for i = 2, notice that in F+

2 , the AAB and

BBB triples are in different strong components, so any pseudocycle C in F+
2 is either a

pseudocycle in F+ or consists only of edges containing exactly two vertices from A.

Notice that e(F+
i ) ≥ c(G) − |Y|n2 ≥ f (n) − (ε1 + ε5)n3 ≥ f (n) − 2ε5n3, because all

cherries in G that do not touch Y are edges in F and c(G) ≥ c(G′) ≥ f (n) − ε1n3. Using

this lower bound and the fact that F+
i has no odd pseudocycles of length at most �/10,

Proposition 6.6 implies that dF+
i
(ui) ≤ (3α + μ)n2. Since dF+(u) = e(F) ≥ (3α − 20ε5)n2

(see (12)), we have e(Fi) − e(F) = dF+
i
(ui) − dF+(u) ≤ (μ + 20ε5)n2 ≤ 2μn2 for i ∈ [2].

To finish, suppose first that |A0| ≥ |B1|. Recalling that F and F1 coincide on B, and

that F has no edges in (A1 ∪ B1) × A0 or A(2)
1 , we have

2μn2 ≥ e(F2) − e(F) ≥ −|A1||B1| + |A0||A1| +
(|A1|

2

)
+ ē(F[A0])

≥ |A1|2
2

+ ē(F[A0]) + O(n).

It follows that |A1| ≤ 5μ1/2n and ē(F[A0]) ≤ 5μn2. Altogether ē(F[A]) ≤ |A1| n + ē(F[A0]) ≤
10μ1/2n2 ≤ ε6n2. Since F[A] ⊆ N(u)[A], Claim 6.7 is proved in this case.

Now we consider the remaining case, namely that |A0| ≤ |B1|. Let B0 = B \ B1, and

recall that F has no edges in B(2)
1 or in A0 × B1. Using |A| ≥ |B| = |B0| + |B1|,

2μn2 ≥ e(F+
1 ) − e(F+)

≥ −
(|A0|

2

)
−

(|B0|
2

)
− |B0||B1| + |A||B0| + |A0||B1| + ē(F[A1, B1])

≥ |A0|(|B1| − |A0|) + |B0|(|A| − |B0| − |B1|) + |A0|2
2

+ |B0|2
2

+ ē(F[A1, B1]) + O(n)

≥ |A0|2
2

+ |B0|2
2

+ ē(F[A1, B1]) + O(n).

Thus, we have |A0|, |B0| ≤ 5μ1/2n and ē(F[A1, B1]) ≤ 5μn2. This implies that ē(F[A, B]) ≤
|A0| n + |B0| n + ē(F[A1, B1]) ≤ ε6n2, proving Claim 6.7. �
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Let A∗ be the set of vertices u such that N(u)[A, B] has at most ε6n2 non-edges, and

let B∗ := V \A∗. Note that A ⊆ A∗, and by Claim 6.7, for every u ∈ B∗ the graph N(u)[A] has

at most ε6n2 non-edges. Let t1 be the number of A∗A∗A∗ triples in H, let t2 be the number

of A∗B∗B∗ triples in H, and let s be the number of A∗A∗B∗ triples that are not edges in H.

Let H∗ be the hypergraph obtained from H by removing all A∗A∗A∗ and A∗B∗B∗ triples

and adding all missing A∗A∗B∗ triples. Then H∗ has no odd pseudocycle of length at most

�; this follows from observing that every pseudocycle in H∗ is either a pseudocycle in H
or each of its edges has exactly two vertices in A∗. Moreover, e(H∗) − e(H) = s − (t1 + t2).

By maximality of H, we have s ≤ t1 + t2.

Claim 6.8. t1 ≤ ε7s.

Proof. Let ε6 � μ � ε7.

We first show that for every distinct u, v ∈ A∗, there are at most μn vertices

w ∈ A∗ such that uvw ∈ E(H).

Suppose there exist u, v ∈ A∗ violating this. Let W be the set of vertices w ∈ A∗

such that uvw ∈ E(H), so |W| ≥ μn. Consider the graph (N(u) ∩ N(v))[W, B]; its edges

are pairs wb such that w ∈ W, b ∈ B, and uwb, vwb ∈ E(H). This graph has at most

2ε6n2 non-edges, by Claim 6.7. Thus, there exists b ∈ B with at least 1
2μn neighbours in

the aforementioned graph; denote its set of neighbours by W ′. Now, by Claim 6.7, b is

adjacent in H to all but at most ε6n2 pairs in W ′, so there exists a triple w1w2b ∈ E(H)

with w1, w2 ∈ W ′. Thus, uvw1bw2 is a pseudocycle of length 5, contradiction.

To finish the argument, we count the four-tuples

Q := {{u, v, w, z} : u, v, w ∈ A∗, z ∈ B∗, uvw ∈ E(H), uvz /∈ E(H)}

in two different ways. For each vertex b ∈ B∗ and A∗A∗A∗ triple uvw ∈ E(H), at least one of

the triples uvb, uwb, vwb is not in E(H) (since otherwise H has a 4-cycle), so |Q| ≥ t1|B∗|.
On the other hand, it follows from the above paragraph that any A∗A∗B∗ triple uvz /∈ E(H)

extends to at most μn elements of Q, so |Q| ≤ sμn. Hence,

t1 ≤ |Q|
|B∗| ≤ sμn

|B∗| ≤ ε7s,

as claimed. �

Claim 6.9. t2 ≤ 2s/3.
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Proof. Let ε6 � μ � ε7.

To begin with, we show that if uvw is an A∗B∗B∗ triple in H (with u ∈ A∗), then

one of the pairs uv and vw is in at most μn triples of form A∗A∗B∗ in H. Fix an A∗A∗B∗

triple uvw ∈ E(H).

Let W ′ (resp. V ′) be the set of vertices a ∈ A∗ such that uwa ∈ E(H) (resp. uva ∈
E(H)). Suppose that |W ′|, |V ′| ≥ μn. Consider the graph (N(v) ∩ N(w))[W ′, V ′]. By Claim

6.7, this graph contains an edge a1a2, that is, we have a1a2w, a1a2v ∈ E(H). By definition

of W ′ and V ′, the triples uwa1 and uva2 are in H. Hence, uwa1a2v is a cycle of length 5,

contradiction.

Let F be an auxiliary bipartite graph with parts A∗ and B∗ such that uv is an

edge of F whenever (i) there is an A∗B∗B∗ triple in H containing uv, and (ii) the number

of A∗A∗B∗ triples containing uv is at most μn. By the previous paragraph, each A∗B∗B∗

triple in H contains an edge of F, so

t2 ≤ |B∗| · e(F) ≤ 0.4n · e(F).

Moreover, we claim that dF(v) ≤ μn for every v ∈ B∗. Indeed, by (ii), the graph N(v)[A∗]

has at least dF(v)(|A∗|−μn)/2 non-edges. If dF(v) > μn, then this quantity is larger than

2ε6n2, contradicting Claim 6.7. Also using (ii), we conclude that

s ≥
∑
v∈B∗

dF(v) · (|A∗| − dF(v) − μn) ≥ 0.6n · e(F).

It follows that t2 ≤ 2s/3, as claimed. �

The last two claims, and the choice ε7 = 0.1, say, show that (t1 + t2) ≤ 0.8s. Since

s ≤ t1 + t2, this implies that t1 = t2 = s = 0. That is, all A∗A∗B∗ triples are edges in H
(and there are no A∗A∗A∗ or A∗B∗B∗ edges). This proves Theorem 6.1.

7 Open Problems

There are two natural extensions of our result. Firstly, one could prove Conjecture 1.1,

or perhaps determine the density of C(3)
� for smaller values of �, say � ≤ 100. Although

we do not state our bound on � explicitly, this would not be too cumbersome, since it is

a polynomial in ε7, and we set ε7 = 0.1.

Of course our result should not extend to all values of � ≡ 1 or 2 (mod 3), since for

� = 4, the tight cycle C(3)
4 is the same as the tetrahedron K(3)

4 . Here the famous conjecture
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of Turán says that π(K(3)
4 ) = 5/9, which is attained by a wide family of extremal

constructions [3, 11, 20, 28]. Curiously, Fon-Der-Flaass showed that the conjectured

extremal constructions of K(3)
4 -free graphs can be constructed from oriented graphs in a

manner reminiscent of Definition 2.3. Specifically, Fon-Der-Flass [11] showed that if D is

an oriented graph with no induced directed 4-cycles, then the 3-graph formed by induced

copies of {ab, ac} and {ab, bc, ca} will be K(3)
4 -free.

A second interesting direction is determining the Turán density of r-uniform

tight cycles for r ≥ 4. For this, we do not even know of a conjectured optimal construction.

Moreover, our characterisation of odd-pseudocycle-free hypergraphs (Theorem 2.4) does

not have an obvious extension, as the straightforward extension of Definition 2.3 is too

strong.

As mentioned in the introduction, there are many other specific 3-uniform

hypergraphs for which determining the Turán density would be very interesting. Let

us point out one conjecture that is perhaps less well known, and which can be found for

instance in [24].

Conjecture 7.1. Let C−
5 be the 3-uniform hypergraph obtained from the tight 5-cycle C3

5

by removing one edge. The Turán density of C−
5 is 1

4 .

As in our case, one conjectured extremal hypergraph is an iterated construction;

one may take a complete 3-partite 3-uniform hypergraph and then repeat the same

construction recursively within each of the three parts.
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