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ABSTRACT

Strings are universal containers: they are flexible to use, abundant
in code, and difficult to test. String-controlled programs are programs
that make branching decisions based on string input. Automatically
generating valid test inputs for these programs considering only
character sequences rather than any underlying string-encoded
structures, can be prohibitively expensive.

We present June, a tool that enables Java developers to expose
any present latent string structure to test generation tools. June is
an annotation-driven testability transformation and an extensible
library, JuneLib, of structured string definitions. The core JuneLib
definitions are empirically derived and provide templates for all
structured strings in our test set.

June takes lightly annotated source code and injects code that
permits an automated test generator (ATG) to focus on the creation
of mutable substrings inside a structured string. Using June costs
the developer little, with an average of 2.1 annotations per string-
controlled class. June uses standard Java build tools and therefore
deploys seamlessly within a Java project.

By feeding string structure information to an ATG tool, June dra-
matically reduces wasted effort; branches are effortlessly covered
that would otherwise be extremely difficult, or impossible, to cover.
This waste reduction both increases and speeds coverage. EvoSuite,
for example, achieves the same coverage on June-ed classes in 1
minute, on average, as it does in 9 minutes on the un-June-ed class.
These gains increase over time. On our corpus, June-ing a program
compresses 24 hours of execution time into ca. 2 hours. We show
that many ATG tools can reuse the same June-ed code: a few June
annotations, a one-off cost, benefit many different testing regimes.

Dan Bruce and David Kelly are joint first authors.
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1 INTRODUCTION

Testing dominates software assurance. Testing is only as good as
its test suite, which is costly to write and maintain. To alleviate this
cost and improve testing, Automatic Test Generation (ATG) aims
to create test suites with minimal user assistance. ATG tools, like
EvoSuite [20], utilise criteria such as code coverage to guide test
generation [4]. ATG has improved testing practice, but progress in
ATG has run up against the problem of structured input generation
(SIG): the difficulty of constructing objects that satisfy program
guards. Structured inputs range from IP addresses, most result sets
of a database query, to JSON. Developers often store these structures
in strings. The tool sees only a string, whereas there is, in fact, a
predictable structure: these are latently structured strings.

Recent work in ATG has focused on high-level input gram-
mars [22, 45]. This high-level approach is much used in fuzzing.
Fuzzers, and techniques build on top of fuzzers, such as Zest [36],
target program access points with strings generated through a
grammar, mutating them to penetrate deeper into the control flow
graph. This approach works well in system testing, whereas the
tools of interest to us do unit testing. In this paper, we argue that
for unit testing, this top down approach, just like trickle down eco-
nomics does not adequately allocate resources. Using much smaller,
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local, grammars provided directly over method parameters, we em-
phasise the middle out or bottom up approach. Our results suggest
that bottom up reasoning allows much finer grained control when
testing at the method level (Section 5).

To utilise local grammars, we present June, Java string tuning.
June is a testability transformation [25] and support library, Jun-
eLib, written in Java. June finds suitable annotation locations and
handles the code transformation for the developer. June captures
string structure in lightweight, in-language annotations and ex-
poses that structure to an ATG tool, such as EvoSuite. These local
grammars are deliberately simple, expressing concepts such as num-
ber or delimited string. They are not antagonistic with top down
grammar generation, but provide useful guidance deep inside the
program. A part of the testing resource, otherwise spent uselessly
generating strings in some potentially large master grammar, is
now spent in much simpler, more locally precise, templates.

Over a commonly used corpus of Java programs, SF110 (Sec-
tion 4.2), approximately 6% of classes have string parameters that
affect control flow. Many of these string parameters occur at I/O
points; efficiency on these paths are important for safety and the
scalability of continuous integration, or CI (Section 2).We show that
June makes EvoSuite over 10× faster on June-ed classes, reaching
a day’s worth of coverage in under 2 hours 30 minutes. Over less
generous testing times, June has a notable impact: the coverage
EvoSuite achieves after 2 minutes on un-June-ed classes can be
had after just 22 seconds.

June is not burdensome to use: in our corpus, we required an
average of only 2 annotations per class, and the variable name
frequently gave us the annotation directly. With this small effort,
we find that EvoSuite can generate tests to the same degree of
coverage for the corpus in just 13 minutes, rather than an hour. As
we add annotations only once, in a continuous integration context
this small cost is amortised over CI runs (see Section 2).

June is a testability transformation which refines type inform-
ation, so it is not simply an EvoSuite extension. It works with
different ATG tools using the same annotated source code. It is
tool agnostic. This marks it as different from generators used for
specific tools, such as the parametric generators introduced in Zest
(Section 6). The generators in Zest are written in the tool itself,
whereas June generators are independent of the testing tool. We
evaluate this agnosticism by experimenting with 4 different ATG
tools. June results in improvements for all. The generality of test-
ability transformations means that there is nothing inherently Java
about our approach. ATG tools for other languages should also
benefit from string tuning for testing.

June consists of a Maven plugin that leverages Java’s native an-
notation language (Section 3) and a library, JuneLib, of SafeStrings [28].
SafeStrings are an elegant, language agnostic way to capture latent
structure and make it available to testing tools. By construction,
JuneLib captures common structured strings (Section 3.1). To use
June, a developer need only select or extend an existing annotation
from JuneLib. Indeed, JuneLib already defined SafeStrings for every
latently structured string in our set of Java classes (Section 3.1).

Our principal contributions are:

• Wepresent June, the first bottom-up framework for exposing
latent string structure to ATG tools, and JuneLib, a library

Listing 1: Example method signature with email address

parameter. Taken from the EmailAddressLocalServiceImpl
class with SF11030.
protected void validate(

... String address , ...) {

if (! Validator.isEmailAddress(address)) {

throw new EmailAddressException ();

}

/* method body continues */

of SafeStrings that captures all of the structured strings in
our corpus;

• We show that June greatly increases the efficiency of Evo-
Suite and other ATG tools such as Randoop and JQF, in
terms of time, work done, and overall coverage;

• We show that June has minimal user effort, with fewer than
10% of method parameters in string-controlled classes re-
quiring annotations.

2 MOTIVATING EXAMPLE

We motivate June with a common testing situation: continuous
integration. A developer is responsible for a project, and wants to
ensure that the code is well tested before every release. Unit tests
cover some amount of the code base, regression tests cover some
more, and some paths require manual testing. These manual paths
are often the system critical pathways of a project, those expected
to be most commonly used, or with the greatest density of “business
logic”. One can include ATG tools, such as EvoSuite, in the CI, to
generate tests for classes on the critical pathways.

Another technique for including ATG tools in CI is to run them
on any classes which have been changed as part of a pull request.
These twomethods are not mutually exclusive and can be combined
so that tests are generated on every pull request for all critical
classes (as defined by developers) and all classes changed as part of
the pull request. This increases confidence in code, and helps catch
bugs before the code hits production. Common practice suggests 2
minutes [21] as a reasonable time limit for ATG. Two minutes per
class quickly accumulates, however, especially when run on every
pull request to the main branch. Using June, one can reduce the
time given to an ATG tool, yet achieve the same or higher coverage.
We examine how to uses June on a class with email addresses
encoded as a string.

Alternatively, in a software setting with low code churn, where
an ATG tool runs only once to generate a test suite, June-ed code
still allows a tool to create a higher coverage test suite within the
same time frame.

Emails are all over the internet. One finds typical email handling
code, like that in Listing 1, in the SF11030 corpus of Java classes
(Section 4.2). The code in Listing 1 uses an external library to val-
idate the email address. ATG tools, such as EvoSuite [18], cannot
harvest useful information from external library calls: they are not
instrumented and usually return either a boolean or simply error.
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Figure 1: Coverage over time of original and June-ed ver-

sions of EmailAddressLocalServiceImpl. Once a class has

been June-ed EvoSuite can easily generate structurally cor-

rect strings through the JuneLib constructors. EvoSuite

hits maximum coverage of the June-ed version immedi-

ately.

Booleans carry insufficient information to calculate the ‘distance’
an input is from being satisfactory.

An alternative is to use regular expressions [40]. Internal valida-
tion via regex occurs frequently, appearing in an estimated 30-40%
of JavaScript and Python projects [13, 16]. Internal validation via
regular expression is difficult to maintain. One possible regular
expression matching an email address is in
/^[-a-z0-9~!%^&*_=+}{\?]+(\.[-a-z0-9~!$%^&*_=+}

{\?]+)*@([a-z0-9_][-a-z0-9_]*(\.[-a-z0-9_]+[a-z] ⌋

[a-z])|([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9 ⌋

]{1,3}))(:[0-9]{1,5})?$/i]/

↪→

↪→

↪→

It is unlikely that a developer would be willing to use this in code,
even in a simplified form. A regex as complicated as that above is
difficult to understand, alter, or even read. Generating strings from
a complex regex is also expensive and difficult (Section 6).

We found the email regular expression through online search.
The ease with which we found it suggests that email validation
occurs quite often in real code. In fact, we suspect that strings are
not really a wild west of unstructured inputs, but that a few different
types of structure appear again and again. One need only think of
the prevalence of JSON or XML. We took a data-driven, physical
sciences approach to examine this phenomenon. We conducted
a study to find which string-encoded latent structures, and their
frequency, we could discern in method parameters in SF110. This
study informed the design of JuneLib (Section 3.1). JuneLib’s design
should obviate the need to write custom grammar generators for
method parameters, as JuneLib’s SafeString’s are composable.

When we applied JuneLib to SF11030 we found the distribution
in Figure 2. Remarkably, the distribution of structured string types
in our corpus follows a power law. The conclusion is a SafeString
support library can be small, and a developer need only apply a
handful of its SafeStrings to get many benefits. With June, the
developer’s only requirement, falling short even of an obligation,
is usually just to decide which SafeString to use and to annotate
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Figure 2: All 11 types used in SF11030 and the percentage of

annotations for which they account.

accordingly. It is not an obligation, as adding annotations, assists,
whereas not providing them just falls back directly on the under-
lying tool. One does not even need to write a test harness, as one
would for a fuzzer.

June helpswith random test input generation by breaking a struc-
tured string down into mutable and immutable sections, leaving
to random search the smaller problem of creating local, unstruc-
tured, substrings. The June constructor simply slots the mutable
sections into the immutable framework of the June string. As the
structure and immutable elements are present by construction, it
vastly decreases the search space. This allows ATG tools to search
over valid instances of a small grammar rather than search for the
grammar itself.

Developers annotate eachmethod parameter which they want an
ATG tool to use a June type for when testing. The cognitive effort
is low: developers have knowledge of the code and many latent
grammars are obvious to the human eye. For example, it takes no
effort to identify that the parameter ‘address’ in Listing 1 is an
@EmailString. Even though the parameter is not named ‘email’,
the first line calls a method Validator.isValidEmail() which is
a clear indicator of the anticipated content of the input. This first
line will block ATG tools generating tests which cover the rest of
this method beyond the if block, until a generated input passes
email validation. As described earlier, the criteria for a valid email
is not simple, and the call to an external method provides little
information to a testing tool. Using June will unlock the region of
code beyond this input validation by ensuring valid emails are used
as inputs.

Not only is identifying the correct Java SafeString to use low
effort, but we find the same June types appear frequently. Fig-
ure 2 shows the distribution of June types used in our experiments
Section 4. There were 64 method parameters annotated with 11
different June types, with the most popular 3 types accounting for
over 50% of all annotations.

Helping ATG Tools. A compiled June-ed class contains a mixture
of June objects and strings. These objects provide information
to the ATG tool, allowing better testing efficiency. To build an
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object required as an input, ATG tools commonly call the object’s
constructor, or a static method which returns a new instance of
the object. With carefully crafted constructors and static methods,
JuneLib assists ATG tools to efficiently and effectively generate
structured string inputs.

It is still possible for ATG tools to generate random strings that
are invalid: for example, given an email address Java SafeString, a
tool can generate a string with an “@” symbol for the name. This
violates the structural requirements of an email address. June runs
validation checks, ensuring that a type error is thrown, informing
the testing tool that the input was invalid. Complex tools, such as
EvoSuite, can harness this information to avoid generating similar
invalid inputs. Evenwhen there is a “clash” of this nature, the testing
tool does not waste time testing the program under test with the
invalid input. Instead a short feedback loop between June and the
testing tool ensures a structurally valid input before executing the
program under test. There is one caveat to this. Sometimes invalid
inputs are needed to cover regions of code. Therefore each June
type has one constructor which takes a string and does not modify
it, in essence allowing any string to be used, regardless of whether
it is a valid instance of the June type.

June-ed code is very similar to the original source. We use Java
annotations [46] to provide information for the June transformation
(Section 3). The transformed code provides everything a testing tool
needs to generate correctly structured strings. June changes type
signatures and inserts calls to constructors, while still guaranteeing
interoperability with the string type via use of toString() meth-
ods. The transformation is only used for testing and has no effect
on production code, ensuring there are no possible side affects.

The EmailAddressLocalServiceImpl class from liferay, found
in SF11030 (Section 4.2), contains methods with string paramet-
ers. On the class, EvoSuite [18], an industry standard ATG tool,
achieves branch coverage of approximately 58% in four hours.
Branch coverage in the first 30 seconds is approximately 42%. It
takes a large allocation of resources to increase coverage of the
class by 16 percentage points. This is understandable: by default,
EvoSuite only “knows” that it is targeting a string, rather than
an email string, and, as we see in Listing 1, any string that is not
a valid email throws an exception. With access to the additional
information provided by June, EvoSuite can correctly generate
well-formed email addresses immediately, greatly reducing the cost
of testing this method, freeing it to spend resources on other tasks
(Section 5). It then achieves better coverage, 62%, not in 4 hours, but
in the first 30 seconds (Figure 1). This reduced cost and increased
coverage makes CI a viable option.

The developer provided annotations on three of the seven meth-
ods in the class. Each of these methods require only one annotation.
In return for this marginal effort, using EvoSuite, coverage is
greater in 30 seconds than in a full 24 hours of computation on the
un-June-ed class.

3 JUNE: DESIGN AND DEPLOYABILITY

We designed JuneLib to capture as many common latently struc-
tured string types as we could. Making JuneLib comprehensive
allows the developer to focus solely on the benefits of using it,
without the necessity of looking inside the library internals. We

discuss first the design of JuneLib, and then look at how to use
June when testing.

3.1 JuneLib Design

JuneLib is a collection of Java SafeString [28] definitions: each Java
SafeString is a class that inherits from the core SafeString class.
The SafeString class has the same methods as the native Java
String class, ensuring easy interoperability. JuneLib was construc-
ted to cover as many commonly encountered latently structured
strings as possible.

We did not initially know which Java SafeString types to in-
clude in JuneLib. In order to build a picture of the landscape, we
chose 500 classes, uniformly at random, from the initial depend-
ency filtering of SF110. We then manually examined each class to
see what strings were used and to ascertain their structure. Due
to the large number of classes to examine, we gave ourselves one
minute to learn the structure of the string. We chose this small time
budget to reflect what we believe to be a maximum realistic time
allocation for developers. Frequently, identifing the string was an
easy task, as the parameters usually had informative names (i.e.
an XML string parameter was called xml). On other occasions, we
had to understand the structure from looking at the control flow
of the method. We implemented a Java SafeString for each latently
structured string that we found in the 500 classes, a total of 28
unique Java SafeStrings. We only used 11 in the final experiments
(Section 5.2). Figure 2 show the distribution of string types as finally
used in our experimental subset.

We did not create a Java SafeString for every structured string
that we encountered. An example of this is SQL. Java already has
good mechanisms for handling SQL, and we did not want JuneLib
to encourage the bad programming practice of storing executable
code in string form. The target of SafeStrings is non-executable data
stored in strings: our design of JuneLib respects this intention.

Evaluation. As we populated JuneLib based on what we found
in SF110, we examined its generality by sampling 10 large, open
source web portal projects uniformly at random from Github. This
collected a more modern code collection that SF110. We chose web
portal projects as these reflect the programs also found in SF110,
and we did not wish to compare apples with oranges. Following
static analysis, we found that the number of methods over the entire
corpus that featured string dependencies according to June’s static
analysis was essentially the same as in SF11030, approximately 6%.
String type overlap between SF11030 and the new classes was 90%.
Interestingly, XML had been largely replaced by JSON in the more
modern corpus, indictating that even strings are subject to changing
fashions.

A developer might need a domain specific Java SafeString not
in JuneLib. In our experiments (Section 4.3), we did not need to
create any new Java SafeStrings after the initial creation of JuneLib.
A Java SafeString is a combination of recogniser, structure and
method for serialising the structure, such that the output of the
serialiser is accepted by the recogniser. What this means in practice
is that we have a type of string (i.e. email), a parser for that type, an
object that stores the string’s AST, and a special method, cast(), in
Java a synonym for toString(), that recreates the original string
from the object in a way acceptable to the parser.
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3.2 June Design

At its heart, June consists of the core library of Java SafeString
definitions, JuneLib (Section 3.1), and a Maven plugin to perform
the code transformation and manage the build process. Figure 3
shows a typical workflow. Developer input is only required in
one location, the process is otherwise automatic. To utilise the
Maven plugin, the developer need only copy the XML configuration
into the project pom.xml. This plugin performs a flow analysis to
help the developer know what and where to annotate. As long as
these types do not change (e.g. the developer stops using XML and
rewrites the code to use JSON), they can remain in the code. They
do not need to change for every test generation.

Dependency Analysis. We use Soot [43] to perform a flow depend-
ency analysis on Java classes. June identifies classes containing at
least one method that manipulates strings. By “manipulate”, we
mean that the method has at least one string parameter and one
or more conditionals access that string input. Once June identifies
string-controlled methods, the user must annotate them. Annota-
tions use the native Java annotation language. For example, the
user would change

String foo(String postcode) { ... }

to

String foo(@PostCodeSafeString String

postcode) { ... }

The addition of annotations to source code is the only direct
intervention to the source that the programmer needs to make.
For the purpose of increasing ATG efficiency, we only annotate
parameters. We show in Section 5.2 that minimal annotations are
required, only 2.1 annotations on average per class in SF11030.

June’s Program Transformation. Once the annotations are in
place, June transforms the program, using Spoon [37]. June is
a source level program transformation to facilitate error handling.
As June’s source level output must be compiled, it allows compile
time errors, such as type errors, to be caught. Further, June pre-
serves control flow in the source code and has minimal footprint.
Any errors generated are directly mappable back to the original
source code. This helps the debugging process: the developer never
needs to have direct contact with the June-ed code, unless that is
desired.

June’s transformation performs three principal tasks. First, it
desugars annotations in type signatures to replace them with the
appropriate types. Second, within a method, if a June variable
needs to be a string, the toString()method is called. Third, where
the method is called from elsewhere within the code, June checks
whether the value provided as input is already of the correct June
type. If it is not, June passes the string value into the appropriate
JuneLib constructor, and uses this new variable as input parameter
for the annotated method. The first part of the transformation is
what provides an ATG with additional information. The second
and third parts allow interoperability between methods within a
class which have been annotated.

There is a alternative method for performing the first step. This
selects a constructor from the JuneLib type, and then replaces
the string parameter with all of the parameters that constructor.
Then, June adds a new line to the start of the method to create
the Java SafeString typed variable. This option is configurable and
depends on the tool. The second and third step can then continue as
previously explained. The benefit of this method is that tools which
cannot generate objects, such as Randoop, can still reap the rewards
of June annotations. We essentially embed the constructor for the
June type in the method under test using only primitive types. To
write a new Java SafeString, no understanding of the ATG tool
being used is required. A developer need only understand the latent
structure sufficiently well that they can write a constructor which
builds valid instances. Selecting inputs which form the mutable
parts of the grammar reduces the search space and the constructor
combines these with the immutable parts to form a valid instance –
both are independent of tool/approach.

Customising June. Allowing new types to be built via the an-
notation language provides great flexibility to June. It is easy, for
example, to create a new subtype of delimited string by specifying
the delimiter. Moreover, one can specify the minimum and max-
imum number of fields. The type of the field in a delimited string is
also specifiable. At the moment, this is limited to one type, i.e. each
field must be of the same type, but we hope to relax this constraint
in future work. One could use the Java SafeString annotation

@DelimitedSafeString(min=4,max=4,delim=",")
to model a string that must have four comma separated fields.

This ability is powerful, if the previous annotation was ammended
so that all fields must be numeric the type becomes very close to an
IPv4 address. However, IPv4SafeString has additional constraints
on the fields ensuring the values are within the allowed range.

If a developer has needs which cannot be fulfilled by the existing
annotations they are able to create new Java SafeStrings. To do
so is relatively easy, they create a new class which extends the
SafeString base class and ensure that constructors, validators and
the toString() methods are all implemented. It is however im-
portant to consider how ATG tools will interact with the new type,
and therefore consider how to reduce the searchspace as much as
possible.

4 EXPERIMENTAL SETUP

We choose four ATG tools (Section 4.1) and the SF110 corpus (Sec-
tion 4.2) to investigate the efficacy of June and the tool agnosticism
of JuneLib. Our choices were guided by a few key requirements:
the fundamental precondition of our technique is that the ATG tool
uses methods as the entry points to generate unit tests, and is able
to generate inputs based on the method signature. This is because
June converts Java strings into specialised Objects, or the required
primitive inputs to create a Java SafeString. Therefore, in order for
an ATG tool to benefit from a June-ed program, it must be able
to generate method sequences and provide varying primitive and
string parameters. This allows for the creation of Java SafeStrings
that are syntactically correct.

We tested each class for much longer than is normally found
in the literature with the EvoSuite tool. This was motivated by
the desire to understand how coverage evolves over time on Java
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Figure 3: Typical workflow when using June to rewrite existing code for testing purposes. Only the annotation sequence

requires additional developer effort. The plugin performs the program transformation and calls the compiler on the desugared

code. EvoSuite has no dependency on the plugin.

classes before and after being June-ed. As we discovered, impact
was immediate (Section 5). We also tested three other ATG tools
for the more standard time of 2 minutes per class. This was done
to show June’s tool agnosticism and that even tools which cannot
generate objects can benefit from June.

4.1 Tool Selection

The natural choice of tool for testing in Java, given our precon-
ditions, is EvoSuite [31]. This is a mature, research-driven, ATG
tool founded on search-based optimisation. It uses search-based
methods, implemented as different genetic techniques, including
whole test suite generation, single branch strategy, and the Many-
Objective Sorting Algorithm (MOSA).

We then choose other tools to demonstrate June’s agnosticism,
and see how June complements different testing techniques. For
example, Randoop [34] is mature a testing tool, whose random
techniques are powerful, albeit much simplier than EvoSuite. It
requires an initial seed file for literals; it cannot generate them
itself. Furthermore, it cannot generate complex objects. Selecting
Randoop for our experiments, we show how simple techniques
with no notion of search can see improvements from our technique.

Property based testing tools, Zest/JQF [36], and various forks of
AFL [47], such as java-afl [1], mutate input files or generated input
data, well-formed or otherwise. These tools are more commonly
used in system testing rather than unit testing methods within
a class. Nonetheless, they work at both system and unit testing
levels [30]. In the hope of demonstrating June’s generalisability,
we wrote a small program to generate a test harness per method
in order to include JQF in our experimentation. The program for
writing JQF test harnesses takes each method in the class under test,
wraps it in a harness method and elevates inputs to the harness.
The entry point is the method under test. The final tool selected is
TACO [11], another search-based testing tool based which utilises
Ant Colony Optimisation in its search for inputs and sequences of
method calls. It is less mature than EvoSuite, yet provides June
another opportunity to show the impact it can have on a tool that
uses search.

4.2 Corpus Selection

The SF110 benchmark [20] consists of 23,886 classes over 110 Java
projects. SF110 builds on the SF100 corpus, which is a statistically
representative sample of 100 open-source Java projects taken from
SourceForge. This basis is supplemented by including the ten most
popular Java projects, taken from the same source. EvoSuite is

developed against the full benchmark, with results on all 23,886
classes being published with each new release [31].

To build our test corpus, we started by writing a dependency
analysis, using Soot [43], to identify classes containing at least one
method of interest. Here, a method of interest is one that contains
at least four branches and a string input which has data flow into
one or more conditional statements. This was to look for string-
controlled methods. This analysis returned 2,336 methods across
1,339 classes, approximately 6% of SF110. These classes were drawn
from 87 projects of the 100 projects, with an average of 12.4 branches
each. This same analysis is included in June (Section 3).

We chose 500 classes, uniformly at random, for the initial design
of JuneLib. We excluded these from the experiments to minimise
the risk of overfitting our string types. This left 839 classes. Given
our interest in studying the evolution of coverage over time, we
had decided to run experiments with EvoSuite for 24hrs. We chose
EvoSuite as it is the state-of-the-art in ATG for Java. Benefiting a
well-designed and well-tested tool argues strongly for the power
of June.

One day of computation to test one class is computationally ex-
pensive, especially given we conduct each experiment 10 times. As
such, it was not possible to test all 839 classes. Instead we sampled,
uniformly at random, 30 classes, which we call SF11030. We test each
class in both its original and June-ed state, resulting in 600 days of
computation just for the EvoSuite experiments. Any parameters
with a clear latent structure were annotated with the corresponding
Java SafeString annotation.

4.3 Methodology and Equipment

We conducted experiments with all four tools (EvoSuite, TACO,
Randoop and JQF) on both the original and June-ed classes. We
annotated SF11030 once, and reused the same code for all tools.
We made no changes to any tool, and each tool ran under default
settings. All experiments were run on Debian 9 with an Intel(R)
Xeon(R) CPU (E5-2620 v2 @ 2.10GHz) with 10GB of allocated RAM.

Firstly, we ran each tool for 15, 60 and 120 seconds on both
the original and the June-ed classes and repeated this 10 times.
Common practice is that 2 minutes is enough time for unit testing
ATG tools; these experiments allowed us to compare how June can
assist in this small timeframe. These experiments took 32.5 hours.
Then we ran EvoSuite on the corpus again but this time with a
timeout of 24 hours. This choice is well above previous experimental
standards (for unit testing) as found in the literature, where the
2 minute limit is more typical. For each class we completed 10
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repetitions. There were a total of 60 classes (30 original and 30
June-ed), this resulted in 14, 400 hours of computation.

4.4 Threats to Validity

Our test corpus was built by uniformly sampling from a filtered
version of SF110. SF110 is the standard bench mark used by Evo-
Suite and research using this tool [20]. We inherit all the threats
to validity of the original corpus. In particular, SF110 consists of
relatively old programs. There is no reason to assume, however,
that the performance changes seen with June are due to older cod-
ing styles or JVM version. To validate JuneLib’s construction, we
also examined more recent programs from Github and found no
meaningful difference.

Due to resource constraints, we were unable to test all classes
in the filtered corpus. We judged 30 classes, selected uniformly at
random, to be sufficient to ensure a fair sample from a filtered ver-
sion of SF110. To address internal validity, we ran each experiment
multiple times, as discussed in Section 4.3. June does not affect the
in-class control flow of the classes, or the number of branches, so
the comparison of EvoSuite’s performance on original and June-ed
classes is fair.

Finally, we do not claim generality of this method over all Java
code. It works specifically on input strings at the method level. We
sampled uniformly at random from our filtered version of SF110,
and have no reason to assume that the number of string parameters
is unusually low, or high w.r.t other Java code. The filtered corpus,
for example, contains complex string parameterised functions, with
at least 4 branches in the methods of interest. We do not test June
on simpler methods. EvoSuite and similar tools can usually cover
these shallower methods. As we show in Section 5, June allows
ATG tools to achieve higher coverage, more quickly. By ignoring
these simpler methods, we discount the fact that ATG tools takes at
least some time to penetrate a branch, even if the string structure
is simple.

5 EVALUATION

We evaluate June on 3 criteria: tool agnosticism, developer burden,
and efficiency. Efficiency itself we further subdivide into effect on
coverage, and effect on performance (i.e. speed to a coverage target).
This leads to 3 research questions: RQ1) does the June testability
transformation aid a variety of different ATG approaches; RQ2)
how arduous is June in terms of annotation burden; and finally
RQ3) does Junemake ATG tools more efficient, i.e. can they reach a
coverage target more quickly? Does June increase overall coverage?
The experiments conducted to answer these questions are detailed
in Section 4.3.

June does not add additional branches, which is the criterion
upon which we measure coverage. All comparisons are fair. There
is no meaningful time overhead, as we show that time to coverage
is substantially quicker on June-ed code.

5.1 RQ1: June Is Tool Agnostic

We use 4 different ATG tools to assess the universality of June-ed
code. EvoSuite, Randoop, and JQF are familiar tools, well tested
and well engineered. We chose a fourth tool, TACO, an ant colony

optimisation based prototype, to see whether June also benefits
ATG tools that are less mature in their engineering.

Figure 4 shows the coverage achieved in 2 minutes by four tools
on both the original and June-ed SF11030 classes. Of interest is
Figure 4, showing the mean coverage achieved over a 2 minute
period for each of the tools. We can see that for each allocated time,
all tools perform better on June-ed classes rather than the originals.
Interestingly, between 15 seconds and 2 minutes of test generation,
Randoop and JQF see little increase of coverage, compared with
EvoSuite which shows increasing coverage. One can attribute this
to the intelligent search mechanics of EvoSuite. Even still, one
can observe that June benefits all tools similarly, even enhancing
the intelligent search techniques of EvoSuite, improving coverage
from 46% to 51% given the 2minute timeout. This suggests that there
are areas in the classes for which it is hard to generate covering
inputs. This is where June helps tools.

Looking at Figure 4, we see that the mean average coverage
of SF11030 improves for all tools. Randoop, EvoSuite, JQF and
TACO’s performance improves by 3.5, 5.6, 8.4, and 6.9 percentage
points respectively, with a mean improvement of 6.1 percentage
points. June achieves these gains with no modification to the tools
themselves, no change in settings, configuration or environment.
Instead a developer wrote 63 variable annotations and then all 4
tools benefit from the June transformation.

RQ1: June is ATG agnostic

June benefits all ATG tools tested. One can test June-ed
classes with all ATG tools without making tool specific code
changes.

The real power of this agnosticism is that the improvements
seen by using June are complimentary to the existing tools. Any
improvements to the tools are independent of the improvements
provided by June. The preprocessing step can assist any ATG tool
able to take advantage of it. There is no trade off between tool
choice and June, and a developer can use multiple testing tools on
the same June-ed classes.

5.2 RQ2: June Is Lightweight

Of key importance to the usability of June is the amount of effort
required of the developer. If a tool has a negative impact on work-
load it is effectively useless. Effort comes in two forms for June:
code annotation (Figure 2) and creating new SafeStrings for JuneLib
(Section 3.2).

As June currently requires the user to annotate code, the number
and nature of annotations is critical. Over the entirety of SF11030, 63
method parameters were annotated; June’s static analysis located
these automatically (Section 3). Two researchers, neither expert in
Java, provided the annotations. We set a five minute time budget to
investigate each parameter identified by the static analysis, before
either annotating or moving on. This low budget reflects time pres-
sure on real developers in a commercial environment. Most annota-
tions took a great deal less time than this. Meaningful parameter
names, or method names which the parameter was use in, usually
provided the necessary clues as to the appropriate SafeString. Not
every string has a recognisable grammar; these we left unannotated.
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Figure 4: Average coverage over 2 minutes by (left to right) Randoop, EvoSuite, JQF and TACO. In the time budget, June-ed

classes always out perform the untransformed classes.

The final 63 annotations are just 10% of the total method parameters
present in the SF11030.

In total, SF11030 required 11 different string annotations, all of
which were already supported by JuneLib. The three most common
types account for 60% of all annotations (38 of the 63 annotations
were either numeric, delimited or XML).

RQ2: Cost to developer

To transform original SF11030 into June-ed SF11030 requires
a mean average of 2.1 annotations per class. These account
for just 10% of all method parameters across SF11030. No new
SafeString definitions were required.

5.3 RQ3: June’s Effect on Efficiency

Efficiency comes from vastly reducing the search space over strings.
ATG tools normally have no information concerning the structure
of a string input. The search space is so large that, even given the
sophistication of a tool like EvoSuite’s mechanisms, the chances
of finding the correct form of a highly structured input string are
slim or require too much time. June helps with this problem for
annotated strings.

We investigate June’s effect on efficiency first by looking at Evo-
Suite’s performance on SF11030 over 24 hours. EvoSuite reaches
95% of max coverage in 70m 30s for the original classes (point
“b” on Figure 5), impressively faster than linear. On the June-ed
classes, EvoSuite completes the same task in just 5m 30s (point
“a”). This massive increase in speed also comes with the fact that
EvoSuite’s maximum coverage is higher on June-ed classes (61.3%
versus 60.3%), as shown in Figure 5. Point ‘c’ is the point at which
June-ed classes reach greater coverage than original classes in 24
hours. One can see that EvoSuite on raw classes never achieves
the same coverage as EvoSuite on June-ed classes, and June-ed
classes approach the asymptote much more quickly. If coverage
increased linearly one would expect to reach this milestone at 22.8
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Figure 5: Change in coverage after 24 hours on EvoSuite.

Original classes tested with EvoSuite do not catch up with

June at any point, even after extensive testing time.

hours. However, coverage does not increase linearly; it becomes
increasingly harder to ’unlock’ deeper regions of code as the pre-
requisites become increasingly complex. June aims to solve a subset
of this problem, where the prerequisite is a string input.

EvoSuite operates at an average rate of 10.6 percentage points
of coverage per minute to reach 95% of max coverage on June-
ed classes, versus 0.8 percentage points of coverage per minute
on original classes. EvoSuite is clearly far more efficient on the
June-ed version of classes in SF11030.

RQ3a: Effect on Speed

June-ing increases EvoSuite max coverage and massively in-
creases the rate of coverage. Max coverage on original classes
is 60.3%, reaching this over 10 times more quickly on June-ed
classes.
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Having looked at EvoSuite’s behaviour when executed for a
long period of time, we now turn to look at more common execution
budgets for unit test generation tools. As discussed in Section 5.1,
we tested 4 different ATG tools, results for which are in Figure 4.
The mean, and median, coverage achieved by all tools increased, no
minimum was increased, or maximum reduced. Summary statistics
for each tool are in Table 1, including values for Vargha-Delaney
Effect Size, Â, which has been widely recommended for use in
software engineering research [5]. We also conducted a second
set of experiments with EvoSuite using a seed file. This is an
option available within the tool so as to leverage a pool of existing
string literals. This was included to evaluate whether the benefits
of June can simply be replicated by supplying instances of the
structured strings. In short, they cannot. Supplied with instances
of all SafeStrings used as annotations within SF11030, EvoSuite
leveraging a seed file is still improved by operating on June-ed
classes rather than the originals.

Looking at the Â effect size for different tools, we see values range
from 0.55 for Randoop to 0.69 for EvoSuite. 0.56 is considered a
small effect, 0.64 medium and 0.71 large [44]. It is therefore under-
standable that Randoop would receive the smallest positive effect
from June. Despite providing structure for strings, Randoop itself
still only provides the string "Hi!" and therefore cannot take full
advantage of June. The fact that Randoop is not designed to gen-
erate complex objects and is limited to one constructor which is
hard-coded into the method signature as a sequence of primitively
typed parameters (Section 3) further compounds the problem.

A similar case pertains for JQF, which cannot generate objects
without a generator.We did not write custom generators specifically
for JQF, as JuneLib’s design (Section 3.1) should make it unlikely
that a developer need write any new custom SafeString, unless
working in an environment with some custom data format. In the
test harness for JQF, we used the same technique as for Randoop,
changing the method signature to include primitive parameters
needed for a SafeString constructor on the first line. TACO is a
slightly smarter tool, albeit less mature, which accounts for its
higher Â. It does attempt to search over string inputs to generate
new values which cover new regions of the classes. Its Â is 0.6,
somewhere between small and medium effect. Finally, EvoSuite,
both with and without a seed file, sees the largest effect size on
June-ed classes. EvoSuite has a Â value of 0.68 and 0.69 for seeded
and non-seeded respectively. This is the upper end of medium effect,
approaching a large effect.

Given the inability of two of the tools to generate complex ob-
jects, we investigated how effect size changes when discounting
experiments that achieved zero coverage (i.e. failed to generate any
tests). EvoSuite’s Â values are relatively unchanged. TACO sees
an increase to 0.66, Randoop to 0.70 and JQF to 0.79. As can be seen
by JQF’s median coverage (Table 1), it fails to cover over half the
classes. With these removed, on the remaining classes on which
it does generate tests, JQF sees big gains from June. In this case,
June-ing takes JQF’s mean from 0.329 to 0.558 and median from
0.250 to 0.676.

For all 4 tools, coverage in 2 minutes of test generation increased
by operating on June-ed classes. The average increase in mean

Table 1: Summary statistics coverage in 2 mins, where σ is

standard deviation and Â is Vargha-Delaney Effect Size.

Tool / Class Type median mean min max σ Â

EvoSuite original 0.500 0.458 0.0 1.0 0.332 -
EvoSuite June-ed 0.542 0.514 0.0 1.0 0.357 0.69
EvoSuite Seed original 0.500 0.452 0.0 1.0 0.332 -
EvoSuite Seed June-ed 0.557 0.513 0.0 1.0 0.356 0.68
TACO original 0.077 0.224 0.0 1.0 0.288 -
TACO June-ed 0.125 0.293 0.0 1.0 0.338 0.60
JQF original 0.000 0.121 0.0 0.033 0.215 -
JQF June-ed 0.000 0.205 0.0 1.0 0.324 0.59
RAND original 0.094 0.200 0.0 0.700 0.220 -
RAND June-ed 0.095 0.235 0.0 0.960 0.291 0.55

and median was 6.1 and 3.0 percentage points respectively. Mean
coverage for EvoSuite in default configuration improved by 5.6
percentage points with the help of June (1.12x the coverage on
original classes). Being as complex and mature as it is, we con-
sider this result to demonstrate the utility and power of June. Also
worth noting is that both TACO and JQF saw larger improvements
starting from worse initial coverage. Specifically, JQF saw mean
coverage increase from 12.1% to 20.5%, a staggering 1.7x increase
in performance.

RQ3b: Effect on Coverage

By operating on June-ed classes rather than the originals,
EvoSuite’s mean coverage of SF11030 was increased by 1.12x
when given 2 minutes of test generation. The average increase
over all 4 tools was 1.13x.

6 RELATEDWORK

Strings are a universal container, but conceptually different things
are easily blurred by encoding them as strings [15]. XML is not
the same as an email address, albeit both with type String. June
permits the user to expose the conceptually diverse nature of strings
to testing tools. June differs from all existing approaches in its focus
on the fine-granular level of method parameters, rather than testing
through a program’s main entry point.

Structured Input Generation (SIG) is a problem for ATG tools [29].
The easiest approach to the SIG problem is to use randomised
and search-based methods. Randoop [35] uses feedback-directed
random testing over Java code. Its handling of strings, however, is
rather naïve, relying on an initial seed file. If no such file is present,
it uses “Hi!” as its only test input string. As Toffola et al. [42] argue,
saying “Hi!” is not enough. Godefroid et al. [23] introduce a tool for
directed automated random testing, Dart. This randomly generates
strings combining symbolic and concrete executions. The search
space, however, is still very large.

Many leading ATG tools, such as EvoSuite, use search-based
methods for string generation [3]. Search-based SIG utilises feed-
back from the SUT to guide input generation. Beyene and An-
drews [8] use metaheuristic techniques to generate strings for test-
ing Java programs. They provide an automatic translation from
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a context free grammar, or CFG, to Java objects. Their work is or-
thogonal to June in that it considers techniques that could be of
advantage to a testing tool, such as EvoSuite. Working together,
one might expect to see even stronger results. Indeed, one might
use their method to automatically generate new classes for JuneLib.

Grammars. The richest area of research for SIG, however, is
grammar-based input generation. Maurer [33] was among the first
to consider the use of an extended CFG to generate structured
test input. Yagg, by Copit and Lian[14], systematically enumerates
inputs from a user-provided grammar. To avoid potentially infin-
ite string generation, the user provides bounds on the number of
strings to generate.

Many popular system-testing fuzzers support some form of gram-
mar representation to specify input formats, e.g., Peach [2], Super-
ion [45], (a grammar-aware extension to AFL [47]) and Godefroid et
al. [22] amongst others [10]. Such grammars are typically user
provided: this process is laborious, time consuming, and error-prone.
Such tools require extra effort from the programmer to become
effective. They allow the user to define an input DSL for a program.
June, on the other hand, allows the user to identify the grammar of
specific variables. This is much more fine-grained approach, more
suited to testing over classes rather than through amain function. In
general, fuzzers require programs, i.e. an executable with an entry
point, whereas June is agnostic w.r.t both library and executable
code. Given the empirical evidence that structured strings follow a
power law (Figure 2), it is likely that the most common structured
strings are already in JuneLib.

Pythia [6] is a fuzzer that augments grammar-based fuzzing with
learning-based mutation and coverage-guided feedback. Pythia still
requires valid input seeds for learning. We anticipate that a June an-
notated corpus could provide valuable information to make fuzzing
with Pythia even more effective. Zest [36] uses a top-down fuzzing
approach with a set of generators. These generators use grammars
to create well-formed input strings. Zest requires a test harness for
a program. This is a reasonable expense for Zest’s principle use-
case, system fuzzing. June, however, is for unit testing of classes
of interest. To use Zest in a manner similar to June requires a test
harness for each class. June can have a small, re-usable library of
generators for different, re-occurring string structures but they will
be tied to a specific tool instead of generalising to different tools.
This is a greater user effort than June’s annotation obligation. June
comes with a set of small, composable, grammars, allowing it to
provide very precise information for each string parameter of a
method. Complex grammars can be built through subtyping and
nesting of JuneLib objects. Zest provides no such facility. Zest,
in keeping with other grammar approaches, focuses on using one
large grammar (i.e. JSON), making it ill-suited to discovering local
string types.

The manner is which Zest and June generate their strings is also
different. Zest’s parameteric generators generate a new instance
close to a previous instance by passing parameter sequences to gen-
erators. These sequences can then be mutated. On the other hand,
June accepts the mutable subsections of a grammar to construct a
struturally valid instance by providing the immutable scaffolding
required by the grammar. The goals of system and unit testing

tools are different, and the required observability of how values are
generated differs.

The work of Enderlin et al. [17] on grammar-based testing in
PHP introduces Praspel, a formal specification language embed-
ded into PHP. Its focus is on software validation and verification
rather than unit testing. Praspel does not ‘natively’ use Java’s an-
notation language. A standard, industry-ready, testing tool, such
as EvoSuite [12, 18–20], is all one needs to take advantage of
June. Ringer et al. [38] consider a specification language, Iorek, that
provides information to an SMT solver. They use Iorek to generate
strings for ATG. They show that the structure of a regex can some-
times increase code coverage. In contrast, June does not require
a special language to encode structural information. Generating
a string that matches a regex remains difficult when the regular
expression is complex. June simplifies this by mixing structural
elements, such as the ‘@’ symbol in an email with more malleable
substrings. We speculate that June could exploit an SMT solver for
string constraints to increase its effectiveness.

Learning Grammars. To increase the usability of fuzzing and
SIG, recent work has focused on learning input grammars, often
CFG’s [7, 9, 24, 26, 27, 41]. Upon learning the grammar, the fuzzer
can more easily create valid inputs to explore the program’s input
space. This approach is another variation on trickle-down testing.
Mathis et al. [32] present pFuzzer, which uses a test generation
technique directed at input parsers. This works via a feedback loop,
starting from an initial seed and using information harvested from
instrumentation to gather requirements. Modern approaches like
Grimoire [9], or Gramatron [41], use fuzz testing to learn the in-
put structure and then apply structure dependent mutations to
create inputs. Recently, Rossouw and Fischer [39] studied the limit-
ations introduced by grammar-based test suite construction meth-
ods, showing how they significantly bias test suites for large and
real-world programs by favouring some production rules and non-
terminals in a CFG over others. June reduces this problem, as the
SafeString forces randomly generated input to match local require-
ments, without relying on high level (and usually more complex)
CFGs at some point removed from the point of use. The role of
directed random string creation is thus more limited.

7 CONCLUSION

June’s ability to constrain the search space over structured strings
substantially improves their testability in two dimensions: ATG
tools are more efficient on June-ed code, and the mean coverage of
June-ed code is higher. June improves the ability of ATG tools to
exercise branches that are otherwise opaque, as demonstrated on 4
commonly used ATG tools.

June is a type-based testability transformation that requires min-
imal user effort, coming with a library of pre-defined, yet extensible,
SafeStrings. With the low, one-off, cost of annotation, and the large
efficiency boosts, June substantially reduces the cost of test suite
creation and maintenance for string-manipulating programs.
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