
UNIVERSITY OF THE WEST OF ENGLAND

DOCTORAL THESIS

Methods for Improving Robustness

against Adversarial Machine Learning

Attacks

Author:

Andrew MCCARTHY

Supervisory Team:

Prof. Phil LEGG

Dr. Panagiotis ANDRIOTIS

Dr. Essam GHADAFI

Prof. Larry BULL

A thesis submitted in partial fulfilment of the requirements of the University of the

West of England, Bristol for the degree of Doctor of Philosophy

in the

Computer Science Research Centre

School of Computing and Creative Technologies

This research programme was carried out in collaboration with Techmodal.

August 10, 2023

http://www.uwe.ac.uk
http://www.me.com
http://www.me.com
http://www.me.com
http://www.me.com
http://www.me.com
www.uwe.ac.uk
http://www.uwe.ac.uk

v

Publications

The work contained in this thesis is based on the following publications:

• A. McCarthy, P. Andriotis, E. Ghadafi and P. Legg, “Defending against

Adversarial Machine Learning Attacks using Hierarchical Learning: A case

study on Network Traffic Attack Classification”. Journal of Information

Security and Applications. 2023, 72, 103398.

https://doi.org/10.1016/j.jisa.2022.103398

• A. McCarthy, P. Andriotis, E. Ghadafi and P. Legg, “Functionality-Preserving

Adversarial Machine Learning for Robust Classification in Cybersecurity and

Intrusion Detection Domains: A Survey”. Journal of Cybersecurity and

Privacy, 2022, 2(1), 154-190. https://doi.org/10.3390/jcp2010010

• A. McCarthy, P. Andriotis, E. Ghadafi and P. Legg, “Feature Vulnerability and

Robustness Assessment against Adversarial Machine Learning Attacks”. 2021

International Conference on Cyber Situational Awareness, Data Analytics and

Assessment (CyberSA), 2021, pp. 1-8.

https://doi.org/10.1109/CyberSA52016.2021.9478199.

vii

“The sky is not the limit ... There are footprints on the Moon!”

Dr. Buzz Aldrin

ix

Abstract

Andrew MCCARTHY

Methods for Improving Robustness against Adversarial

Machine Learning Attacks

Machine learning systems can improve the efficiency of real-world tasks,

including in the cyber security domain; however, these models are susceptible to

adversarial attacks; indeed, an arms race exists between adversaries and defenders.

The benefits of these systems have been accepted without fully considering their

vulnerabilities, resulting in the deployment of vulnerable machine learning models

in adversarial environments. For example, intrusion detection systems are relied

upon to accurately discern between malicious and benign traffic but can be fooled

into allowing malware onto a networks. Robustness is the stability of performance

in well-trained models facing adversarial examples. This thesis tackles the urgent

problem of improving the robustness of machine learning models, enabling safer

deployments in adversarial domains. The logical outputs of this research are

countermeasures against adversarial examples. Original contributions to

knowledge are: a survey of adversarial machine learning in the cyber security

domain, a generalizable approach for feature vulnerability and robustness

assessment, and a constraint-based method of generating transferable

functionality-preserving adversarial examples in an intrusion detection domain.

Novel defences against adversarial examples are presented: Feature selection with

recursive feature elimination, and hierarchical classification. Machine learning

classifiers can be used in both visual and non-visual domains. Most research in

adversarial machine learning considers the visual domain. A primary focus of this

work is how adversarial attacks can be effectively used in non-visual domains, such

x

as cyber security. For example, attackers may exploit weaknesses in an intrusion

detection system classifier, enabling an intrusion to masquerade as benign traffic.

Easily fooled systems are of limited use in critical areas such as cyber security. In

future, more sophisticated adversarial attacks could be used by ransomware and

malware authors to evade detection by machine learning Intrusion Detection

Systems.

Experiments in this thesis focus on intrusion detection case studies and use

Python code and Python libraries: the CleverHans API, and the Adversarial

Robustness Toolkit libraries to generate adversarial examples, and the HiClass

library to facilitate Hierarchical Classification. An adversarial arms race is playing

out in cyber security. Every time defences are improved, adversaries find new ways

to breach networks. Currently, one of the most critical holes in defences are

adversarial examples. This thesis examines the problem of robustness against

adversarial examples for machine learning systems and contributes novel

countermeasures, aiming to enable the deployment of machine learning in critical

domains.

xi

Acknowledgements

I am fortunate to have received generous support throughout my research. I would

first like to thank my supervisory team: Prof. Phil Legg, Dr. Panos Andriotis, and

Dr. Essam Ghadafi, and of course Prof. Larry Bull. Thanks for your confidence and

trust in me. Phil, thank you for encouraging me in the first instance to apply for the

PhD, and for your continuous support and gentle nudges along the way. Panos, I

wish you well in your new post at the University of Birmingham. Thank you for

your guidance, your much appreciated support was unwavering throughout.

Essam, I must also wish you well in your new post at the University of Newcastle.

Your feedback has greatly improved the quality of my work. I am grateful to have

had your input and support. Larry, although you were not regularly at my

supervision meetings, you are always a friendly face around the Computer Science

Research Centre. I feel truly fortunate to have worked with you. I must also thank

and acknowledge Dr. Theodoros Spyridopoulos who encouraged me in the early

stages of this work.

My devoted thanks to Emma for her encouragement, extraordinary support and

understanding. I am very lucky to have such a wonderfully caring and supportive

partner. I am also very grateful for my close-knit family who though far away are

always supportive of my endeavours. Thanks to my mother, Monica, and my

siblings Nicola, Rachel, and Simon. I am immensely grateful for your support

throughout. I hope to see you all for many more happy get-togethers.

I appreciate all my friends. Thank you for your patience while I have needed to

focus on my academic work. I promise that I will soon be available for social events

again.

xii

I also wish to take a moment to thank my fellow researchers and friends who

listened to me and suggested practical solutions. Particular thanks to: Gwyn

Wilkinson, Ryan Fellows, James Barrett, Sadegh Bahmohabbat Chafjiri, Peter

Mayhew, Nathan Duran, Nathan Renney, Harri Renney, and Sinclair-Emmanuel

Smith.

I am grateful to all the staff at UWE, and particularly the vibrant research

communities of the Computer Science Research Centre and the Cyber Security and

Cyber Crime Group. I very much enjoyed all the thought-provoking discussions

and free exchange of ideas. Special thanks also to Helen Frisby and the Research,

Business, and Innovation Team for their excellent Research Skills Development

Programme which has undoubtedly helped me develop as a researcher.

Much of the work on this thesis was completed during the global Covid-19

pandemic. I vividly recall near empty campus during the summer months. I wish

to extend my gratitude to Craig Duffy and Ben Gaster whose friendly but brief and

socially distanced conversations and encouragement helped anchor me during

those especially difficult months.

I would like to express my thanks for the financial support from my sponsor

Techmodal. Particular thanks are due to David Evans and Daniel Jones who

provided feedback on my early research ideas.

Next, I would like to thank the many researchers who offered advice

throughout the thesis. Dr. Arash Habibi Lashkar (Canadian Institute for

Cybersecurity (CIC)) for answering my questions on CICFlowMeter. Thanks are

also due to lecturers and colleagues for their support, and informative discussion.

In particular: Richard McClatchey for his academic writing guidance, and Hisham

Ihshaish for his lively discussions on machine learning.

xiii

During my full-time PhD I have also been fortunate to work on projects with

skilled researchers. Thanks to the all the GRAIMATTER team and especially: Emily

Jefferson; Jim Smith; Richard Preen; Felix Ritchie; Alberto Blanco Justicia Alba

Crespi; Simon Rogers; Christian Cole; James Liley. Thanks also to the Trimetis

team, in particular Craig Williams, Nicola Turner, and Alastair Vincent.

Thanks to all the members of the University of the West of England Doctoral

Society (UWE Doc Soc). I am thankful to have the support of so many fellow

postgraduate researchers.

A brief note of thanks to those researchers in the field whose tireless work has

informed this research. I cite you all in the bibliography. If I have seen further, it is

because I was standing on your collective shoulders.

xv

Contents

Declaration of Authorship iii

Publications v

Abstract ix

Acknowledgements xi

1 Introduction 1

1.1 What is Machine Learning? . 2

1.2 What are Adversarial Examples and Adversarial Machine Learning? . 4

1.3 Trustworthiness of Machine Learning Systems 7

1.4 Definitions . 8

1.5 Aim of the Research . 8

1.5.1 Research Questions . 9

1.5.2 Research Objectives . 10

1.6 Research Strategy . 11

1.6.1 Experiments . 11

1.6.2 Case Study . 12

1.7 Value of the Research . 12

1.8 Research Context and Contributions . 13

1.9 Thesis Outline . 14

2 Literature Review 17

2.1 Introduction . 17

2.2 Related Works . 19

2.2.1 Secure and Trustworthy Systems 20

2.2.2 Adversarial ML in General . 20

xvi

2.2.3 Intrusion Detection . 22

2.3 Background . 25

2.3.1 Model Training . 25

Resampling . 25

Loss Functions . 26

Cross-Validation . 26

Bootstrapping . 28

2.3.2 Cyber-Physical Systems . 28

2.3.3 Contributions of this survey . 29

2.3.4 Robustness . 30

2.3.5 Common Adversarial Example Algorithms 33

2.3.6 Threat Model - Adversary Capabilities 36

2.3.7 Threat Model - Adversary Goals 37

2.3.8 Threat Model - Common Attack Methods 37

Poisoning . 37

Evasion . 38

Transferability . 39

2.4 Methodology . 39

2.5 Results . 41

2.5.1 Classification Scheme . 41

2.5.2 Adversarial Example Attacks . 41

Adversarial Examples - Similarity Metrics 42

Adversarial Examples - Types of Attack 43

Adversarial Examples - Attack Objectives 46

Adversarial Examples in Traditional Domains 47

Adversarial Examples in Cyber Security Domains 48

Adversarial Examples and Model Type 54

Adversarial Examples and Knowledge Requirement 55

Adversarial Example Constraints 56

2.5.3 Defences Against Adversarial Examples 57

Pre-Processing as a Defence against Adversarial Examples . . . 58

Adversarial Training as a Defence against Adversarial Examples 59

xvii

Architectural Defences against Adversarial Examples 59

Detecting Adversarial Examples 60

Defensive Testing . 63

Multi-Classifier Systems . 63

Game Theory . 64

Adversarial Example defences in Cyber Security Domains . . . 64

2.6 Discussion and Conclusion . 64

3 Feature Vulnerability and Robustness Assessment 67

3.1 Introduction . 67

3.2 Related Work . 69

3.2.1 Adversarial Attacks . 69

3.2.2 Architectural Defences . 71

3.2.3 Feature Selection . 71

3.2.4 Visual Analytics . 72

3.3 This Work . 73

3.4 Method . 74

3.4.1 Dataset . 75

3.4.2 Feature Analysis . 80

3.4.3 Parallel Co-ordinates . 82

3.4.4 Training the Model . 83

3.5 Results and Discussion . 83

3.5.1 Feature Selection . 88

3.5.2 Interpreting Patterns in Parallel Co-ordinates 90

3.6 Conclusion . 90

4 Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning 93

4.1 Introduction . 93

4.2 Related Work . 95

4.2.1 Adversarial Machine Learning 95

4.2.2 Threat Model . 97

4.2.3 Functionality Preserving Adversarial Examples 98

xviii

4.2.4 Intrusion Detection . 100

4.2.5 Model Training for Robust Models 102

4.2.6 Robustness . 102

4.2.7 Common Defences . 103

4.2.8 Ensemble classification . 103

4.3 Adversarial Attack of a Network Traffic Classification Model 104

4.3.1 Preparing the CICIDS2017 Dataset 104

4.3.2 Initial Classification Model . 107

4.3.3 Using the Surrogate Model to Attack the Target Model 109

4.3.4 Functionality-Preservation in Adversarial Example Generation 111

4.3.5 Summary of the Adversarial Attack Stage 114

4.4 Hierarchical Classification for Model Robustness 115

4.4.1 Hierarchical Classification . 116

4.4.2 Hierarchical Output Class . 118

Automated Hierarchical Clustering - K-Means 122

Automated Hierarchical Clustering - Agglomerative 124

4.4.3 Deployment of Hierarchical Classification 125

4.4.4 Results of Hierarchical Classification 125

4.5 Discussion . 127

4.5.1 Benefits of Hierarchical Classifiers 127

4.5.2 Hierarchies . 128

4.5.3 Clustering Techniques . 128

4.5.4 Blocking Transferability . 129

4.5.5 Effectively Attacking Hierarchies 129

4.6 Conclusion . 130

5 Further Exploration of Adversarial Machine Learning 131

5.1 Introduction . 131

5.2 Case Study 1 - Consequences of Model and Dataset 131

5.2.1 Model Choice . 131

5.2.2 Defensive Hierarchical Approach 132

5.2.3 Dataset . 133

xix

5.2.4 Features . 134

5.2.5 Classes . 136

5.3 Applying the Proposed Methods to the MQTT Dataset 136

5.4 Case Study 2 - Discrete Datatypes . 140

5.4.1 Challenges of Discrete Features 140

5.4.2 Generating Adversarial Examples for Discrete Features 141

5.4.3 Lemmatizing and Hierarchies . 141

5.5 Scalability of Adversarial Machine Learning 141

5.6 Potential Limitations . 142

5.7 Conclusion . 143

6 Conclusion 145

6.1 Introduction . 145

6.2 Knowledge Gained . 145

6.3 Evaluation . 147

6.3.1 Answers to Research Questions 147

RQ1 - To what extent can adversarial examples influence the

output of machine learning systems for intrusion

detection . 147

RQ2 - To what extent can countermeasures and defensive

approaches mitigate the effects of adversarial

examples for Intrusion Detection Systems? 151

RQ3 - To what extent is this work generalizable to other

scenarios, datasets, and data types? 154

6.4 Recommendations and Future Challenges 154

6.4.1 Future Challenges . 156

6.5 Overall Evaluation . 162

A Code Repository Links 165

B Ethics 167

xxi

List of Figures

1.1 The role of cyber security for trustworthy systems. 7

2.1 k-fold Cross-Validation. 27

2.2 A confusion matrix showing the four distinct categories of True

Positive, False Positive, True Negative, and False Negative. 31

2.3 End to End Pipeline for Network Intrusion Detection System. 35

2.4 Common Adversarial Machine Learning Attacks. 37

2.5 Preferred Reporting Items for Systematic Meta-Analysis. 40

2.6 Common Machine Learning Tasks in Cyber Security. 50

2.7 Common Defence Types against Adversarial Machine Learning. 57

3.1 Benign - This series of violin plots shows the wide distribution of

features in the benign class. Some feature values are statistically

more likely as represented by the wider sections of the violin plots.

The length of the violin plots illustrate the wide scope of features in

the benign class. 76

3.2 DDoS - This series of violin plots shows the narrower distribution of

features in the DDoS class. The range is narrower and more evenly

distributed than the features in the benign class. This plot illustrates

that the distribution of DDoS features overlaps with the distribution

of the features in the benign class. Examining the white space around

the distributions of the features exposes a margin that could

potentially be exploited by adversarial examples. 77

xxii

3.3 The violin plots in this figure show the differences between the

distributions of the three features: Flow IAT Mean, Fwd IAT Mean,

and Bwd IAT Mean. This plot illustrates that the distribution of

DDoS features overlaps with the distribution of the features in the

benign class. Examining the white space around the distributions of

the features exposes a margin that could potentially be exploited by

adversarial examples. 79

3.4 These plots show three common dimensionality reduction methods

with improving clustering of the benign and malicious classes: PCA,

t-SNE, and UMAP. The malicious samples are represented as

dark-blue, and the benign samples are represented as light-blue. The

complexity of the classification problem is illustrated by the benign

and malicious samples occupying the same subspace. 81

3.5 These 3D plots show three common dimensionality reduction

methods: PCA, t-SNE, and UMAP. The malicious samples are

represented as dark-blue, and the benign samples are represented as

light-blue. The plots show improved clustering of the benign and

malicious classes in the higher dimensional 3D space. 81

3.6 This parallel coordinates plot of the distributions of benign and

perturbed DDoS focuses on the IAT features of both classes. The

distribution of the DDoS features is narrower than the corresponding

distribution of the benign features, indicating that the distributions

of DDoS features overlap with the distributions of benign features.

On this basis successful adversarial examples might suitably perturb

DDoS samples such that they could masquerade as benign samples. . . 82

3.7 In these figures the features are unsorted per original dataset. Plot

(A) shows the relationship between features and accuracy. Plot (B)

shows the relationship between features and the MSE. The more

features are present, generally the size of perturbation is smaller. As

fewer features are selected the perturbation size trends toward larger

values. Small perturbations can be more easily overlooked and larger

perturbations are more overt and therefore more easily detectable. . . 85

xxiii

3.8 In these figures the features are sorted by most importance. Plot (A)

shows the relationship between features and accuracy. Plot (B) show

the relationship between features and MSE. The plot resembles an

imperfect saw tooth. Relatively small perturbations are necessary

until a sequence of spikes which are followed by a gradual declines

in perturbation size. Individual features may have an effect;

however, the grouping of features may influence the perturbation

size more. 86

3.9 Accuracy and average perturbation per feature for feature sets of

decreasing size, with e values of: 0.05, 0.10, and 0.15. 89

4.1 This plot shows paired t-test power calculation curves for effect sizes

between 0.046 and 0.8 and sample sizes up to 7, 500. The smallest

effect of 0.046 meets a statistical-power of 0.8 with 7, 500 samples. For

larger effect sizes, the statistical-power threshold of 0.8 is comfortably

accommodated by 7, 500 samples. 106

4.2 Confusion matrix for (a) Target model (Scikit-learn), (b) Surrogate

model (Keras). 109

4.3 Untargeted JSMA (q=0.05 and g=0.02) against (a) Target model (Scikit-

learn), (b) Surrogate model (Keras). 109

4.4 Targeted JSMA for benign class (q=0.05 and g=0.02) against (a) Target

model (Scikit-learn), (b) Surrogate model (Keras). 110

4.5 Parallel Coordinates to show the distribution of original features

versus JSMA features (q = 0.1 and g = 1.0). It can be observed that

the perturbed JSMA features significantly exceed the expected range

of the original traffic features. 111

4.6 Parallel Coordinates to show the distribution of original features

versus JSMA features (q = 0.05 and g = 0.02). The perturbed JSMA

features are within the expected range of the original traffic features. . 112

4.7 Targeted JSMA for benign class (q = 0.05 and g = 0.02) against (a)

Target model (Scikit-learn), (b) Surrogate model (Keras). 112

xxiv

4.8 Local Classifier Per Node (LCPN): This diagram illustrates the local

classifier per node technique, wherein binary classifiers (represented

as dashed squares) are trained for each class (represented as circles)

within the hierarchy, excluding the root node. 119

4.9 Local Classifier Per Parent Node (LCPPN): This diagram depicts the

local classifier per parent node methodology, where multi-class

classifiers (represented as dashed squares) are trained for each parent

node present within the class hierarchy. Note that leaf nodes (classes

without any children) are classified at the parent node. 120

4.10 Local Classifier Per Level (LCPL): This diagram illustrates the local

classifier per level technique, where multi-class classifiers (depicted

as dashed rectangles) are trained for each level within the hierarchy. . 121

4.11 Hierarchies assembled by human reasoning: (a) original data set

structure, (b) researcher-defined structure. Attempted classes are

denoted by ⇤ . 122

4.12 Hierarchy based on divisive clustering: k-means. 122

4.13 Hierarchies from agglomerative clustering: (a) Ward, (b) Average, (c)

Complete, and (d) Single. Attempted classes are denoted by ⇤ 123

4.14 Bar plot to show robustness improvement by comparing appropriate

F1-Score metrics across different LCPPN hierarchies. It can be seen

that all hierarchies have improved F1-Scores under adversarial

conditions. A decrease in the difference between F1-Scores for

perturbed and unperturbed samples is visible. Two important results

are highlighted: the orange horizontal line indicates the mean

F1-Score for ‘Flat MLP JSMA’ across the hierarchies. The brown

horizontal line indicates the mean ‘Hierarchy Layer 2 JSMA’ across

the hierarchies. All hierarchies also improve the F1-Score when no

adversarial traffic is present. 126

4.15 Confusion matrices for (a) coarse layer and (b) fine layer that shows

fewer misclassifications for the original dataset when utilising a

hierarchical classification model. 127

xxv

5.1 LCPN F1-Score (a) and LCPPN F1-Score (b) by Model. 133

5.2 Parallel Coordinate Plots for (A) Small Perturbation to

approximately three features - q = 0.05g = 0.07, (B) Larger

Perturbation to approximately one feature - q = 0.1g = 0.04, (C)

Larger Perturbation to approximately three features - q = 0.1g = 0.07. 135

5.3 Hierarchies Built from MQTT Dataset. 139

5.4 For all the hierarchies the hierarchical defence improves F1-Score

when compared with the flat F1-Score. 139

B.1 Completed Research Ethics Form. 167

xxvii

List of Tables

1.1 Types of Machine Learning and their Major Applications. 3

1.2 Definitions of Key Terms in Cyber security for Trustworthy Systems. . 9

2.1 Datasets used in the literature. 24

2.2 Robustness Metrics. 33

2.3 Libraries for Generating Adversarial Examples. 34

2.4 Topics and associated search terms used in this survey. 39

2.5 Chronologically ordered summary of adversarial example attacks. . . 42

2.6 Computational Complexity of Common Adversarial Example

Algorithms. 44

2.7 Functionality-Preservation in Cyber Security and Intrusion Detection. 49

2.8 Chronologically ordered summary of defences against adversarial

examples. 57

3.1 CICIDS2017: Traffic Types and Number of Samples 75

3.2 The Feature-set of 76 features used to train the initial model. 84

3.3 Feature-set of 20 most important features. 87

4.1 The CICIDS2017 dataset. For each data file (ordered by date), the table

shows the attack types covered, the number of class samples for each

attack, and the number of benign samples within each data file. The

dataset ratio column shows classes considered over-represented at a

per file level are still under-represented in the dataset as a whole when

the dataset ratio is calculated using the sum of all benign samples. . . . 105

4.2 Target Model and Surrogate Model Classification Reports. 108

4.3 Percentage of successful attacks, target=‘benign’, by class (q = 0.05 &

g = 0.02). 113

xxviii

5.1 Model Types sorted by Adversarial Generalisation Error (F1-Score). . . 132

5.2 MQTT: Target Model Classification Report. 137

5.3 Flat Classifier: MQTT Successful Attack Percentage with JSMA

(theta= 0.05, gamma= 0.02). 137

5.4 Flat Classifier: MQTT Successful Attack Percentage with JSMA

(theta=0.10 gamma=0.07). 138

5.5 Ward Hierarchy Classifier Layer 1 (Coarse): MQTT Successful Attack

Percentage with JSMA (theta=0.10 gamma=0.07). 138

5.6 Ward Hierarchy Classifier Layer 2 (Fine): MQTT Successful Attack

Percentage with JSMA (theta=0.10 gamma=0.07). 138

xxix

List of Abbreviations

AD Anomaly Detection

Adam Adaptive Moments

AE Adversarial Example

AI Artificial Intelligence

AIA Attribute Inference Attack

ANN Artificial Neural Network

API Application Programming Interface

APT Advanced Persistent Threat

AUC Area Under Curve

CFA Cuttlefish Algorithm

CNN Convolutional Neural Network

COCO Common Objects in Context

CPS Cyber Physical Systems

DDoS Distributed Denial of Service

DL Deep Learning

DoS Denial of Service

DT Decision Tree

FGSM Fast Gradient Descent Method

FPR False Positive Rate

GA Genetic Algorithm

GAN Generative Adversarial Network

HBBC Histogram Based Boosting Classifier

ICS Industrial Control System

IDS Intrusion Detection System

IoT Internet of Things

xxx

JSMA Jacobian Saliency Map Attack

KNN K-Nearest Neighbour

L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno

LCPL Local Classifier Per Level

LCPN Local Classifier Per Node

LCPPN Local Classifier Per Parent Node

LGBM Light Gradient Boosting Machine

LR Logistic Regression

LSTM Long Short Term Memory

MIA Membership Inference Attack

ML Machine Learning

MLP Multi Layer Perceptron

MQTT Message Queuing Telemetry Transport

NB Naïve Bayes

NIDS Network Intrusion Detection System

NLP Natural Language Processing

PE Portable Executable

PSO Particle Swarm Optimization

QDA Quadratic Discrimination Analysis

RF Random Forest

RFE Recursive Feature Elimination

RNN Recurrent Neural Network

RMSProp Root Mean Squared Propagation

ROC Receiver Operator Characteristic

SGD Stochastic Gradient Descent

SVC Support Vector Classification

TPR True Positive Rate

UAP Universal Adversarial Perturbation

XGBoost eXtreme Gradient Boosting

ZOO Zeroth Order Optimization

xxxi

List of Symbols

Symbol Name

e Epsilon: FGSM parameter controlling perturbation size.

g Gamma: JSMA parameter controlling proportion of features.

q Theta: JSMA paramater controlling the perturbation size.

L0 Number of altered pixels.

L2 Euclidean distance (root-mean-square).

L• Maximum change to any of the coordinates.

xxxiii

For all those who want to make

better decisions. . .

1

Chapter 1

Introduction

Cyber security and the protection of associated computer and network systems is

fundamental for most organizations. The recent Cyber Security Breaches survey

conducted by the UK Government in 2022 found that 39% businesses had

experienced a cyber-attack in the last 12 months. Across organisations reporting

material losses the average estimated cost of a cyber-attack was £4,200. The cost

increases to £19,400 when considering only medium and large businesses.

Moreover, the full cost of cyber-attacks may be under reported because

organisations find it harder to consider indirect costs. [1]. The sheer scale and

magnitude of modern cyber-attacks requires automated response and intervention.

Machine learning (ML) is becoming widely used for the detection and classification

of malicious network activity to aid the response to cyber-attacks [2][3][4][5], where

a mathematical model is learned to relate input feature observations to a set of

possible output classes. For the classification of network traffic attacks, input

features may be derived from the observed network communications and packet

header information, which may be indicative of either benign traffic, or a malicious

attack such as a Denial of Service, a Remote Access Trojan, a BotNet, or other

network-based attack.

Whilst machine learning can help manage this wealth of information, it is not

without limitation. Recent years have seen a growing interest in the domain of

adversarial machine learning [6] that seeks to identify well-crafted examples that

knowingly force misclassification by the model. This has been particularly effective

in the computer vision domain since the manipulation of few input features (i.e.,

2 Chapter 1. Introduction

image pixels) may inadvertently adjust the performance of the model without

being noticeable to the human observer, due to small perturbations of pixel

intensity values. A fundamental challenge in adversarial learning is to determine

which features are most susceptible such that a minimal change can result in

misclassification by the model, whilst the overall input to the model appears

unchanged or unaltered to the human observer. For example, a parallel can be

drawn to the challenge of network traffic classification, where a malicious attack

should exhibit the same characteristics such that the activity is still deemed

malicious, whilst identifying the minimal amount of perturbation in the derived

features such that the model believes the observation is benign, hence resulting in

misclassification. This characteristic is hence referred to as functionality preservation.

1.1 What is Machine Learning?

Machine learning is a branch of artificial intelligence that uses the statistical

properties of a set of observations to learn a function that maps an input to the most

probable or desirable output. This enables a computer model to learn without

being specifically programmed. The field of machine learning is partitioned into

four main types of machine learning: supervised, unsupervised, semi-supervised,

and reinforcement learning. In supervised learning data values and labels are

provided through finding patterns in the data a function is generated that maps the

input values to the most probable label. In semi-supervised learning only some of

the data values have labels. Unsupervised learning involves the analysis of data

without predefined labels, where patterns are inferred to classify samples into

distinct clusters. Reinforcement learning can model a set of states and actions.

Given an input state the model learns the most beneficial action by maximising a

reinforcement or reward. The major applications for each type of machine learning

are shown in Table 1.1.

One popular definition of machine learning, by Tom Mitchell [7] follows:

A computer program is said to learn from experience E with respect to

some class of tasks T, and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E.

1.1. What is Machine Learning? 3

Type of Machine Learning Major Applications

Supervised Intrusion Detection; Image and Object
Recognition; Identifying and filtering Spam
and Malware.

Semi-Supervised Speech Recognition; Text and Document
Classification; Self Training.

Unsupervised Anomaly Detection; Clustering; Visualisation;
Dimensionality Reduction.

Reinforcement Learning Autonomous Robotics; Autonomous Agents;
Recommendation Systems.

TABLE 1.1: Types of Machine Learning and their Major Applications.

Classification tasks examine the data values of previously unseen data and

predict the most likely class. Machine learning classification has been applied to a

range of tasks. For example, identifying handwritten digits, detecting fraudulent

credit card activity, determining whether a tumour is benign or malignant based on

medical imagery, the identification of spam e-mails and text messages. Machine

learning has become widely adopted as a strategy for dealing with a variety of

cyber security issues. Cyber security domains particularly suited to ML include:

intrusion detection and prevention [8], network traffic analysis [9], malware

analysis [10] [11], user behaviour analysis [12], insider threat detection [13], social

engineering detection [14], spam detection [15], detection of malicious social media

usage [16], health misinformation [17], climate misinformation [18], and more

generally “Fake News” [19]. These are essentially classification problems.

The performance of a model can be evaluated through a range of metrics,

common metrics are: accuracy, precision, recall, and F1-Score. Classification

accuracy works well only if there are equal number of samples belonging to each

class. Precision measures the number of class predictions that actually belong to

that class. Recall measures the number of class predictions made out of all

examples of the class in the dataset. F1-Score is the harmonic mean of Precision and

Recall. The F1-score is the harmonic mean of precision and recall, taking both

metrics into account. It is considered a more robust metric because it punishes

extreme values. When considering classification tasks, it is important to consider

imbalanced datasets and the problems of over-fitting to the training data.

4 Chapter 1. Introduction

There are many types of classification models ranging from simple to more

complex. Here the most commonly used classification models are introduced.

Logistic Regression uses a logistic function to model the probability of a binary

outcome. Naive Bayes is a probabilistic model relying on Bayes’ Theorem to predict

the probability of a class given a set of features. Decision trees are a hierarchical

model that splits the data into increasingly smaller subsets based on the features.

Random Forest is an ensemble model composed of multiple decision trees. Support

Vector Machines separate data into classes by finding the optimal hyperplane

between two classes in high-dimensional space. k-Nearest Neighbours classifies

data based on the majority class of its k nearest neighbours. Neural Networks use a

set of interconnected neurons to learn underlying patterns in the data. Logistic

Regression, and Support Vector Classifier (SVC) are typically suited to binary

classification problems. Whereas Decision Trees, Random Forests, k-Nearest

Neighbours, and Neural Networks (NN) are also suited to multi-class problems.

Dhar et al. [20] note that few studies analyze the complexity of models and the

associated trade-offs between accuracy and complexity. The complexity of an

algorithm is often expressed in Big-O notation. They review models, noting that the

number of features and activations affects both memory usage and computational

complexity. Moreover, they argue that accuracy alone cannot justify the choice of

model type, particularly in regard to Deep Neural Networks (DNN); however, the

risks involved for inaccurate predictions will vary across domains. In security

domains, correct classification may be considered critical, possibly assuaging

concerns regarding computational complexity of models.

1.2 What are Adversarial Examples and Adversarial Machine

Learning?

In essence adversarial examples are carefully crafted to cause a machine learning

model to make a mistake. Adversarial machine learning is a research field that aims

to make machine learning models more robust and secure against adversarial

1.2. What are Adversarial Examples and Adversarial Machine Learning? 5

examples. Researchers in adversarial machine learning aim to understand how

machine learning models can be attacked and develop defences against attacks.

Despite society’s reliance and trust in ML systems, the inherent nature of machine

learning, learning to identify patterns, is in itself a potential attack vector for

adversaries wishing to circumvent ML-based system detection processes.

In order to introduce the field more fully, a mathematical definition of machine

learning models is now presented. Papernot et al. [21] state that most ML models

can be described mathematically as functions h0(x) with an input x and

parameterized by a vector q 2 Q. Here Q refers to the set of all possible

configurations of a given model. For example, consider a linear regression model

where Q is all possible real numbers for the slope and intercept of the linear

equation. When considering a specific neural network with a fixed number of

layers and neurons Q describes the range of possible weights. It should be noted

that some models such as K Nearest Neighbor are non-parametric. The output of

the function h0(x) is the model’s prediction of some property of interest for the

given input x. The input x is usually represented as a vector of values called

features. The space of functions h(x) = x 7! h0(x)|q 2 Q defines the set of

candidate hypotheses. In supervised learning, the parameters are adjusted to align

the model predictions h0(x) with the expected output y. This is achieved by

minimizing a loss function that captures the dissimilarity of h0(x) and the

corresponding y. Model performance must be validated against a separate

validation dataset to confirm if the model also generalizes well for unseen data.

Classification ML systems find a function (f) that matches a vector (~x) to its

corresponding class (y).

Szegedy et al. [22] discovered naturally occurring and intriguing properties of

neural networks, discovering that imperceptible perturbations of the input values

can cause differences in the output of the neural network. Machine learning

systems are therefore vulnerable to carefully crafted noise, known as adversarial

examples [23]. Adversarial examples are problematic for many ML algorithms and

models including Random Forests (RF) and Naive Bayes (NB) classifiers.

6 Chapter 1. Introduction

Adversarial examples were first discovered on Artificial Neural Networks (ANN)

which are known to be highly susceptible to adversarial examples. Deep Neural

Networks (DNN) are a type of Artificial Neural Network with a number of hidden

layers. DNNs are particularly effective at handling complex classification tasks,

such as intrusion detection. Artificial Neural Networks, especially Deep Neural

Networks are a primary focus of this work because they are used for cyber security

tasks and are highly susceptible to adversarial examples. Improving robustness in

these models could have significant impact. Artificial Neural Networks are

inspired by the network of neurons in the human brain. ANNs are useful because

they can generalize from a finite set of examples, essentially mapping a large input

space (infinite for continuous inputs) to a range of discrete outputs. Unfortunately,

in common with other ML algorithms, neural networks are vulnerable to attacks

using carefully crafted perturbations to inputs, including evasion and poisoning

attacks. In recent work, carefully crafted inputs described as “adversarial

examples” are considered possible in ANN because of these inherent properties

that exist within neural networks [22], such as:

1. The semantic information of the model is held across the model and not

localised to specific neurons.

2. Neural Networks learn input-output mappings that are discontinuous (and

discontiguous).

These properties mean that even extremely small perturbations of an input

could cause a neural network to provide a misclassified output. Given that neural

networks have these properties, it is reasonable to expect that biological neural

networks will also suffer misclassifications and/or to have evolved mitigations.

Human brains are more complex than current artificial neural networks yet suffer a

type of misclassification (illusory perception), in the form of face pareidolia [24]

[25]. This strengthens the case that the properties of neural networks are the source

of adversarial examples (AE) in neural networks. In cyber security related domains,

it has been seen how adversaries exploit adversarial examples, using

carefully-crafted noise to evade detection through misclassification [26] [27].

1.3. Trustworthiness of Machine Learning Systems 7

1.3 Trustworthiness of Machine Learning Systems

The previous sections have introduced machine learning and the problem of

adversarial examples. As machine learning systems are used in increasingly

diverse areas including defence, health, and government. It is important that these

systems can be trusted. Hankin and Barrèere [28] note that there are many aspects

to trustworthiness. Their work focuses on cyber security of industrial control

systems (ICS). The focus of this work is similarly on cyber security; that is that a

system should be protected against adversaries. Other interrelated aspects of

trustworthiness include safety, reliability, and correctness. Correctness is

determined by verifying the systems against formal specifications. Although these

aspects can be considered independently there is a large intersection. In relation to

computer science, safety and security are distinct considerations. Safety is often

established via rigorous formal methods and validation processes; however, a

system designed to be safe may notwithstanding be insecure and susceptible to

security vulnerabilities. Trustworthiness encompasses many aspects, as shown in

Figure 1.1 adapted from [28].

FIGURE 1.1: The role of cyber security for trustworthy systems.

If machine learning systems are to be useful, they must be able to be trusted.

Unfortunately, adversaries ranging from solo hackers to state-sponsored Advanced

Persistent Threats (APTs) have interest in attacking these systems. Successful

8 Chapter 1. Introduction

attacks against neural networks mean that unprotected systems are vulnerable and

therefore dangerously deployed in application domains.

Incorrect classification of network traffic could allow malware onto public and

private networks. Moreover, the increasing size of data being processed by

machine learning systems enlarges the attack surface available to attackers while

obfuscating the attack to humans. If these vulnerabilities are unaddressed future

mature attack methods will facilitate more destructive attacks. There is an urgent

need for research in this area. One key area of research is that of robustness. The

robustness of a well-trained model relates to its performance when facing

adversarial examples. That is, the ability of a model to continue to make accurate

predictions in the presence of adversarial examples. This thesis explores the

robustness of machine learning systems, and in particular neural networks, aiming

to understand the principles behind successful attacks and consider mitigations in

key domains of network intrusion detection. Improving robustness of machine

learning systems enables safer deployment across a wider range of domains.

1.4 Definitions

It is appropriate to clarify some of the concepts and terms by defining some key

terms in Table 1.2 (adapted from [29]).

1.5 Aim of the Research

The aim of this research is to investigate to what extent machine learning systems

can be compromised and which sensible methods can improve robustness in

machine learning systems. This thesis demonstrates vulnerabilities of machine

learning systems and how they might be mitigated. A recognized trade-off exists

between accuracy and robustness of machine learning systems. This research aims

to discover ways to improve the robustness of machine learning models whilst

1.5. Aim of the Research 9

Metric Definition Source

Dependability The ability to avoid service failures that are more
frequent and more severe than is acceptable.

[30]

Privacy Assurance that the confidentiality of, and access to,
certain information about an entity is protected.

[31]

Safety Absence of catastrophic consequences on the user(s)
and the environment.

[30]

Security Making all aspects of a computing system, including
both physical and cyber systems, free from danger
or threats by preserving availability, integrity, and
confidentiality.

[32]

Reliability Continuity of correct service. [30]
Resilience Ability to withstand system degradation by reducing

the duration and magnitude of disruptions and
by recovering a normal, functional system state
persistently within acceptable delay and cost.

[33]

Robustness The performance of well-trained models facing
adversarial examples.

[34]

Trust Subjective belief that a trustee will behave as a trustor
expected when taking risk under uncertainty based
on the cognitive assessment of past interactions with
the trustee.

[35][36]

TABLE 1.2: Definitions of Key Terms in Cyber security for
Trustworthy Systems.

retaining acceptable accuracy. Sensible and scalable defences are considered that

could be used to mitigate the effects of adversarial examples.

1.5.1 Research Questions

The research questions are as follows:

• RQ1: To what extent can adversarial attacks influence the output of machine

learning systems for intrusion detection systems?

• RQ2: To what extent can countermeasures and defensive approaches mitigate

the effects of adversarial examples for intrusion detection systems?

• RQ3: To what extent can attacks and defences be generalized to other

scenarios, datasets, and data types?

10 Chapter 1. Introduction

1.5.2 Research Objectives

The Research Objectives are:

• RO1a: Demonstrate that adversarial examples are applicable to domains

other than the visual domain and in particular can be applied to intrusion

detection domain. The effect of adversarial examples, and proposed

countermeasures will be principally determined through measuring and

comparing the generalisation-error robustness metric using F1-Score, and

accuracy of the machine learning models under normal conditions and under

adversarial example conditions. This relates to RQ1.

• RO1b: Demonstrate that the effect of adversarial examples can be mitigated

through the use of feature selection. The effect of mitigations is determined

principally through measuring the unmitigated accuracy of a model under

adversarial example conditions and examining the difference between the

accuracy achieved by a model with applied mitigations. This relates to RQ1.

• RO2 Evaluate current research and provide future research directions or

research challenges. This will be measured and achieved through the

collection of relevant papers, and the production of a survey paper discussing

research challenges for adversarial example attacks and defences including

the application in the cyber security domain. Through the analysis of the

literature, the aim is to find answers and information relevant to RQ1 and

RQ2.

• RO3: Assess the robustness of neural networks used in intrusion detection

domains. This will be measured through analysis of a range of experiments

using appropriate intrusion detection datasets. These experiments will help

answer RQ1 and RQ2.

• RO4: Assess how well attacks and defences generalize to other scenarios,

datasets and datatypes. This relates to RQ3

• RO5: Formulate generalizable recommendations to improve robustness

against adversarial attacks. This will be measured by the production of a list

1.6. Research Strategy 11

of recommendations drawn from this research. This objective relates to all the

research Questions.

1.6 Research Strategy

This section details the research strategy. The research questions are addressed by

designing and executing experiments, in order to create new knowledge. The

experiments examine the effect on robustness metrics, typically F1-Score. The

hypothesized conditions are isolated, and subsequently the results are compared

with the experimental control conditions and results. Experiments and case studies

are used to effect the research objectives and ultimately answer the Research

Questions.

1.6.1 Experiments

A selection of experiments is executed to determine the robustness of machine

learning models against adversarial examples. All experiments are developed in

Python with the following libraries: CleverHans, Adversarial Robustness Toolbox,

HiClass.

The experiments and hypotheses are:

• Feature Vulnerability and Robustness Assessment against Adversarial

Machine Learning Attacks using Recursive Feature Elimination (RFE) in

Chapter 3.

H0: Deselecting features using RFE does not improve accuracy under

adversarial examples.

H1: Deselecting features using RFE improves accuracy under adversarial

examples.

• Defending against adversarial machine learning attacks using hierarchical

learning: A case study on network traffic attack classification in Chapter 4

H0: Hierarchical Classifiers do not improve robustness as measured by

F1-Score.

H1: Hierarchical Classifiers improve robustness as measured by F1-Score.

12 Chapter 1. Introduction

1.6.2 Case Study

This thesis employs the use of intrusion detection case studies. The author’s choice

to use intrusion detection case studies is logical and appropriate. It is considered

that an intrusion detection system is likely the initial entry point to a system and

the first barrier that adversaries will encounter. The research uses the CICIDS2017

[37] dataset and derivatives [38] to evaluate the use of machine learning models for

Intrusion Detection.

1.7 Value of the Research

Machine learning systems are impressive and are improving the efficiency of

real-world tasks. Machine learning is increasingly supporting much technological

progress. Indeed, machine learning algorithms are present in almost every aspect

of modern living. Slowly but surely, machine learning systems are increasingly

used to assist in making decisions in critical areas including hospitals [39] and the

criminal justice system. To what extent should the output of a machine learning

system be trusted? Unfortunately, as previously discussed machine learning

systems are vulnerable to adversarial examples. There is an urgent need for

research on the susceptibility of machine learning systems to adversarial attacks.

Researchers and policy makers cannot neglect the risks and implications of

expanding use of machine learning systems into adversarial domains. This chapter

introduced how machine learning systems are vulnerable. Attackers wish to exploit

these vulnerabilities while defenders aim to secure against the vulnerabilities. In

this way, an adversarial arms race exists between adversaries and defenders. The

recent SolarWinds supply chain attack [40] [41] identified in December 2020

indicates the reliance that organisations have on intrusion detection software, and

the presence of Advanced Persistent Threats with the expertise and resources to

attack organisations’ network defences. Adversarial machine learning is a critical

area of research. If not addressed, there is increasing potential for novel attack

strategies that seek to exploit the inherent weaknesses present within machine

learning models. For this reason, this research addresses the issues related to the

1.8. Research Context and Contributions 13

robustness of machine learning models against adversarial attacks across the cyber

security domain, where problems of functionality-preservation are recognized.

Although a case study of a network-based intrusion detection system (NIDS) is

used, these issues might be applicable in other areas where ML systems are used

such as industrial control systems and cyber-physical systems.

In the domain of network traffic analysis, it is recognized that adversaries need

to evade detection methods. A suitable network firewall will reject adversarial

traffic and malformed packets while accepting legitimate traffic. Therefore,

successful adversarial examples should be crafted to comply with domain

constraints such as those related to the transmission control protocol/internet

protocol (TCP-IP) stack. Moreover, adversaries wish to preserve the functionality of

their attacks. A successful attack should not lose functionality at the expense of

evading a classifier.

There is an arms race in cyber security where adversaries, including

well-resourced Advanced Persistent Threats may eventually overcome most

security systems. This thesis contributes to the arms race, forcing adversaries to

expend more time and resources to attack machine learning systems.

1.8 Research Context and Contributions

The motivations of this research and the resultant thesis stem back to my Master’s

thesis as a requisite part of completing my M.Sc. in Cyber Security at UWE in 2019.

In this research I explore the realm of adversarial machine learning where

carefully-crafted noise is added to inputs. Such inputs are known as ‘adversarial

examples’ and can cause misclassification. Thus began my deep dive into both the

broad concepts and the precise technical details. The fact that machine learning

systems are susceptible to adversarial examples raises broad concerns about the

security, trustworthiness, and suitability of machine learning in adversarial

environments. These concerns will increase with greater and wider deployment of

14 Chapter 1. Introduction

machine learning systems. This thesis explores the implications of adversarial

machine learning, the main contributions are:

• A survey of adversarial machine learning in the cyber security domain.

• A generalizable approach for assessing feature vulnerability and robustness.

• A constraint-based method of generating transferable functionality-preserving

adversarial examples in an intrusion detection domain.

• A novel defence against adversarial examples employing feature selection and

Recursive Feature Elimination.

• A novel defence against adversarial examples employing Hierarchical

classification.

1.9 Thesis Outline

The thesis is structured as follows:

• Chapter 2 presents a systematic literature survey of adversarial machine

learning with a focus on the relatively new research topic of

functionality-preserving adversarial examples in the cyber security and

intrusion detection domains. Attacks and current defences are examined. The

contents of this chapter form the work published in the Journal of Cyber

security and Privacy [42].

• Chapter 3 presents my ablation study research toward identifying and

mitigating the vulnerability of machine learning systems. I demonstrate a

generalizable approach to assess the vulnerability and robustness of features

in a machine learning context. The chosen approach systematically eliminates

vulnerable features whilst maintaining acceptable classification accuracy. The

contents of this chapter are published and were presented at the 2021

International Conference on Cyber Situational Awareness, Data Analytics and

Assessment (CyberSA) [43].

1.9. Thesis Outline 15

• Chapter 4 presents research mitigating the effects of adversarial examples and

proposes a hierarchical learning approach as a defensive strategy

independent of attack algorithm. The results reveal that hierarchies can help

models perform better under adversarial conditions, in comparison to their

equivalent flat model. The contents of this chapter are published in the

Journal of Information Security And Applications [44].

• Chapter 5 further explores adversarial machine learning and how this work

generalizes to other scenarios, conditions, settings, and situations.

• Chapter 6 concludes this thesis, providing: A description of new knowledge

gained, an evaluation of how far each research question has been answered,

appropriate recommendations. The research challenges and future work are

discussed, and finally an overall evaluation of the thesis is provided.

17

Chapter 2

Literature Review

Following the introduction of the security and robustness of machine learning in

Chapter 1, this chapter now presents a review of the existing literature. This

literature review examines the main issues surrounding adversarial machine

learning for robust classification in cyber security and intrusion detection domains.

The possible attacks and current defences are examined. The literature in this area

is large and rapidly increasing. Special care was taken to define the scope and

eligibility criteria for inclusion. By exploring the literature, a significant

contribution is made to this research, informing the experiments detailed in the

following chapters.

2.1 Introduction

Machine Learning has become widely adopted as a strategy for dealing with a

variety of cyber security issues. Cyber security domains particularly suited to ML

include: intrusion detection and prevention [8], network traffic analysis [9],

malware analysis [10] [11], user behaviour analytics [12], insider threat detection

[13], social engineering detection [14], spam detection [15], detection of malicious

social media usage [16], health misinformation [17], climate misinformation [18],

and more generally “Fake News” [19]. These are essentially classification problems.

Recall from Chapter 1 that adversaries wish to exploit adversarial examples by

using carefully-crafted noise to evade detection through misclassification.

Defenders wish to deny or detect adversarial examples, while adversaries wish to

remain undetected and evade defences.

18 Chapter 2. Literature Review

In this way, an adversarial arms race exists between adversaries and defenders.

The recent SolarWinds supply chain attack [40] [41] identified in December 2020

indicates the reliance that organisations have on intrusion detection software, and

the presence of Advanced Persistent Threats (APTs) with the expertise and

resources to attack organisations’ network defences. Adversarial machine learning

is a critical area of research. If not addressed, there is increasing potential for novel

attack strategies that seek to exploit the inherent weaknesses that exist within

machine learning models. For this reason, this survey addresses the issues related

to the robustness of machine learning models against adversarial attacks across the

cyber security domain, where problems of functionality-preservation are

recognized. While a case study of a network-based intrusion detection system was

used, these issues might be applicable in other areas where ML systems are used.

The focus is on papers detailing adversarial attacks and defences. Attacks are

further classified by attack type, attack objective, domain, model, knowledge

required, and constraints. Defences are further categorised by defence type,

domain, and model. In the domain of network traffic analysis, adversaries need to

evade detection methods. A suitable network firewall will reject adversarial traffic

and malformed packets while accepting legitimate traffic. Therefore, successful

adversarial examples must be crafted to comply with domain constraints such as

those related to the transmission control protocol/internet protocol (TCP-IP) stack.

Moreover, adversaries wish to preserve the functionality of their attacks. A

successful attack must not lose functionality at the expense of evading a classifier.

The essence of a simple adversarial attack is that a malicious payload evades

detection by masquerading as benign. This thesis refers to this characteristic as

functionality-preserving.

Compared to domains such as computer vision whereby the image

modification is only to fool human vision sensors, adversarial attacks in other

domains are significantly more challenging to fool both a human and/or

system-based sensor. Critically ML systems are increasingly trusted within cyber

physical systems [45] such as power stations, factories, and oil and gas industries.

In such complex physical environments, the potential damage that could be caused

by a vulnerable system might even be life threatening [46]. Despite ML systems

2.2. Related Works 19

being relied upon and trusted, the inherent nature of machine learning - learning to

identify patterns - is in itself a potential attack vector for adversaries wishing to

circumvent ML-based system detection processes.

The major contributions of this chapter are:

• A survey of the literature is conducted to identify the trends and

characteristics of published works on adversarial learning in relation to cyber

security, addressing both attack vectors and defensive strategies.

• The issue of functionality-preservation in adversarial learning is addressed in

contrast to domains such as computer vision. To preserve functionality a

malformed input must suitably fool a system process as well as a human user

such that the original functionality is maintained despite some modification.

• This relatively new research domain is summarised to address the future

research challenges associated with adversarial machine learning across the

cyber security domain.

The remainder of this chapter is structured as follows: Section 2.2 provides an

overview of other important surveys; Section 2.3 discusses background material;

Section 2.4 details the literature survey; Section 2.5 details the results; Section 2.6

provides a discussion and conclusion, summarises the findings, and identifies

research challenges.

2.2 Related Works

Corona et al. [47] provide a useful overview of intrusion detection systems. They

predict greater use of machine learning for intrusion detection and call for further

investigation into adversarial machine learning. This chapter now considers a

number of related academic surveys that have been presented in the last 5 years

with a focus on adversarial examples, security, and intrusion detection.

20 Chapter 2. Literature Review

2.2.1 Secure and Trustworthy Systems

Machine learning systems are used in increasingly diverse areas including those of

cyber security. Trust in these systems is essential. Hankin and Barrèere [28] note

that there are many aspects to trustworthiness: reliability, trust, dependability,

privacy, resilience, and safety. Adversaries ranging from solo hackers to

state-sponsored APTs have an interest in attacking these systems. Successful

attacks against machine learning models mean that systems are vulnerable and

therefore potentially dangerously deployed in cyber security domains. Cho et al.

[29] propose a framework considering the security, trust, reliability and agility

metrics of computer systems; however, they do not specifically consider adversarial

machine learning, or robustness to adversarial examples.

2.2.2 Adversarial ML in General

Papernot et al. [21] note that the security and privacy of ML is an active but nascent

area of research. In this early work, they systematize their findings on security and

privacy in machine learning. They note that a science for understanding many of

the vulnerabilities of ML and countermeasures is slowly emerging. They analyse

ML systems using the classical confidentiality, integrity, and availability (CIA)

model. They analyse: training in adversarial settings; inferring adversarial settings;

robust, fair, accountable, and private ML models. Through their analysis, they

identify a total of 8 key takeaways that point towards two related notions of

sensitivity. The sensitivity of learning models to their training data is essential to

privacy preserving ML, and similarly the sensitivity to inference data is essential to

secure ML. Central to both notions of sensitivity is the generalization error (i.e., the

gap between performance on training and test data). They focus on attacks and

defences for machine learning systems and hope that understanding the sensitivity

of modern ML algorithms to the data they analyse will foster a science of security

and privacy in machine learning. They argue that the generalization error of

models is key to secure and privacy-preserving ML.

2.2. Related Works 21

Zhang and Li [48] discuss opportunities and challenges arising from adversarial

examples. They introduce adversarial examples and survey state-of-the-art

adversarial example generation methods, and defences before raising future

research opportunities and challenges. They note three challenges for the

construction of adversarial examples:

1. The difficulty of building a generalizable method.

2. The difficulty in controlling the size of perturbation (too small will not result

in adversarial examples, and too large can easily be perceived).

3. Difficulty in maintaining adversarial stability in real-world applications (some

adversarial examples do not hold for transformations such as blurring).

They identify two challenges for defence against adversarial examples. Firstly,

black-box attacks do not require knowledge of the model architecture and therefore

cannot be easily resisted by modifying the model architecture or parameters.

Secondly, defences are often specific to an attack method and are less suitable as a

general defence. Defences against one attack method do not easily defend against

adversarial examples based on other methods for generating adversarial examples.

They subsequently identify three opportunities:

1. Construction of adversarial examples with high transferability (high

confidence).

2. Construction of adversarial examples without perturbing the target image,

they suggest that perturbation size will affect the success rate and

transferability of adversarial examples.

3. Considering and modelling physical transformations (translation, rotation,

brightness, and contrast).

Their focus is on the visual domain, and they do not specifically discuss IDS or

functionality-preserving adversarial attacks.

22 Chapter 2. Literature Review

Apruzzese et al. [49] examine adversarial examples and consider realistic

attacks, highlighting that most literature considers adversaries with complete

knowledge about the classifier and are free to interact with the target systems. They

further emphasize that few works consider ’realizable’ perturbations that take

account of domain and/or real-world constraints. There is perhaps a perception

that the threat from adversarial attacks is low based on the assumption that much

prior knowledge of the system is required. This approach has some merit; however,

this could be an over-confident position to take. Their idea that realistically the

adversary has less knowledge of the system conflicts with Shannon’s maxim [50]

and Kerckhoff’s second cryptographic principle [51] which states that the fewer

secrets the system contains, the higher its safety. The pessimistic ‘complete

knowledge’ position is often used in cryptographic studies, in cryptographic

applications it is considered safe because it is a bleak expectation. This expectation

is also realistic since well-resourced adversaries may be expected to eventually

discover or acquire all details of the system. Many adversarial example papers

assume complete knowledge, this is however unlikely to always be the case.

Perhaps leading some to believe models are more secure against adversarial

examples. However, the transferability property of adversarial examples means

that complete knowledge is not required for successful attacks, and black-box

attacks are possible with no prior knowledge of machine learning models. An

adversary may only learn through interacting with the model. Therefore, the level

of knowledge required by an adversary must be accounted for, including

white-box, black-box, and gray-box knowledge paradigms.

2.2.3 Intrusion Detection

Wu et al. [52] consider several types of deep learning systems for network attack

detection, including supervised and unsupervised models, and they compare the

efficiency and effectiveness of different attack detection methods using two

intrusion detection datasets: “KDD Cup 99” dataset and an improved version

known as NSL-KDD [53] [54]. These two datasets have been used widely in the

past by academic researchers; however, they do not fairly represent modern

network traffic analysis problems due to concept-drift. Networks have increasing

2.2. Related Works 23

numbers of connected devices, increasing communications per second, and new

applications using the network. The use of computer networks and the internet has

changed substantially in twenty years. The continued introduction of IPv6,

Network address Translation, Wi-Fi, mobile 5G networks, and cloud providers has

changed network infrastructure [55]. Furthermore, the internet is now increasingly

used for financial services. Akamai [56] report financial services now see millions

or tens of millions of attacks each day. These attacks were less common twenty

years ago. Furthermore, social media now constitutes much internet traffic and

most social media platforms were founded after the KDD Cup 99 and NSL-KDD

datasets were introduced. For example, Facebook, YouTube, and Twitter were

founded in 2004, 2005, and 2006 respectively. This limits the validity of some

research using outdated datasets. Therefore, research should use modern datasets

that represent modern network traffic.

Kok et al. [57] analyse intrusion detection systems (IDS) that use a machine

learning approach. They specifically consider the datasets used, the ML algorithms,

and the evaluation metrics. They warn that some researchers are still using datasets

first introduced decades ago (e.g., KDD Cup 99, NSL-KDD). They warn that this

trend could result in no or insufficient progress on IDS. This would ultimately lead

to the untenable position of obsolete IDS while intrusion attacks continue to evolve

along with user behaviour and the introduction of new technologies. Their paper

does not consider adversarial examples or robustness of ML models. Alatwi and

Morisset [58] tabulate a list of Network Intrusion datasets in the literature that is

extended in Table 2.1.

24 Chapter 2. Literature Review

Work Dataset Network Year Attack Categories

[53] KDD Cup 99 Traditional 1999 DoS, Probe, User 2 Root and
Remote to User

[59] NSL-KDD Traditional 2009 DoS, Probe, User 2 Root and
Remote to User

[60] DARPA Traditional 2009 DDoS, Malware, Spambots, Scans,
Phishing

[61] CTU-13 Traditional 2011 Botnet
[62] Kyoto Traditional 2015 Botnet
[63] UNSW-NB15 Traditional 2016 Backdoors, Fuzzers, DoS, Generic,

Shell code, Reconnaissance,
Worms, Exploits, Analysis

[64] WSN-D5 Wireless 2016 Greyhole, Blackhole, Scheduling,
Flooding.

[65] SDN Traffic SDN 2016 DDoS
[66] CICIDS2017 Traditional 2017 DoS, DDoS, SSH-Patator, Web,

PortScan, FTP-Patator, Bot.
[67] Mirai IoT 2017 Botnet
[66] CICIDS2018 Traditional 2018 Bruteforce Web, DoS, DDoS,

Botnet, Infiltration.
[66] CICDDoS2019 Traditional 2019 DDoS
[68] Bot-IOT IoT 2018 DDoS, DoS, OS Service Scan,

Keylogging, Data exfiltration
[69] Kitsune IoT 2018 Recon, Man in the Middle, DoS,

Botnet Malware
[70] IEEE BigData Cup Traditional 2019 N/A
[71] MQTT-IOT-IDS2020 IoT 2020 Aggressive scan, UDP scan, Sparta

SSH brute-force, and MQTT brute-
force attack.

[72] HIKARI-2021 IoT 2021 Brute force attack, Brute force
attack (XMLRPC), Vulnerability,
probing, Synthetic Traffic

TABLE 2.1: Datasets used in the literature.

2.3. Background 25

2.3 Background

Here, further background is provided on some key concepts that are related to

adversarial learning, to support the reader of this survey. This background material

covers the topics of model training, robustness, common adversarial example

algorithms, adversary capabilities, goals, and attack methods.

2.3.1 Model Training

It is important to consider the dataset on which models are trained, because the

trustworthiness and quality of a model is impacted by the distribution, quality,

quantity, and complexity of dataset training samples [73]. Biased models are more

susceptible to adversarial examples. Therefore, models must be trained on

unbiased training data; although Johnson et al. consider the absolute number of

training samples may be more important than the ratio of class imbalance [74]. For

example, a small percentage of a large number of samples is sufficient to train a

model regardless of high class imbalance (e.g., 1% malicious samples in 1 million

network flows yields 10,000 samples). Unfortunately, cyber security datasets are

often prone to bias, in part because of limited samples of some malicious traffic

(e.g., zero-day attacks) and large amounts of benign traffic. Sheatsley et al. [75] state

biased distributions enable successful adversarial examples with the modification

of very few features.

Resampling

Three common data-level techniques tackle biased datasets by resampling:

• Oversampling: Random samples of minority classes are duplicated until the

bias of majority classes is compensated.

• Undersampling: Random samples from the majority class are discarded until

the bias of majority classes is compensated.

• Hybrid Sampling: Combines modest oversampling of minority classes and

modest undersampling of majority classes aiming to give better model

performance than applying either technique alone.

26 Chapter 2. Literature Review

Algorithm-level techniques tackling dataset bias commonly employ cost-sensitive

learning where a class penalty or weight is considered, or decision thresholds are

shifted to reduce bias [74].

Loss Functions

When training a model, the goal is to minimize the loss function through use of an

optimizer which adjusts the weights at each training step. Common optimizers

include stocastic gradient descent (SGD), Adaptive Moments (Adam), and Root

Mean Squared Propagation (RMSProp). Commonly a regularizer is employed

during training to ensure the model generalizes well to new data. A dropout layer

is often employed as a regularizer.

The loss function must be chosen carefully: for binary classification

binary_crossentropy (Eq. 2.1) is usual; for multiclass classification problems

categorical_crossentropy (Eq. 2.2) or mean_squared_error (Eq. 2.3) are suitable.

fbinary_crossentropy(y) = �ylabel
i log yiiprediction �

⇣
1� ylabel

i

⌘
log

⇣
1� yiiprediction

⌘

(2.1)

fcategorical_crossentropy(y) = �
categories

Â
i=1

ylabel
i log yprediction

i (2.2)

fmean_squared_error(y) =
1

categories

categories

Â
i=1

⇣
ylabel

i � yprediction
i

⌘2
(2.3)

Cross-Validation

Cross-Validation [76] is widely used data resampling methods to assess

generalizability of a model and to prevent over-fitting. Cross-validation often

involves stratified random sampling meaning the sampling method retains the

class proportions in the learning set. In Leave One Out Cross-Validation each

sample is used in turn as the validation set. The test error approximates the true

prediction error; however, has high variance. Moreover, its computational cost can

2.3. Background 27

be high for large datasets. k-fold cross-validation aims to optimise the

bias/variance trade-off. In k-fold cross-validation the dataset is randomly split into

k equal size partitions. A single partition is retained for test data, and the remaining

k� 1 partitions are used for training. The cross-validation steps are reiterated until

each partition is used once for validation as shown in Figure 2.1. The results are

averaged across all iterations to produce an estimation of the performance of the

model (Eq. 2.4). Refaelzadeh et al. highlight risks of elevated Type I errors (False

Positives). With larger values of k variance is reduced. Moreover, bias also reduces

because the model is trained on more of the dataset. This thesis posits that

resampling techniques could be used to improve robustness against adversarial

examples.

CV(k) =
1
k

k

Â
i=1

MSEi (2.4)

FIGURE 2.1: k-fold Cross-Validation.

Martins et al. [5] consider adversarial machine learning for intrusion detection

and malware scenarios, noting that IDS are typically signature-based, and that

machine learning approaches are being widely employed for intrusion detection.

They describe five ‘tribes’ of ML algorithms before detailing some fundamentals of

adversarial machine learning, including commonly used distance metrics: L•, L0,

and L2. They subsequently describe common white-box methods to generate

adversarial examples including: Broyden–Fletcher–Goldfarb–Shanno algorithm

(L-BFGS), Fast Gradient Sign Method (FGSM), Jacobian-based Saliency Map Attack

(JSMA), DeepFool, and Carlini & Wagner attacks (C&W). They also consider

black-box methods using Generative Adversarial Networks (GANS). Traditional

GANS sometimes suffer problems of mode collapse. Wasserstein Generative

Adversarial Networks (WGANS) solve some of these problems. They introduce

28 Chapter 2. Literature Review

Zeroth-order optimization attack (ZOO) as a black-box method. ZOO estimates the

gradient and optimizes an attack by iteratively adding perturbations to features.

They note that most attacks have been initially tested in the image domain but can

be applied to other types of data which poses a security threat. Furthermore, they

consider there is a trade-off when choosing an adversarial attack. For example,

JSMA is more computationally intensive than FGSM but modifies fewer features.

They consider JSMA to be the most realistic attack because it perturbs fewer

features. When considering defences, they tabulate advantages and disadvantages

of common defences. For example, feature squeezing is effective in image

scenarios, but unsuitable for other applications because compression methods

would result in data loss for tabular data. They note that GANS are a very powerful

technique that can result in effective adversarial attacks where the samples follow a

similar distribution to the original data but cause misclassification.

Bootstrapping

Bootstrapping is resampling with replacement and is often used to statistically

quantify the performance of a model, to determine if a model is statistically

significantly better than other models.

2.3.2 Cyber-Physical Systems

Cyber-Physical Systems (CPS) rely on computational systems to create actuation of

physical devices. The range of devices is increasing from factory operations to

power stations, autonomous vehicles to healthcare operations. Shafique et al. [77]

consider such smart cyber-physical systems. They discuss reliability and security

vulnerabilities of machine learning systems, including: hardware trojans, side

channel attacks, and adversarial machine learning. This is important, because

system aging and harsh operating environments mean CPS are vulnerable to

numerous security and reliability concerns. Advanced persistent threats could

compromise the training or deployment of CPSs through stealthy supply-chain

attacks. A single vulnerability is sufficient for an adversary to cause a

misclassification which could lead to drastic effects in a CPS (e.g., an incorrect

steering decision of an autonomous vehicle could cause a collision). It is considered

2.3. Background 29

that vulnerabilities in ML could lead to a range of unwanted effects in CPSs

including those that could lead to life-threatening consequences [46]. The Stuxnet

worm is an example of malware with dire consequences.

2.3.3 Contributions of this survey

The main objectives of this survey are:

• Collect and collate current knowledge regarding robustness and functionality-

preserving attacks in cyber security domains.

• Formulate key takeaways based on the presented information, aiming to assist

understanding of the field.

This survey aims to complement existing work while addressing clear

differences, by also studying the robustness of adversarial examples, specifically

functionality-preserving use cases. Most previous work aims to improve the

accuracy of models or examine the effect of adversarial examples. Instead, the

robustness of models to adversarial examples is considered.

Machine learning systems are already widely adopted in cyber security. Indeed,

with increasing network traffic, automated network monitoring using ML is

becoming essential. Modern computer networks carry private personal and

corporate data including financial transactions. These data are an attractive lure to

cyber-criminals. Adversaries may wish to steal or disturb data. Malware, spyware,

and ransomware threats are endemic on many computer networks. IDS help keep

networks safe; however, an adversarial arms race exists, and it is likely that

adversaries, including advanced persistent threats are developing new ways to

evade network defences. Some research has evaded intrusion detection classifiers

using adversarial examples.

While adversarial examples in the visual domain are well understood, less work

has focused on how adversarial examples can be applied to network traffic analysis

and other non-visual domains. Similarly with machine learning models used for

image and object recognition. For example, Convolutional Neural Networks

30 Chapter 2. Literature Review

(CNNs) are well researched, whereas other model types used for intrusion

detection, e.g., Recurrent Neural Networks (RNNs) receive less attention. The

generation of adversarial examples to fool IDS is more complicated than visual

domains because the features include discrete and non-continuous values [78].

Compounding the defence against adversarial examples is the overconfident

assumption that successful adversarial examples require ‘complete knowledge’ of

the model and parameters. On the contrary black-box attacks are possible with no

or limited knowledge of the model. Most defences so far proposed consider the

visual domain and most are ineffective against strong and black-box attacks. This

survey addresses the problem of adversarial machine learning across cyber security

domains. Further research is required to head off future mature attack methods that

could facilitate more complex and destructive attacks.

2.3.4 Robustness

Robustness can be defined as the performance of well-trained models facing

adversarial examples [79]. Essentially, robustness considers how sensitive a

model’s output is to a change in the input. The robustness of a model is related to

the generalization-error of the model. There is a recognised trade-off between

accuracy and robustness in machine learning. That is, highly accurate models are

less robust to adversarial examples. Machine learning models in adversarial

domains must be both highly accurate and robust. Therefore, improving the

robustness of machine learning models enables safer deployment of ML systems

across a wider range of domains.

To examine the robustness of a model it necessary to understand how the

performance of a model can be evaluated. For a simple binary classifiers that is

trained on a labelled training set, each of the model’s predictions can be categorised

as one of four categories:

2.3. Background 31

• True Positive: A malicious sample that was correctly predicted as malicious.

• False Positive: A benign sample that was predicted as malicious.

• False Negative: A malicious sample that was predicted as benign.

• True Negative: A benign sample that was correctly predicted as benign.

A common way of of representing these categories is with a confusion matrix as

shown in Figure 2.2.

FIGURE 2.2: A confusion matrix showing the four distinct categories
of True Positive, False Positive, True Negative, and False Negative.

In this example there are 5, 887 malicious samples and 6, 613 benign samples.

There are 5, 819 True Positives, 124 False Positives, 6, 489 True Negatives, and 77

False Negatives. The values presented here can be used to compute the additional

model performance statistics including Precision (Eq. 2.6), Recall (Eq. 2.7),

Specificity 2.8), Sensitivity (Eq. 2.9), and F1 Score (Eq. 2.10). These metrics may

have a relationship to robustness. A model with high precision has more cautious

decision boundaries, reducing the likelihood that subtle adversarial examples will

cause misclassification. A model with high Recall has more inclusive decision

32 Chapter 2. Literature Review

boundaries and may therefore be more susceptible to adversarial examples. While

Precision and Recall have some relation to robustness, they do not directly address

the robustness of a model. On their own these metrics are not robustness metrics;

however, the generalization-error can be calculated from F1 Scores.

Accuracy =
TruePositives + TrueNegatives

TruePositives + TrueNegatives + FalsePositives + FalseNegatives
(2.5)

Precision =
TruePositives

TruePositives + FalsePositives
(2.6)

Recall =
TruePositives

TruePositives + FalseNegatives
(2.7)

Speci f icity =
TrueNegatives

TrueNegatives + FalsePositives
(2.8)

Sensitivity =
TruePositives

TruePositives + FalseNegatives
(2.9)

F1Score = 2⇥ Precision⇥ Recall
Precision + Recall

(2.10)

Other Possible useful metrics to evaluate robustness include: The Lipschitzian

property which monitors the changes in the output with respect to small changes to

inputs. CLEVER (Cross-Lipschitz Extreme Value for nEtwork Robustness) is an

Extreme Value Theory (EVT) based robustness score for large-scale deep neural

networks (DNNs). The proposed CLEVER score is attack-agnostic and

computationally feasible for large neural networks improving on the Lipschitzian

property metric [80].

2.3. Background 33

Work Metric Advantages Disadvantages

N/A Generalisation

error (F1-Score)

Commonly used by

researchers.

Biased by the majority

class.

[80] CLEVER Attack-agnostic and

computationally

feasible.

CLEVER is less suited

to Black-box attacks and

where gradient masking

occurs [81]; however,

extensions to CLEVER

help mitigate these

scenarios [82].

[83] Empirical

Robustness

Suitable for very deep

neural networks and

large datasets.

N/A.

TABLE 2.2: Robustness Metrics.

2.3.5 Common Adversarial Example Algorithms

There are numerous algorithms to produce adversarial examples Szegedy et al. [22]

used a box-constrained limited memory L-BFGS. Other methods include FGSM [23]

and iterative derivatives: Basic Iterative Method (BIM), Projected Gradient Descent

(PGD). JSMA optimises for the minimal number of altered features (L0). The

DeepFool algorithm [83] optimizes for the root-mean-square (Euclidean distance,

L2). Carlini and Wagner [84] propose powerful C&W attacks optimizing for the L0,

L2, L• distance metrics. There are many algorithms to choose from. Furthermore,

Papernot et al. [85] developed a software library for the easy generation of

adversarial examples. There are now a number of similar libraries that can be used

to generate adversarial examples as shown in Table 2.3.

34 Chapter 2. Literature Review

Work Library Name Year Advantages Disadvantages

[85] CleverHans 2016 Recently updated to

v4.0.0, well used by

the community. MIT

License.

It can be

complicated

to configure.

[86] Foolbox 2017 Fast Generation of

Adversarial examples.

MIT License.

Large number of

open issues.

[87] Adversarial

Robustness Toolbox

2018 Well-maintained and

supported. Supports

most known machine

learning frameworks.

Extensive attacks and

model robustness tools

are supported.

It does not

support every

model.

[88] Advertorch 2019 GNU Lesser Public

License.

There are not

many active

contributors.

TABLE 2.3: Libraries for Generating Adversarial Examples.

Moreover, algorithms like FGSM that modify all features are unlikely to

preserve functionality. Algorithms like JSMA that modify a small subset of features

are not guaranteed to preserve functionality; although, with fewer modified

features, the likelihood improves. Checking for and keeping only examples that

preserve functionality is possible, although it is a time-consuming and inelegant

solution. A potentially better solution could ensure only functionality-preserving

adversarial examples are generated.

When considering the robustness of machine learning models, the threat model

must be considered. For example, how much the adversary knows about the

classifier, ranging from no knowledge to perfect knowledge. Adversaries may have a

number of different goals:

2.3. Background 35

1. Accuracy degradation (where the adversary wants to sabotage the

effectiveness of the overall classifier accuracy).

2. Target misclassification (where the adversary wants to misclassify a particular

instance as another given class),

3. Untargeted classification (where the adversary wants to misclassify a

particular instance to any arbitrary class).

The attack surface should also be considered. In IDS, the attack surface can be

considered as an end-to-end pipeline, with varying vulnerabilities and potential for

compromise at each stage of the pipeline.

FIGURE 2.3: End to End Pipeline for Network Intrusion Detection
System.

In one basic pipeline as shown in Figure 2.3 the raw network traffic on network

interfaces is collected as packet capture files (PCAPs), which are then processed

into network flows. There are different applications that could be used to process

PCAPs into network flows. CICFlowMeter [89] is a network traffic flow generator

and analyser that has been used in cyber security datasets [90] [91] and produces

bidirectional flows with over 80 statistical network traffic features. The generated

flows are unlabelled and so must be labelled manually with the traffic type,

typically benign/malicious, although multiclasses could be labelled given sufficient

information including attack type, IP source and destination dyad, duration, and

start time. Finally, the labelled flows are used to train the model. Repetitive training

cycles could enable detection of new attacks; however, the cyclic nature of the

training means that an adversary could attack any iteration of training.

Furthermore, an adversary could choose to attack any point in the pipeline. The

training data used to train the model generally consists of feature-vectors and

expected outputs; although, some researchers are considering unsupervised

learning models. The collection and validation of these data offer an attack surface.

Separately, the inference phase also offers an attack surface. It is interesting to note

36 Chapter 2. Literature Review

that the size of the feature-set a machine learning model uses can be exploited as an

attack surface. A fundamental issue is that each feature processed by a model may

be modified by an adversary. Moreover, Sarker et al. [92] note that the

computational complexity of a model can be reduced by reducing the feature

dimensions. Large feature-sets include more features and hence provide more

opportunities to an adversary for manipulation. Almomani et al. [93] indicate

accuracy can be maintained with fewer features, and McCarthy et al. [43] indicate

that more features tend to reduce the necessary size of perturbations. Therefore,

larger feature-sets are more readily perturbed than smaller feature-sets which have

fewer modifiable features and hence require larger perturbations.

2.3.6 Threat Model - Adversary Capabilities

Adversaries are constrained by their skills, knowledge, tools, and access to the

system under attack. An insider threat might have access to the classification model

and other associated knowledge, whereas an external threat might only be able to

examine data packets. While the attack surface may be the same for both

adversaries, the insider threat is potentially a much stronger adversary because

they have greater knowledge and access. Adversary capabilities mean that attacks

can be split into three scenarios: White-box, Black-box, and Gray-Box.

In white-box attacks, an adversary has access to all machine learning model

parameters. In black-box attacks, the adversary has no access to the machine

learning model’s parameters. Adversaries in black-box scenarios may therefore use

a different model, or no model at all to generate adversarial examples. The strategy

depends on successfully transferring adversarial examples to the target model.

Gray-box attacks consider scenarios where an adversary has some, but incomplete

knowledge of the system. White-box and black-box are most commonly

considered.

2.3. Background 37

FIGURE 2.4: Common Adversarial Machine Learning Attacks.

2.3.7 Threat Model - Adversary Goals

Adversaries aim to subvert a model through attacking its confidentiality, integrity,

or availability. Confidentiality attacks attempt to expose the model, or the data

encapsulated within. Integrity attacks occur when an adversary attempts to control

the output of the model. For example, to misclassify some adversarial traffic and

therefore allow it to pass a detection process. Availability attacks could misclassify

all traffic types, or deteriorate a model’s confidence, consistency, performance, and

access. In this way, an integrity attack resembles a subset of availability attack,

since an incorrect response is similar in nature to a correct response being

unavailable; however, the complete unavailability of a response would likely be

more easily noticed than decreases in confidence, consistency, or performance. The

goals of an adversary may be different but are often achieved with similar methods.

2.3.8 Threat Model - Common Attack Methods

Poisoning

In a poisoning attack, an adversary with access to the training data or procedure,

manipulates it, implanting an attack during the training phase, when the model is

trained on adversarial training data. This is achieved with carefully crafted noise or

38 Chapter 2. Literature Review

sometimes random noise. Unused or dormant neurons in a trained Deep Neural

Network (DNN) signify that a model can learn more, essentially an increased

number of neurons allows for a greater set of distinct decision boundaries forming

distinct classifications of data. The under-utilised degrees of freedom in the learned

model could potentially be used for unexpected classification of inputs. That is, the

model could learn to provide selected outputs based on adversarial inputs. These

neurons have very small weights and biases. However, the existence of such

neurons allows successful poisoning attacks through training the model to behave

differently for poisoned data. This suggests that distillation [94] could be effective

at preventing poisoning attacks, because smaller models have lower knowledge

capacity and likely fewer unused neurons. Distillation reduces the number of

neurons that contribute to a model by transferring knowledge from a large model

to a smaller model. Despite initial analysis indicating reduction in the success of

adversarial attacks, Carlini [84] experimented with three powerful adversarial

attacks and a high confidence adversarial example in a transferability attack and

found that distillation does not eliminate adversarial examples and provides little

security benefit over undistilled networks in relation to powerful attacks.

Unfortunately, they did not specifically consider poisoning attacks. Additional

experiments could determine whether distillation is an effective defence against

poisoning attacks.

Evasion

In evasion attacks, the adversary is often assumed to have no access to the training

data. Instead, adversaries exploit their knowledge of the model and its parameters,

aiming to minimise the cost function of adversarial noise, which when combined

with the input causes changes in the model output. Untargeted attacks lead to an

arbitrary incorrect output, targeted attacks lead to a specific incorrect output, and

an attack may disrupt the model by changing the confidence of the output class. In

the visual domain, the added noise is often imperceptible to humans. In non-visual

domains such as intrusion detection, this problem may be much more challenging

since even small modifications may corrupt network packets and may cause

2.4. Methodology 39

firewalls to drop these malformed packets. This highlights the need for

functionality preservation in adversarial learning, as a clear distinction from

vision-based attacks that exploit the human visual system.

Transferability

The transferability property of adversarial examples means that adversarial

examples generated against one model will likely also work against other models

trained for the same purpose. The second model need not have the same

architecture or underlying model as the first and need not be trained on the same

data. The transferability property of adversarial examples can form the basis for

some black-box attacks where a surrogate model is used to generate adversarial

examples that are subsequently presented to the target model.

2.4 Methodology

This section describes the chosen approach for surveying the literature, conducting

an effective and meaningful survey of the literature.

Eligibility Criteria: Search queries were determined, leading to the most

relevant articles. The chosen search terms are presented in Table 2.4.

Topic Search Query

Cyber Security / Intrusion

Detection

("Cyber Security" OR "Intrusion

detection" OR IDS)

Adversarial Machine Learning

Attacks and Defences

("adversarial machine learning" or

"machine learning" or "adversarial

example") and (attack or defence)

Robustness / Functionality

Preservation

((robustness or generalization error or

accuracy or F1-score or f-score or TPR or

FPR) or ((functionality or payload) and

preservation)))

TABLE 2.4: Topics and associated search terms used in this survey.

40 Chapter 2. Literature Review

It is expected for these search queries to result in good coverage of the relevant

literature. Each database was searched using the identified search terms. The

literature search was conducted up to September 2021. Generally, works not yet

peer-reviewed are excluded, such as those appearing on arXiv. However,

occasionally a choice was made to include a significant paper which makes a clear

contribution to the subject domain. The search results were collated, and any

subsequent duplicates were removed. Each paper was screened by reading the title

and abstract to determine the relevance. Inclusion criteria were: the article is

related to functionality preservation in adversarial machine learning for cyber

security or intrusion detection with insight into robust classification.

FIGURE 2.5: Preferred Reporting Items for Systematic Meta-Analysis.

From this large list, a specific focus on adversarial machine learning attacks and

defences was adopted, narrowing the literature down to relevant papers. The

selection process is roughly based on the Preferred Reporting Items for Systematic

Meta-Analysis (PRISMA) framework [95]. Figure 2.5 details the selection process.

2.5. Results 41

Information Sources: To search and retrieve relevant literature, the following

databases were chosen for their sizeable computer science elements: IEEE Xplore,

ACM Digital Library, ScienceDirect, Scopus, SpringerLink, Google Scholar.

2.5 Results

This section describes the results of the search and selection process. The

classification scheme is described, and the findings tabulated and discussed,

including: Adversarial Attacks in traditional and cyber security domains of

malware, IDS, and CPS. There are 146 relevant papers included in this survey.

2.5.1 Classification Scheme

The attacks are classified by attack type, attack objective (targeted/untargeted),

domain, model, knowledge required, and whether any constraints are placed on

the adversarial examples. Defences are classified by type, domain, and model. To

summarise the attacks and defences, three tables are produced. Attacks are detailed

in Table 2.5. Defences are detailed in Table 2.8. Functionality-preserving attacks are

detailed in 2.7.

2.5.2 Adversarial Example Attacks

This work focuses on attacks that exploit adversarial examples that cause

differences in the output of neural networks. Adversarial examples were

discovered by Szegedy et al. [22]. Adversarial examples are possible in ANN as a

consequence of the properties of neural networks; however, they are possible for

other ML models. This complicates mitigation efforts, and adversarial examples

can be found for networks explicitly trained on adversarial examples [121].

Furthermore, adversarial examples can be algorithmically generated, e.g., using

gradient descent. Moreover, adversarial examples are often transferable, that is, an

adversarial example presented to a second machine learning model trained for the

same task, perhaps on a subset of the original dataset, may also cause the second

model to misclassify the adversarial example.

42 Chapter 2. Literature Review

Work Year Attack Type Obj Domain Model Knowledge Constraint

A
E

Se
qu

en
ce

of
A

Es

Tr
an

sf
er

ab
ili

ty

Ta
rg

et
ed

U
nt

ar
ge

te
d

V
is

ua
l

C
yb

er
se

cu
ri

ty

Te
xt

M
LP

C
N

N

R
N

N

W
hi

te
-B

ox

Bl
ac

k-
bo

x

G
ra

y-
Bo

x

Bo
x

Sp
ar

se

Fu
nc

-P
re

se
rv

in
g

[22] 2014 L-BFGS D D D D D D
[96] 2013 GradientDescent D D D D D D
[97] 2016 Adversarial Sequences D D D D D D
[98] 2016 JSMA D D D D D D D
[83] 2016 DeepFool D D D D D
[99] 2017 AddSent,AddOneSent D D D D D D

[100] 2018 GAN D D D D D
[101] 2017 EnchantingAttack D D D D D
[101] 2017 StrategicAttack D D D D D
[84] 2017 C&W, L0, L2,L• D D D D D

[102] 2017 FGSM,JSMA D D D D D
[103] 2018 Generative RNN D D D D D D
[104] 2018 NPBO D D D D D D
[105] 2018 GADGET D D D D D D
[106] 2018 JSMA,FGSM,DeepFool,CW D D D D D
[107] 2018 FGSM D D D D D
[108] 2018 IDS-GAN D D D D D
[109] 2018 ZOO, GAN D D D D D
[110] 2019 One Pixel Attack D D D D D D
[111] 2019 ManifoldApproximation D D D D D D
[112] 2019 FGSM,BIM,PGD D D D D D D
[113] 2019 GAN Attack D D D D D D
[114] 2020 PWPSA D D D D D D D D
[114] 2020 GA D D D D D D D D
[115] 2020 One Pixel Attack D D D D D D
[116] 2020 Opt Attack,GAN Attack D D D D D D
[117] 2021 GAMMA D D D D D
[118] 2021 UAP D D D D D D D
[119] 2020 Variational Auto Encoder D D D D D D
[120] 2021 Best-Effort Search D D D D D D D D D D

TABLE 2.5: Chronologically ordered summary of adversarial
example attacks.

Adversarial Examples - Similarity Metrics

In the visual domain, distance metrics are well used to judge how similar two

inputs are, and therefore how easy the differences might be perceived. The

following metrics are commonly used to describe the difference between normal

and adversarial inputs:

• Number of altered pixels (L0)

• Euclidean distance (L2, root-mean-square)

• Maximum change to any of the co-ordinates. (L•)

Human perception may not be the best criterion to judge a successful adversarial

input. A successful attack in a vision ML task may be to fool a human. Success in

2.5. Results 43

an ML-based system is to fool some other detection routine, while conforming to

the expected inputs of the system. For example, a malicious packet must remain

malicious after any perturbation has been applied. If a perturbed packet is very close

to the original packet, this would only be considered successful if it also retained its

malicious properties, and hence its intended function.

Adversarial Examples - Types of Attack

White-box Attacks: Most white-box attacks are commonly achieved through

gradient descent to increase the loss function of the target model. The algorithmic

generation of adversarial examples is possible. Moreover, Papernot et al. [85]

developed a software library for the easy generation of adversarial examples and

other libraries are now available. An early gradient descent approach was

proposed by Szegedy et al. [22] using a box-constrained limited memory L-BFGS.

Given an original image, this method finds a different image that is classified

differently, whilst remaining similar to the original image. Gradient descent is used

by many different algorithms; however, algorithms have been designed to be

optimized for different distance metrics. There are numerous gradient descent

algorithms that produce adversarial examples; they can differ in their optimization

and computational complexity. The relative computational complexity of common

adversarial example algorithms is noted in Table 2.6 (adapted from [48]). High

success rates correlate with high computational complexity. This correlation is

expected to be more pronounced for functionality preserving attacks. FGSM [23]

was improved by Kurakin et al. [122] who refined the fast gradient sign by taking

multiple smaller steps. This iterative granular approach improves on FGSM by

limiting the difference between the original and adversarial inputs. This often

results in adversarial inputs with a predictably smaller L• metric. However, FGSM

modifies all parameters. This is problematic for features that must remain

unchanged or for discrete features such as Application Programming Interface

(API) calls. JSMA differs from FGSM in that it optimizes to minimize the total

number of modified features (L0 metric). In this greedy algorithm, individual

features are chosen with the aim of step-wise increasing the target classification in

each iteration. The gradient is used to generate a saliency map, modelling each

44 Chapter 2. Literature Review

Method Computational
Complexity

Success Rate

L-BFGS High High
FGSM Low Low
JSMA High High

DeepFool Low Low
One-pixel Low Low

C&W Attack High High

TABLE 2.6: Computational Complexity of Common Adversarial
Example Algorithms.

feature’s impact towards the resulting classification. Large values significantly

increase the likelihood of classification as the target class. Thus, the most important

feature is modified at each stage. This process continues until the input is

successfully classified as the target class, or a threshold number of pixels is reached.

This algorithm results in adversarial inputs with fewer modified features. The

DeepFool algorithm [83] similarly uses gradient descent but optimizes for the

root-mean-square also known as Euclidean distance (L2). This technique simplifies

the task of shifting an input over a decision boundary by assuming a linear

hyper-plane separates each class. The optimal solution is derived through analysis

and subsequently an adversarial example is constructed; however, neural network

decision boundaries are not truly linear. Therefore, subsequent repetitions may be

required until a true adversarial image is found.

The optimizations for different distance metrics are types of constraint:

Maximum change to any feature (L•); minimal root-mean-square (L2); minimal

number of altered features (L0). Constrained adversarial examples are important

for functionality-preserving attacks. Additional constraints for specific domains are

likely required, and this remains an open avenue for further research.

Most gradient descent algorithms were originally presented in the visual

domain and used on images and pixel values. The pixel values of images are often

presented as continuous values (0 � 255). The use of adversarial examples with

discrete data values is less well explored and remains an interesting avenue for

further research.

2.5. Results 45

Black-box Attacks: Researchers have also considered black-box attacks that

need not rely on gradient descent. Some black-box techniques commonly rely on

the transferability of adversarial examples. Table 2.5 shows that few researchers

employ the transferability of adversarial examples. Other common black-box

techniques include GANS and genetic algorithms (GAs). Sharif et al. [123] propose

a way of attacking DNN with a general framework to train an attack generator or

generative adversarial network (GAN). GANs can be trained to produce new,

robust, and inconspicuous adversarial examples. Attacks like Biggio et al. [96] are

more suitable for the security domain when assessing the security of algorithms

and systems under worst-case attacks [6] [124].

An important consideration in attacks against intrusion detection systems is

that attackers cannot perform simple oracle queries against an intrusion detection

system and must minimize the number of queries to decrease the likelihood of

detection. Apruzzese et al. [125] further note that the output of the target model is

not directly observable by the attacker; however, exceptions occur where detected

malicious traffic is automatically stopped or dropped, or where the attacker gains

access to/or knowledge of the system.

Gray-box attacks consider scenarios where an adversary has only partial

knowledge of the system. Biggio et al. [96] highlight the threat from skilled

adversaries with limited knowledge; More recently Gray-box attacks are receiving

some attention: Kuppa et al. [111] consider malicious users of the system with

knowledge of the features and architecture of the system, recognizing that attackers

may differ in their level of knowledge of the system. Labaca-Castro et al. [118] use

universal adversarial perturbations showing that unprotected systems remain

vulnerable even under limited knowledge scenarios. Li et al. [120] consider limited

knowledge attacks against cyber-physical systems and successfully deploy

universal adversarial perturbations where attackers have incomplete knowledge of

measurements across all sensors.

46 Chapter 2. Literature Review

Building on Simple Adversarial Examples: Table 2.5 shows much research

considers simple adversarial examples, although less research considers sequences

of adversarial examples or transferability. This survey chooses to classify attacks as

either a simple adversarial example, a sequence of adversarial examples, or a

transferable adversarial example. A simple adversarial example is sufficient to alter

the output of a simple classifier. Lin et al. [101] suggest using adversarial examples

strategically could affect the specific critical outputs of a machine learning system.

Sequences of adversarial examples consist of two or more adversarial examples.

Sequences of adversarial examples are more challenging than simple adversarial

examples. Lin et al. [101] further suggest an enchanting attack to lure a machine

learning system to a target state by crafting a series of adversarial examples. Table

2.5 shows that most research considers simple adversarial examples. Researchers

are starting to consider sequences of adversarial examples and to consider the

transferability of adversarial examples. Classifying attacks in this way clarifies the

level of complexity in attack types. Furthermore, the table shows that sequences of

adversarial examples and the transferability of adversarial examples is

under-represented, providing opportunities for further research.

Adversarial Examples - Attack Objectives

There is a distinction between the objectives of attacks: targeted or untargeted. An

attack objective might be to cause a classifier to misclassify an input as any other

class (untargeted) or to misclassify an input as a specific class (targeted). In the cyber

security domain, IDS often focus on binary classification: malicious or benign. For

binary classification the effect of targeted and untargeted attacks is the same. More

complex multi-class IDS can help network analysts triage or prioritise different

types of intrusions. Network analysts would certainly treat a Distributed Denial of

Service (DDoS) attack differently than a BotNet or infiltration attempt. Adversaries

could gain significant advantage through targeted attacks. For example, by

camouflaging an infiltration attack as a comparatively less serious network

intrusion.

2.5. Results 47

Recent research goes beyond adversarial examples causing misclassification of a

single input. Moosavi-Dezfooli et al. [126] further show the existence of untargeted

universal adversarial perturbation (UAP) vectors for images, and venture this is

problematic for classifiers deployed in real-world and hostile environments. In the

cyber security domain, Labaca et al. [118] demonstrate UAPs in the feature space of

malware detection. They show that UAPs have similar effectiveness as adversarial

examples generated for specific inputs. Sheatsley et al. [75] look at UAP in the

constrained domain of intrusion detection. Adversaries need only calculate one

UAP that could be applied to multiple inputs. Pre-calculation of a UAP could

enable faster network attacks (DDoS) that would otherwise require too much

calculation time. Table 2.5 shows most research considers untargeted attacks.

Targeted attacks are less represented in the literature. Furthermore, UAPs are a

more recent avenue for research.

Adversarial Examples in Traditional Domains

Table 2.5 shows attacks in the visual domain were the subject of much early

research, and the visual domain continues to attract researchers; although,

researchers are beginning to consider attacks against other DNN systems such as

machine learning models for natural language processing, with some considering

semantic preserving attacks.

In visual domains, features are generally continuous. For example, pixel values

range from 0 � 255. A consensus exists in the visual domain that adversarial

examples are undetectable to humans. Moreover, the application domain is clearly

interrelated with the choice of machine learning model. Models such as CNNs are

appropriate for visual-based tasks, whereas RNNs are appropriate for

sequence-based tasks. Model types are discussed in section 2.5.2.

Some models such as recurrent neural networks are less effectively attacked

using traditional attack algorithms; however, some research aims to discover new

methods to attack these systems. Papernot et al. [97] note that because RNNs

handle time sequences by introducing cycles to their computational graphs. The

48 Chapter 2. Literature Review

presence of these computation cycles means that applying traditional adversarial

example algorithms is challenging because cycles prevent direct computation of the

gradients. They adapt adversarial example algorithms for RNNs and evaluate the

performance of their adversarial samples. If the model is differential, FGSM can be

applied even to RNN models. They use a case study of a binary classifier (positive

or negative) for movie reviews. They define an algorithm that iteratively modifies

words in the input sentence to produce an adversarial sequence that is misclassified

by a well-trained model. They note that their attacks are white-box attacks,

requiring access to, or knowledge of, the model parameters. Szegedy [22]

discovered the transferability of adversarial examples, noting the same

perturbation can cause a different network that was trained on a different subset of

the dataset, to misclassify the same adversarial input. This property of adversarial

examples has serious implications because it means gaining access to a model is

unnecessary to attack it. An adversary can employ the transferability of adversarial

examples, where adversarial examples generated against a model under the

adversary’s control can be successfully used to attack the target model. The

transferability of adversarial examples implies that an adversary does not need full

access to a model to attack it (Black-box).

Adversarial Examples in Cyber Security Domains

Adversarial examples (AE) have been shown to exist in many domains. Indeed, no

domain identified (so far) is immune to adversarial examples [75]. Researchers are

beginning to consider cyber security domains where features are often a mixture of

categorical, continuous and discrete. Some research focuses on adversarial example

attacks against IDS; although few specifically consider functionality-preserving

attacks.

Recall that for the visual domain there is a consensus that adversarial examples

are undetectable to humans. However, it is unclear how this idea should be

translated to other domains. Carlini [84] holds that, strictly speaking, adversarial

examples must be similar to the original input. However, Sheatsley et al. [75] note

that research in non-visual domains provide domain specific definitions: perturbed

2.5. Results 49

Work Year Domain Generation Method Realistic Constraints Findings

[78] 2019 Malware Gradient-based Minimal Content
additions/modification

Experiments showed the ability to
use that information to find optimal
sequences of transformations
without rendering the malware
sample corrupt.

[113] 2019 IDS GAN Preserve functionality The proposed adversarial attack
successfully evades the IDS while
ensuring preservation of functional
behaviour and network traffic
features.

[127] 2019 IDS Gradient-based Respect mathematical
dependencies and
domain constraints.

Evasion attacks achieved by
inserting a dozen network
connections.

[128] 2019 IDS Random
Modification 4
features: flow
duration, sent bytes,
received bytes,
exchanged packets.

Retain internal logic Feature removal is insufficient
defence against functionality-
preserving attacks which may are
possible by modifying very few
features.

[129] 2019 IDS Legitimate
transformations:
Split, Delay, Inject

Packets must maintain
malicious intent,
transformations hold to
underlying protocols.

Detection rate of packet-level
features dropped by up to 70% and
flow-level features dropped by up
to 68%.

[75] 2020 IDS - Flows Jacobian Method
(JSMA)

Obey TCP/IP
constraints

Biased distributions with low
dimensionality enable constrained
adversarial examples. Constrained
to five random features, ⇡ 50%
adversarial examples succeed.

[114] 2020 IDS - packet Valid packet Minimal
modification/insertion
of packets

Experimental results show
powerful and effective
functionality preserving attacks.
More accurate models are
more susceptible to adversarial
examples.

[117] 2021 Malware Injected unexecuted
benign content

Minimal Injected
Content

Section-injection attack can
decrease the detection rate. Their
analysis highlights that commercial
products can be evaded via transfer
attacks.

[120] 2021 CPS Best-effort search Real-world linear
inequality

Best-effort search algorithms
effectively generate adversarial
examples meeting linear
constraints. Their evaluation
shows constrained adversarial
examples significantly decrease
detection accuracy.

[130] 2021 IDS Minimal
perturbation of
each feature

FGSM Functionality is not reported, but is
less likely to preserve functionality
because all features are perturbed.

[131] 2021 CPS/ICS JSMA Minimal number of
perturbed features

Functionality is not reported,
but is more likely to preserve
functionality because relatively
few features are perturbed.

[132] 2021 IDS PSO-based mutation original traffic retained
and packet order is
unchanged

Measured attack effect, malicious
behaviour and attack efficiency

[133] 2021 IDS GAN preserving functional
features of attack traffic

F1-score drops to zero from
around 99% DIGFuPAS adversarial
examples.

[134] 2021 IDS PSO/GA/GAN Only modify features
where network
functionality is
retained

In the network traffic data, it is
unrealistic to assume an adversary
can alter all traffic features -
Constraints on features that do not
break functionality

[135] 2020 IDS GAN/PSO Original traffic and
packet order is
retained.

Detection performance and
robustness should both be
considered in feature extraction
systems.

TABLE 2.7: Functionality-Preservation in Cyber Security and
Intrusion Detection.

50 Chapter 2. Literature Review

malware must preserve its malware functionality [75], perturbations in audio must

be nearly inaudible [75], perturbed text must preserve its meaning. Sheatsley et al.

further offer a definition for adversarial examples in intrusion detection: perturbed

network flows must maintain their attack behaviour. Human perception may not

be the best criterion for defining adversarial examples in cyber security domains.

Indeed, human perception in some domains might be immaterial. For example,

only very skilled engineers could perceive network packets in any meaningful way

even with the use of network analysis tools. Furthermore, users likely cannot

perceive a difference between the execution of benign or malicious software. After

malware is executed, the effects are clear; however, during malware execution users

often suspect nothing wrong. Therefore, it is considered that while fooling human

perception remains a valid ambition. It is critical that adversarial perturbations in

cyber security domains preserve functionality and behaviour.

In the cyber security domain, traditional gradient descent algorithms may be

insufficient. Algorithms that preserve functionality are required. Moreover, some

models used in the cyber security domain are distinct from those used for purely

visual problems. For example, RNNs are useful for time sequences of network traffic

analysis. Recent functionality-preserving attacks in the cyber security domains of

Malware, Intrusion Detection, and CPS are now considered. As illustrated in Figure

2.6.

FIGURE 2.6: Common Machine Learning Tasks in Cyber Security.

Malware: Hu and Tan [103] propose a novel algorithm to generate adversarial

sequences to attack a RNN based malware detection system. They claim that

algorithms adapted for RNNs are limited because they are not truly sequential.

They consider a system to detect malicious API sequences. Generating adversarial

examples effective against such systems is non-trivial because API sequences are

2.5. Results 51

discrete values. There is a discrete set of API calls; changing any single letter in an

API call will create an invalid API call and cause that API call to fail. This will

result in a program crash. Therefore, any perturbation of an API call must result in

a set of valid API calls. They propose an algorithm based around a generative RNN

and a substitute RNN. The generative RNN takes an API sequence as input and

generates an adversarial API sequence. The substitute RNN is trained on benign

sequences and the outputs of the generative RNN. The generative model aims to

minimize the predicted malicious probability. Subsequently, adversarial sequences

are presented to six different models. Following adversarial perturbation, the

majority of the malware was not detected by any victim RNNs. The authors of the

paper note that even when the adversarial generation algorithm and the victim

RNN are implemented with different models and trained on different training sets,

the majority of the adversarial examples successfully attack the victim RNN

through the transferability property of adversarial examples. In MLP, they report a

TPR of 94.89% which falls to 0.00% under adversarial perturbations.

Demetrio et al. [117] preserve the functionality of malware while evading static

Windows malware detectors. Their attacks exploit the structure of portable

executable (PE) file format. Their framework has three categories of

functionality-preserving manipulations: Structural, Behavioural, and Padding.

Some of their attacks work by injecting unexecuted (benign) content in new

sections in the PE file, or at the end of the malware file. The attacks are a

constrained minimization problem optimizing the trade-off between the probability

of evading detection and the size of injected content. Their experiments

successfully evade two Windows malware detectors with few queries and small

payload size. Furthermore, they discover their attacks transfer to other Windows

malware products. Note that the creation of new sections provides a larger attack

surface that may be populated with adversarial content. They report that their

section-injection attack is able to drastically decrease the detection rate (e.g., from

an original detection rate of 93.5% to 30.5% also significantly outperforming their

random attack at 85.5%).

52 Chapter 2. Literature Review

Labaca-Castro et al. [78] present a gradient-based method to generate valid

executable files that preserve their intended malicious functionality. They note that

malware evasion is a current area of adversarial learning research. Evading the

classifier is often the foremost objective; however, the perturbations must also be

carefully crafted to preserve the functionality of malware. They note that removing

objects from a PE file often leads to corrupt files. Therefore, they only implement

additive or modifying perturbations. Their gradient-based attack relies on

complete-knowledge of the system with the advantage that the likelihood of evasion

can be calculated and maximised. Furthermore, they state that their system only

generates valid executable malware files.

Intrusion Detection: Usama et al. [113] use a Generative Adversarial Network

(GAN) to generate functionality-preserving adversarial examples. They note that

adversarial examples aiming to evade IDS should not invalidate network traffic

features. A typical GAN composed of two neural networks: a generator G and

discriminator D is used to construct adversarial examples that masquerade as

benign but functionally probe the network. Their attack is able to evade an IDS

while preserving the intended behaviour. They suggest that adversarial training

using GAN generated adversarial examples improves the robustness of their

model. They report F1-Scores of 89.03 (original), 40.86 (After attack), 78.49 (after

adversarial training), and an improved 83.56 after GAN-based adversarial training.

Wang et al. [136] note that relatively few researchers are addressing adversarial

examples against IDS. They propose an ensemble defence for network intrusion

detection that integrates GANS and adversarial retraining. Their training

framework improves robustness while maintaining accuracy of unperturbed

samples. Unfortunately, they evaluate their defences against traditional attack

algorithms: FGSM, Basic Iterative Method (BIM), DeepFool, JSMA. However, they

do not specifically consider functionality-preserving adversarial examples. They

further recognise the importance of using recent datasets for intrusion detection.

They report F1-Scores for three classifiers and a range of adversarial example

algorithms. For example, F1-Score for an ensemble classifier tested on clean data is

2.5. Results 53

0.998 compared to 0.746 for JSMA. Among all classifiers, the ensemble classifier

achieved superior F1-Scores under all conditions.

Huang et al. [114] note that it is more challenging to generate DDoS adversarial

examples because of their discrete properties. They note that work in the visual

domain cannot be directly applied to adversarial examples for intrusion detection

of DDoS. The input to their algorithm is a series of packets. This makes it difficult

to optimize the distance between the original and adversarial sample while

guaranteeing the validity of each packet. They propose two black-box methods to

generate DDoS adversarial examples against LSTM-based intrusion detection

system: Genetic Algorithm (GA) and Probability Weighted Packet Saliency Attack

(PWPSA). Each method modifies the original input, either inserting or modifying

packets. The GA method evolves a population of DDoS samples and selects

adversarial examples from the population. In PWPSA the most important packet in

the sequence is found and replaced with a different ‘best packet’ for this position.

Both methods produce adversarial examples that can successfully evade their

DDoS intrusion detection model. They report success rates for their different

attacks against different detectors. For example, success results for detector D:

GA-Replace 91.37 % GA-Insert 74.5%, PWPSA-Replace 88.9%, PWPSA-Insert

67.17%.

Cyber-Physical Systems: Cai et al. [119] warn that adversarial examples have

consequences for system safety because they can cause systems to provide incorrect

outputs. They present a detection method for adversarial examples in CPS. They

use a case study of an Advanced Emergency Braking System where a DNN

estimates the distance to an obstacle. Their adversarial example detection method

uses a variational auto-encoder to predict a target variable (distance) and compare

it with a new input. Any anomalies are considered adversarial. Furthermore,

adversarial example detectors for CPS must function efficiently in a real-time

monitoring environment and maintain low false alarm rates. They report since the

p-values for the adversarial examples are almost 0, the number of false alarms is

very small, and the detection delay is smaller than 10 frames or 0.5 s.

54 Chapter 2. Literature Review

CPS include critical national infrastructure such as power grids, water

treatment plants, and transportation. Li et al. [120] assert that adversarial examples

could exploit vulnerabilities in CPS with terrible consequences; however, such

adversarial examples must satisfy real-world constraints (commonly linear

inequality constraints). For example, meter readings downstream may never be

larger than meter readings upstream. Adversarial examples breaking constraints

are noticeably anomalous. Risks to CPS arising from adversarial examples are not

yet fully understood. Furthermore, algorithms and models from other domains

may not readily apply because of distributed sensors and inherent real-world

constraints. However, generating adversarial examples that meet such linear

constraints were successfully applied to power grids and water treatment system

case studies. The evaluation results show that even with constraints imposed by

the physical systems, their approach still effectively generates adversarial

examples, significantly decreasing the detection accuracy. For example, they report

the accuracy under adversarial conditions to be as low as 0%.

Adversarial Examples and Model Type

In this survey models are classified based on their architecture in four broad types:

Multi-Layer Perceptron (MLP), CNN, RNN, and RF. Ali et al. [137] observed that

different deep learning architectures are more robust than others. They note that

CNN and RNN detectors are more robust than MLP and hybrid detectors, based on

low attack success rate and high query counts. Architecture plays a role in the

accuracy of these models because CNNs can learn contextual features due to their

structure, and RNNs are temporally deeper, and thus demonstrate greater

robustness.

Unsurprisingly, research on CNNs coincides with research in the visual domain

as shown in Table 2.5. The majority of adversarial example research on RNNs has

until recently focused on the text or natural language domain; however, RNNs are

also useful in the cyber security domain and researchers have recently considered

2.5. Results 55

adversarial example attacks against RNN-based IDS.

Other promising research shows that radial basis function neural networks

(RBFNN) are more robust to adversarial examples [138]. RBFNNs fit a non-linear

curve during training, as opposed to fitting linear decision boundaries. Commonly

RBFNNs transform the input such that when it is fed into the network it gives a

linear separation. The non-linear nature of RBFNNs could be one potential

direction for adversarial example research. Powerful attacks able to subvert

RBFNNs would improve the understanding of decision boundaries. Goodfellow et

al. [23] argue the primary cause of neural networks’ vulnerability to adversarial

perturbation is their linear nature. However, RBFNNs are less commonly deployed

and are therefore not further discussed.

Adversarial Examples and Knowledge Requirement

The majority of the research focus is on white-box attacks as shown in Table 2.5,

perhaps because such attacks are known to be efficient and effective. Less research

focuses on black-box attacks, and few recognise gray-box attacks that need only

partial model knowledge. Gray-box attacks will likely have advantages over

black-box attacks. Adversaries will undoubtedly use any and all information

available to them.

The attacks are classified based on the knowledge required by the adversary.

White-box attacks are likely the most effective and efficient method of attack,

because the adversary has complete-knowledge of the model architecture, and

information on how the model was trained. However, access to this knowledge is

harder to attain, although it might also be gained through insider threats [139] or

model extraction attacks [140]. Extracted models might be a feasible proxy on

which to develop and test adversarial examples.

Notwithstanding the efficiency of white-box attacks, effective black-box attacks

are possible. Black-box (or oracle) attacks require no knowledge of the model.

Adversaries only need the ability to query the model and receive its output.

56 Chapter 2. Literature Review

Adversaries generate inputs and receive the output of the model. Typical black-box

attacks include GA [114], and GANs [108] [116].

Gray-box attacks require only limited model knowledge, perhaps including

knowledge of the features used by the model. This is a realistic prospect as

adversaries will likely have or gain at least partial knowledge of the model.

Adversarial Example Constraints

Table 2.5 shows little research considering constraints of any sort. Much research on

IDS ignores constraints; however, network traffic is highly constrained by

protocols, and some network firewalls may drop malformed packets. Furthermore,

it is insufficient that well-formed adversarial examples progress past firewalls.

They must also retain their intended functionality. Stringent constraints exist in the

cyber security domain. Extreme care must be taken to create valid adversarial

examples. For example, in IDS, adversaries must conform the protocol specification

of the TCP/IP stack.

Constraints on adversarial examples can be classified into three groups: 1) box

constraints, simple constraints where values must remain within certain values. 2)

Sparse constraints, where a maximum number of features can be modified, the

most extreme version being where only one feature can be modified. . 3)

functionality-preserving constraints, where adversarial examples must retain their

original functionality. For example, malware must function as malware when

perturbed to evade a malware detector, and DDoS attacks must function as DDoS

attacks when perturbed to evade detection. Functionality-preserving adversarial

examples are an interesting avenue for further research.

2.5. Results 57

FIGURE 2.7: Common Defence Types against Adversarial Machine
Learning.

2.5.3 Defences Against Adversarial Examples

Work Year Defence Type Domain Model
Pr

e-
Pr

oc
es

s

D
et

ec
tio

n

A
dv

-T
ra

in
in

g

Te
st

in
g

A
rc

hi
te

ct
ur

al

D
is

til
la

tio
n

En
se

m
bl

e

G
am

e
Th

eo
ry

V
is

ua
l

C
yb

er
se

cu
ri

ty

Te
xt

M
LP

C
N

N

R
N

N

R
F

[23] 2014 Adversarial Training D D D
[94] 2016 Distillation as defence D D D
[141] 2016 Feedback Alignment D D D
[142] 2016 Assessing Threat D D D
[143] 2017 Statistical Test D D D D D
[144] 2017 Detector SubNetwork D D D
[145] 2017 Artifacts D D D
[146] 2017 MagNet D D D
[147] 2017 Feature Squeezing D D D
[148] 2017 GAT D D D
[121] 2018 EAT D D D
[149] 2018 Defense-GAN D D D
[122] 2018 Assessing Threat D D D
[150] 2018 Stochastic Activation Pruning D D D D
[151] 2018 DeepTest D D D
[152] 2018 DeepRoad D D D
[153] 2018 Defensive Dropout D D D
[153] 2018 Def-IDS D D D

[6] 2018 Multi-Classifier System D D D
[154] 2019 Weight Map Layers D D D
[155] 2019 Sequence Squeezing D D D
[128] 2019 Feature Removal D D D
[156] 2020 Adversarial Training D D D
[157] 2020 Adversarial Training D D D
[158] 2019 Game Theory D D D
[159] 2020 Hardening D D D D
[160] 2021 Variational Auto-encoder D D D
[161] 2021 MANDA D D D

TABLE 2.8: Chronologically ordered summary of defences against
adversarial examples.

58 Chapter 2. Literature Review

It is hard to defend against adversarial examples. People expect ML models to give

correct outputs for all possible inputs. Because the range of possible inputs is so

large, it is difficult to guarantee correct model behaviour for every input. Some

researchers explore the possibility of exercising all neurons during training [151].

Furthermore, consideration must be given to how adversaries might react when

faced with a defence. Researchers in secure machine learning must evaluate

whether defences remain secure against adversaries with knowledge of model

defences. The suggested defences against adversarial examples are classified into

the following groups: Pre-processing, Adversarial Training, Architectural,

Detection, Distillation, Testing, Game Theory, and Ensembles as illustrated in

Figure 2.7.

Pre-Processing as a Defence against Adversarial Examples

Some promising research considers transformations such as: translation, additive

noise, blurring, cropping, resizing. These often occur with cameras and scanners in

the visual domain. Translations have shown initial success in the visual domain.

Initial successes have prompted some researchers to discount security concerns.

For example, Graese [142] overreaches by declaring adversarial examples an

‘academic curiosity’, not a security threat. This position misunderstands the threat

from adversarial examples which remain a concern for cyber security researchers.

Eykolt et al. [162] note the creation of perturbations in physical space that

survive more challenging physical conditions (distance, pose, and lighting).

Transformations are appropriate for images; however, such translations may make

little sense in cyber security domains. For example, what would it mean to rotate or

blur a network packet? Nevertheless, inspiration could be taken from

pre-processing methods in the visual domain. Adapting pre-processing methods to

cyber security and other nonvisual domains is an interesting avenue for research.

2.5. Results 59

Adversarial Training as a Defence against Adversarial Examples

Szegedy et al. [22] found robustness to adversarial examples can be improved by

training a model on a mixture of adversarial examples and unperturbed samples.

Specific vulnerabilities in the training data can be identified through exploring

UAPs. Identified vulnerabilities could potentially be addressed with adversarial

training. Adversarial training is recognised as a simple method aiming to improve

robustness; however, it is potentially a cosmetic solution: the problem of

adversarial examples cannot be solved only through ever greater amounts of

adversarial examples in the training data. Tramér et al. [121] found adversarial

training is imperfect and can be bypassed. Moreover, black-box attacks have been

shown to evade models subject to adversarial training. Adversarial training has

some merit because it is a simple method to improve robustness. It is unfortunately

not a panacea and should be bolstered by other defences. Research avenues could

combine adversarial training with other techniques. Models used in cyber security

or other critical domains should not rely solely on adversarial training.

Architectural Defences against Adversarial Examples

Some research, rather than modifying a model’s training data investigate defences

through hardening the architecture of the model. This could involve changing

model parameters or adding new layers. In Table 2.8 such defences are classified as

architectural.

Many white-box attacks rely on the quality of the gradient. Some research

considers how the model’s weights can be used to disrupt adversarial examples.

Amer and Maul [154] modify Convolutional Neural Networks (CNN) adding a

weight map layer. Their proposed layer easily integrates into existing CNNs. A

Weight Mapping layer may be inserted between other CNN layers; thus, increasing

the network’s robustness to both noise and gradient-based adversarial attacks.

Other research aims to block algorithms from using weight transport and

back-propagation to generate adversarial examples. Lillicrap et al. [141] propose a

60 Chapter 2. Literature Review

mechanism called ‘feedback alignment’ which introduces a separate feedback path

via random fixed synaptic weights. Feedback alignment blocks the generation of

adversarial examples that rely on the gradient because it uses the separate feedback

path rather than weight transport.

Techniques to improve accuracy could similarly help harden models. For

example, dropout can improve accuracy when used during training. It is

particularly useful where there is limited training data and over-fitting is more

likely to occur. Wang et al. [153] propose hardening DNN using defensive dropout

at test time. Unfortunately, there is inherently a trade-off between defensive

dropout and test accuracy; however, a relatively small decrease in test accuracy can

significantly reduce the success rate of attacks. Such hardening techniques force

successful attacks to use larger perturbations, which in turn may be more readily

recognized as adversarial.

Defences that block gradient-based attacks complicate the generation of

adversarial examples; however, like adversarial training these defences could be

bypassed. In particular black-box attacks and transferability-based attacks are not

blocked by such defences. A more promising defence “Defensive dropout” [153]

can block both black-box and transferability-based attacks.

Detecting Adversarial Examples

Much research has considered the best way to detect adversarial examples. If

adversarial examples can be detected they could be more easily deflected, and

perhaps even the original input could be salvaged and correctly classified. Grosse

et al. [143] propose a statistical test to detect adversarial examples before they are

input into machine learning models. They observe adversarial examples are

unrepresentative of the distribution and lie in unexpected regions of a model’s

output surface. Their proposed outlier detection system relies on the statistical

separation of adversarial examples. They subsequently evaluate their model

against adaptive strategies and strong black-box strategies.

2.5. Results 61

Metzen et al. [144] propose a binary classifier “Detector Subnetwork” aiming to

distinguish between genuine data and adversarial examples. The detection of

adversarial examples does not unequivocally lead to correct classification; however,

the effect of adversarial examples could perhaps be mitigated through fallback

solutions. For example, by requesting human intervention. After successfully

detecting adversarial examples in their experiments, they later bypassed their own

defences by generating adversarial examples that fool both detector and classifier.

They further propose a training procedure called ‘dynamic adversary training’ as a

countermeasure to their attack against the detector.

Feiman et al. [145] also detect adversarial examples by considering which

artifacts of adversarial examples could help detection. They consider two

complementary features used to detect adversarial examples: Density estimates

and Bayesian uncertainty estimates. They evaluate these features on CNNs trained

on MNIST and CIFAR-10 datasets. They effectively detect adversarial examples

with ROC-AUC of 92.6%. They further suggest that their method could be used in

RNNs. This suggestion is bolstered by Gal and Ghahramani’s [163] assertion that

Bayesian approximation using dropout can be applied to RNN networks.

Meng et al. [146] propose a framework ‘MagNET’ to detect adversarial

examples. This framework precedes the classifier it defends. The framework has

two components: 1) A detector finds and discards any out-of-distribution examples

(those significantly far from the manifold boundary). 2) A reformer that aims to

find close approximations to inputs before forwarding the approximations to the

classifier. Their system generalizes well because it learns to detect adversarial

examples without knowledge of how they were generated. They propose a defence

against gray-box attacks where the adversary has knowledge of the deployed

defences. The proposed defence trains a number of auto-encoders (or reformers). At

test-time a single auto-encoder is selected at random.

Xu et al. [147] propose ‘Feature Squeezing’ as a strategy to detect adversarial

examples by squeezing out unnecessary features in the input. Through comparing

62 Chapter 2. Literature Review

predictions of the original and feature squeezed inputs, adversarial examples are

identified if the difference between the two predictions meets a threshold. Two

feature-squeezing methods are used: 1) Reducing the colour bit-depth of the image.

2) Spatial smoothing. An adversary may adapt and circumvent this defence;

however, the defence may frustrate the adversary because it changes the problem

the adversary must overcome.

Rosenberg et al. [155] consider the feature squeezing defence designed for

CNNs and propose ‘Sequence Squeezing’ which is adapted for RNNs. Adversarial

examples are similarly detected by running the classifier twice: once on the original

sequence, and once for the sequence-squeezed input. An input is identified as

adversarial if the difference in the confidence scores meets a threshold value.

Zhang et al. [160] propose an image classifier based on a variational

auto-encoder. They train two models each on half the dataset: a target model and a

surrogate model. On the surrogate model they generate three types of strong

transfer-based adversarial examples: L0, L2, and L•. Analysis of their model using

the CIFAR-10, MNIST, and Fashion-MNIST datasets found their model achieves

state-of-the-art accuracy with significantly better robustness. Their work is in the

visual domain; however, perhaps their ideas can be applied to other domains such

as intrusion detection.

Some architectural defences against adversarial examples have been discussed.

In particular, methods for detecting adversarial examples. Carlini & Wagner [164]

show Adversarial examples are harder to detect and that adversarial examples do

not exhibit intrinsic properties. Moreover, many detection methods can be broken

by choosing good attacker-loss functions. Grosse et al. [143] note adversarial

defences exist within an arms race. Therefore, guarantees against future attacks are

difficult because adversaries may adapt to the defences by adopting new strategies.

Meng et al. [146] advocate that defences against adversarial examples should be

independent of any particular attack. Note that human-in-the-loop solutions could

be useful where few cases need human intervention; however repeated requests

2.5. Results 63

might quickly overwhelm human operators given large numbers of adversarial

examples. For example, as might be seen in network traffic analysis.

Defensive Testing

Adversarial examples cause unexpected behaviour. Recent research considers

testing deep learning systems. Pei et al. [165] aim to discover unusual or

unexpected behaviour of a neural network through systematic testing. They

produce test data by solving a joint optimization problem. Their tests aim to trigger

different behaviours and activate a high proportion of neurons in a neural network.

Their method finds corner-cases where incorrect behaviour is exhibited. For

example, malware masquerading as benign. They claim to expose more inputs and

types of unexpected behaviour than adversarial examples. They further use the

generated inputs to perform adversarial training. As a defence the practicability of

triggering all neurons in larger neural networks is questioned; however, as an

attack, their method could produce different types of adversarial inputs.

Other researchers are considering similar techniques to generate test data. Tian

et al. [151] evaluate a tool for automatically detecting erroneous behaviour,

generating test inputs designed to maximise the number of activated neurons using

realistic driving conditions including: blurring, rain, and fog. Zhang et al. [152]

propose a system to automatically synthesize large amounts of diverse driving

scenes, including weather conditions using GANs. GANs may be useful for

generating adversarial inputs and may even implicitly learn domain constraints.

Multi-Classifier Systems

Biggio et al. [6] Highlight that robustness against adversarial examples can be

improved by careful use of ensemble classifiers. For example, by using

rejection-based mechanisms. Indeed, Biggio et al. had implemented a

multi-classifier system (MCS) [166] which was hardened using randomisation.

Randomising the decision boundary makes a classifier harder to evade. Since the

attacker has less information on the exact position of a decision boundary, they

64 Chapter 2. Literature Review

must make too conservative or too risky choices when generating adversarial

examples.

Game Theory

Zhou et al. [158] consider game theoretic modelling of adversarial machine learning

problem. Many different models have been proposed. Some aim to optimise the

feature set using a set of high-quality features, thus making adversarial attacks

more difficult. Game theoretic models are proposed to address more complex

situations with many adversaries of different types. Equilibrium strategies are

acceptable to both players and neither has an incentive to change. Therefore,

assuming rational adversaries, game theory-based approaches allowing a Nash

equilibrium could potentially end the evolutionary arms race.

Adversarial Example defences in Cyber Security Domains

Domains were discussed in sections 2.5.2 and 2.5.2. Most research on defences

against adversarial examples has focused on the visual domain. Comparatively

little research has so far considered defences in cyber security domains such as

intrusion detection and malware analysis. Applying current defences in the visual

domain to other domains might efficiently kick-start research into defences for

other domains. Effective defences against adversarial examples could help enable

the use of ML models in cyber security and other adversarial environments.

Different model types are more suited to specific domains. It might be that

different model types may require different defences, although a defence suitable

for a range of different models would be useful and convenient. Again, the models

are classified into four types: MLP, CNN, RNN, and RF.

2.6 Discussion and Conclusion

ML systems are deployed in complex environments including cyber security and

critical national infrastructure. Such systems attract the interest of powerful

advanced persistent threats who may target them. Crucially, robustness against

2.6. Discussion and Conclusion 65

functionality-preserving adversarial examples must be addressed before novel

attack strategies exploit inherent weaknesses in critical ML models.

Machine learning and adversarial learning are becoming increasingly

recognised by the research community, given the rapid uptake of ML models in a

whole host of application domains. To put this in context, 2,975 papers were

published on arXiv in the last 12 months (October 2020 - September 2021) related to

machine learning and adversarial learning. Over recent years, the number of

papers being published on this topic has grown substantially. According to Carlini

who maintains a blog post ‘A Complete List of All (arXiv) Adversarial Example

Papers’ [167] the cumulative number of adversarial example papers nears 4000 in

the year 2021. It is therefore evident that there is a lot of interest and many

researchers active in this area. Not all papers in this list are useful or relevant, no

judgement is passed of their quality, the aim is merely to clarify the research

landscape and draw important research to the fore. The majority of prior research

has been applied to the visual domain. Seminal contributions have been made by

Szegedy et al. [22], Goodfellow et al. [23], Carlini et al. [84], Papernot [98]. It is clear

that the visual domain continues to be well researched.

An extensive survey of the academic literature in relation to

functionality-preservation in adversarial machine learning was conducted. A

classification based on both attack and defence was derived. Possible robustness

metrics were considered. Moreover, model training and data-level techniques were

considered, to determine how they could help improve robustness through tackling

biased datasets.

Analysis of functionality-preservation methods finds gradient-based methods

may be less suitable for functionality-preservation and other constraints. Methods

modifying large numbers of features are less likely to preserve functionality. It was

found that GANS and Genetic algorithms are suitable for functionality-preserving

attacks. Defence strategies against functionality-preserving adversarial examples

were discussed. The survey found that preserving functionality in adversarial

66 Chapter 2. Literature Review

machine learning is an open research topic. Finally, some key future directions and

research challenges were identified for functionality-preserving machine learning.

The survey of relevant literature revealed that adversarial machine learning is a

complex and highly dynamic landscape. The literature shows that most machine

learning models are susceptible to adversarial examples. Indeed, the review of the

literature stressed that the robustness of models to adversarial examples is a key

concern. The survey identified that the distribution, quality, quantity, and

complexity of dataset samples on which a model is trained can impact the

trustworthiness and robustness of the model. Simple resampling techniques and

cross-validation may have a role to play in improving robustness. The survey

found that adversarial examples in constrained domains is still an open problem.

Moreover, although there are many proposed defences, with the exception of

dropout most can be evaded and are not scalable. The clear need for effective

defences remains an open problem. Furthermore, relatively few researchers

address the key challenge of blocking transferability.

67

Chapter 3

Feature Vulnerability and

Robustness Assessment

Following the review of the literature, improving robustness was identified as an

important research avenue. This chapter considers how feature selection could help

identify vulnerable features and improve robustness in machine learning. This

section begins to examine the forms of adversarial learning that are used, and

methods for assessing feature vulnerability and robustness in machine learning

models.

3.1 Introduction

Computerised systems are a feature of everyday life in all sectors, globally,

including defence, energy, finance, health, and government. Adversaries such as

criminals and advanced persistent threats deliberately explore network

vulnerabilities, often gaining access to systems over computer networks and

causing unwanted events. The European Union Agency for Cybersecurity [168] list

common network attack scenarios including: Web-based attacks, Denial-of-Service,

and Botnets. Public and private organisations must inhabit this threat landscape,

The recent SolarWinds supply chain attack identified in December 2020 [40] [41]

indicates organisation’s reliance on intrusion detection software, and the impact of

successful attacks. Current intrusion detection systems utilize machine learning

techniques using labelled datasets to block such malicious traffic.

68 Chapter 3. Feature Vulnerability and Robustness Assessment

A competent model must correctly identify malicious traffic, whilst not

misclassifying benign traffic. This is related to the concepts of precision and recall.

Precision measures the reliability of positive predictions, while recall measures the

model’s ability to accurately predict all positive examples. In practice, there is

always a trade-off between precision and recall. The trade-off exists because

adjusting the threshold for positive classification will inevitably result in the

identification of additional negative samples as members of the positive class.

Therefore, recall is increased at the expense of precision, and vice-versa. A model

that predicts malicious traffic when it is mildly confident will likely have high recall

but low precision, meaning some benign traffic will be flagged as malicious;

alternatively, a model that predicts malicious traffic only when it is certain will

have low recall and high precision, meaning that some malicious packets will not

be identified.

As previously stated in Chapter 1, Szegedy et al. [22] discovered naturally

occurring and intriguing properties of neural networks, discovering that

imperceptible perturbations to input values can cause differences in the output of

the neural network. Neural network based machine learning systems are therefore

vulnerable to carefully crafted noise, known as adversarial examples [23].

Adversarial examples are a form of evasion attack that relies on small perturbations

to the original data, often undetectable to human observers. Adversarial examples

can be algorithmically generated. Indeed, there are a selection of algorithms that

produce adversarial examples, including Fast Gradient Sign Method [23] and

Jacobian Saliency Map Attack. Moreover, Papernot et al. [85] developed a software

library for the easy generation of adversarial examples.

Much of the existing work on adversarial learning is applied to computer vision

tasks, such as image classification [84, 96, 169], and even well-trained models such

as Microsoft’s Common Objects in Context (COCO) [170] can be susceptible to

adversarial attacks [27]. A fundamental issue is that images contain a significantly

large amount of data (i.e., pixels) that would be used by the classifier - for example,

a single 1080p colour image would have over 6 million input values for a classifier.

3.2. Related Work 69

Furthermore, subtle variations in such values would unlikely be noticeable to

humans, due to colour perception issues [171]. A primary focus in this work is how

adversarial attacks against a machine learning classifier can translate to other

domains, such as cyber security or network traffic analysis, where an attacker may

exploit weaknesses in a IDS classifier’s performance, essentially masquerading an

attack as benign activity.

In this work The CICIDS2017 dataset is used [66] [37] to explore the potential

security risks introduced through the use of machine learning systems. In Chapter

2 the accuracy metric was defined (Eq. 2.5). In this Chapter the trade-off between

accuracy and the number of features is explored. The focus is on adversarial

examples and how feature selection can improve the robustness of machine

learning systems. The main contributions of this work are:

• Considering countermeasures against algorithmically generated adversarial

examples, and in particular FGSM.

• Demonstrating an inverse relationship between the number of features and

robustness against adversarial examples.

• Identifying that applying systematic feature selection for model training can

improve the robustness of the model against adversarial examples.

3.2 Related Work

This related works section addresses relevant topics of adversarial attacks,

defences, and visual analytics. It considers both white-box and black-box. The

defences considered include architectural defences and those that use feature

selection. This section also briefly examines how visual analytics could in assessing

classifier performance.

3.2.1 Adversarial Attacks

Adversarial attacks can be classified as either white-box or black-box. The former

requires an attacker to have access to the target model’s parameters whereas the

70 Chapter 3. Feature Vulnerability and Robustness Assessment

latter does not require such access. Black-box attacks may use a different model, or

no model at all. Black-box strategies can employ the transferability of adversarial

examples, where adversarial examples generated against one model can be

successfully used to attack the main target model [172]. Ayub et al. [27] built a

multi-layer perceptron supervised machine learning model to detect and classify

benign and malicious traffic using two distinct network-based intrusion detection

system (IDS) datasets (CICIDS2017 [66] and TRAbID [173]). They achieved accurate

classification results; however, via using Jacobian-based Saliency Map Attack [98]

they reduce the accuracy by 22.52% and 29.87% on the CICIDS2017 and TRAbID

datasets, respectively. Thus, demonstrating the ease of evading network defence,

and the importance of countermeasures.

The fast gradient sign method (which is a white-box method) is designed to be

fast rather than optimal. Therefore, generated adversarial examples may be based

on the minimal perturbations. For each feature the gradient of the loss function is

used to determine whether increasing or decreasing the feature’s intensity would

minimize the loss function. All features are shifted simultaneously. Kurakin et

al. [122] refined the fast gradient sign method by taking multiple smaller steps.

Quereshi et al. [174] aim to understand the impact of adversarial examples.

They build a random neural network-based adversarial intrusion detection system,

before training it on the NSL-KDD dataset. Subsequently they craft adversarial

examples using JSMA using the Cleverhans Python library. Their benchmark was

highly accurate (95.6% benign and 96.61% denial-of-service). Under JSMA attack

their system accuracy fell to 47.58% for benign and a minimum of 28.10% for other

attack classes. They note the poor results under JSMA were due to class imbalance

in the benchmark data. Further they suggest that better feature extraction

techniques could improve accuracy.

3.2. Related Work 71

3.2.2 Architectural Defences

Lillicrap et al. [141] proposed a mechanism called feedback alignment that

introduced a separate feedback path through random fixed synaptic weights.

Gradient based attacks rely on the quality of the gradient to determine a possible

attack; the use of feedback alignment which does not use weight transport thus

increases robustness against adversarial examples.

Amer and Maul [154] proposed modifying the architecture of Convolutional

Neural Networks (CNN) by adding a weight map layer. Their proposed layer can

be easily integrated into existing CNNs. A weight map layer may be inserted

between other CNN layers; thus, increasing the network’s robustness to both noise

and gradient-based adversarial attacks, whilst maintaining accuracy.

Dropout is often used during training to improve test accuracy, particularly

where over-fitting is seen due to limited training data; however, Wang et al. [153]

propose defensive dropout at test time to harden deep neural networks against

adversarial attacks. There is an inherent trade-off between defensive use of dropout

and the test accuracy; however, a relatively small decrease in test accuracy can

significantly reduce the attack success rate. Furthermore, the added perturbations

to the inputs might be significant and therefore recognized by humans.

3.2.3 Feature Selection

Hamed et al. [175] integrate feature selection into a intrusion detection system,

aiming to select the most informative features to assist in the detection of

"zero-day" attacks where few attack samples are available. They consider Recursive

Feature Addition (RFA) and bigram technique (using two adjacent elements from a

string) training their model on the ISCX 2012 dataset. Their objective was to find

combinations of features that do not necessarily give good accuracy results

independently but work very well as part of a set of selected features.

72 Chapter 3. Feature Vulnerability and Robustness Assessment

Farahani [176] uses an intrusion detection system case study to propose a novel

cross-correlation-based feature selection and compare it against the cuttlefish

algorithm (CFA), and mutual information-based feature selection (MIFS). The

selected features are used with four classifiers: support vector machines, naive

bayes, decision tree, and K-nearest neighbour. They use four datasets: KDD Cup

99, NSL-KDD, AWID, and CICIDS2017. Their results show their proposed method

has better accuracy, precision, recall, and F1-score when compared against CFA and

MIFS.

Almomani [93] proposes a feature selection model for network intrusion

detection systems utilising genetic algorithm, parallel swarm optimisation, and

other bio-inspired algorithms to improve the performance of network intrusion

detection systems. They use the UNSW-NB15 dataset and evaluate their selection

model on support vector machine and J48 classifiers. They show that accuracy can

be maintained with fewer features. The best results of their study for F-measure,

accuracy and sensitivity were achieved using with generated feature-sets of 30 and

13 features.

3.2.4 Visual Analytics

Legg et al. [177] studied visual analytics-based active learning as a means of

assessing robustness in classifier performance with limited samples. Such visual

analytic tools can also inform where genuine vulnerabilities in machine learning

performance may be introduced due to weaknesses in the training data.

Yoo et al. [178] propose an interactive visual analytics tool to allow users to

visually analyse the type, period, traffic, and frequency of attacks answering the

challenge of handling and analysing vast number of logs. They argue that the tool

can be useful and show how a Denial-of-Service attack was successfully identified

and subsequently blocked.

3.3. This Work 73

3.3 This Work

Most previous work aims at understanding the impact of adversarial examples or

improving accuracy under "normal conditions" through the use of feature

selections. Within the realm of cyber security and adversarial machine learning, the

existence of malicious classes of traffic is very common and even anticipated.

Therefore, in this context, the concept of “normal conditions” pertains to

conventional ML model inputs that are unmodified by adversarial machine

learning techniques. In this work the author addresses a different problem of

improving the robustness of machine learning models against adversarial machine

learning attacks. This work utilises the relatively recent CICIDS2017 dataset. This

dataset is examined using PCA, t-SNE, UMAP, and parallel co-ordinate plots. The

focus is on feature selection using RFE as described in Algorithm 1. The algorithm

is composed of two stages: first, the features with the largest perturbations are

found; second, the features are recursively eliminated, starting with the feature

with the largest mean perturbation, and the Mean-Squared Error is stored.

The aim is to improve robustness against FGSM attack. FGSM is a very

common algorithm and was selected for its simplicity. FGSM uses gradient descent

which is common across a range of other algorithms. The simplest form of FGSM

modifies all features; however, the algorithm can be adapted to modify a subset of

features through the use of a feature mask to exclude features that should not be

perturbed. The model’s robustness against adversarial examples is measured using

the accuracy metric. The accuracy metric is selected here because it is an easily

understood simple metric. Later, in Chapter 4 the F1-Score metric is used to assess

classifier performance more fully. In this chapter consideration is given to

perturbation size, aiming to determine whether feature selection could force more

overt adversarial examples, that could hopefully be more easily noticed by network

operations engineers.

74 Chapter 3. Feature Vulnerability and Robustness Assessment

Algorithm 1: Recursive Feature Elimination
Generate AdvX from DDoS Samples
X_adv = FGSM(model,ddos,epsilon)
for row in ddos do

for feature in ddos do
Calculate and store the absolute difference per feature.
diff[row, feature] = abs(ddos[row, feature]� adv_x[row, feature])
Calculate and store the mean feature difference
mean_feature_diff = diff.mean()

end
end

Sort the array by the mean difference
features_sorted_biggest_difference = mean_feature_diff.sort()

Do Recursive Feature Elimination

for feature_to_drop in features_sorted_biggest_difference do
dataset = dataset.drop(columns=feature_to_drop)
X = dataset
scaler MinMaxScaler().fit(X)
X_scaled np.array(scaler.transform(X))
Train the model
kfold StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
for i in range(len(validation_set)) do

if current_class equals ’DDoS’ then
Generate Adversarial example
X_adv = FGSM(model,validation_set,epsilon)

end
end

Calculate Mean-Squared Error
error = (validation_set� X_adv)
mse = MSE(error)
store features,accuracy,mse for plots
Plot features(x) and accuracy (y)
Plot features(x) and mse (y)

end

3.4 Method

A generalizable approach is proposed for examining the robustness of features

against adversarial attacks in the context of a machine learning classifier. The

characteristics of the derived features from the data are examined and assessed to

determine how these are manipulated by adversarial learning attacks. Based on

these observations, a feature selection approach is derived that seeks to maintain

classifier accuracy whilst maximising the amount of feature perturbation required

to manipulate a classifier, hence improving robustness since the attack can no

longer be performed in a subtle and discrete manner.

3.4. Method 75

3.4.1 Dataset

The CICIDS2017 dataset [66] is used. One advantage of this dataset is that statistical

time-related statistics have been calculated for both forward flows (client to server)

and backward flows (server to client). Typical features in each flow are: Destination

Port, Protocol, Flow Duration, Packet Statistics, Flow Bytes/s, Flow Packets/s, IAT

Statistics, Flags, Header Length, Down/Up Ratio, Bulk Statistics, Subflow Statistics,

Init Win bytes, act data pkt fwd, Active Statistics, and Idle Statistics. The flows are

labelled with fifteen discrete classifications of traffic as shown in Table 3.1.

Traffic Type Number of Samples

BENIGN 20,000
Bot 1,500
DDoS 1,500
DoS GoldenEye 1,500
DoS Hulk 1,500
DoS Slowhttptest 1,500
DoS slowloris 1,500
FTP-Patator 1,500
Heartbleed 11
Infiltration 36
PortScan 1,500
SSH-Patator 1,500
Web Attack Brute Force 1,500
Web Attack SQL Injection 21
Web Attack XSS 652

TABLE 3.1: CICIDS2017: Traffic Types and Number of Samples

The DDoS class is now considered. To further understand the difference between

benign and malicious data features, violin plots can be used for comparative analysis

to examine the distribution of each feature for each class. A violin plot is a hybrid

of a box plot and a kernel density plot that can depict summary statistics and the

density of each feature. Where a white dot can be seen this represents the median

value. The thick line represents the inter-quartile range (IQR) and the thinner line

represents the distribution excluding any outliers as determined as a function of

the IQR. Wider sections of the plot represent higher probability of those values and

more slender sections represent lower probability. The violin plots for the benign

and DDoS classes are shown in Figure 3.1 and Figure 3.2.

76
C

hapter
3.

Feature
Vulnerability

and
R

obustness
A

ssessm
ent

FIGURE 3.1: Benign - This series of violin plots shows the wide distribution of features in the benign class. Some feature values are
statistically more likely as represented by the wider sections of the violin plots. The length of the violin plots illustrate the wide scope

of features in the benign class.

3.4.
M

ethod
77

FIGURE 3.2: DDoS - This series of violin plots shows the narrower distribution of features in the DDoS class. The range is narrower and
more evenly distributed than the features in the benign class. This plot illustrates that the distribution of DDoS features overlaps with
the distribution of the features in the benign class. Examining the white space around the distributions of the features exposes a margin

that could potentially be exploited by adversarial examples.

78 Chapter 3. Feature Vulnerability and Robustness Assessment

Standardization and Normalization are commonly used in machine learning to

pre-process and transform by scaling the feature data before training a model.

Standardization has the disadvantage that it is less sensitive to outliers.

Normalization prevents bias, ensuring all features contribute proportionally to the

learning process. Normalization is sensitive to outliers, which are the essence of

adversarial examples. Normalization was chosen to maintain this sensitivity.

Therefore, all features are “Normalized" (scaled between zero and one), and then

separated by class, so that the scale factor for each feature is comparable for each of

the violin plots shown.

Firstly, it can be seen that the distribution of features for the benign class in

Figure 3.1 is much greater than in the malicious case in Figure 3.2. Furthermore,

there is significant overlap between the two classes. The malicious class is

essentially a subset within the distribution of the benign features. Plausibly, the

Inter-arrival time (IAT) features are good indicators of DDoS traffic because DDoS

traffic inherently has a short time between DDoS traffic. Closer inspection of the

IAT features reveals that the feature distributions for the DDoS class are narrower

than the corresponding distributions for the benign class. This suggests that the

IAT features may be a distinguishing feature between the two classes.

Figure 3.1 and Figure 3.2 are useful in providing an overview of all the features;

however, at this scale it can be unclear and difficult to understand the plots. This is

in part because the plots are intricate and narrow. To clarify the story that the violin

plots tell, a spotlight is thrown on three features: Flow IAT Mean, Fwd IAT Mean,

and Bwd IAT Mean. The features are the statistical mean of the inter-arrival time

for the flow, forward direction, and backward direction. Figure 3.3 focuses on these

features. This enables easier identification of the differences in the distributions of

benign and DDoS traffic. For example, where the distributions overlap or diverge.

These features might help a ML model discriminate between the benign and DDoS

classes.

3.4. Method 79

(A) Benign IAT Mean Features

(B) DDoS IAT Mean Features

FIGURE 3.3: The violin plots in this figure show the differences
between the distributions of the three features: Flow IAT Mean,
Fwd IAT Mean, and Bwd IAT Mean. This plot illustrates that the
distribution of DDoS features overlaps with the distribution of the
features in the benign class. Examining the white space around the
distributions of the features exposes a margin that could potentially

be exploited by adversarial examples.

80 Chapter 3. Feature Vulnerability and Robustness Assessment

A model is trained to distinguish between benign and DDoS traffic. In order to

speed the training of the model, the size of the DDoS dataset is reduced by

randomly selecting 50,000 samples. Through selecting this reduced number of

samples, a more balanced dataset is created with 52% of samples labelled benign

and 48% of samples labelled DDoS. This is an improvement over the unmodified

dataset percentages (43% benign, 57% DDoS), due to the diminished disparity

between the number of class samples. The dataset is further cleaned to remove null

and not applicable data.

3.4.2 Feature Analysis

Dimensionality reduction is a common first step when analysing datasets. For

convenience, one hundred random samples of each class in the CICIDS2017 dataset

were extracted and separated into either benign or malicious. Subsequent analysis

as shown in Figure 3.4 and Figure 3.5 suggests that this sample is sufficiently

indicative because the two classes are not trivially separable; although, via

dimensionality reduction and visualization the two classes can begin to be

separated in higher dimensionality space. Notwithstanding, a larger random

sample would have been ideal. The data are examined using dimensionality

reduction methods such as Principal Component Analysis (PCA), t-Distributed

Stochastic Neighbourhood Embedding (t-SNE), and Unified Manifold and

Projection (UMAP), as shown in Figure 3.4. These three methods are commonly

used for dimensionality reduction, allowing for visualization of the data on a 2D or

3D plot. PCA [179] is a well-known algorithm that works by identifying the

hyper-plane lying closest to the data, and projecting the data onto it. Thus, largely

retaining the variation in the dataset. The t-SNE algorithm [180] finds clusters in

the data, reducing dimensionality whilst aiming to keep similar instances together

and dissimilar instances apart [180]. UMAP [181] is an effective algorithm for

visualizing clusters of data points, usually providing faster and better

visualizations than t-SNE.

3.4. Method 81

(A) PCA (B) t-SNE (C) UMAP

FIGURE 3.4: These plots show three common dimensionality
reduction methods with improving clustering of the benign and
malicious classes: PCA, t-SNE, and UMAP. The malicious samples are
represented as dark-blue, and the benign samples are represented as
light-blue. The complexity of the classification problem is illustrated
by the benign and malicious samples occupying the same subspace.

In the PCA plot (Figure 3.4a) we see malicious traffic gathered and occupying

the same subspace as benign traffic, showing the complexity of the classification

problem. More sophisticated methods such as t-SNE (Figure 3.4b) and UMAP

(Figure 3.4c) begin to identify the clustering of the two classes in greater detail,

however even so, it is noticeable that there is no clear single cluster that can be

associated with either class. This is an important observation as there is no single

definition of what makes for benign or malicious traffic in respect to the features

being studied within the dataset. As mentioned earlier PCA, t-SNE, and UMAP can

also be used to plot 3-dimensional plots. To examine whether a 3D plot provides a

different view of the relationship between benign and malicious classes. The 3D

plots in Figure 3.5 show that the classes are visibly more separable; in higher

dimensional space separate clusters are beginning to become clearer.

(A) PCA (B) t-SNE (C) UMAP

FIGURE 3.5: These 3D plots show three common dimensionality
reduction methods: PCA, t-SNE, and UMAP. The malicious samples
are represented as dark-blue, and the benign samples are represented
as light-blue. The plots show improved clustering of the benign and

malicious classes in the higher dimensional 3D space.

82 Chapter 3. Feature Vulnerability and Robustness Assessment

3.4.3 Parallel Co-ordinates

Therefore, the raw features are considered rather than the dimensionally reduced

form. The IAT features were identified as potentially good indicators of DDoS

traffic, a choice was made to plot the features as parallel coordinates as seen in

Figure 3.6.

The subset of features that contain the text ‘IAT’ were selected, and a parallel

coordinates plot was used to examine the relationship between the two classes

further. In Figure 3.6 each plotline represents an individual instance from the

dataset. This plot provides an alternative and simpler view that focuses on the IAT

features of both classes. The distribution of the DDoS features is narrower than the

corresponding distribution of the benign features, indicating that the distributions

of DDoS features overlap with the distributions of benign features. On this basis

successful adversarial examples might suitably perturb DDoS samples such that

they could masquerade as benign samples.

FIGURE 3.6: This parallel coordinates plot of the distributions of
benign and perturbed DDoS focuses on the IAT features of both
classes. The distribution of the DDoS features is narrower than the
corresponding distribution of the benign features, indicating that
the distributions of DDoS features overlap with the distributions of
benign features. On this basis successful adversarial examples might
suitably perturb DDoS samples such that they could masquerade as

benign samples.

Having identified some features as better indicators of DDoS traffic, an initial

study on accuracy and MSE was performed. Further, feature selection is proposed

as a method to improve the classification accuracy against FGSM adversarial

attacks. Recursive Feature Elimination (RFE) is considered [182], removing those

3.5. Results and Discussion 83

features with the largest absolute difference under FGSM attack.

3.4.4 Training the Model

The CICIDS2017 DDoS dataset was adapted and used to train a binary classifier to

discriminate between benign and distributed denial-of-service (DDoS) traffic. The

model was trained using shuffled stratified k-fold (k = 5), giving confidence of the

validity of the results. The k value of 5 was selected aiming to strike a balance

between long run times and reduced sample bias. Each iteration was trained with

an 80/20 training/test split, yielding a training set of 180,596 samples and a

validation set of 45,149 samples for each iteration. This showed encouraging results

(100.00% +/- 0.00%). The initial model is trained on 76 features as shown in Table

3.2.

This well-trained model is considered a baseline; the results of the experiment

were compared to this baseline. FGSM was applied to generate adversarial

examples from the DDoS samples, again using k-fold (k = 5). Such adversarial

examples significantly reduce the accuracy of the classifier, yielding an accuracy of

58.57% (+/-) 15.03%. Using the trained model with x = 76 features FGSM was

applied and the perturbation of each feature was assessed. The feature with largest

perturbation was removed and the classifier was iteratively retrained with x � 1

features. This iterative algorithm is described fully in Algorithm 1. The optimal

solution, maximising accuracy was found. This illustrates a simple attack; however,

without masking some features from perturbation it is not realisable in a real-world

intrusion detection scenario.

3.5 Results and Discussion

Here, the findings are described and discussed. First, the findings from the initial

accuracy and Mean-Square Error study are discussed, followed by the findings

from the recursive feature elimination experiments.

84 Chapter 3. Feature Vulnerability and Robustness Assessment

Feature Name Feature Name

0 Destination Port 41 FIN Flag Count
1 Flow Duration 42 SYN Flag Count
2 Total Fwd Packets 43 RST Flag Count
3 Total Backward Packets 44 PSH Flag Count
4 Total Length of Fwd Packets 45 ACK Flag Count
5 Total Length of Bwd Packets 46 URG Flag Count
6 Fwd Packet Length Max 47 CWE Flag Count
7 Fwd Packet Length Min 48 ECE Flag Count
8 Fwd Packet Length Mean 49 Down/Up Ratio
9 Fwd Packet Length Std 50 Average Packet Size
10 Bwd Packet Length Max 51 Avg Fwd Segment Size
11 Bwd Packet Length Min 52 Avg Bwd Segment Size
12 Bwd Packet Length Mean 53 Fwd Header Length.1
13 Bwd Packet Length Std 54 Fwd Avg Bytes/Bulk
14 Flow IAT Mean 55 Fwd Avg Packets/Bulk
15 Flow IAT Std 56 Fwd Avg Bulk Rate
16 Flow IAT Max 57 Bwd Avg Bytes/Bulk
17 Flow IAT Min 58 Bwd Avg Packets/Bulk
18 Fwd IAT Total 59 Bwd Avg Bulk Rate
19 Fwd IAT Mean 60 Subflow Fwd Packets
20 Fwd IAT Std 61 Subflow Fwd Bytes
21 Fwd IAT Max 62 Subflow Bwd Packets
22 Fwd IAT Min 63 Subflow Bwd Bytes
23 Bwd IAT Total 64 Init_Win_bytes_forward
24 Bwd IAT Mean 65 Init_Win_bytes_backward
25 Bwd IAT Std 66 act_data_pkt_fwd
26 Bwd IAT Max 67 min_seg_size_forward
27 Bwd IAT Min 68 Active Mean
28 Fwd PSH Flags 69 Active Std
29 Bwd PSH Flags 70 Active Max
30 Fwd URG Flags 71 Active Min
31 Bwd URG Flags 72 Idle Mean
32 Fwd Header Length 73 Idle Std
33 Bwd Header Length 74 Idle Max
34 Fwd Packets/s 75 Idle Min
35 Bwd Packets/s - -
36 Min Packet Length - -
37 Max Packet Length - -
38 Packet Length Mean - -
39 Packet Length Std - -
40 Packet Length Variance - -

TABLE 3.2: The Feature-set of 76 features used to train the initial
model.

Figure 3.7a shows that the model achieves acceptable accuracy (rarely falls

below 90%) with fewer features. The model is most accurate when most features

are used; however, accuracy under attack rarely exceeds 60%. This shows that a

3.5. Results and Discussion 85

(A) Accuracy (B) MSE

FIGURE 3.7: In these figures the features are unsorted per original
dataset. Plot (A) shows the relationship between features and
accuracy. Plot (B) shows the relationship between features and the
MSE. The more features are present, generally the size of perturbation
is smaller. As fewer features are selected the perturbation size
trends toward larger values. Small perturbations can be more easily
overlooked and larger perturbations are more overt and therefore

more easily detectable.

well-trained model is susceptible to FGSM. The graphs show an increase in

accuracy under normal conditions often correlates with a decrease in accuracy

under attack. Note that when Fwd Inter Arrival Time (IAT) Total (Feature 18 as

listed in Table 3.2) is included, the accuracy under attack improves as shown by a

spike. This accuracy boost is considered as a result of the inherent short IAT of

Denial of Service (DoS) traffic, strongly indicating DoS traffic.

Figure 3.7b shows the size of perturbation required for a successful attack. The

complete and unsorted feature set yields an MSE of approximately 0.05. The size of

perturbation tends to reduce as more features are included. The addition of features

increases the attack surface and allows more subtle adversarial perturbations. The

classification results of such systems have serious consequences. Adversaries able

to skew the classification accuracy of systems can leverage an advantage by making

malicious conditions appear benign. As previously seen with accuracy, note an

increase in perturbation size when Fwd Inter Arrival Time (IAT) Total (Feature 18

as listed in Table 3.2) is included. This feature strongly indicates DDoS traffic. It is

thought that the inclusion of important features for classification may also force

increases in perturbation size. This in turn means an attack must be more overt.

86 Chapter 3. Feature Vulnerability and Robustness Assessment

(A) Accuracy (B) MSE

FIGURE 3.8: In these figures the features are sorted by most
importance. Plot (A) shows the relationship between features and
accuracy. Plot (B) show the relationship between features and
MSE. The plot resembles an imperfect saw tooth. Relatively small
perturbations are necessary until a sequence of spikes which are
followed by a gradual declines in perturbation size. Individual
features may have an effect; however, the grouping of features may

influence the perturbation size more.

Now consider the experiments with feature-set arranged in order of

importance. Figure 3.8a shows a binary classifier where features have been sorted

according to the extracted feature importance. Note that with fewer than five

features the model predicts the class incorrectly around 40% of the time. This is a

poor binary prediction model. The binary FGSM attack aims to flip the recognized

class. Therefore, for poor classifiers the accuracy can curiously increase under

FGSM attack. As more features are included, the accuracy wavers depending on

specific properties of those features. A roughly inverse relationship between

accuracy and the accuracy under FGSM attack is observed. Where accuracy falls,

this coincides with an increase in accuracy under attack and vice versa. This graph

is used to determine a set of features providing good accuracy under FGSM attack,

whilst retaining acceptable accuracy under normal conditions. There is a promising

peak at Feature 20 (_Bwd_Packet_Length_Min as shown in Table 3.3). The

cumulative feature-set of 20 most important features is shown in Table 3.3.

This feature-set provides respectable accuracy under FGSM attack, whist

maintaining acceptable accuracy under normal conditions. Drawing attention to

either side of this peak, note drops in accuracy with the removal of

_Bwd_Packet_Length_Min (19 features), or the addition of _Flow_Duration (21

3.5. Results and Discussion 87

Rank Name Meaning

1 Total_Length_of_Fwd_Packets Length of Forward Packets
2 _CWE_Flag_Count Congestion Window Flag
3 _Fwd_Packet_Length_Max Max Forward Packet Length
4 _Bwd_Avg_Bytes/Bulk Average No. Backward Bytes/Bulk
5 Subflow_Fwd_Packets Number of Forward Packets in a Subflow
6 _Flow_IAT_Max Maximum Inter Arrival Time for a flow
7 _Subflow_Bwd_Packets No. Backward Packets in Subflow
8 _Total_Fwd_Packets Total Forward Packets
9 _Flow_IAT_Mean Mean Inter Arrival Time

10 Fwd_PSH_Flags Forward Push Flag
11 _Down/Up_Ratio Down/Up Ratio
12 _Source_Port Source Port
13 _Protocol Protocol
14 _Fwd_Packet_Length_Min Minimum Forward Packet Length
15 _Flow_IAT_Std Inter Arrival Time Standard Deviation for

flow
16 _Flow_IAT_Min Minimum Inter Arrival Time Standard

Deviation for flow
17 _URG_Flag_Count Urgent flag count
18 _Fwd_Avg_Bulk_Rate Average No. Forward Bytes/Bulk
19 _Subflow_Fwd_Bytes No. forward bytes in subflow
20 _Bwd_Packet_Length_Min Minimum backward packet length

TABLE 3.3: Feature-set of 20 most important features.

features). The inclusion of _Bwd_Packet_Length_Min (20 features) gives a local

maxima for accuracy under FGSM attack. Whilst maintaining acceptable accuracy

(⇡ 85%) under normal conditions. The _Bwd_Packet_Length_Min feature may

indicate DDoS traffic through the size of returned packets. Each feature in isolation

may not be an excellent indicator of DDoS traffic; however, in combination a

distinct pattern may emerge. For example, a ping flood attack is performed by

quickly sending a large multiple of small request packets gaining an equal number

of response packets. Packet Length, Number of Packets, IAT, and Down/Up Ratio -

when combined could reveal such traffic. These features are well represented in the

generated feature-set (Table 3.3).

Figure 3.8b shows the accompanying plot of the perturbation size by number of

features, resembling an imperfect saw tooth. This graph is used to determine a

feature-set maximising the perturbation size of successful FGSM attacks. The plot

shows relatively small perturbations are necessary until a significant spike occurs

88 Chapter 3. Feature Vulnerability and Robustness Assessment

with _Source_Port (Feature 12 in Table 3.3), followed by a gradual decline until

another spike at _Subflow_Bwd_Bytes (Feature 40). Further peaks and gradual

declines are seen with _Packet_Length_Variance (Feature 50) and _Bwd_IAT_Min

(Feature 70). Again, individual features may have an effect; however, in

consideration, grouping features in a cumulative feature-set effects the perturbation

size more. Note that the maximum size of perturbation is smaller when using the

feature-set sorted by feature importance (0.05) compared against the maximum

perturbation of the unsorted feature-set (0.30). The cumulative feature-set detailed

in Table 3.3 peaks with _Source_Port (feature 12). Looking either side of this

feature, note the removal of _Down/Up_Ratio or the addition of _Protocol. The

inclusion of _Source_Port gives a local maxima for Mean-Squared Error (>0.05).

Note that the cumulative feature-set of 20 features yields a relatively high

Mean-Squared Error (⇡ 0.04); however, this value is much lower than the

Mean-Squared Error yielded by the unsorted feature-set at Feature 20 (⇡ 0.12). The

MSE is decreased in the sorted feature-set. The improved accuracy under FGSM

attack is an effect of selecting and grouping features. Forced increases in

perturbation size may also have a smaller effect.

3.5.1 Feature Selection

There are many types of feature importance, which highlight which features may

be most/least relevant. Through identifying the relevance of features insights can

be gleaned on the dataset and model. These insights are used to improve the

predictive model, by discarding features more susceptible to the FGSM attack. It is

known that reducing the number of features can yield benefits including: reduced

time required to train a model [183], improved accuracy, and reduced execution

time [93]. It is further explored whether robustness can be improved through

feature selection. Three common methods for determining feature importance are:

model coefficients, decision trees and permutation testing. This work focuses on

the latter.

3.5. Results and Discussion 89

(A) Accuracy(top) and
Average perturbation size per

feature(bottom) e = 0.05

(B) Accuracy(top) and
Average perturbation size per

feature(bottom) e = 0.10

(C) Accuracy(top) and
Average perturbation size per

feature(bottom): e = 0.15

FIGURE 3.9: Accuracy and average perturbation per feature for
feature sets of decreasing size, with e values of: 0.05, 0.10, and 0.15.

Here, the findings from the RFE experiments are discussed. Figure 3.9 shows

plots of accuracy and average perturbation per feature. In the context of adversarial

examples generated with FGSM, the perturbation size refers to the magnitude of

the distortion or noise applied to the input data. The purpose of the perturbation is

to cause the classifier to misclassify a sample. For example, to misclassify malicious

samples as benign. When using FGSM, the trade-off between the effectiveness of

the adversarial example and its perceptibility is managed by the epsilon (e) value

which controls the maximum distortion allowed to the input. Larger epsilon values

generally have a higher likelihood of fooling the model, but produce more

noticeable perturbations, which in turn are less likely to preserve the functionality

of a malicious sample. The plots illustrate the effect of FGSM on accuracy for

different values of epsilon (e). The negative effect on classification accuracy

increases with the size of e. For e = 0.10 and e = 0.15 accuracy for the original

dataset near 50%. It should be noted that for binary classification tasks an accuracy

of 50% equates to a random guess. For all values of epsilon, an incremental increase

in robustness against FGSM is observed. Such adversarial examples can be

successfully mitigated with feature selection. Where e = 0.05 a feature-set of

approximately 50 features is sufficient to negate the effects of FGSM. Where

e = 0.10 a feature-set of approximately 20 features is sufficient to negate the effects

of FGSM. Whereas for e = 0.15 a feature set of approximately 20 features is unable

90 Chapter 3. Feature Vulnerability and Robustness Assessment

to fully negate the effect of FGSM.

All values of e show a similar trend of increased average perturbation per

feature; however, note that as e increases the average perturbation per feature

decreases. This can be explained if perturbations are unevenly distributed across

features. Large perturbations of a small set of features and small or no

perturbations on other features give smaller average perturbations for the sample.

It has been shown that feature selection can improve classification accuracy

under adversarial conditions. A DDoS case study was employed, using the

CICIDS2017 dataset. Improvement in FGSM accuracy is shown by recursively

removing the features most susceptible to large perturbations from the training set.

This research shows an improvement from 58.57% +/- 15.03 to 78.63% +/- 8.23

(results at the edge of the standard deviation indicate FGSM accuracy 86.86%) with

no drop in accuracy for unperturbed samples.

3.5.2 Interpreting Patterns in Parallel Co-ordinates

The parallel-coordinates plot in Figure 3.6 shows DDoS features modified by FGSM

fall within the distribution of benign traffic for these features. It is clear that benign

and malicious traffic cannot be separated based solely on the range of their features.

Instead, it is theorised that that the correlations between features can help separate

benign and malicious traffic. Significantly, a pattern of peaks and troughs emerge

from the FGSM distribution. It is theorised that this pattern is more easily concealed

in large feature sets where such patterns may be harder to detect.

3.6 Conclusion

This chapter demonstrated a generalizable approach for assessing the vulnerability

and robustness of features in a machine learning context. In particular, adversarial

machine learning attacks seek to identify subtle perturbations of features that can

result in misclassification. The presented approach provides researchers with a

suitable methodology for assessing how susceptible features may be towards

3.6. Conclusion 91

perturbation attacks, and how vulnerable features can be systematically removed,

to simultaneously maintain acceptable classifier accuracy whilst eliminating

features that may introduce subtle attack vectors. To demonstrate the concept, the

approach was applied to a network traffic classification task to distinguish between

malicious DDoS activity and benign traffic behaviours. Feature selection was

successfully used to achieve improvement in accuracy under FGSM attack.

This chapter focuses on a static classification model. The model was trained on

a dataset consisting of carefully selected features. This research shows that feature

selection improves robustness of models against adversarial attacks; however, one

weakness in this static classification model is that classification relies on the dataset

containing previous labelled examples. This should not be relied upon. Zero-day

attacks, which are unknown to the security community before their first use, do

exist. Moreover, as the model and the current state of the art diverge, the models

suffer from hidden technical debt and need retraining to reflect current state of the

art attacks and new network traffic patterns [184]. So far binary classification has

been examined.

The multi-class problem is more complex. A multi-class classifier must determine

to which of many classes a suspect sample belongs. Moreover, an adversary can

choose the target class for an adversarial example. This could be advantageous: a

network analyst would certainly treat a DDoS attack differently than a BotNet or

infiltration attempt. Adversaries could gain significant advantage through

camouflaging an infiltration attack as a comparatively less serious network

intrusion.

93

Chapter 4

Defending against Adversarial

Machine Learning Attacks using

Hierarchical Learning

Building on work in earlier chapters, this chapter considers adversarial learning

against multi-class classification, where a novel hierarchical-based approach is

proposed to improve model output robustness. This chapter explores the

robustness benefit gained through using multiple separately trained machine

learning models, when combined into an ensemble in the form of a two layer

hierarchical classifier.

4.1 Introduction

As mentioned earlier, the protection of computer and network systems is

fundamental for most organizations. Machine learning is becoming widely used for

the detection and classification of malicious network activity to aid the response to

cyber-attacks, where a mathematical model is learned to relate input feature

observations to a set of possible output classes. Whilst machine learning can help

manage this wealth of information, it is not without limitation. Recent years have

seen a growing interest in the domain of adversarial machine learning [6] that seeks

to identify well-crafted examples that knowingly force misclassification by a model.

A challenge in adversarial learning is to determine which features are most

susceptible such that a minimal change can result in misclassification by the model,

94
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

whilst the overall input to the model appears unchanged or unaltered to the human

observer. This is related to recall because a model with high recall has more

inclusive decision boundaries, which may make it especially susceptible to

adversarial examples. Care has been taken so that the model can correctly identify

original unperturbed malicious samples (and also the perturbed malicious

samples). It is theoretically possible that a model might correctly classify

adversarial examples but not the original unperturbed samples. This concern is

addressed through careful selection of benign and malicious samples that are then

perturbed, generating adversarial examples. Adversarial examples and

unperturbed samples are both presented to the two models to ascertain model

performance on both adversarial examples and unperturbed samples. In intrusion

detection, a malicious attack should exhibit the same characteristics such that the

activity is still deemed malicious, whilst identifying the minimal amount of

perturbation in the derived features such that the model believes the observation to

be benign, hence resulting in misclassification. This characteristic is referred to as

functionality preservation.

This chapter first examines the impact of adversarial attack generation against a

well-trained network traffic classification model and shows the performance

degradation. To combat this, a novel defensive strategy is presented that uses

hierarchical learning to help reduce the attack surface that an adversarial

example can exploit within the constraints of the parameter space of the intended

attack. The results show that the defensive learning model can withstand crafted

adversarial attacks and can achieve classification accuracy in line with the original

model when not under attack.

The primary contributions of this work are:

• A new comprehensive study of applying functionality-preserving

adversarial learning attacks against a multi-class network traffic

classification model, that demonstrates successful attack misclassification

within a constrained attack parameter space. Over ninety percent (90.25%) of

4.2. Related Work 95

the attacks were able to evade detection of a well-trained classifier, while also

constraining the parameter space to preserve functionality.

• A novel defensive strategy based on hierarchical learning is proposed to

reduce the attack surface that an adversarial example can exploit within the

constraints of the parameter space of the intended attack, achieving

classification accuracy in line with the original model when not under attack.

The remainder of the chapter is structured as follows: Section 4.2 presents the

related works on adversarial machine learning exploring both the creation of

attacks, and the defence against attacks; Section 4.3 presents a study on the creation

of adversarial attacks against a well-trained network traffic classification model;

Section 4.4 presents a novel defensive strategy based on hierarchical learning;

Section 4.5 provides discussion of the research on model robustness, attack

transferability, and limitations of hierarchical classification; and Section 4.6

concludes this chapter.

4.2 Related Work

This related works section addresses relevant topics of adversarial machine

learning, functionality preservation with feature perturbations, localized

classification, and machine learning-based intrusion detection. It also draws upon

the author’s previous works on surveying functionality-preserving attacks [42],

and feature vulnerability and robustness in network traffic analysis [43].

4.2.1 Adversarial Machine Learning

Unfortunately, machine learning systems are susceptible to carefully crafted attacks

that aim to yield an arbitrary, or specific, misclassification. Recall that Szegedy et al.

[22] first found that imperceptible perturbations of input values can result in

significant differences in the output of a ML classifier. Adversarial machine

learning has been a research topic for over a decade and is now an accepted topic

with open problems.

96
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

Papernot et al. [21] note the security and privacy of ML is an active but nascent

area of research. In this early work, they systematize their findings on security and

privacy in machine learning. Indicating that a science for understanding the

vulnerabilities of ML and countermeasures is slowly emerging. They utilize the

classical confidentiality, integrity, and availability (CIA) model to analyse: training

in adversarial settings; inferring adversarial settings; robust, fair, accountable, and

private ML models. Their analysis points toward two related notions of sensitivity.

The sensitivity of learning models to their training data is essential for

privacy-preserving ML, and similarly, the sensitivity to inference data is essential

for secure ML. The crux of both notions of sensitivity is the generalization error.

They focus on attacks and defences for machine learning systems aiming to further

understanding of the sensitivity of modern ML algorithms to input data and foster

a science of privacy and security in machine learning.

A primary focus of this work is how adversarial examples might translate to the

cyber security domain. A further complication in this domain is that of

functionality preservation. In cyber security domains, it is critical that an intrusion

detection classifier correctly identifies malicious traffic while minimizing false

positive and false negative results since identifying truly malicious activity in a

profusion of false positives is problematic. ML performance is often evaluated by

accuracy, precision, recall, and other metrics such as F1-Score.

Zhang and Li [48] discuss opportunities and challenges arising from adversarial

examples. They survey state-of-the-art adversarial example generation methods

and defences before raising future research opportunities and challenges. They

note three challenges for adversarial example construction:

1. The difficulty of building a generalizable method.

2. The difficulty in controlling the size of perturbation (too small will not result

in adversarial examples, and too large can easily be perceived).

3. Difficulty in maintaining adversarial stability in real-world applications (some

adversarial examples do not hold for transformations such as blurring).

4.2. Related Work 97

They identify black-box attacks as a challenge for defences. This is because black-

box attacks require zero-knowledge of the model architecture and therefore might

not be easily resisted by modifying the model architecture or parameters. Second,

defences are often specific to a single attack method and are often less suitable as a

general defence. They subsequently identify an opportunity for highly transferable

adversarial examples (high confidence).

4.2.2 Threat Model

A realistic threat model can help harden intrusion detection systems by prioritising

the smaller subset of attacks that are realistic [125]. The following threat model is

presented considering the strengths and weaknesses of an adversary’s possible

strategies.

Adversarial attacks can be designated as either poisoning attacks or

inference-time attacks. Poisoning attacks effect the training phase and aim to

influence classification by augmenting the training dataset with new samples or

modifying existing samples. Inference attacks aim to influence classification by

leveraging the sensitivity of the model to its training data. Typical strategies

include gradient descent [174] and Generative Adversarial Networks (GANS) [185].

Such attacks are commonly known as evasion attacks. The goal of an attacker may

be to misclassify malicious samples as benign; however, it is plausible that an

attacker could gain advantage by causing misclassification between malicious

classes [43].

There are three main types of adversarial attack: white-box, black-box, and

gray-box. White-box attacks assume complete knowledge of the target model.

Black-box attacks assume zero-knowledge of the system; although an adversary

might optionally acquire knowledge through exploiting ‘oracle’ attack strategies

using multiple queries incrementally modifying a malicious sample until it is

misclassified. An alternative strategy requires the adversary to create a surrogate

model. The goal here is to employ the transferability property of adversarial

examples. Adversarial examples generated on the surrogate may transfer and

98
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

subsequently successfully fool the target model. An attacker with ‘oracle’ access

might be able to reverse-engineer the target model to generate a surrogate model;

however, Apruzzese [125] rightly indicates that using a NIDS as an oracle is

complex and demanding, feasible only in limited scenarios. Adversaries choosing

this route face two obstacles: 1) Querying the target model while stealthily avoiding

detection forcing a low-and-slow approach; 2) Acquiring feedback is difficult in IDS

because the output of the model may not be directly observable to the adversary.

Fortunately, ‘oracle’ access is unnecessary for the creation of adversarial

examples on a surrogate model. Papernot et al. [186] states that adversarial

examples affecting one model often affect another model, even where the models

have different architectures or were trained on different training sets. For

transferable adversarial examples it is sufficient that both models were trained to

perform the same task. An adversary may train their own surrogate model, craft

adversarial examples against the surrogate, and transfer them to the target with

very little knowledge of the target model. Recently, Yang et al. [187] examined the

adversarial transferability of surrogate models. Specifically, they claim the

adversarial transferability of a surrogate model can be improved when any model

for the same task is used to extract and leverage soft (probabilistic) labels to train a

surrogate model without querying the target model.

Gray-box attacks assume partial knowledge of the target model. For example, an

adversary might have some knowledge of the features used by the model. Indeed,

this is likely. By necessity all ML IDS analyse either raw network traffic or derived

metadata [125]. ML IDS systems are likely to be trained on network flows [188]. A

skilful adversary with sufficient domain knowledge could estimate which features

are likely to be used and how they could impact performance.

4.2.3 Functionality Preserving Adversarial Examples

Apruzzese et al. [125] examine adversarial examples to consider realistic attacks,

highlighting that most literature considers adversaries with complete knowledge

about the classifier who are free to interact with the target systems. They emphasize

4.2. Related Work 99

that few works consider ‘realizable’ perturbations that take account of domain

and/or real-world constraints. Commonly black-box attacks assume adversaries

are able to repeatedly query an ‘oracle’ model. The attacker may iteratively and

incrementally perturb samples. At each iteration, a sample is presented, and the

output is examined, pursuant to determining model decision boundaries and

ultimately achieving misclassification. Such ‘oracle’ attacks are challenging. Each

query increases the risk that the strategy will be detected, and the attack foiled.

Moreover, direct output from an intrusion detection system (IDS) is not easy to

achieve. Apruzzese et al. [125] consider situations where such attacks gain

feedback while remaining undetected. However, they acknowledge that such

attacks require persistence, skill, and resources. Transferability attacks avoid these

problems because the oracle access to the target model is unnecessary as the target

is not queried. An adversary can build a surrogate model for the same task on

which to generate adversarial examples, subsequently transferring them to the

target model.

Sheatsley et al. [189] advise that most adversarial examples in cyber-detection

domains violate one or more domain constraints. Moreover, they find that crafting

adversarial examples in constrained domains requires a different process to

unconstrained domains. They argue that constrained domains are inherently more

robust against adversarial examples. Further, they posit that the exploitable threat

surface of models in constrained domains is likely narrower than previously

understood; however, it is stressed that it is important not to take succour from this

statement. The attack surface may be narrower; however, carefully crafted attacks

might nevertheless successfully exploit it.

Apruzzese allege that a misconception exists in the literature in that much

research pursues ‘minimal’ perturbations. They claim that in reality adversaries are

not bound by this constraint [190]. It is acknowledged that adversaries will use any

suitable method to fool the classifier, regardless the size of perturbation; However,

this should not be considered final and decisive. Adversaries exist in an arms-race

environment. Defences are continually improving, and adversaries must adapt

100
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

their strategies. The stark reality is that large perturbations are more easily detected

by statistical measures [143]. Smaller perturbations are less easily detected and

therefore confer advantages to adversaries who wish to hold persistence and

remain undetected for a period of time. Furthermore, large perturbations do not

necessarily confer an additional advantage over smaller perturbations. Domain

constraints might be broken by large and small perturbations alike. The author

predicts that the future trend of adversarial examples in NIDS will be to constrain

the adversarial example in scope, size, or both. Specifically, the author predicts

perturbations to small combinations of increasingly fewer features to a lesser

degree. ART [87] allows feature masks to exclude certain (constrained) features

from perturbation. This work carefully limits the scope of perturbations to one

feature (gamma=0.05), and the size of perturbation to 0.02 (theta=0.02)

4.2.4 Intrusion Detection

Zhang et al [188] note common classification methods for internet traffic are based

on statistical properties captured as netflows. This method addresses problems of

dynamic port numbers and protects user privacy. Systems can be deployed to

search for patterns in the netflows. Most such systems employ machine learning to

perform automated classification of traffic types, detecting and/or dropping

malicious traffic.

Wu et al. [52] consider several types of deep learning systems for network attack

detection, including supervised and unsupervised models to compare the efficiency

and effectiveness of different attack detection methods using two intrusion

detection datasets: “KDD Cup 99” dataset and an improved version known as

NSL-KDD [53] [54]. These datasets are commonly used; however, they do not fairly

represent modern network traffic analysis problems due to concept-drift. Networks

have increasing numbers of connected devices, increasing communications per

second, and new applications using the network. Moreover, the use of computer

networks and the Internet has changed substantially in twenty years. The

continued introduction of IPv6, Network address Translation, Wi-Fi, mobile 5G

networks, and cloud providers has changed network infrastructure [55].

4.2. Related Work 101

Furthermore, the internet is increasingly used for financial services. Akamai [56]

report financial services see millions or tens of millions of attacks each day. These

attacks were less common twenty years ago. Furthermore, social media constitutes

much of today’s internet traffic and most social media platforms were founded

after the KDD Cup 99 and NSL-KDD datasets were introduced. For example,

Facebook, YouTube, and Twitter were founded in 2004, 2005, and 2006 respectively

but are now in the top five most visited sites [191].

Kok et al. [57] warn the dangerous trend of using outdated datasets could result

in no or insufficient progress on IDS. This would ultimately lead to an untenable

situation, with obsolete intrusion detection systems (IDS), while intrusion attacks

continuously evolve along with user behaviour and the introduction of new

technologies.

Martins et al. [5] note that IDS are typically signature-based and that machine

learning approaches are being widely employed for intrusion detection. They

describe common white-box methods to generate adversarial examples including:

L-BFGS , FGSM, JSMA , Deepfool, and Carlini & Wagner attacks. They also

consider black-box methods using GANS. Traditional GANS sometimes suffer

problems of mode collapse. Wasserstein Generative Adversarial Networks solve

some of these problems. They introduce the Zeroth-order optimization attack as a

black-box method. ZOO estimates the gradient and optimizes an attack by

iteratively adding perturbations to features. They note that most attacks have been

initially tested in the image domain, but can be applied to other types of data,

which poses a security threat. Furthermore, they consider there is a trade-off when

choosing an adversarial attack. For example, JSMA is more computationally

intensive than FGSM, but modifies fewer features. They consider JSMA to be the

most realistic attack because it perturbs fewer features; however, variations of

FGSM and other methods can be configured to only modify certain features [192],

making other less computationally intensive attacks potentially realizable.

102
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

4.2.5 Model Training for Robust Models

The trustworthiness and quality of a model is impacted by the distribution, quality,

quantity, and complexity of dataset training samples [73]. Biased models are more

susceptible to adversarial examples. Therefore, models should be trained on

unbiased training data; although Johnson et al. consider the absolute number of

training samples may be more important than the ratio of class imbalance [74].

Cyber security datasets are often prone to bias, partly because of limited samples of

some malicious traffic (e.g., zero-day attacks) and large amounts of benign traffic.

Sheatsley et al. [75] state biased distributions enable successful adversarial

examples with very few feature modifications. Common data-level techniques

tackle biased datasets by resampling: oversampling, undersampling, and hybrid

sampling by combining modest oversampling of minority classes and modest

undersampling of majority classes, aiming to give better model performance than

applying either technique alone. Algorithm-level techniques tackling dataset bias

commonly employ cost-sensitive learning where a class penalty or weight is

considered, or decision thresholds are shifted to reduce bias [74].

4.2.6 Robustness

Robustness can be defined as the performance of well-trained models facing

adversarial examples [79]. Essentially, robustness considers how sensitive a

model’s output is to a change in the input. The robustness of a model is related to

the generalization-error of the model. A recognized trade-off exists between

accuracy and robustness in machine learning. That is, highly accurate models are

less robust to adversarial examples. Machine learning models in adversarial

domains must be both highly accurate and robust. Therefore, improving the

robustness of machine learning models enables safer deployment of ML systems

across a wider range of domains, including IDS. To critically evaluate and make fair

comparisons of the robustness of a model under attack, robustness metrics are

necessary. Common machine learning metrics can be used to provide consistency,

such as Precision, Recall, and F1-Score. These are not robustness metrics. However,

a simple robustness metric can be calculated using the difference between F1-Scores

4.2. Related Work 103

for ordinary and adversarial inputs.

4.2.7 Common Defences

Some research considers how model weights can be used to disrupt the generation

of adversarial examples using white-box methods [154] [141]. However, these

defences can be bypassed by using black-box methods. Much research considers

the detection of adversarial examples by considering whether a sample is out of

distribution [143] [144]. Detection is hard because adversarial examples do not

exhibit intrinsic properties. Moreover, many detection methods are susceptible to

good attacker-loss functions [164]. Adversarial training is a simple method aiming

to improve robustness; however, it is not scalable. Moreover, Tramér et al. [121]

found adversarial training can be bypassed. Some research investigates hardening

the architecture of the model. Perhaps, changing model parameters or employing

ensembles [6]. Defensive dropout uses a dropout layer and can block black-box and

transferability-based attacks [153]. Adversarial defences exist in an arms race where

adversaries adapt to defences by adopting new strategies. Therefore, defences must

remain secure against adversaries who understand the model defences.

4.2.8 Ensemble classification

Biggio [6] asserts that ensemble classifiers have been exploited to improve

robustness; however, they must be properly constructed to avoid worsening

robustness. A typical ensemble classifier often used in intrusion detection is a

Random Forest (RF) [193]. Other state-of-the-art ensemble classifiers include

XGBoost, Histogram-based Gradient Boosting Classifier (HBBC), and Light

Gradient Based Machine (LGBM). These ensemble classifiers help with robustness

because their construction generates multiple randomised estimators. This

complicates the task of generating attacks capable of fooling all (or most) of the

estimators. Some research focuses on how ensembles of estimators with opposing

or different gradients can help robustness [194]. Hierarchical classification, also

104
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

known as multilevel classification, is a form of ensemble classifier, where multiple

classifiers are usually arranged in a top-down hierarchy.

4.3 Adversarial Attack of a Network Traffic Classification

Model

To examine the nature of adversarial attacks, a well-trained machine learning

model for network traffic classification is first developed. The Python

programming language was used in this development along with the popular

machine learning libraries, Keras [195] and scikit-learn [196]. Additionally, the

Adversarial Robustness Toolbox (ART) [87] was used to support the construction of

the adversarial examples. All experiments were performed using a variant of the

CICIDS2017 dataset as detailed below.

4.3.1 Preparing the CICIDS2017 Dataset

The Canadian Institute for Cybersecurity IDS 2017 dataset (CICIDS2017) [66] is a

recent addition to modern IDS datasets that has become increasingly popular

amongst researchers. The dataset consists of a packet capture trace across a

multi-system infrastructure for a period of 5 days, denoting both benign traffic

activity as well as 14 common attacks including Brute Force FTP, Brute Force SSH,

Denial of Service (DoS), Heartbleed, Web Attack, Infiltration, Botnet, and

Distributed-Denial of Service (DDoS), as shown in Table 4.1. The data are available

as a series of packet capture (PCAP) files, and as a “ML-ready” set of features in

CSV format, derived using their CICFlowMeter tool [197][91] providing features of

the communication flow between two parties, similar to Cisco NetFlow [198].

Recently, Engelen et al. [38] reported on errors that occur from using the

CICFlowMeter tool that are present in the “ML-ready” dataset. Engelen et al.

resolve the issues with the CICFlowMeter tool and provide a new version of the

software tool and a corrected dataset, that is, a more accurate derivation of

intended features in the original PCAP. For this study the dataset made available by

Engelen et al. [38] is used.

4.3. Adversarial Attack of a Network Traffic Classification Model 105

Typical features for each flow include: Flow Duration, Packet Statistics, Flow

Bytes/s, Flow Packets/s, IAT Statistics, Flags, Header Length, Down/Up Ratio,

Bulk Statistics, Subflow Statistics, Init Win bytes, Active data packets forward,

Active Statistics, and Idle Statistics. A set of 25 possible classes are derived in the

improved labelling of the CICIDS2017 dataset, since some attacks that had

previously been labelled had not successfully executed (e.g., did not result in data

transmission). These attack labels are appended with the label “Attempted”.

File Traffic Type Class Samples Benign Samples File Ratio Dataset Ratio
Monday BENIGN 529918 529918 1.00000 1.0000000
Tuesday FTP-Patator 7938 432074 0.01837 0.0034922

SSH-Patator 5897 - 0.01365 0.0025943
Wednesday DoS GoldenEye 10293 440031 0.02339 0.0045282

DoS Hulk 231073 - 0.52513 0.1016556
DoS Slowhttptest 5499 - 0.01250 0.0024192
DoS slowloris 5796 - 0.01317 0.0025498
Heartbleed 11 - 0.00002 0.0000048

Thursday-Morning-WebAttacks Web Attack - Brute Force 1507 168186 0.00896 0.0006630
Web Attack - Sql Injection 21 - 0.00012 0.0000092
Web Attack - XSS 652 - 0.00388 0.0002868

Thursday-Afternoon-Infilteration Infiltration 36 288566 0.00012 0.0000158
Friday-Morning Bot 1966 189067 0.01040 0.0008649
Friday-Afternoon-DDos DDoS 128027 97718 1.31017 0.0563227
Friday-Afternoon-PortScan PortScan 158930 127537 1.24615 0.0699178

TABLE 4.1: The CICIDS2017 dataset. For each data file (ordered by
date), the table shows the attack types covered, the number of class
samples for each attack, and the number of benign samples within
each data file. The dataset ratio column shows classes considered
over-represented at a per file level are still under-represented in the
dataset as a whole when the dataset ratio is calculated using the sum

of all benign samples.

Class imbalance can skew the assessment of model performance. As common

for this domain, the benign class exhibits many more samples compared to the

attack classes. To overcome this, oversampling and undersampling techniques are

combined in sequence to effectively balance the dataset [199]. The dataset is also

cleansed to remove all instances that consist of null entries. This balanced dataset

results in 7,500 samples (300 samples per class).

These experiments make use of tests employing a control group and a mitigated

group. Statistical analysis confirms that this sample size is sufficient for this study.

A paired t-test power calculation [200] was performed to ascertain a sufficient sample

size for meaningful results.

106
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

Such a power calculation requires four related components:

• Effect Size. The quantified magnitude of a result present in the population.

• Sample Size. The number of observations in the sample.

• Significance. The significance level used, commonly set to 5% (0.05).

• Statistical Power. The probability of correctly accepting the alternative

hypothesis.

The size of the effect sought affects the sample size. The larger the effect sought

the smaller the sample size is required, as shown in Figure 4.1.

FIGURE 4.1: This plot shows paired t-test power calculation curves
for effect sizes between 0.046 and 0.8 and sample sizes up to 7, 500.
The smallest effect of 0.046 meets a statistical-power of 0.8 with 7, 500
samples. For larger effect sizes, the statistical-power threshold of 0.8

is comfortably accommodated by 7, 500 samples.

A calculation adopting a significance-value of 0.05 and a Statistical-Power value of

0.8 and a sample size of 7,500 samples calculates the sample size is sufficient to find

an effect of 0.05 between the control group and the mitigated group. This study

hopes to mitigate the effects of JSMA adversarial examples and therefore seeks to

find a large difference (effect) between the control group (JSMA) and the mitigated

group. For example, a larger effect of 0.2 is a commonly used small effect. An effect

4.3. Adversarial Attack of a Network Traffic Classification Model 107

of 0.2 suggests a sample size of 394 is sufficient for a significance-value of 0.05 and a

Statistical-Power value of 0.8.

4.3.2 Initial Classification Model

Scikit-learn offers a comprehensive selection of extensively documented machine

learning models, seamlessly integrating with various Python libraries. Notably,

adversarial examples were initially identified in the context of ANNs, which are

particularly susceptible to such attacks owing to their inherent properties. By

employing an artificial neural network, these vulnerabilities are effectively

highlighted. Thus, an ANN serves as useful platform for the development and

evaluation of countermeasures. Therefore, an initial target multi-class classifier is

trained using a scikit-learn MLP model. The model consists of three dense layers

and is trained for a maximum of 300 iterations. The resampled dataset is

pre-processed, scaled, and split into training and validation sets with a 70/30 split.

In Chapter 3 an 80/20 split was used, yielding 100% accuracy, and raising concerns

of potential overfitting. Through reducing the proportion of the training set the risk

of overfitting is reduced. As detailed later, the accuracy of the models presented in

this chapter are slightly lower than the model presented in Chapter 3; however, the

increased proportion of the validation set enhances the reliability of the evaluation.

The Adam optimizer is used to train the target model, producing a well-trained

model. Table 4.2 shows the performance of the classifier. The standard metrics of

accuracy, precision, recall, and F1-score are used. The support column indicates the

number of occurrences of the class in the specified sample. The target model

achieves an accuracy of 91%, with precision of 91%, recall of 93%, and F1-score of

89%.

To overcome the issue of ‘oracle’ attacks and enable the transferability of

adversarial examples [186], in addition to the target model, a surrogate neural

network model is also trained for the same intrusion detection task. This sequential

model consists of three dense layers and a softmax output layer. The first dense

layer receives input in the form of the (67) features and has 128 units using ReLU

activation function. The second dense layer has 64 units. The third dense layer has

108
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

Target Model Surrogate Model
Precision Recall F1-Score Support Precision Recall F1-Score Support

BENIGN 0.75 0.96 0.84 79 0.88 0.98 0.93 92
Bot - Attempted 1.00 0.98 0.99 105 1.00 0.98 0.99 105
Bot 1.00 0.48 0.65 170 1.00 0.49 0.66 167
PortScan 0.98 1.00 0.99 92 1.00 1.00 1.00 94
DDoS 0.97 1.00 0.98 94 0.99 1.00 0.99 96
Web Attack - Brute Force 0.99 0.83 0.91 115 0.97 0.78 0.86 121
Web Attack - Brute Force - Attempted 1.00 0.96 0.98 85 0.99 0.99 0.99 82
Infiltration - Attempted 0.78 0.96 0.86 73 0.68 1.00 0.81 61
Infiltration 1.00 0.96 0.98 105 1.00 1.00 1.00 101
Web Attack - XSS - Attempted 1.00 0.99 0.99 87 0.99 0.96 0.97 89
Web Attack - XSS 0.97 0.99 0.98 88 1.00 1.00 1.00 90
Web Attack - Sql Injection 1.00 1.00 1.00 76 0.99 0.99 0.99 76
FTP-Patator 1.00 1.00 1.00 82 1.00 1.00 1.00 82
SSH-Patator 1.00 0.98 0.99 91 1.00 0.99 0.99 90
FTP-Patator - Attempted 1.00 1.00 1.00 100 1.00 1.00 1.00 100
SSH-Patator - Attempted 1.00 0.99 0.99 92 1.00 1.00 1.00 91
DoS slowloris 0.06 1.00 0.11 5 0.08 1.00 0.14 7
DoS slowloris - Attempted 1.00 1.00 1.00 93 0.98 0.99 0.98 92
DoS Slowhttptest 0.99 1.00 0.99 99 0.99 0.99 0.99 100
DoS Slowhttptest - Attempted 1.00 1.00 1.00 75 1.00 1.00 1.00 75
DoS Hulk 0.99 0.99 0.99 85 0.98 1.00 0.99 83
DoS Hulk - Attempted 0.55 0.61 0.58 82 0.55 0.59 0.57 85
DoS GoldenEye 1.00 0.95 0.97 76 1.00 0.97 0.99 74
Heartbleed 0.99 0.94 0.96 96 1.00 0.96 0.98 95
DoS GoldenEye - Attempted 0.68 0.59 0.63 105 0.63 0.56 0.59 102
Macro Average 0.91 0.93 0.89 2250 0.91 0.93 0.90 2250
Accuracy 0.91 0.91

TABLE 4.2: Target Model and Surrogate Model Classification Reports.

25 units, one for each unique class. A fourth softmax layer that converts the output

values into probabilities. The model uses sparse categorical cross-entropy loss

function, together with the Adam optimizer. The model is trained for 200 epochs

with an early stopping patience of 50. Whilst superficially similar to the target

model, an alternative framework (Keras) is used to construct this surrogate model.

Since the two models are known to be similar and are trained with portions of a

freely available dataset the approach is intended to be representative of a black-box

attack; however, it may well be considered to be a grey-box attack, since the author

inevitably has some knowledge of the underlying models. As with the target

model, the surrogate model consists of three dense layers and a softmax activation

layer. Table 4.2 shows that the model achieves accuracy comparable to that of the

target model (accuracy of 91%, with precision of 91%, recall of 93%, and F1-Scores

of 90%). Figure 4.2 shows the confusion matrix of both the (a) target model and the

(b) surrogate model to evaluate the performance of each individual class and to

assess misclassification.

4.3. Adversarial Attack of a Network Traffic Classification Model 109

(A) (B)

FIGURE 4.2: Confusion matrix for (a) Target model (Scikit-learn), (b)
Surrogate model (Keras).

(A) (B)

FIGURE 4.3: Untargeted JSMA (q=0.05 and g=0.02) against (a) Target
model (Scikit-learn), (b) Surrogate model (Keras).

4.3.3 Using the Surrogate Model to Attack the Target Model

From the adversarial perspective, the intention is to cause the target model to

misclassify, often referred to as an evasion attack. Adversarial attacks can be

performed on binary and multi-class classification systems, and typically fall into 3

groups: white-box; black-box; and gray-box attacks. White-box attacks provide full

knowledge of the model, and access to the model. Many white-box attacks rely on

the use of gradient descent search. Gray-box models assume some partial

knowledge of the model. Black-box attacks offer zero knowledge of the model, and

‘oracle’ attacks are impractical for intrusion detection domain [125]. Therefore,

some black-box attacks rely on the transferability properties of adversarial

110
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

examples using a surrogate model [201]. This is the approach taken here, whereby

adversarial examples are generated on the surrogate model using the

Jacobian-based Saliency Map Attack [202] [174], and then tested against the target

model.

(A) (B)

FIGURE 4.4: Targeted JSMA for benign class (q=0.05 and g=0.02)
against (a) Target model (Scikit-learn), (b) Surrogate model (Keras).

Figure 4.3 shows the confusion matrix of untargeted JSMA on both (a) the target

model and (b) the surrogate model, where q = 0.1 and g = 0.1. These two

parameters specify the amount of perturbation to introduce to the original feature

set (q) and the maximum fraction of features to influence (g). Both confusion

matrices now exhibit a large amount of misclassification between the predicted

labels and the ground-truth labels. It is important to reiterate that the adversarial

examples were crafted against the surrogate model using JSMA, and then tested

against the target model.

Figure 4.4 shows a similar effect for targeted JSMA. The untargeted attack does

not specify a target class, whereas for the targeted attack the intention is to

specifically misclassify each attack as benign. The surrogate model is significantly

impacted, and the majority of samples are successfully misclassified as benign

(Figure 4.4b). For the target model, whilst the effect of targeted misclassification to

the benign class is not quite as prominent, nevertheless, the model performance is

still severely degraded (Figure 4.4a).

4.3. Adversarial Attack of a Network Traffic Classification Model 111

4.3.4 Functionality-Preservation in Adversarial Example Generation

Adversarial attacks in computer vision rely on the manipulation of features (i.e.,

pixel intensity) that are unnoticeable to the human visual system. In this case study,

whilst it is possible to manipulate features to provoke misclassification, it is

important to assess whether the resulting features remain within the expected

distribution of the data, such that it may be feasible to curate an attack that remains

unnoticeable to a human observer, whilst exhibiting the intended underlying attack

behaviour. Systematic experimentation was performed using the JSMA parameters

q and g. To provide a clearer understanding of how the variables interact

experiments were performed. To examine the size of perturbation, a range of

values were chosen: large (0.8), midsize (0.5), small (0.1), and very small (0.05). The

model was trained on sixty-seven features which influenced the choice of g values.

To examine the proportion of features modified, a similar range of values were

chosen: large (0.8/80% of features/⇡ 53 features), midsize (0.5/50% of features/⇡

33 features), small (0.1/10% of features/⇡ 6 features), very small (0.05/ 5% of

features/⇡ 3 features), and a single feature (0.02/2% of features/⇡ 1 feature). An

experiment was conducted using all paired combinations of q = (0.8, 0.5, 0.1, 0.05)

and g = (0.8, 0.5, 0.1, 0.05, 0.02), allowing the feature distribution to be studied in

comparison to the statistical distribution of the original data.

FIGURE 4.5: Parallel Coordinates to show the distribution of original
features versus JSMA features (q = 0.1 and g = 1.0). It can be
observed that the perturbed JSMA features significantly exceed the

expected range of the original traffic features.

Figure 4.5 shows a parallel coordinates plot for a subset of the feature domain,

112
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

to highlight the minimum, maximum and median of features for both the original

dataset and the compromised adversarial examples. The discrepancies between the

original data and the adversary examples are clearly visible with JSMA parameters

q = 0.1 and g = 1.0. Therefore, the crafted examples may either be clearly noticeable

to a human observer investigating an attack, or the features may no longer satisfy

the intended attack behaviour.

FIGURE 4.6: Parallel Coordinates to show the distribution of original
features versus JSMA features (q = 0.05 and g = 0.02). The perturbed
JSMA features are within the expected range of the original traffic

features.

(A) (B)

FIGURE 4.7: Targeted JSMA for benign class (q = 0.05 and g = 0.02)
against (a) Target model (Scikit-learn), (b) Surrogate model (Keras).

Figure 4.6 shows the distribution of original and adversarial examples where

q = 0.05 and g = 0.02. Importantly here, the difference between the adversarial and

original distributions is unnoticeable at this scale, meaning that such adversarial

4.3. Adversarial Attack of a Network Traffic Classification Model 113

Traffic Type Original Correct after JSMA Successful Attack Percentage
FTP-Patator 82 0 100.00
Web Attack - Sql Injection 76 0 100.00
Heartbleed 91 0 100.00
DoS GoldenEye 72 0 100.00
DoS Hulk - Attempted 91 0 100.00
DoS Hulk 85 0 100.00
DoS Slowhttptest - Attempted 75 0 100.00
DoS Slowhttptest 100 0 100.00
DoS slowloris - Attempted 93 0 100.00
DoS slowloris 90 0 100.00
SSH-Patator 89 0 100.00
DoS GoldenEye - Attempted 91 0 100.00
Web Attack - XSS 90 0 100.00
Infiltration - Attempted 90 0 100.00
Web Attack - Brute Force - Attempted 82 0 100.00
Web Attack - Brute Force 97 0 100.00
PortScan 94 0 100.00
Bot 82 0 100.00
Infiltration 101 1 99.01
Bot - Attempted 103 4 96.12
DDoS 97 6 93.81
SSH-Patator - Attempted 91 26 71.43
Web Attack - XSS - Attempted 86 70 18.60
FTP-Patator - Attempted 100 94 6.00
Total 2063 201 90.25

TABLE 4.3: Percentage of successful attacks, target=‘benign’, by class
(q = 0.05 & g = 0.02).

attacks would be unlikely to be identified through statistical methods, and may

well exhibit sufficient similarity to the underlying attack sequence in the packet

flow communication. Therefore, this specific set of adversarial examples can be

considered to be functionality-preserving.

Figure 4.7 shows the confusion matrix of targeted JSMA on both (a) the target

model and (b) the surrogate model, where q = 0.05 and g = 0.02, as determined to

be a suitable set of parameters for functionality-preservation. Whilst a clear

diagonal can be observed on each matrix, this is still severely degraded from the

original result shown in Figure 4.2, whilst also noting that functionality of the

adversarial cases would likely be preserved. Such parameter constraints would

mean that not all adversarial examples will achieve misclassification, and some

classes may well be more robust against the generation of adversarial example.

Table 4.3 provides a detailed summary of the results, showing the number of

successful targeted attacks for the constrained adversarial examples, for each of the

possible attack classes. Overall, it is observed that 90.25% of the attacks were able

114
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

to evade detection, with all DoS slowhttptest, and Heartbleed being misclassified,

as well as the majority of other DoS attacks and Web Attack SQL Injection.

Excluding the benign class that was not perturbed, all classes were found to exhibit

some degree of vulnerability, as demonstrated by successful attacks.

4.3.5 Summary of the Adversarial Attack Stage

This chapter provides a comprehensive study on adversarial attack generation

against a well-trained machine learning model for network traffic classification. It

is shown that whilst evasion attacks are significantly more challenging to conduct

within the constraints of the original data distribution, attacks of this nature are still

achievable. As illustrated in Table 4.3, the fact that at least one instance of each

attack can evade the classification model highlights the potential vulnerabilities

exhibited by such a learning system. The often-stated maxim is affirmed that whilst

defenders need to be successful in detection every time, attackers only need to be

successful in their attack once in order to achieve their goal.

This study concentrated on the use of JSMA since it can provide targeted and

untargeted attacks, and because the parameters allow control of the number of

features to perturb and the amount of perturbation to introduce. Recent work has

explored alternative adversarial techniques including Fast Gradient Sign Method,

Basic Iterative Method, and Projected Gradient Descent that can also be configured

to modify fewer or specific features [192]. Libraries such as the Adversarial

Robustness Toolkit also support masking parameters to modify select features [87].

It is important to note that ML-based Intrusion Detection Systems may well

include a mixture of categorical, continuous, and discrete features [203]. JSMA uses

random perturbations of continuous features to generate adversarial examples.

Features such as destination port number and protocol are nominal attributes that

should not be treated as numerical and should not be perturbed in this same way.

For the CICIDS2017 dataset used in this study, packet flow data is used, which

4.4. Hierarchical Classification for Model Robustness 115

consists primarily of count data and statistical-based features derived from count

data. Only the continuous features were perturbed. Nevertheless, additional logical

and mathematical constraints should also be considered in future studies such that

statistical features are accurate. Consequently, the crafting of adversarial examples

within constrained domains poses unique challenges compared to much of the

prior work from the computer vision domain [189].

4.4 Hierarchical Classification for Model Robustness

Having successfully compromised the network traffic classification model,

defensive strategies are explored to improve the robustness of the classifier against

such adversarial attacks. Previous works have often retrained the classifier using a

set of curated adversarial examples [204] [121] [23]; however, this approach is not

scalable and only provides a retrospective defence after a compromise has been

identified. Instead, the attack surface where misclassification can occur is

restructured by using a hierarchical classification layer. By reframing the

classification task such that a hierarchical label is provided, the available attack

surface to the adversarial methods is effectively reduced, such that the amount of

perturbation required to misclassify a label becomes greater than compared to a flat

classification layer, and outside of the distribution of the original dataset. In this

network traffic classification case study, this means that the number of possible

output states can be reduced from 25 to approximately 2-5 states at any level of the

hierarchy. It is proposed that a hierarchical classification approach is less

susceptible to the influence of adversarial examples compared to the classifier used

previously in this work.

The hierarchical defence is beneficial because simple classifiers with fewer

outputs are more robust [194]. Hierarchical classifiers are inherently more robust

because misclassification between higher level classes requires more overt

perturbations [205][206]. The hierarchical nature of such models reduces the

number of classes at the upper layer are reduced. Further, the top-down nature of

116
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

hierarchies means that lower levels also classify among fewer classes. The effect is a

further restricted number of appropriate classes, which improves robustness. The

generation of adversarial examples against hierarchical classifiers is compounded

because an adversarial example may need to fool two or more separate local

classifiers. Alternatively, a specific classifier within the hierarchy could be targeted

aiming to affect its output in order to impact the overall output of the hierarchical

classifier. Research on adversarial examples largely focuses on one-stage (flat)

classifiers. Attacking hierarchical classifiers is a more complex task, although it is

an open research topic [206].

The work presented in this thesis examines hierarchical classifiers as a defence

against transferable black-box adversarial examples. This experimentation

incorporates the hierarchical learning library, HiClass [207], with the previous work

in Section 4.3.

4.4.1 Hierarchical Classification

Traditional classification models utilize a flat output layer where each class is

associated with a probability. However, many large classification tasks exhibit some

natural hierarchy. For example, within the CICIDS2017, there are multiple variants

of denial-of-service attacks (DoS), as well as different web-based attacks, and

patator attacks on FTP and SSH services. The grouping of similar classes may

therefore mean that misclassification between classes that exist in separate

groupings may become more challenging to achieve with an adversarial attack.

Koller and Sahami’s [208] seminal work on local classification approach

established the foundations for researchers to expand the field of hierarchical

classification using local classifiers. Hierarchical models often employ multiple

multi-class models (e.g., One-Vs-All/One-Vs-Rest) and therefore may be

4.4. Hierarchical Classification for Model Robustness 117

considerably larger than flat models. There are three generally accepted forms of

local classifier: Local Classifier Per Node (LCPN), Local Classifier Per Parent Node

(LCPPN), and Local Classifier Per Level (LCPL).

• Local Classifier Per Node (LCPN): A binary classifier is trained for every

node in the class hierarchy (excluding the root node). The advantage is that

this becomes naturally multi-class. The disadvantage is that because each

node is trained independently, it is theoretically possible to have

inconsistency between levels (e.g., a coarse class prediction of ‘DoS’=False

and a finer prediction of ‘Dos Hulk’=True). Without methods to resolve these

class-membership inconsistencies, incompatible predictions between coarse

and fine classes are possible. This approach is illustrated in Figure 4.8.

• Local Classifier Per Parent Node (LCPPN): A multi-class classifier is trained

for each parent’s child nodes. This method respects hierarchy constraints

while avoiding class-membership inconsistencies. This approach is illustrated

in Figure 4.9.

• Local Classifier Per Level (LCPL): A multi-class classifier is trained for each

level of the hierarchy. Simplistic implementations take the output of the

classifier at each level, presenting this as the final classification. This method

can result in class-membership inconsistencies. Approaches avoiding

class-membership inconsistencies include a top-down approach where the

class prediction at coarse levels restricts classification at finer levels to only

child nodes of the previous level. This approach is illustrated in Figure 4.10.

118
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

4.4.2 Hierarchical Output Class

Typically, a machine learning classifier is trained to provide a single label from a set

of possible labels. This approach extends from object classification to natural

language generation. In this case study, a label is predicted that defines the

associated network attack type, based on the characteristics of network traffic. It is

natural to think how output classes might group together, such that similar attack

types are grouped together under a specific sub-group. For example, DoS slowloris,

DoS Slowhttptest, DoS Hulk, and DoS GoldenEye, naturally group together as a

DoS group. Similarly, all web attacks can be grouped. The definition of a suitable

set of hierarchical class labels could be achieved in multiple ways: based on

analyst’s domain knowledge, text label similarities, feature similarities, or some

higher attributes related to the data. This study did not explore hyper-parameter

searching as this was not the core focus of this study; however, this remains an area

of future research.

The experiments were performed using 7 different hierarchical schemes:

K-means; Ward; Average; Complete; Single; Researcher Defined; and Dataset.

Figure 4.11 shows two of the initial hierarchy schemes: Researcher Defined and

Dataset. The Dataset scheme (a) is based on the implicit hierarchy present in the

original dataset, defined by how attacks have been grouped by the original authors.

The researcher scheme (b) is defined by the author based on his domain knowledge.

4.4.
H

ierarchicalC
lassification

for
M

odelR
obustness

119

FIGURE 4.8: Local Classifier Per Node (LCPN): This diagram illustrates the local classifier per node technique, wherein binary classifiers
(represented as dashed squares) are trained for each class (represented as circles) within the hierarchy, excluding the root node.

120
C

hapter
4.

D
efending

againstA
dversarialM

achine
Learning

A
ttacks

using

H
ierarchicalLearning

FIGURE 4.9: Local Classifier Per Parent Node (LCPPN): This diagram depicts the local classifier per parent node methodology, where
multi-class classifiers (represented as dashed squares) are trained for each parent node present within the class hierarchy. Note that leaf

nodes (classes without any children) are classified at the parent node.

4.4.
H

ierarchicalC
lassification

for
M

odelR
obustness

121

FIGURE 4.10: Local Classifier Per Level (LCPL): This diagram illustrates the local classifier per level technique, where multi-class
classifiers (depicted as dashed rectangles) are trained for each level within the hierarchy.

122
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

Automated Hierarchical Clustering - K-Means

Optimistically, it is expected that hierarchies, defined by human experts, will be

most robust; however, building such a hierarchy is a skilled task and introduces an

overhead for analysts. To assist the process of generating class hierarchies,

automated cluster techniques were considered. Firstly, k-means clustering was

used to identify the hierarchical relationships, where k specifies the number of

suitable clusters to discover. Figure 4.12 shows the hierarchy as determined by

k-means clustering using a top-down approach. In this example, k = 5, for which it

can be seen that the majority of classes cluster in group 0.

(A) (B)

FIGURE 4.11: Hierarchies assembled by human reasoning: (a)
original data set structure, (b) researcher-defined structure.

Attempted classes are denoted by ⇤
.

FIGURE 4.12: Hierarchy based on divisive clustering: k-means.

4.4. Hierarchical Classification for Model Robustness 123

(A) (B)

(C) (D)

FIGURE 4.13: Hierarchies from agglomerative clustering: (a) Ward,
(b) Average, (c) Complete, and (d) Single. Attempted classes are

denoted by ⇤

124
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

Automated Hierarchical Clustering - Agglomerative

Agglomerative clustering is a type of hierarchical clustering that differs from

k-means in that it is a bottom-up approach. It begins with n clusters and

sequentially combines similar clusters until all clusters belong to a single large

cluster. The approach is more computationally expensive than k-means, however

the scheme is especially applicable for arranging clusters into a natural hierarchy.

The main parameters of agglomerative clustering are affinity and linkage, where

affinity refers to the distance metrics used (Euclidean distance), and linkage refers

to how the distance between clusters should be measured. Four possible linkage

schemes are studied: ‘Ward’ [209], ‘Average’, ‘Complete’, and ‘Single’. For a given

pair of clusters, ‘Single’ will calculate the minimum distance between any pair of

observations within each of the clusters, whilst ‘Complete’ will calculate the

maximum distance between a pair of observations. ‘Average’ will take an average

distance based on all pairs of observations within each clusters. ‘Ward’ is similar to

average; however, it utilizes the variance of the observations within each cluster to

then calculate the average. The scikit-learn library provides a function for

Agglomerative Clustering that supports all four linkage schemes.

Algorithm 2: Create hierarchical labels from an unlabelled flat dataset.
finecluster = AgglomerativeClustering(n_clusters=15, affinity=affinity, linkage=linkage);
finecluster.fit_predict(X);
coarsecluster = AgglomerativeClustering(n_clusters=5, affinity=affinity, linkage=linkage);
coarsecluster.fit_predict(X);
top_layer_labels = coarsecluster.labels_
bottom_layer_labels = finecluster.labels_
for i in range len(X) :

hier_labels.append([str(top_layer_labels[i]),str(bottom_layer_labels[i])])

Algorithm 3: Create hierarchical labels from a labelled flat dataset.
cluster = ClusterAlgorithm(n_clusters= 5)
cluster.fit_predict(X)
for class in range (0,max_class) :

initialize class groups
for i in range len(X) :

append cluster_label to relevant ground-truth class
for class_name in all_classes :

find majority cluster label for ground-truth label
Initialize hier_labels = empty
for i in range(len(X)) :

append [str(majority_cluster_label),str(ground_truth_label[i])] to hier_labels

Algorithm 2 and Algorithm 3 show the process of constructing hierarchies for

either an unlabelled or labelled dataset respectively, by generating labels for both

4.4. Hierarchical Classification for Model Robustness 125

coarse and fine layers. The analyst can provide an integer to define the number of

expected coarse and fine classes for the hierarchy, or if not provided, this will default

to five.

4.4.3 Deployment of Hierarchical Classification

With the set of possible class hierarchies available, a two-layer hierarchical classifier

can be built using the Python library ‘HiClass’ [207], each hierarchical structure for

the model output layer can then be tested. This library integrates with the

scikit-learn MLP classifier, allowing the target model from Section 4.3 to be easily

incorporated. This also enables the comparison of the results of the hierarchical

approach with that of the original flat model used previously. For hierarchical

learning models, model performance can be evaluated using modified performance

metrics proposed by Kritchenko et al. [210]: hierarchical precision (hP), hierarchical

Recall (hR) and hierarchical F1-Score (hF).

4.4.4 Results of Hierarchical Classification

Figure 4.14 shows the F1-Score Macro Average for the original flat MLP model with

both the normal data and the compromised adversarial example data. Similarly, it

also shows the Hierarchical F1-Scores (HF) for both the coarse and fine layers of the

hierarchical model, for both the normal data and the compromised adversarial

example data. This is presented for each of the seven clustering strategies. It can be

seen that LCPPN hierarchical classifiers can improve the robustness of

classification, as measured by F1-Score. In particular, an average improvement of

84.85% in classification of presented adversarial examples: an increase of 0.28 from

0.33 to 0.61 This improvement can be seen in the difference between the orange and

brown horizontal lines. Moreover, a slight improvement in robustness of

classification in general is noted when only original unperturbed samples are

presented.

The hierarchical defence achieves improved F1-Scores and robustness despite

the presence of adversarial learning attack. Note that all the hierarchies improved

126
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

FIGURE 4.14: Bar plot to show robustness improvement by
comparing appropriate F1-Score metrics across different LCPPN
hierarchies. It can be seen that all hierarchies have improved F1-
Scores under adversarial conditions. A decrease in the difference
between F1-Scores for perturbed and unperturbed samples is visible.
Two important results are highlighted: the orange horizontal
line indicates the mean F1-Score for ‘Flat MLP JSMA’ across the
hierarchies. The brown horizontal line indicates the mean ‘Hierarchy
Layer 2 JSMA’ across the hierarchies. All hierarchies also improve the

F1-Score when no adversarial traffic is present.

robustness as measured by the difference between F1-Score under perturbed

samples and F1-Score under unperturbed samples. Moreover, the hierarchical

approach also improves the F1-Score when no adversarial traffic is present. Figure

4.15 shows the confusion matrix for both (a) the coarse layer and (b) the fine layer,

that reveals fewer misclassifications compared to the original model performance.

Agreement is found with Qian et al. [194]: classifiers with fewer output classes are

more robust. However, Hierarchical F1-Score for the ‘single’ (Figure 4.13d) remains

steady. It is believed that because this hierarchy has a particularly large subclass,

the benefit of a hierarchical structure is not fully realized, suggesting that some

hierarchies will be more robust than others. Furthermore, it is found that flat

models that are most susceptible to adversarial samples gain most from

implementing a hierarchy.

4.5. Discussion 127

(A) (B)

FIGURE 4.15: Confusion matrices for (a) coarse layer and (b) fine
layer that shows fewer misclassifications for the original dataset

when utilising a hierarchical classification model.

4.5 Discussion

This section discusses topics proceeding from this work, including how hierarchical

learning can help improve the robustness of ML models and assist in blocking the

transferability of adversarial examples. The identified benefits of hierarchical

classifiers and hierarchies are discussed, along with the benefits of clustering

techniques. The importance of blocking transferability is discussed, highlighting

the reduction in transferability seen when using the presented hierarchical defence.

Next, the classifiers and clustering techniques used in hierarchical learning, are

examined. Subsequently, the feasibility of attacking a hierarchical classifier is

discussed.

4.5.1 Benefits of Hierarchical Classifiers

Hierarchical classification is a simple ensemble technique that offers promise in

protecting machine learning systems from adversarial examples, as this work has

explored for intrusion detection systems.

It is posited that for hierarchical models with a few parent nodes and more child

nodes, the higher layers are more robust than the lower layers. This offers

advantages for network defence because misclassification among subclasses (e.g.,

128
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

DoS Hulk and DoS slowhttp) is a less serious prospect than misclassification

among superclasses (e.g., DoS and Benign) [211]. Indeed, Jeanneret et al. [205] note

that hierarchical attacks aiming for severe outcomes are less successful in evading

detection. Hierarchical classifiers offer improvements in F1-Score and

generalization error. Moreover, they may also reduce memory consumption, disk

usage, and training time [207].

4.5.2 Hierarchies

Simple classifiers with fewer output classes are more robust [194]. It follows that in

hierarchical models with a few parent nodes and more child nodes, the higher

layers are more robust than the lower layers; however, if the classification task is

truly hierarchical, by the nature of the class and subclasses, Layer 1 and Layer 2 will

intuitively have aligned gradients. For example, the classifier for the parent node

‘Denial of Service’ will likely have gradients aligned with classifiers detecting

specific subclasses of Denial-of-Service attacks such as ‘Dos Hulk’. Intuitively, the

construction of a traditional hierarchical classifier means that Layer 1 and Layer 2

ought to have aligned gradients. Using strong ensemble classifiers with misaligned

gradients in a hierarchy may help improve robustness for hierarchical classifiers,

combining the advantages of misaligned gradients and the robustness

improvement gained through hierarchical classification.

Top-down methods restrict classification at finer levels to only child nodes of the

previous level, meaning that lower levels also have fewer classes, further increasing

robustness. A disadvantage is recognized that when descending a hierarchy there

is no way to retrace one’s steps. Therefore, misclassification at a coarse level might

forbid correct classification at the fine level; however, improved robustness may be

considered sufficient for this trade-off.

4.5.3 Clustering Techniques

Divisive and agglomerative clustering techniques could be employed to find other

groupings of classes. Hierarchical labels simplify the generation of hierarchical

4.5. Discussion 129

classifiers. The semi-automated techniques described in this work could be used to

build hierarchical labels for unlabelled or labelled flat datasets.

It is noted that that any clustering algorithm is unlikely to generate clusters that

correspond exactly to the known classes. Indeed, the experiments found that a

particular known class could be dispersed among multiple clusters. The objective

here is to explore the generation of hierarchies rather than to label datasets.

Clustering techniques are unlikely to perform as well as supervised or

semi-supervised learning techniques [212]. Instead, clustering is only used as a

guide to which ground-truth labels could be grouped.

It is noted that some hierarchies have diverse fine-classes covered by one large

coarse-class. For example, Single has a particularly large coarse-class. The prospect

of misclassification at the coarse level is likely proportionate to the number of classes

in that branch of the hierarchy.

4.5.4 Blocking Transferability

The transferability property of adversarial examples can effectively be used to

perform gray-box or black-box attacks. Breaking transferability is an important

goal. In the experiments a reduction in transferability to the hierarchical model is

observed. Other work considers other ways to block the transferability of

adversarial examples. For example, Hosseini et al. [213] propose NULL-labeling as

a form of adversarial training.

4.5.5 Effectively Attacking Hierarchies

The hierarchical defence presented in this work improves robustness against

adversarial learning attacks. Attacks causing misclassification between subclasses

are less severe than attacks causing misclassification at class level. Successful

adversarial learning attacks on intrusion detection systems must preserve the

functionality of malicious network traffic. Research in other domains might apply

in cyber security. For example, Jeanneret et al. [205] consider hierarchy aware

130
Chapter 4. Defending against Adversarial Machine Learning Attacks using

Hierarchical Learning

attacks that generate adversarial perturbations considering the hierarchical

distance between labels. Moreover, they consider the severity of Hierarchical

Attacks and apply Curriculum Learning to enhance the performance of models

through learning concepts from coarse to fine.

4.6 Conclusion

This chapter proposes hierarchical learning as a defensive strategy to mitigate

against adversarial machine learning attacks. The presented defence is independent

of the attack algorithm and based on a robust hierarchical learning scheme. When

under attack, the presented defence achieves accuracy scores close to the accuracy

of the original flat model with no adversarial machine learning attacks. A decrease

in the generalization error is seen. The presented approach is intended to be

representative of a functionality-preserving black-box attack; however, this

approach may be considered a gray-box attack, because inevitably the author has

some knowledge of the underlying models. This work identifies the vulnerability

of machine learning models and explicitly with artificial neural networks. This

work examines how the vulnerabilities might be mitigated, using two novel

methods to improve robustness. If the designers and developers of machine

learning systems are not easily able to identify the vulnerabilities in their models

they will unknowingly or unwittingly deploy vulnerable models in unsafe

environments. The following chapter considers how the research findings can be

generalized to other domains.

131

Chapter 5

Further Exploration of Adversarial

Machine Learning

5.1 Introduction

This chapter evaluates the extent to which the findings can be generalized to other

conditions, settings, and situations. For example, how well does this research

generalize across other domains and particularly cyber security domains, such as

cyber physical systems and the internet of things (IoT)? Consideration is given to

the main factors that could affect the generalizability of the results and the possible

limitations of this research are outlined. Two miniature case studies are used to

explore the generalizability of this work to other models and datasets.

5.2 Case Study 1 - Consequences of Model and Dataset

This case study examines how this work can be generalized to other models and

datasets.

5.2.1 Model Choice

This section goes beyond Neural Networks, to explore how adversarial learning can

impact other forms of machine learning classification models. There are a range of

machine learning models that are each vulnerable to adversarial examples to some

extent. Through the experiments it was found that ensemble classifiers are more

robust than stand-alone classifiers.

132 Chapter 5. Further Exploration of Adversarial Machine Learning

Model Name Original
F1-Score
Macro Avg

Adversarial
F1-Score
Macro Avg

Generalisation
Error

Percentage
Change

Support Vector Classifier 0.08 0.08 0.00 00.00
Light Gradient Boosting Machine 0.78 0.73 0.05 -06.41
Histogram Based Boosting Classifier 0.78 0.72 0.06 -07.69
AdaBoost 0.10 0.09 0.01 -10.00
Logistic Regression 0.45 0.39 0.06 -13.33
k Nearest Neighbour 0.60 0.51 0.09 -15.00
Random Forest 0.79 0.66 0.13 -16.46
XGBoost 0.72 0.57 0.15 -20.83
Naive Bayes 0.39 0.29 0.10 -25.64
Decision Tree 0.79 0.26 0.53 -67.09
Quadratic Discrimination Analysis 0.53 0.05 0.48 -90.57

TABLE 5.1: Model Types sorted by Adversarial Generalisation Error
(F1-Score).

Table 5.1 shows how the macro average F1-score of models can deteriorate in

the presence of adversarial examples. The worst performing models are Quadratic

Discrimination Analysis and Decision Tree with performance dips of

approximately 90 % and 67 % respectively. Superficially the best performing model

is the Support Vector Classifier (SVC) because its performance does not deteriorate

in the presence of adversarial examples; however, this SVC model performs very

poorly under ordinary conditions, and should be considered an anomaly. The best

performing models under adversarial conditions are the ensemble classifiers Light

Gradient Boosting Classifier and Histogram Based Boosting with low percentage

drops of approximately 6% and 8%. Interestingly the Random Forest model is an

ensemble version of the decision tree and is more robust than the decision tree with

a performance dip of approximately 16%, compared with 67.09% for the Decision

Tree.

5.2.2 Defensive Hierarchical Approach

Carefully applying a hierarchical approach could further improve robustness of all

models to adversarial examples. The robustness of models is explored with a

selection of untuned classifiers, that are trained on the CICIDS2017 dataset. The

experiments essentially replicate the experimental conditions described in Chapter

4 using different base classifiers. JSMA adversarial examples are generated using a

surrogate Keras model trained on the same dataset. The following common models

were selected: Quadratic Discrimination Analysis (QDA), Decision Tree (DT),

5.2. Case Study 1 - Consequences of Model and Dataset 133

Naive Bayes (NB), Multi Layer Perceptron (MLP), Logistic Regression (LR),

Support Vector Classifier (SVC), K Nearest Neighbour (KNN), AdaBoost, XGBoost

(eXtreme Gradient Boosting), Histogram Based Boosting Classifier (HBBC), Light

Gradient Boosting Machine (LGBM), and Random Forest (RF). Each model is used

as a base classifier in a hierarchical classifier and its performance against

adversarial examples is evaluated for different hierarchical paradigms: LCPN,

LCPPN. The untuned classifiers are attacked by presenting the generated JSMA

adversarial examples, utilising the transferability property. The hierarchical

F1-Score Macro Avg is noted as a robustness metric as shown in Figure 5.1. To find

the most robust classifiers they are sorted by F1-Score.

(a) (b)

FIGURE 5.1: LCPN F1-Score (a) and LCPPN F1-Score (b) by Model.

It is noted that Layer 1 commonly achieves higher F1-Scores than Layer 2 (with

the exception of SVC for LCPPN). It is posited that this phenomenon is because

Layer 1 in the hierarchy has fewer classes than Layer 2. Further, it is noted that

ensemble classifiers are typically more robust than single classifiers, with the

exception of AdaBoost, which is composed of weak learners. In general, there is a

visible trend that ensemble classifiers perform well in hierarchical classification.

5.2.3 Dataset

This research is generalizable to different problem domains. The proposed methods

are found to work well on classification problems for intrusion detection scenarios.

In the CIFAR-10 and CIFAR-100 datasets [214] each image comes with a fine label

and a coarse label. The robustness benefits of hierarchical learning could easily be

gained in the visual domain by using similar hierarchical datasets for classification.

To explore the generalizability of this work, the research is applied to a different

134 Chapter 5. Further Exploration of Adversarial Machine Learning

dataset: MQTT-IoT-IDS2020 [71]. Dataset bias might limit the generalizability

because common hierarchical classifiers are affected by class imbalance [215]. Steps

were taken to resample the datasets, using undersampling to adjust for bias.

5.2.4 Features

In Chapter 2 a generalizable method for feature vulnerability and robustness

assessment was presented. The method used recursive feature elimination,

eliminating the least robust features as identified by the feature with the largest

perturbation. It was found that reducing the number of vulnerable features forced

more overt adversarial examples with larger perturbations. When applying JSMA

adversarial examples to the MQTT dataset which already has fewer features than

the CICIDS2017 dataset, it was observed that adversaries wishing to generate

effective JSMA adversarial examples on feature sets with fewer samples are faced

with a choice:

• Increase the perturbation size to a feature

• Increase the number of features to perturb

• Increase both the size of the perturbation and the number of affected features.

Figure 5.2a, Figure 5.2b, and Figure 5.2c show parallel coordinate plots

indicating the effect on the distribution of adversarial examples. Looking carefully

at the parallel coordinate plots, they show that as the perturbation size increases the

variance from the ordinary traffic profile also increases. It can be seen that JSMA

selects a feature to perturb. This feature is not the same for each sample. It can be

seen that ‘IAT’ statistics are commonly perturbed. The more overt adversarial

examples are, the more likely they are to be detected. Moreover, larger

perturbations imply that samples are less likely to function as intended. Table 5.3

and Table 5.4 show the improvement in successful attacks with larger theta and

gamma values.

Certain features may be more important to the output of a model. Whereas less

important or unused features provide attackers with a larger attack surface while

5.2. Case Study 1 - Consequences of Model and Dataset 135

(A)

(B)

(C)

FIGURE 5.2: Parallel Coordinate Plots for (A) Small Perturbation
to approximately three features - q = 0.05g = 0.07, (B) Larger
Perturbation to approximately one feature - q = 0.1g = 0.04, (C)
Larger Perturbation to approximately three features - q = 0.1g =

0.07.

offering little or nothing of consequence to the model output. Previous chapters

considered ways to select the most robust features using feature engineering

techniques such as Recursive Feature Elimination (RFE). In the experiments

136 Chapter 5. Further Exploration of Adversarial Machine Learning

presented in Chapter 2 it was found that feature sets of twenty features were

sufficient to negate the effects of FGSM while retaining acceptable classification

accuracy. For datasets with very small numbers of features, eliminating the most

vulnerable features could start to impact on correct classification. Similarly,

datasets where all features contribute equally (indicating high sensitivity to each

feature) may suffer unacceptable classification accuracy with the reduction of

vulnerable features.

5.2.5 Classes

In the context of intrusion detection and network traffic classification, adversaries

employ adversarial examples mainly to subvert a model by causing unexpected

outputs or classifications. Therefore, the proportion of incorrectly classified classes

can be used as a proxy measure for robustness. In other words, the fewer samples

that are misclassified, the more robust a model is. To this aim the generalisation

error between F1-Scores is also a suitable metric.

Chapter 4 presented a defensive hierarchical-based approach to improving

robustness of multi-class classification against adversarial examples. It is argued

that hierarchical classification could be a simple way of hardening machine

learning models. The number of identified classes could limit generalizability. For

example, in binary classification problems, there are only two classes. It is difficult

to envisage a useful hierarchy with two classes. As the number of classes increases

it is possible that natural hierarchies will form, and useful hierarchies could be

built; although natural hierarchies present in the dataset may not form the most

robust hierarchy possible.

5.3 Applying the Proposed Methods to the MQTT Dataset

This section applies the proposed methods to a different dataset: MQTT [71]. There

are five classes in this dataset: Benign, Sparta Brute Force, MQTT Brute Force,

Scan_A and Scan_sU. The experimental conditions in Chapter 4 are replicated. The

target and surrogate models are constructed. Recall that the target model is

5.3. Applying the Proposed Methods to the MQTT Dataset 137

implemented using a scikit-learn MLP model, and the surrogate model is

implemented using Keras. Subsequently the prepared MQTT dataset is

pre-processed, scaled, and split into train and test samples (0.7/0.3 split). The

Adam optimizer is used to train the target model. The well-trained model achieves

accuracy of 99% as show in Table 5.2.

Class precision recall F1-score support

Benign 1.00 0.97 0.98 86
Sparta-BF 0.97 1.00 0.98 87
MQTT-BF 1.00 1.00 1.00 79
Scan_A 1.00 1.00 1.00 109
Scan_sU 1.00 1.00 1.00 89

accuracy 0.99 0.99 0.99 0.99

TABLE 5.2: MQTT: Target Model Classification Report.

Untargeted JSMA adversarial examples are generated on the surrogate model

and transfer them to the target model. Only two of the classes were sufficiently

perturbed to be considered a successful attack. Table 5.3 shows that JSMA

perturbations with theta=0.05 gamma=0.02 are effective in only a small percentage

of cases.

Class Original Correct after JSMA Successful Attack Percentage

Scan_A 109 107 1.83
Sparta-BF 90 89 1.11
Benign 83 83 0.00
MQTT-BF 79 79 0.00
Scan_sU 89 89 0.00

TABLE 5.3: Flat Classifier: MQTT Successful Attack Percentage with
JSMA (theta= 0.05, gamma= 0.02).

In large part this is due to a smaller number of features in the MQTT dataset.

Table 5.4 shows that as the JSMA theta and gamma values are increased (theta=0.10

gamma=0.07), the successful attack percentage improves. Over half (58.23%) of the

MQTT-BF samples and nearly one fifth (19.27%) of Scan_A samples and 6% of

Sparta-BF samples were considered successful attacks. There is a potential

impediment of larger perturbations to more features in that larger perturbations

over a wider number of features will be more easily detected and are less likely to

retain functionality. The successful attack percentage is reported in Table 5.4.

138 Chapter 5. Further Exploration of Adversarial Machine Learning

Class Original Correct after JSMA Successful Attack Percentage

MQTT-BF 79 33 58.23
Scan_A 109 88 19.27
Sparta-BF 90 84 6.67
Benign 83 83 0.00
Scan_sU 89 89 0.00

TABLE 5.4: Flat Classifier: MQTT Successful Attack Percentage with
JSMA (theta=0.10 gamma=0.07).

The hierarchical defence is now applied, reducing the percentage of successful

attacks as shown in Table 5.5 (coarse) and Table 5.6 (fine). The hierarchy is

generated with the ‘Ward’ linkage. When considering the three coarse classes class

0 and class 2 are most robust with 0% successful attacks. The coarse class 1 is least

robust with approximately 3% of the attacks deemed successful. The two most

vulnerable classes: MQTT-BF and Scan_A are grouped as coarse class 0. The least

vulnerable class: Scan_uS is paired with the Benign class which is not perturbed.

The Sparta-BF attack are in a class of their own.

Coarse Class Original Correct after JSMA Successful Attack Percentage

(Sparta) 1 90 87 3.33
(MQTT & Scan_A) 0 188 188 0.00

(Benign & Scan_uS) 2 172 172 0.00

TABLE 5.5: Ward Hierarchy Classifier Layer 1 (Coarse): MQTT
Successful Attack Percentage with JSMA (theta=0.10 gamma=0.07).

Fine Class Original Correct after JSMA Successful Attack Percentage

Sparta-BF 90 87 3.33
Benign 83 83 0.00
MQTT-BF 79 79 0.00
Scan_A 109 109 0.00
Scan_sU 89 89 0.00

TABLE 5.6: Ward Hierarchy Classifier Layer 2 (Fine): MQTT
Successful Attack Percentage with JSMA (theta=0.10 gamma=0.07).

Recall from Chapter 4 that building an appropriate hierarchy is a skilled task

and introduces an overhead for analysts. In assisting the process of generating class

hierarchies, automated cluster techniques were considered. Specifically, k-Means,

and the agglomerative clustering linkages: Ward, Average, Complete, and Single.

5.3. Applying the Proposed Methods to the MQTT Dataset 139

Figure 5.3 shows the hierarchies built from the MQTT dataset.

FIGURE 5.3: Hierarchies Built from MQTT Dataset.

Note that none of the automatically built hierarchies separated the benign class

from other classes. Only the Researcher defined hierarchy places benign samples in

a class of their own. Further, note that Ward and k-Means produce identical

hierarchies. There does not appear to be a shared pattern among the other

hierarchies. The experiments conducted in Chapter 4 are repeated for the MQTT

dataset, and the results presented in Figure 5.4.

FIGURE 5.4: For all the hierarchies the hierarchical defence improves
F1-Score when compared with the flat F1-Score.

140 Chapter 5. Further Exploration of Adversarial Machine Learning

Similar results are observed in that all the hierarchies improve robustness under

adversarial examples. It is posited that the use of hierarchies could be a simple

method of hardening models against adversarial examples. In Chapter 4 it was

noted that the Hierarchical F1-Score for the ‘single’ remained steady. It is argued

that because this hierarchy has a particularly large subclass, that the benefit of a

hierarchical structure was not fully realized, suggesting that some hierarchies will

be more robust than others. Poorly constructed hierarchies may allow adversarial

examples to more easily cross a decision boundary than carefully constructed

hierarchies. Particular hierarchies might facilitate adversarial examples, rather than

defend against them. Further research is necessary to determine how to construct

the most effective and robust hierarchies.

5.4 Case Study 2 - Discrete Datatypes

The second miniature case study examines how this work generalizes to discrete

datatypes.

5.4.1 Challenges of Discrete Features

To date, most research has focused on inputs comprised solely of continuous

features. In these scenarios, the most common adversarial example generation

methods are gradient-based perturbations to the original input. Other problem

domains often have discrete types of data. One popular use of AI is in Natural

Language Processing (NLP) for the automation of document analysis. Logically

discrete values are constrained to be one of a range of permitted values. Therefore,

‘small perturbations’ are not applicable to many cyber security features. For

example, a dynamic analysis malware classifier might use API calls. A small

perturbation of an API call WriteFile() might result in an invalid API call WriteFilo()

that likely causes the program to crash. The discrete WriteFile() API call would need

to be replaced with another valid API call. For example, ReadFile() [216]. This

clearly also affects functionality of the malware, a topic discussed in Chapter 2.

5.5. Scalability of Adversarial Machine Learning 141

5.4.2 Generating Adversarial Examples for Discrete Features

From an adversarial viewpoint the work on feature vulnerability and robustness

assessment could be used to identify the key features to perturb, that is, the features

most susceptible to adversarial examples and thus most likely to result in

successful adversarial examples. Gradient descent methods for generating

adversarial examples are not directly applicable to discrete features; however,

variations on gradient descent can generate effective adversarial examples. For

example, Yang et al. [217] propose a two stage ‘Greedy Attack’ capable of attacking

text classification models. First the key features to be perturbed are identified and

then perturbed in the second stage using values chosen from a dictionary. Huang et

al. [114] take an alternative approach and propose a two-stage attack ‘PWPSA’ to

generate DDoS adversarial examples by estimating the saliency of each position,

selecting the best replacement or insertion packet for each position which is then

used to perturb the original input.

Importantly ML-based intrusion detection systems can include a blend of

categorical, continuous, and discrete features. Features such as port number refer to

a process or service. They should generally not be perturbed. Adversaries might

seek to avoid some constraints by only perturbing continuous features; however,

logical, and mathematical constraints still exist. Crafting adversarial examples in

constrained domains is challenging.

5.4.3 Lemmatizing and Hierarchies

In natural language processing it is common for text to be pre-processed so that

words with similar semantics are grouped together. This process is called stemming

or lemmatizing. This research indicates that such hierarchical groupings could help

improve robustness.

5.5 Scalability of Adversarial Machine Learning

Chapter 2 assessed feature vulnerability and robustness using Recursive Feature

Elimination. The features measured as least robust (those with the largest

142 Chapter 5. Further Exploration of Adversarial Machine Learning

perturbations) are eliminated. This is an iterative process and therefore

computationally expensive for large numbers of features. A less precise but simpler

method might use feature importance as a way to eliminate features unused for

classification, or those least important to the classification. However, it is important

to note that feature importance and feature robustness are different measures and

must not be conflated or used interchangeably.

The generation of adversarial examples can be time consuming and

computationally expensive; however, universal adversarial perturbations [126]

allow the generation of a single adversarial example that causes most samples to be

effectively misclassified. It is unclear if a UAP could also preserve functionality of

the perturbed sample.

Chapter 4 proposed a novel hierarchical defence against adversarial examples.

In addition to robustness benefits, hierarchical classifiers offer improvements in

memory consumption, disk usage, and training time [207]. Therefore, hierarchical

approaches may be even more appropriate for large number of classes than

traditional flat classifiers.

5.6 Potential Limitations

This research focused on the robustness of models without considering privacy.

Song et al. [218] argue that the areas of security and privacy should ideally be

considered together. This is because defences in security and robustness can have

unintended consequences for privacy and vice-versa. Specifically, models defended

against adversarial examples might increase the risk of successful membership

inference attacks. It has not been examined whether the proposed defence methods

are also helpful for privacy.

The proposed hierarchical defence is limited by the number of classes: a

hierarchy makes little sense for binary classifiers. Similarly, hierarchies are not

useful for anomaly detection models which only focus on changes from a known

5.7. Conclusion 143

baseline. Hierarchical classifiers do not provide a mechanism for backtracking,

poor decisions made at the top layer will unfortunately taint decisions at lower

levels and ultimately the final classification. Moreover, hierarchical classifiers do

not easily cater for probabilistic outputs and usually only provide a single output

for each input. Therefore, hierarchical classifiers are less suitable for reflecting any

uncertainty of a model’s predictions.

No single defence can be perfect. It is suggested that the proposed novel

defences could be used in combination with each other, and/or other defences such

as adversarial training [79], and dropout [153].

This research considers supervised learning in which data items are labelled.

From this research, it is unclear to what extent the results could apply to

unsupervised, semi-supervised or active learning approaches. Moreover,

adversarial examples are applicable in reinforcement learning [101], and regression

models [219]. Both of these topics were out of the scope of this research.

5.7 Conclusion

In summary, this research considered current machine learning models and how

their vulnerabilities could be defended. It has been shown that adversarial attacks

and the proposed defences can credibly generalize to other domains and data

types. Technological advances have seen machine learning systems deployed in

autonomous vehicles, cyber physical systems, and defence. With such technological

improvements and the increased scope of machine learning models comes

additional risks. The generalizable approaches could help improve the robustness

and security of models. Hence, allowing safer deployments in sensitive domains.

145

Chapter 6

Conclusion

6.1 Introduction

The aim of this thesis is to investigate to what extent machine learning systems can

be compromised or degraded, and what methods can improve robustness in

machine learning systems. The vulnerabilities of machine learning systems and

how they might be mitigated were demonstrated. The trade-off between accuracy

and robustness of neural networks was examined. Moreover, novel ways were

discovered to improve the robustness of machine learning models whilst retaining,

or improving accuracy, or F1-score. This concluding chapter revisits the research

objectives, summarises the findings, and offers specific conclusions and

recommendations for each objective. Additionally, the wider contributions of this

work are clarified.

6.2 Knowledge Gained

This thesis generates new knowledge about the vulnerability of ML systems to

adversarial examples. Further, it generates knowledge of the possibility and

effectiveness of mitigations and countermeasures. Constrained methods are

demonstrated for the generation of plausible functionality-preserving adversarial

examples, using JSMA, such that the generated adversarial examples are within the

range of ‘normal’ traffic. Mitigations and defences to adversarial examples are

provided: a novel generalized approach for assessing the vulnerability and

robustness of features, systematically removing the most vulnerable features

146 Chapter 6. Conclusion

implementing Recursive Feature Elimination; a novel defence using hierarchical

learning to decrease the attack surface of models, making the models more robust.

This defence obstructs transferable adversarial examples, and additionally helps to

reduce the severity of attacks employing adversarial examples.

In Chapter 2 the expectation was to achieve good coverage of the relevant

literature. Approaching the literature study using the PRISMA framework as a base

was a useful and effective way of systematically surveying the literature.

In Chapter 3 the expectation was that feature selection could be used to improve

the robustness of models against adversarial examples by maximising the feature

perturbation required to successfully manipulate a classifier. The research with a

DDoS case study met these expectations. It was shown that feature selection can

improve classification accuracy. This research shows a feature selection method to

be effective with an increased accuracy under attack with no drop in accuracy for

unperturbed samples.

In Chapter 4 it was expected that the use of hierarchical classification would

improve robustness as measured by F1-Score. These expectations were met with all

hierarchies improving F1-Scores above their corresponding flat classifier. This

research clearly illustrates that hierarchical classification can help improve

robustness but also raises the question of whether some hierarchies could be

detrimental to robustness. Moreover, how might hierarchies be effectively attacked

by an adversary?

Chapter 5 examined the generalizability of this research. It was expected that

the research would be applicable to other classification models. Indeed, it was

found that hierarchical classification can improve robustness on a range of

classification models. Specifically, it was found that hierarchical classification can

be effective when combined with other ensemble methods such as LGBM, and

HBBC. This research illustrates that hierarchical classification might be a simple

method of hardening models to adversarial examples. It was expected that this

6.3. Evaluation 147

research would not be less applicable to domains with discrete features; however,

additional synergies were found with other domains that could be further

explored. For example, might lemmatising text in natural language processing help

improve robustness to adversarial examples?

6.3 Evaluation

6.3.1 Answers to Research Questions

This evaluation considers each research question in turn and summarizes how far

each research question has been answered.

RQ1 - To what extent can adversarial examples influence the output of machine

learning systems for intrusion detection

Chapter 2 Contributions As discussed previously most prior research in

adversarial examples has been done in the visual domain to fool human perception.

This work focuses on adversarial examples in cyber security domains.

Contributions from Chapter 2 include:

1. In cyber security domains adversarial examples must comply with stringent

constraints in order to be effective and undetected. This is advantageous for

defenders because it complicates the generation of effective adversarial

examples; however, it has been shown that functionality-preserving methods

that comply with stringent constraints are feasible. Furthermore, traditional

gradient descent methods if constrained to modify limited or specific features

might be sufficient to generate functionality-preserving adversarial examples.

2. Adversarial examples in cyber security domains are not restricted to ‘oracle’

based attacks and may use the transferability property of adversarial examples

in effective black-box attacks. Knowledge of the underlying machine learning

model is not a prerequisite for successful attacks.

3. Human perception is not necessarily the best criterion to judge a successful

attack in cyber security domains. The success of an adversarial example

148 Chapter 6. Conclusion

depends on the specific task and context of the machine learning system. In

intrusion detection the goal of an adversary is to fool the detection routine

while conforming to the expected inputs of the system. It is argued that in

cyber security domains a successful attack must also retain its intended

function regardless of whether a human can detect the perturbation to the

input.

Chapter 2 Implications Implications from Chapter 2 include:

1. Adversarial examples are part of a larger adversarial arms race [6]. Security

problems are most readily thought of as a reactive process. Both defender and

attacker adapt their tools and tactics in response to their opponents. Reactive

approaches are unable to prevent zero-day attacks. Instead, through following

a proactive approach defenders are able to anticipate attacks and develop

appropriate countermeasures. It is proposed that researchers should follow

this proactive approach. If adversarial examples are not addressed and

countermeasures are not developed there is potential for novel and

sophisticated attack strategies to overcome ML systems. Adversaries will

adapt to defences; however, defenders must aim to be a few steps ahead.

2. Some developers may argue that their machine learning systems are safe

because access to the system is safeguarded, and white-box access is not

granted to the system. Therefore, they may claim that they would easily

detect any oracle-based attack. This argument is invalid. The transferability

property of adversarial examples means that successful black-box attacks are

possible. Hard to attack models may be susceptible to transferable adversarial

examples generated against easy to attack models. Researchers must urgently

focus on countermeasures aiming to disrupt the transferability of adversarial

examples.

3. Adversarial examples that do not respect domain constraints risk marking

themselves as obvious anomalies. This is to the defender’s advantage;

however, adversarial examples that comply with these constraints may be

possible.

6.3. Evaluation 149

4. Strategic attacks triggered at crucial moments might cause unwanted effects

before any human could reasonably act. This establishes the need for

automatic resilience to be built into systems.

Chapter 3 Contributions Contributions from Chapter 3 are:

1. The cyber security domain has strict constraints: certain features must remain

unchanged; however, adversarial examples offer attackers a way to exploit

weaknesses in IDS classifier, essentially masquerading a network attack as

benign activity.

2. Some simple countermeasures are achievable, raising the bar for successful

adversarial examples. For example, with Recursive Feature Elimination it is

possible to assess the vulnerability of features before discarding the most

vulnerable features. An inverse relationship between number of features and

the robustness against adversarial examples is demonstrated, finding that

feature selection at the training stage can improve a model’s robustness to

adversarial examples. Each feature in isolation may not be an excellent

indicator; however, combinations might be better indicators. Feature selection

can improve robustness of machine learning systems through improving the

classification accuracy under attack.

3. Robustness need not come at the expense of degrading a model’s

performance. It can be considered that there is a trade-off between accuracy

and accuracy under attack; however, accuracy will waiver depending on the

properties of the selected features. Often a robust model is not as accurate as

an unprotected model. Some judgement is required to consider whether the

trade-off is beneficial; however, it does not follow that all countermeasures

will degrade the performance of a model. Protected models might yield other

benefits. For example, with Recursive Feature Elimination (Chapter 3)

protected models can benefit from reduced training time, reduced execution

time, and improved accuracy. In Chapter 4 The presented hierarchical defence

improved F1-Scores regardless of the presence of adversarial examples.

150 Chapter 6. Conclusion

4. A generalizable approach for assessing the vulnerability and robustness of

features is provided: removing the most vulnerable features to

simultaneously maintain acceptable classification accuracy whilst eliminating

features that may introduce subtle attack vectors.

Chapter 3 Implications Implications from Chapter 3 are:

1. Constraints must be applied to the generation of adversarial examples,

otherwise they mark themselves as aberrations and can be easily discounted

as out of distribution.

2. Adversaries able to skew the classification accuracy of systems can leverage

an advantage by making malicious conditions appear benign. Adversaries

could gain significant advantage through camouflaging an infiltration attack

as a comparatively less serious network intrusion.

3. Defences need not degrade the performance of a model. Reducing the features

can yield other benefits including reduced training time, improved accuracy,

and reduced execution time. Including important features for classification

may force increases in perturbation size. This in turn makes the attack more

overt and potentially less likely to preserve functionality.

Chapter 4 Contributions Contributions from Chapter 4 are:

1. Feasible adversarial examples attacks are demonstrated on a multiclass

intrusion detection system whilst preserving functionality. Importantly, it is

demonstrated that the scope of the perturbation can be constrained to one

feature, remain in distribution, and yet still feasibly preserve functionality. A

generalizable method for deploying black-box functionality preserving

adversarial examples is provided. Subsequently a demonstration of a

hierarchical defensive strategy able to mitigate against adversarial examples

is presented. This defence is effective in obstructing transferability attacks.

6.3. Evaluation 151

Chapter 4 Implications Implications from Chapter 4 are:

1. In common with all other domains, machine learning models in cyber

security are susceptible to adversarial examples; however, machine learning

models in cyber security are a valuable target for adversaries. They are

perhaps more likely to be targeted, and the consequences are likely more

severe. A classifier in the cyber security domain, if fooled by an adversarial

example, risks allowing malware onto a network. This is concerning because

adversarial attacks against intrusion detection systems are feasible and can be

both successful and undetected. Therefore, the existence of adversarial

examples limits the domains in which machine learning systems can be

deployed. Machine learning could possibly make great contributions in the

domains of cyber security, cyber-physical systems, and defence. Improving

the robustness of machine learning models to adversarial examples enables

safer deployment of ML across a wider range of domains.

2. Attackers can avoid problems of ‘oracle’ attacks by using black-box attacks

based on the transferability property. Black-box attacks need zero knowledge.

3. Hierarchical defences force attacks to be more overt, and thus adversarial

examples have a greater likelihood of being detected.

RQ2 - To what extent can countermeasures and defensive approaches mitigate the

effects of adversarial examples for Intrusion Detection Systems?

Chapter 2 Contributions As discussed previously, most prior research in

adversarial examples has been done in the visual domain to fool human perception.

This work focuses on adversarial examples in cyber security domains.

Contributions from Chapter 2 are:

1. A suite of complimentary defences is likely the best approach. A single

defence is unlikely to defend against all adversarial examples. For example,

adversarial training is a common and simple defence. It presents a useful but

minor hurdle to adversaries; however, successful evasion attacks can be

found for machine learning systems that have been explicitly trained on

152 Chapter 6. Conclusion

adversarial examples. Adversarial training is not scalable and needs to be

bolstered by other defences. Data-level resampling techniques provide some

robustness benefit; however, experiments in Chapter 4 show they were

insufficient to prevent adversarial examples even in combination with

hierarchical learning strategies. It is unlikely that any one defence is a

panacea against adversarial examples. Instead, a Swiss-cheese approach [220]

is proposed, in which a suite of imperfect defences are imperfect in different

ways; however, they present a much stronger defence as a whole.

2. Traditional gradient descent methods, if constrained to modify limited or

specific features, might be sufficient to generate functionality-preserving

adversarial examples.

Chapter 2 Implications Implications from Chapter 2 are:

1. Adversarial examples exist as part of an adversarial arms race. Adversaries

will adapt and adopt new strategies, and defenders must also adapt to thwart

their adversaries. Game Theory approaches allowing Nash equilibrium could

potentially end the evolutionary arms race.

2. No single defence is likely to block all adversarial examples; therefore, a

Swiss-cheese defence could incorporate multiple defence methods. For

example, architectural, feature selection, adversarial training, ensembles,

randomisation, non-determinism.

Chapter 3 Contributions Contributions from Chapter 3 are:

1. A demonstration of a useful countermeasure is given, including a

generalizable approach for assessing the vulnerability and robustness of

features through removing the most vulnerable features to simultaneously

maintain acceptable classification accuracy whilst eliminating features that

may introduce subtle attack vectors. Applying systematic feature selection for

model training can improve the robustness of the model against adversarial

examples. Each feature in isolation may not be an excellent indicator;

however, combinations might be better indicators. Feature selection can

6.3. Evaluation 153

improve robustness of machine learning systems through improving the

classification accuracy under attack.

Chapter 3 Implications Implications from Chapter 3 include:

1. Inclusion of important features for classification may force increases in

perturbation size. This in turn makes the attack more overt and potentially

less likely to preserve functionality.

2. Reducing the features can yield other benefits including reduced training time,

improved accuracy, and reduced execution time. Model performance need not

be degraded by defences.

Chapter 4 Contributions Contributions from Chapter 4 include:

1. A demonstration that the scope of perturbation can be constrained to one

feature, yet still feasibly preserve functionality, whilst remaining in

distribution.

2. A hierarchical learning defensive strategy to mitigate against adversarial

examples. It was shown that model performance need not be degraded by

defences.

3. Algorithms were defined for creating hierarchical labels from labelled and

unlabelled datasets. This could help the adoption of hierarchical defences for

other machine learning scenarios and datasets.

Chapter 4 Implications Implications from Chapter 4 include:

1. Hierarchical defences force adversarial examples to be more overt, and thus

have a greater likelihood of being detected. Improving the robustness of ML

models enables safer deployment of ML across a wider range of domains.

Hierarchical defences could be used as part of a suite of robustness enhancing

methods and defences.

154 Chapter 6. Conclusion

RQ3 - To what extent is this work generalizable to other scenarios, datasets, and

data types?

Chapter 5 Contributions Contributions from Chapter 5 are:

1. An evaluation of the vulnerability of common ML models to adversarial

examples.

2. A focus on the generalizability of this work to other scenarios, models, and

data types. This work could inform design choices of model designers.

3. Recommendations that could inform deployment policy for ML systems.

Chapter 5 Implications Implications from Chapter 5 include:

1. The evaluation of common models helps inform model designers and raise

awareness of the security risks and trade-offs of model design. This helps

developers and researchers design robust models. More robust models help

extend the domains where machine learning models can be deployed, in

particular extending their useful deployment to adversarial environments.

2. Automatic analysis tools allow greater understanding of the risks of model

deployment and help prevent the deployment of vulnerable models.

6.4 Recommendations and Future Challenges

It was found that adversarial examples can easily influence the output of machine

learning systems. Therefore, developers and users of these systems must recognize,

understand, and mitigate these risks. In this section, recommendations are

highlighted.

• REC01 System designers recognize that keeping their model architecture and

parameters secret is insufficient to prevent adversarial attacks. It was found

that transferability property of adversarial examples is powerful. Knowledge

of the underlying machine learning model and parameters is not necessary to

effect attacks.

6.4. Recommendations and Future Challenges 155

• REC02 All machine learning systems in uncontrolled environments should

have at least some basic protection against adversarial examples. No single

defence is likely to block all attacks. Therefore, it is recommended that that a

suite of complementary defences is used, such as those presented in this

thesis.

• REC03 System designers should use up-to-date datasets. The use of modern

datasets is recommended in order to represent the current situation. In

Chapter 2 it was found that many academic researchers use old datasets,

given the difficulty in collecting or obtaining new datasets. It should,

however, be recognised where concept-drift may occur, and if older datasets

are no longer indicative of modern networks and their usage.

• REC04 System designers should carefully consider the most appropriate

features to use in model training and test. Designers should consider feature

importance as part of their decision process as to whether to include certain

features. This requires an understanding of the problem domain. Designers

should have a rationale as to why that feature may influence the output class.

Combinations of important features are likely to perform better than a single

feature. System designers should carefully consider the most appropriate

features in order to achieve acceptable classification accuracy while

eliminating features that could introduce subtle attack vectors. It is

recommended that system designers employ combinations of robust features

to improve robustness.

• REC05 System designers should sanitize inputs by checking any constraints.

Although more complex adversarial example algorithms may meet

constraints, simple adversarial examples often break constraints. Simple

constraints checks could offer basic protection against some simple

adversarial example algorithms.

• REC06 System designers should perform analysis of the risks of adversarial

examples. The tolerance to false positives and false negatives should be

defined. It is recommended that risk analysis is performed before

156 Chapter 6. Conclusion

deployment. Valuable targets are perhaps more likely to be targeted and

consequences may be more severe.

• REC07 Particular attention is required when deploying machine learning in

environments where the risks are high. Attention is especially required if the

environment is not fully controlled.

• REC08 A suite of complementary defences is recommended over a single

powerful defence.

• REC09 Test the model for robustness using an appropriate robustness metric,

such as the generalization error between F1-Scores. Models unable to meet a

minimum robustness threshold should not be deployed. It is recommended

that defences against adversarial examples be incorporated in design and

deployment policy. Requirements on a minimum level of robustness should

be incorporated into system requirements.

• REC10 Developers should anticipate attacks and develop appropriate

countermeasures. It is recommended that that developers follow a proactive

approach to the adversarial arms race.

6.4.1 Future Challenges

Adversarial ML is a critical area of research. If not addressed, there is increasing

potential for novel attack strategies that seek to exploit the inherent weaknesses

that exist within machine learning models. There are many challenges. Here a

broad range of open research topics are outlined. Researchers must address the

robustness of ML models against adversarial examples allowing safer deployment

of ML models across cyber security domains. Standardized robustness metrics

should be used and developed. Few works consider ‘realisable’ perturbations that

take account of domain and/or real-world constraints. Successful adversarial

examples must be crafted to comply with domain and real-world constraints. This

may be challenging since even small modifications may corrupt network packets

that are likely to be dropped by firewalls. It was found that the traditional

benchmark of human perception may be less relevant in functionality-preservation.

6.4. Recommendations and Future Challenges 157

Randomisation of decision boundaries can make evasion more difficult. Moreover,

research into multi-classifier systems could help thwart evasion attacks, making it

harder to evade classification. Dropout is currently a promising defence against

adversarial examples; although multiple defences may be required, and a

combination of defences will likely offer better defence capability. Game theory

approaches could potentially end the adversarial arms race by achieving a Nash

equilibrium. Concept-drift requires further research. Many researchers are using

outdated datasets. Simply using newer datasets could postpone problems of

concept-drift and is a good first step. Unsupervised/semi-supervised and active

learning could potentially offer longer term solutions to concept-drift, aiming for

models to learn and detect novel attack methods. The transferability of adversarial

examples remains an open issue, more research here has the potential to disrupt

many attack strategies. Additionally, more research is required in the area of

functionality-preserving adversarial attacks, recognising the limits and trade-offs

between functionality-preserving adversarial examples and their ability to evade

classification; moreover, research into adversarial attacks in other constrained

domains could improve robustness against complex attacks.

In a broader cyber security context, risks arising from adversarial examples are

not yet fully understood. Additionally, algorithms and models from other domains

may not readily apply, because of distributed sensors and inherent real-world

constraints. It is uncertain whether current defences are sufficient. Furthermore,

adversarial example detectors must function efficiently in a real-time monitoring

environment while maintaining low false alarm rates.

The future research areas are prioritised, setting the agenda for research in this

area. Critical areas of research include: breaking the transferability of adversarial

examples that would hopefully be applicable across domains. Non-visual domains

including cyber security and cyber-physical systems have been under-explored and

this oversight should be rectified urgently. Further research on transformations in

nonvisual domains could provide useful knowledge. Detection of adversarial

examples and pushing the fields of cyber security, intrusion detection, and

158 Chapter 6. Conclusion

cyber-physical systems will yield benefits beyond cyber security and may be

applicable in other nonvisual domains. Moreover, research is required in areas

beyond instance classifiers. Areas of RNNs and reinforcement learning have been

under-explored. More research is required to understand the use of domain

constraints and functionality-preserving adversarial examples. Further research is

needed towards effective countermeasures.

Few researchers address the problem of transferability, which remains a key

area of concern because hard-to-attack models are nevertheless susceptible to

transferable adversarial examples generated against easy-to-attack models. Breaking

the transferability of adversarial examples is a key challenge for the research

community. Currently, defensive dropout [153] is a promising defence. Defences

like dropout exchange a relatively small decrease in accuracy for significant

reduction of successful attacks, even successfully blocking black-box and

transferability-based attacks. Hardening techniques force successful attacks to use

larger perturbations, which in turn may be more readily recognized as adversarial.

The area of functionality-preserving adversarial examples is under-explored.

The generation of adversarial examples that respect constraints may be critical to

generating functionality-preserving adversarial examples. Research into improving

robustness against such adversarial examples is an area requiring urgent research.

Adapting defences used in the visual domain and CNN models to other model

types such as RNNs could offer potential solutions; however, caution should be

exercised when adapting defences in the visual domain to other domains. For

example, denoising defences may not apply directly to discrete or noncontinuous

data. Constraints on adversarial examples are not limited to preserving the

functionality of malware or IDS attacks and have wider implications for cyber

physical systems and industrial control systems. CPSs model the real world where

linear and other physical constraints must be respected. Adversarial examples that

do not respect domain constraints risk marking themselves as obvious anomalies.

This research uses the statistical information available in netflows that is collated

from the raw packet data on networks. Netflows often form the basis of intrusion

6.4. Recommendations and Future Challenges 159

detection systems. The next logical step for this work is to construct raw data

packets, such that the resulting collated statistics embody an adversarial example,

enabling misclassification network traffic.

More research attention could be given to dataset resampling strategies as a

defence against adversarial examples. There is a need for standardized robustness

metrics. Some researchers simply state improvement in accuracy, others might state

the better F1-Score; however, F1-Score is biased by unbalanced datasets which are

widespread in intrusion detection partly due to large numbers of benign samples.

Using F1-Score on unbalanced datasets could lead to a false sense of security.

Researchers should adopt stronger metrics such as CLEVER [80] or Empirical

Robustness [83]. It was identified that data-level techniques, such as resampling,

balancing datasets, and Cross Validation could have effects on robustness against

adversarial examples. Further research is required to explore how the bias-variance

trade-off can affect robustness.

Traditionally, adversarial examples are thought of as having imperceptible

noise. That is, that humans cannot perceive the difference between the original and

perturbed inputs. It is posited that human perception may not be the best criterion

for analysing adversarial examples. Indeed, human perception in some domains

might be immaterial. For example, strategic attacks triggered at crucial moments

might cause damage to CPS before any human could reasonably act. In cyber

security domains it is proposed that adversarial examples must preserve

functionality.

Concept-drift is a real concern for cyber security [8], as new attacks and

techniques are discovered daily. As the model and the current state of the art

diverge, the model suffers from hidden technical debt. Therefore, the model must

be retrained to reflect the current state-of-the-art attacks and new network traffic

patterns [184]. Researchers might develop and use more up-to-date datasets.

Problems of labelling data and retraining systems provide an impetus to explore

the further avenues for research of semi-supervised/unsupervised ML, and active

160 Chapter 6. Conclusion

learning methods that continuously update the underlying model, and do not rely

on labelled datasets. Unfortunately, adversarial attacks are possible on active

learning systems [221]. Lin et al. [101] describe an enchanting attack to lure a

machine learning system to a target state through crafting a series of adversarial

examples. It is conceivable that similar attacks could lure anomaly detection

systems towards normalizing and accepting malicious traffic. It would be

constructive to examine whether hierarchical classifiers are less prone to problems

of concept-drift than flat classifiers.

In cyber security domains traditional gradient descent algorithms may be

insufficient; although JSMA may be a reasonable choice because it perturbs few

features. Stringent constraints exist in the cyber security domain and extreme care

must be taken to create valid adversarial examples. Some guidelines for generating

functionality-preserving adversarial examples are offered. Functionality-preserving

adversarial examples should: only perform legitimate transformations; respect

mathematical dependencies, real-world, and domain constraints; minimize the

number of perturbed features; restrict modification to non-critical features; and

where possible, retain the original payload and/or packet order.

Defences against adversarial examples must consider that adversaries are likely

to adapt by adopting new strategies. Many researchers propose adversarial

training to improve robustness. Adversarial training is a simple method aiming to

improve robustness; however, it is potentially a cosmetic solution: the problem of

adversarial examples cannot be solved only through ever greater numbers of

adversarial examples in the training data. Adversarial training, if used, must be

bolstered by other defences. Interesting defence strategies include randomisation,

including dropout: randomising decision boundaries makes evasion more difficult

because attackers have less information on the exact position of a decision

boundary. They must therefore make too conservative or too risky choices when

generating adversarial examples. It should be considered how hierarchical

classifiers could be attacked and indeed whether they can be made more robustly. It

is hoped that the proposed defences prove to be robust; however, other researchers

6.4. Recommendations and Future Challenges 161

are encouraged to research offensive strategies to find and exploit vulnerabilities in

hierarchical classifiers.

Game theoretic models could be used to address more complex situations with

many adversaries of different types, as found in intrusion detection. Equilibrium

strategies acceptable to both defender and adversary mean neither has an incentive

to change. Therefore, assuming rational opponents, game theory-based approaches

allowing a Nash equilibrium could potentially end the evolutionary arms race.

Although, it is difficult to conceive a world where no advantage is possible.

This research could be further expanded through the use of: multiple and larger

datasets; a greater selection of machine learning models; The generation of

adversarial examples using a greater range of algorithms. The appropriate

robustness metrics of generalization error based on F1-Score are used; however,

other robustness metrics such as CLEVER [80] might provide a more detailed

analysis of the robustness of the presented models and defences. A noticeable

omission is the comparison of the presented defences against existing defences. It is

difficult to rank the proposed defences among other existing defences; however, the

proposed defences could be considered as part of a Swiss-cheese defence [220]:

Reason describes defences as like slices of Swiss cheese, having many holes. The

presence of holes in any one ‘slice’ does not normally cause bad outcomes. Bad

outcomes usually only occur when the holes in many layers momentarily line up to

permit a ‘trajectory of opportunity’. Multiple layers of defence are unlikely to have

vulnerabilities in exactly the same place. Therefore, multiple layers of defence

decrease the likelihood of any exploitable gap in defence. In cyber security this is

related to concepts of defence in depth and layered security. Importantly, it may be

that model designers and developers are unwittingly developing and deploying

models that are vulnerable to adversarial examples. Research into methods to

warn, influence, and educate model designers of the risks is a worthy pursuit.

162 Chapter 6. Conclusion

6.5 Overall Evaluation

This thesis is successful in its aims. Two novel scalable defences are offered that

successfully improve the robustness of models to adversarial examples.

Additionally, consideration was given to: the most common models; common

adversarial example algorithms; and modern datasets. The nascent area of

functionality-preserving adversarial examples received much consideration. For

convenience, the main contributions of this work are restated:

• In Chapter 2 a systematic literature survey of adversarial machine learning was

presented, with a focus on the relatively new research topic of functionality-

preserving adversarial examples in the cyber security and intrusion detection

domains. Attacks and current defences were examined [42].

• In Chapter 3 a novel defence against adversarial examples was presented that

employs feature selection and Recursive Feature Elimination [43].

• Chapter 4 presents the first comprehensive study of applying

functionality-preserving adversarial learning attacks against a multi-class

network traffic classification model and demonstrates successful attack

misclassification within a constrained attack parameter space. Over ninety

percent (90.25%) of the attacks were able to evade detection of a well-trained

classifier, while also constraining the parameter space to feasibly preserve

functionality [44].

• Generalizability: All domains (to date) are vulnerable to adversarial

examples. Common models and modern datasets were used. There is

confidence that this research is applicable to cyber security and intrusion

detection domains. For example, it has been shown to generalize to other

datasets in Chapter 5; however, it is less certain how this research might relate

to unsupervised, semi-supervised and active learning methods.

• Validity: Valid research requires an appropriate research strategy, data

collection, and analysis. Appropriate experiments were designed, controlling

for extraneous variables by cleansing the dataset of null or missing data.

6.5. Overall Evaluation 163

Steps were taken to balance the classes and scale the features. The

experiments partitioned the data into training and validation data to

accurately determine how the models performed on unseen data.

Standardized versions of adversarial attack algorithms were used to allow

fair comparisons. Regular supervision has also helped strengthen the validity

of this research.

• Reliability: Reliable research is trustworthy, unbiased, and evidenced. The

experiments were regularly and repeatedly rerun with similar results

observed each time. The source code used in the experiments can be found in

the author’s repository, aiding reproducibility and reliability of this research.

Peer review of the associated published papers bolsters the reliability of this

research. Regular supervision has also helped bolster the reliability of this

research. Further, the author declares no competing interests.

This thesis provides model designers and researchers an insight into the risks of

adversarial examples and effective mitigations. This thesis is applicable to other

security-sensitive domains such as cyber-physical systems and industrial control

systems. Two novel defences are offered, hoping to influence the design and

deployment policies related to security-sensitive machine learning models. This

thesis has three related publications, sharing the knowledge gained through this

work with model designers, researchers, and the wider community. It is hoped that

this thesis offers other researchers a base for exploring the areas of robustness in

adversarial machine learning and functionality-preserving adversarial examples.

Two novel defences are offered for improving robustness, and it is hoped that these

will enable the design and deployment of more robust machine learning models.

A more precise interpretation of the results acknowledges that the two defences

presented in this thesis have been demonstrated using the modern CICIDS2017 [66]

dataset and its derivative [38]. Additionally, the research was limited in the types of

adversarial example that were employed: JSMA and FGSM. The author is

optimistic that the defences are likely to be appropriate in a wider context. In

particular, the hierarchical defence was shown to generalize to the

164 Chapter 6. Conclusion

MQTT-IOT-IDS2020 dataset [71]. For the MQTT study (Chapter 5, the hierarchical

defences improved F1-Scores for all the presented hierarchies. It is posited that the

hierarchical defence drives the generated adversarial examples to be larger and

perhaps more readily identified as adversarial. However, the experiment was

limited to JSMA adversarial examples. The performance of the defended models

with other common algorithms is untested. The presented attack is designed to be

representative of a black-box attack. The generation of white-box adversarial

examples against the hierarchical model is compounded because an adversarial

example may need to fool two or more separate local classifiers. Alternatively, an

attack could target a specific classifier within the hierarchy. Therefore, the

generation of adversarial examples against a hierarchical model may be possible.

The robustness of the hierarchical defence against architecture aware adversaries

employing white-box attacks is not examined in this thesis, although it is now

becoming recognised as an open research topic [205][206].

165

Appendix A

Code Repository Links

The code for experiments has been developed in Python notebooks often using

Google Colaboratory. The Python code for the experiments is available in the

author’s repository, here:

• https://github.com/mccarthyajb/HL-NTAC

• https://github.com/mccarthyajb/ML-Feature-Robustness

https://github.com/mccarthyajb/HL-NTAC
https://github.com/mccarthyajb/ML-Feature-Robustness

167

Appendix B

Ethics

This research received ethical approval from the University of the West of England,

after completing the ethics governance and research documentation as shown in

Figure B.1. All work was carried out under the University of the West of England

Code of Good Research Conduct and a Policy on Good Research Conduct:

https://www.uwe.ac.uk/research/policies-and-standards/

code-of-good-research-conduct.

FIGURE B.1: Completed Research Ethics Form.

https://www.uwe.ac.uk/research/policies-and-standards/code-of-good-research-conduct
https://www.uwe.ac.uk/research/policies-and-standards/code-of-good-research-conduct

169

Bibliography

[1] Maddy Ell and Robbie Gallucci. “Cyber security breaches survey 2022:

Statistical release”. In: (2022).

[2] Nour Alqudah and Qussai Yaseen. “Machine learning for traffic analysis: a

review”. In: Procedia Computer Science 170 (2020), pp. 911–916.

[3] Gueltoum Bendiab et al. “IoT malware network traffic classification using

visual representation and deep learning”. In: 2020 6th IEEE Conference on

Network Softwarization (NetSoft). IEEE. 2020, pp. 444–449.

[4] Amirah Alshammari and Abdulaziz Aldribi. “Apply machine learning

techniques to detect malicious network traffic in cloud computing”. In:

Journal of Big Data 8.1 (2021), pp. 1–24.

[5] Nuno Martins et al. “Adversarial machine learning applied to intrusion and

malware scenarios: a systematic review”. In: IEEE Access 8 (2020),

pp. 35403–35419.

[6] Battista Biggio and Fabio Roli. “Wild patterns: Ten years after the rise of

adversarial machine learning”. In: Pattern Recognition 84 (2018), pp. 317–331.

[7] Tom M Mitchell and Tom M Mitchell. Machine learning. Vol. 1. 9. McGraw-hill

New York, 1997.

[8] Giuseppina Andresini et al. “INSOMNIA: Towards Concept-Drift

Robustness in Network Intrusion Detection”. In: Proceedings of the 14th ACM

Workshop on Artificial Intelligence and Security (AISec). ACM. 2021, p. 0.

[9] Chandni Raghuraman et al. “Static and dynamic malware analysis using

machine learning”. In: First International Conference on Sustainable

Technologies for Computational Intelligence. Springer. 2020, pp. 793–806.

170 Bibliography

[10] Harel Berger, Chen Hajaj, and Amit Dvir. “Evasion Is Not Enough: A Case

Study of Android Malware”. In: International Symposium on Cyber Security

Cryptography and Machine Learning. Springer. 2020, pp. 167–174.

[11] Ruitao Hou et al. “Universal Adversarial Perturbations of Malware”. In:

International Symposium on Cyberspace Safety and Security. Springer. 2020,

pp. 9–19.

[12] Sergei Parshutin et al. “Classification with LSTM Networks in User

Behaviour Analytics with Unbalanced Environment”. In: Automatic Control

and Computer Sciences 55.1 (2021), pp. 85–91.

[13] Duc C Le and Nur Zincir-Heywood. “Exploring anomalous behaviour

detection and classification for insider threat identification”. In: International

Journal of Network Management 31.4 (2021), e2109.

[14] Sumitra Biswal. “Real-Time Intelligent Vishing Prediction and Awareness

Model (RIVPAM)”. In: 2021 International Conference on Cyber Situational

Awareness, Data Analytics and Assessment (CyberSA). IEEE. 2021, pp. 1–2.

[15] Nikhil Kumar, Sanket Sonowal, et al. “Email Spam Detection Using Machine

Learning Algorithms”. In: 2020 Second International Conference on Inventive

Research in Computing Applications (ICIRCA). IEEE. 2020, pp. 108–113.

[16] Douwe Kiela et al. “The hateful memes challenge: Detecting hate speech in

multimodal memes”. In: Advances in Neural Information Processing Systems 33

(2020), pp. 2611–2624.

[17] Salman Bin Naeem and Maged N Kamel Boulos. “COVID-19

misinformation online and health literacy: A brief overview”. In:

International Journal of Environmental Research and Public Health 18.15 (2021),

p. 8091.

[18] Travis Coan et al. “Computer-assisted detection and classification of

misinformation about climate change”. In: SocArXiv (2021).

[19] Z Khanam et al. “Fake News Detection Using Machine Learning

Approaches”. In: IOP Conference Series: Materials Science and Engineering.

Vol. 1099. IOP Publishing. 2021, p. 012040.

Bibliography 171

[20] Sauptik Dhar et al. “A survey of on-device machine learning: An algorithms

and learning theory perspective”. In: ACM Transactions on Internet of Things

2.3 (2021), pp. 1–49.

[21] Nicolas Papernot et al. “Sok: Security and privacy in machine learning”. In:

2018 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE. 2018,

pp. 399–414.

[22] Christian Szegedy et al. “Intriguing properties of neural networks”. English

(US). In: International Conference on Learning Representations, ICLR 2014. 2nd

International Conference on Learning Representations, ICLR 2014 ;

Conference date: 14-04-2014 Through 16-04-2014. Jan. 2014, p. 0.

[23] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and

Harnessing Adversarial Examples”. In: arXiv (2014).

[24] Susan G Wardle et al. “Rapid and dynamic processing of face pareidolia in

the human brain”. In: Nature communications 11.1 (2020), pp. 1–14.

[25] Christopher Summerfield et al. “Mistaking a house for a face: neural

correlates of misperception in healthy humans”. In: Cerebral cortex 16.4

(2006), pp. 500–508.

[26] Yonghong Huang et al. “Malware Evasion Attack and Defense”. In: 2019 49th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks

Workshops (DSN-W). 2019, pp. 34–38. DOI: 10.1109/DSN-W.2019.00014.

[27] Md. Ahsan Ayub et al. “Model Evasion Attack on Intrusion Detection

Systems using Adversarial Machine Learning”. In: 2020 54th Annual

Conference on Information Sciences and Systems (CISS). 2020, pp. 1–6. DOI:

10.1109/CISS48834.2020.1570617116.

[28] Chris Hankin and Martín Barrère. “Trustworthy Inter-connected

Cyber-Physical Systems”. In: International Conference on Critical Information

Infrastructures Security. Springer. 2020, pp. 3–13.

[29] Jin-Hee Cho et al. “Stram: Measuring the trustworthiness of computer-based

systems”. In: ACM Computing Surveys (CSUR) 51.6 (2019), pp. 1–47.

https://doi.org/10.1109/DSN-W.2019.00014
https://doi.org/10.1109/CISS48834.2020.1570617116

172 Bibliography

[30] Algirdas Avizienis et al. “Basic concepts and taxonomy of dependable and

secure computing”. In: IEEE transactions on dependable and secure computing

1.1 (2004), pp. 11–33.

[31] E Barker et al. “A Framework for Designing Cryptographic Key Management

Systems, Draft Special Publication 800–130”. In: National Institute of Standards

and Technology (2010).

[32] Charles P. Pfleeger, Shari Lawrence Pfleeger, and Jonathan Margulies.

Security in Computing (5th Edition). 5th. USA: Prentice Hall Press, 2015. ISBN:

0134085043.

[33] Yacov Y. Haimes. “On the Definition of Resilience in Systems”. In: Risk

Analysis 29.4 (2009), pp. 498–501. DOI:

https : / / doi . org / 10 . 1111 / j . 1539 - 6924 . 2009 . 01216 . x. eprint:

https : / / onlinelibrary . wiley . com / doi / pdf / 10 . 1111 / j . 1539 -

6924 . 2009 . 01216 . x. URL:

https : / / onlinelibrary . wiley . com / doi / abs / 10 . 1111 / j . 1539 -

6924.2009.01216.x.

[34] Tao Bai, Jinqi Luo, and Jun Zhao. “Recent Advances in Understanding

Adversarial Robustness of Deep Neural Networks”. In: arXiv preprint

arXiv:2011.01539 (2020).

[35] Jin-Hee Cho, Ananthram Swami, and Ray Chen. “A survey on trust

management for mobile ad hoc networks”. In: IEEE communications surveys

& tutorials 13.4 (2010), pp. 562–583.

[36] Jin-Hee Cho, Hasan Cam, and Alessandro Oltramari. “Effect of personality

traits on trust and risk to phishing vulnerability: Modeling and analysis”. In:

2016 IEEE International Multi-Disciplinary Conference on Cognitive Methods in

Situation Awareness and Decision Support (CogSIMA). IEEE. 2016, pp. 7–13.

[37] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. “A Detailed

Analysis of the CICIDS2017 Data Set”. In: Cham: Springer International

Publishing, 2019, pp. 172–188.

https://doi.org/https://doi.org/10.1111/j.1539-6924.2009.01216.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1539-6924.2009.01216.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1539-6924.2009.01216.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1539-6924.2009.01216.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1539-6924.2009.01216.x

Bibliography 173

[38] Gints Engelen, Vera Rimmer, and Wouter Joosen. “Troubleshooting an

intrusion detection dataset: the CICIDS2017 case study”. In: 2021 IEEE

Security and Privacy Workshops (SPW). IEEE. 2021, pp. 7–12.

[39] Mahendran Botlagunta et al. “Classification and diagnostic prediction of

breast cancer metastasis on clinical data using machine learning

algorithms”. In: Scientific Reports 13.1 (2023), pp. 1–17.

[40] Raphael Satter. Experts who wrestled with SolarWinds hackers say cleanup could

take months - or longer. en. -12-24 2020. URL: https://www.reuters.com/

article/us-global-cyber-usa-solarwinds-idUSKBN28Y1K3.

[41] Sara Sirota. “Air Force response to SolarWinds hack: Preserve commercial

partnerships, improve transparency into security efforts”. English. In: Inside

Cybersecurity (Jan. 2021). Name - Department of Defense; Copyright -

Copyright Inside Washington Publishers Jan 12, 2021; Last updated -

2021-01-13. URL: https : / / search - proquest -

com . ezproxy . uwe . ac . uk / trade - journals / air - force - response -

solarwinds-hack-preserve/docview/2477182241/se-2?accountid=14785.

[42] Andrew McCarthy et al. “Functionality-Preserving Adversarial Machine

Learning for Robust Classification in Cybersecurity and Intrusion Detection

Domains: A Survey”. In: Journal of Cybersecurity and Privacy 2.1 (2022),

pp. 154–190.

[43] Andrew McCarthy et al. “Feature Vulnerability and Robustness Assessment

against Adversarial Machine Learning Attacks”. In: 2021 International

Conference on Cyber Situational Awareness, Data Analytics and Assessment

(CyberSA). 2021, pp. 1–8. DOI: 10.1109/CyberSA52016.2021.9478199.

[44] Andrew McCarthy et al. “Defending against adversarial machine learning

attacks using hierarchical learning: A case study on network traffic attack

classification”. In: Journal of Information Security and Applications 72 (2023),

p. 103398.

[45] Xiaozhe Gu and Arvind Easwaran. “Towards Safe Machine Learning for

CPS: Infer Uncertainty from Training Data”. In: Proceedings of the 10th

ACM/IEEE International Conference on Cyber-Physical Systems. ICCPS ’19.

https://www.reuters.com/article/us-global-cyber-usa-solarwinds-idUSKBN28Y1K3
https://www.reuters.com/article/us-global-cyber-usa-solarwinds-idUSKBN28Y1K3
https://search-proquest-com.ezproxy.uwe.ac.uk/trade-journals/air-force-response-solarwinds-hack-preserve/docview/2477182241/se-2?accountid=14785
https://search-proquest-com.ezproxy.uwe.ac.uk/trade-journals/air-force-response-solarwinds-hack-preserve/docview/2477182241/se-2?accountid=14785
https://search-proquest-com.ezproxy.uwe.ac.uk/trade-journals/air-force-response-solarwinds-hack-preserve/docview/2477182241/se-2?accountid=14785
https://doi.org/10.1109/CyberSA52016.2021.9478199

174 Bibliography

Montreal, Quebec, Canada: Association for Computing Machinery, 2019,

pp. 249–258. ISBN: 9781450362856. DOI: 10 . 1145 / 3302509 . 3311038. URL:

https://doi.org/10.1145/3302509.3311038.

[46] Amin Ghafouri, Yevgeniy Vorobeychik, and Xenofon Koutsoukos.

“Adversarial regression for detecting attacks in cyber-physical systems”. In:

International Joint Conference on Artificial Intelligence. 2018.

[47] Igino Corona, Giorgio Giacinto, and Fabio Roli. “Adversarial attacks against

intrusion detection systems: Taxonomy, solutions and open issues”. In:

Information Sciences 239 (2013), pp. 201–225.

[48] Jiliang Zhang and Chen Li. “Adversarial examples: Opportunities and

challenges”. In: IEEE transactions on neural networks and learning systems

(2019).

[49] Giovanni Apruzzese et al. “Modeling Realistic Adversarial Attacks against

Network Intrusion Detection Systems”. In: Digital Threats: Research and

Practice 0.ja (2021). ISSN: 2692-1626. DOI: 10 . 1145 / 3469659. URL:

https://doi.org/10.1145/3469659.

[50] C. E. Shannon. “Communication theory of secrecy systems”. In: The Bell

System Technical Journal 28.4 (1949), pp. 656–715. DOI:

10.1002/j.1538-7305.1949.tb00928.x.

[51] Olga Taran, Shideh Rezaeifar, and Slava Voloshynovskiy. “Bridging

machine learning and cryptography in defence against adversarial attacks”.

In: Proceedings of the European Conference on Computer Vision (ECCV)

Workshops. 2018, pp. 0–0.

[52] Yirui Wu, Dabao Wei, and Jun Feng. “Network attacks detection methods

based on deep learning techniques: a survey”. In: Security and Communication

Networks 2020 (2020).

[53] Mahbod Tavallaee et al. “A detailed analysis of the KDD CUP 99 data set”.

In: 2009 IEEE symposium on computational intelligence for security and defense

applications. IEEE. 2009, pp. 1–6.

https://doi.org/10.1145/3302509.3311038
https://doi.org/10.1145/3302509.3311038
https://doi.org/10.1145/3469659
https://doi.org/10.1145/3469659
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x

Bibliography 175

[54] John McHugh. “Testing intrusion detection systems: a critique of the 1998

and 1999 darpa intrusion detection system evaluations as performed by

lincoln laboratory”. In: ACM Transactions on Information and System Security

(TISSEC) 3.4 (2000), pp. 262–294.

[55] Vinton G Cerf. “2021 Internet Perspectives”. In: IEEE Network 35.1 (2021),

pp. 3–3.

[56] Martin McKeay. Akamai state of the Internet / security: A Year in Review. http:

//akamai.com/soti. 2020.

[57] SH Kok et al. “A review of intrusion detection system using machine learning

approach”. In: International Journal of Engineering Research and Technology 12.1

(2019), pp. 8–15.

[58] Huda Ali Alatwi and Charles Morisset. “Adversarial Machine Learning In

Network Intrusion Detection Domain: A Systematic Review”. In: arXiv

e-prints (2021), arXiv–2112.

[59] S Revathi and A Malathi. “A detailed analysis on NSL-KDD dataset using

various machine learning techniques for intrusion detection”. In: International

Journal of Engineering Research & Technology (IJERT) 2.12 (2013), pp. 1848–1853.

[60] M Gharaibeh and C Papadopoulos. “DARPA 2009 intrusion detection

dataset”. In: Colorado State Univ., Tech. Rep (2014).

[61] Sebastian Garcia et al. “An empirical comparison of botnet detection

methods”. In: computers & security 45 (2014), pp. 100–123.

[62] Jungsuk Song et al. “Statistical analysis of honeypot data and building of

Kyoto 2006+ dataset for NIDS evaluation”. In: Proceedings of the first workshop

on building analysis datasets and gathering experience returns for security. 2011,

pp. 29–36.

[63] Nour Moustafa and Jill Slay. “UNSW-NB15: a comprehensive data set for

network intrusion detection systems (UNSW-NB15 network data set)”. In:

2015 military communications and information systems conference (MilCIS). IEEE.

2015, pp. 1–6.

http://akamai.com/soti
http://akamai.com/soti

176 Bibliography

[64] Iman Almomani, Bassam Al-Kasasbeh, and Mousa Al-Akhras. “WSN-DS: A

dataset for intrusion detection systems in wireless sensor networks”. In:

Journal of Sensors 2016 (2016).

[65] Quamar Niyaz, Weiqing Sun, and Ahmad Y Javaid. “A Deep Learning

Based DDoS Detection System in Software-Defined Networking (SDN)”. In:

EAI Endorsed Transactions on Security and Safety 4.12 (2017), e2–e2.

[66] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. “Toward

generating a new intrusion detection dataset and intrusion traffic

characterization.” In: ICISSp 1 (2018), pp. 108–116.

[67] Manos Antonakakis et al. “Understanding the mirai botnet”. In: 26th

{USENIX} security symposium ({USENIX} Security 17). 2017, pp. 1093–1110.

[68] Nickolaos Koroniotis et al. “Towards the development of realistic botnet

dataset in the internet of things for network forensic analytics: Bot-iot

dataset”. In: Future Generation Computer Systems 100 (2019), pp. 779–796.

[69] Yisroel Mirsky et al. “Kitsune: an ensemble of autoencoders for online

network intrusion detection”. In: arXiv preprint arXiv:1802.09089 (2018).

[70] Andrzej Janusz et al. “IEEE BigData 2019 cup: suspicious network event

recognition”. In: 2019 IEEE International Conference on Big Data (Big Data).

IEEE. 2019, pp. 5881–5887.

[71] Hanan Hindy et al. “MQTT-IoT-IDS2020: MQTT Internet of Things Intrusion

Detection Dataset”. In: (2020). DOI: 10.21227/bhxy-ep04. URL: https://dx.

doi.org/10.21227/bhxy-ep04.

[72] Andrey Ferriyan et al. “Generating Network Intrusion Detection Dataset

Based on Real and Encrypted Synthetic Attack Traffic”. In: Applied Sciences

11.17 (2021). ISSN: 2076-3417. DOI: 10 . 3390 / app11177868. URL:

https://www.mdpi.com/2076-3417/11/17/7868.

[73] David Gonzalez-Cuautle et al. “Synthetic minority oversampling technique

for optimizing classification tasks in botnet and intrusion-detection-system

datasets”. In: Applied Sciences 10.3 (2020), p. 794.

https://doi.org/10.21227/bhxy-ep04
https://dx.doi.org/10.21227/bhxy-ep04
https://dx.doi.org/10.21227/bhxy-ep04
https://doi.org/10.3390/app11177868
https://www.mdpi.com/2076-3417/11/17/7868

Bibliography 177

[74] Justin M Johnson and Taghi M Khoshgoftaar. “Survey on deep learning with

class imbalance”. In: Journal of Big Data 6.1 (2019), pp. 1–54.

[75] Ryan Sheatsley et al. “Adversarial Examples in Constrained Domains”. In:

arXiv preprint arXiv:2011.01183 (2020).

[76] Payam Refaeilzadeh, Lei Tang, and Huan Liu. “Cross-validation.” In:

Encyclopedia of database systems 5 (2009), pp. 532–538.

[77] Muhammad Shafique et al. “Robust machine learning systems: Challenges,

current trends, perspectives, and the road ahead”. In: IEEE Design & Test 37.2

(2020), pp. 30–57.

[78] Raphael Labaca-Castro, Battista Biggio, and Gabi Dreo Rodosek. “Poster:

Attacking malware classifiers by crafting gradient-attacks that preserve

functionality”. In: Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security. 2019, pp. 2565–2567.

[79] Tao Bai et al. “Recent Advances in Adversarial Training for Adversarial

Robustness”. In: arXiv e-prints (2021), arXiv–2102.

[80] Tsui-Wei Weng et al. “Evaluating the Robustness of Neural Networks: An

Extreme Value Theory Approach”. In: International Conference on Learning

Representations. 2018.

[81] Ian Goodfellow. “Gradient masking causes clever to overestimate adversarial

perturbation size”. In: arXiv preprint arXiv:1804.07870 (2018).

[82] Tsui-Wei Weng et al. “On extensions of clever: A neural network robustness

evaluation algorithm”. In: 2018 IEEE Global Conference on Signal and

Information Processing (GlobalSIP). IEEE. 2018, pp. 1159–1163.

[83] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.

“DeepFool: A Simple and Accurate Method to Fool Deep Neural

Networks”. In: The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). June 2016, p. 0.

[84] Nicholas Carlini and David Wagner. “Towards evaluating the robustness of

neural networks”. In: 2017 ieee symposium on security and privacy (sp). IEEE.

2017, pp. 39–57.

178 Bibliography

[85] Nicolas Papernot et al. “Technical report on the cleverhans v2. 1.0 adversarial

examples library”. In: arXiv preprint arXiv:1610.00768 (2016).

[86] Jonas Rauber, Wieland Brendel, and Matthias Bethge. “Foolbox: A python

toolbox to benchmark the robustness of machine learning models”. In: arXiv

preprint arXiv:1707.04131 (2017).

[87] Maria-Irina Nicolae et al. “Adversarial Robustness Toolbox v1. 0.0”. In: arXiv

preprint arXiv:1807.01069 (2018).

[88] Gavin Weiguang Ding, Luyu Wang, and Xiaomeng Jin. “AdverTorch v0. 1:

An adversarial robustness toolbox based on pytorch”. In: arXiv preprint

arXiv:1902.07623 (2019).

[89] Arash Habibi Lashkari et al. CICFlowMeter. https : / / www . unb . ca / cic /

research/applications.html. 2017.

[90] Arash Habibi Lashkari. et al. “Characterization of Tor Traffic using Time

based Features”. In: Proceedings of the 3rd International Conference on

Information Systems Security and Privacy - ICISSP, INSTICC. SciTePress, 2017,

pp. 253–262. ISBN: 978-989-758-209-7. DOI: 10.5220/0006105602530262.

[91] Gerard Draper-Gil. et al. “Characterization of Encrypted and VPN Traffic

using Time-related Features”. In: Proceedings of the 2nd International

Conference on Information Systems Security and Privacy - ICISSP, INSTICC.

SciTePress, 2016, pp. 407–414. ISBN: 978-989-758-167-0. DOI:

10.5220/0005740704070414.

[92] Iqbal H Sarker et al. “Intrudtree: a machine learning based cyber security

intrusion detection model”. In: Symmetry 12.5 (2020), p. 754.

[93] Omar Almomani. “A feature selection model for network intrusion detection

system based on PSO, GWO, FFA and GA algorithms”. In: Symmetry 12.6

(2020), p. 1046.

[94] Nicolas Papernot et al. “Distillation as a defense to adversarial perturbations

against deep neural networks”. In: 2016 IEEE symposium on security and

privacy (SP). IEEE. 2016, pp. 582–597.

https://www.unb.ca/cic/research/applications.html
https://www.unb.ca/cic/research/applications.html
https://doi.org/10.5220/0006105602530262
https://doi.org/10.5220/0005740704070414

Bibliography 179

[95] Matthew J Page et al. “The PRISMA 2020 statement: an updated guideline

for reporting systematic reviews”. In: BMJ 372 (2021). DOI: 10.1136/bmj.n71.

eprint: https://www.bmj.com/content/372/bmj.n71.full.pdf. URL:

https://www.bmj.com/content/372/bmj.n71.

[96] Battista Biggio et al. “Evasion attacks against machine learning at test time”.

In: Joint European conference on machine learning and knowledge discovery in

databases. Springer. 2013, pp. 387–402.

[97] Nicolas Papernot et al. “Crafting adversarial input sequences for recurrent

neural networks”. In: MILCOM 2016-2016 IEEE Military Communications

Conference. IEEE. 2016, pp. 49–54.

[98] N. Papernot et al. “The Limitations of Deep Learning in Adversarial

Settings”. In: 2016 IEEE European Symposium on Security and Privacy (EuroS

P). 2016, pp. 372–387.

[99] Robin Jia and Percy Liang. “Adversarial Examples for Evaluating Reading

Comprehension Systems”. In: Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing. 2017, pp. 2021–2031.

[100] Zhengli Zhao, Dheeru Dua, and Sameer Singh. “Generating Natural

Adversarial Examples”. In: International Conference on Learning

Representations. 2018, p. 0.

[101] Yen-Chen Lin et al. “Tactics of adversarial attack on deep reinforcement

learning agents”. In: Proceedings of the 26th International Joint Conference on

Artificial Intelligence. 2017, pp. 3756–3762.

[102] Maria Rigaki. Adversarial deep learning against intrusion detection classifiers.

2017.

[103] Weiwei Hu and Ying Tan. “Black-box attacks against RNN based malware

detection algorithms”. In: Workshops at the Thirty-Second AAAI Conference on

Artificial Intelligence. 2018, p. 0.

[104] Ivan Homoliak et al. “Improving Network Intrusion Detection Classifiers by

Non-payload-Based Exploit-Independent Obfuscations: An Adversarial

Approach”. In: EAI Endorsed Transactions on Security and Safety 5.17 (2018).

https://doi.org/10.1136/bmj.n71
https://www.bmj.com/content/372/bmj.n71.full.pdf
https://www.bmj.com/content/372/bmj.n71

180 Bibliography

[105] Ishai Rosenberg et al. “Generic black-box end-to-end attack against state of

the art API call based malware classifiers”. In: International Symposium on

Research in Attacks, Intrusions, and Defenses. Springer. 2018, pp. 490–510.

[106] Zheng Wang. “Deep learning-based intrusion detection with adversaries”.

In: IEEE Access 6 (2018), pp. 38367–38384.

[107] Arkadiusz Warzyński and Grzegorz Kołaczek. “Intrusion detection systems

vulnerability on adversarial examples”. In: 2018 Innovations in Intelligent

Systems and Applications (INISTA). IEEE. 2018, pp. 1–4.

[108] Zilong Lin, Yong Shi, and Zhi Xue. “Idsgan: Generative adversarial

networks for attack generation against intrusion detection”. In: arXiv

preprint arXiv:1809.02077 (2018).

[109] Kaichen Yang et al. “Adversarial examples against the deep learning based

network intrusion detection systems”. In: MILCOM 2018-2018 IEEE Military

Communications Conference (MILCOM). IEEE. 2018, pp. 559–564.

[110] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. “One pixel

attack for fooling deep neural networks”. In: IEEE Transactions on

Evolutionary Computation 23.5 (2019), pp. 828–841.

[111] Aditya Kuppa et al. “Black box attacks on deep anomaly detectors”. In:

Proceedings of the 14th International Conference on Availability, Reliability and

Security. 2019, pp. 1–10.

[112] Olakunle Ibitoye, Omair Shafiq, and Ashraf Matrawy. “Analyzing

adversarial attacks against deep learning for intrusion detection in IoT

networks”. In: 2019 IEEE Global Communications Conference (GLOBECOM).

IEEE. 2019, pp. 1–6.

[113] Muhammad Usama et al. “Generative adversarial networks for launching

and thwarting adversarial attacks on network intrusion detection systems”.

In: 2019 15th international wireless communications & mobile computing

conference (IWCMC). IEEE. 2019, pp. 78–83.

Bibliography 181

[114] Weiqing Huang et al. “Adversarial Attack against LSTM-based DDoS

Intrusion Detection System”. In: 2020 IEEE 32nd International Conference on

Tools with Artificial Intelligence (ICTAI). IEEE. 2020, pp. 686–693.

[115] Yuji Ogawa, Tomotaka Kimura, and Jun Cheng. “Vulnerability Assessment

for Machine Learning Based Network Anomaly Detection System”. In: 2020

IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan).

IEEE. 2020, pp. 1–2.

[116] Jiming Chen et al. “Generating Adversarial Examples against Machine

Learning based Intrusion Detector in Industrial Control Systems”. In: IEEE

Transactions on Dependable and Secure Computing (2020).

[117] Luca Demetrio et al. “Functionality-preserving black-box optimization of

adversarial windows malware”. In: IEEE Transactions on Information Forensics

and Security 16 (2021), pp. 3469–3478.

[118] Raphael Labaca-Castro et al. “Universal Adversarial Perturbations for

Malware”. In: arXiv preprint arXiv:2102.06747 (2021).

[119] Feiyang Cai, Jiani Li, and Xenofon Koutsoukos. “Detecting adversarial

examples in learning-enabled cyber-physical systems using variational

autoencoder for regression”. In: 2020 IEEE Security and Privacy Workshops

(SPW). IEEE. 2020, pp. 208–214.

[120] Jiangnan Li et al. “Conaml: Constrained adversarial machine learning for

cyber-physical systems”. In: Proceedings of the 2021 ACM Asia Conference on

Computer and Communications Security. 2021, pp. 52–66.

[121] Florian Tramèr et al. “Ensemble adversarial training: Attacks and defenses”.

In: 6th International Conference on Learning Representations, ICLR 2018. 2018,

p. 0.

[122] Alexey Kurakin et al. “Adversarial attacks and defences competition”. In: The

NIPS’17 Competition: Building Intelligent Systems. Springer, 2018, pp. 195–231.

[123] Mahmood Sharif et al. “A General Framework for Adversarial Examples

with Objectives”. In: ACM Trans. Priv. Secur. 22.3 (June 2019). ISSN:

182 Bibliography

2471-2566. DOI: 10 . 1145 / 3317611. URL:

https://doi.org/10.1145/3317611.

[124] Justin Gilmer et al. “Motivating the rules of the game for adversarial example

research”. In: arXiv preprint arXiv:1807.06732 (2018).

[125] Giovanni Apruzzese et al. “Modeling Realistic Adversarial Attacks against

Network Intrusion Detection Systems”. In: Digital Threats: Research and

Practice (2021).

[126] Seyed-Mohsen Moosavi-Dezfooli et al. “Universal adversarial

perturbations”. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. 2017, pp. 1765–1773.

[127] Alesia Chernikova and Alina Oprea. “Fence: Feasible evasion attacks on

neural networks in constrained environments”. In: ACM Transactions on

Privacy and Security 25.4 (2022), pp. 1–34.

[128] Giovanni Apruzzese, Michele Colajanni, and Mirco Marchetti. “Evaluating

the effectiveness of adversarial attacks against botnet detectors”. In: 2019

IEEE 18th International Symposium on Network Computing and Applications

(NCA). IEEE. 2019, pp. 1–8.

[129] Mohammad J Hashemi, Greg Cusack, and Eric Keller. “Towards evaluation

of nidss in adversarial setting”. In: Proceedings of the 3rd ACM CoNEXT

Workshop on Big DAta, Machine Learning and Artificial Intelligence for Data

Communication Networks. 2019, pp. 14–21.

[130] Pavlos Papadopoulos et al. “Launching Adversarial Attacks against Network

Intrusion Detection Systems for IoT”. In: Journal of Cybersecurity and Privacy

1.2 (2021), pp. 252–273.

[131] Eirini Anthi et al. “Adversarial attacks on machine learning cybersecurity

defences in industrial control systems”. In: Journal of Information Security and

Applications 58 (2021), p. 102717.

[132] Dongqi Han et al. “Evaluating and Improving Adversarial Robustness of

Machine Learning-Based Network Intrusion Detectors”. In: IEEE Journal on

Selected Areas in Communications (2021).

https://doi.org/10.1145/3317611
https://doi.org/10.1145/3317611

Bibliography 183

[133] Phan The Duy et al. “DIGFuPAS: Deceive IDS with GAN and

Function-Preserving on Adversarial Samples in SDN-enabled networks”. In:

Computers & Security (2021), p. 102367.

[134] Elie Alhajjar, Paul Maxwell, and Nathaniel Bastian. “Adversarial machine

learning in network intrusion detection systems”. In: Expert Systems with

Applications 186 (2021), p. 115782.

[135] Dongqi Han et al. “Practical traffic-space adversarial attacks on

learning-based nidss”. In: ().

[136] Jianyu Wang et al. “Def-IDS: An Ensemble Defense Mechanism Against

Adversarial Attacks for Deep Learning-based Network Intrusion

Detection”. In: 2021 International Conference on Computer Communications and

Networks (ICCCN). IEEE. 2021, pp. 1–9.

[137] Hassan Ali et al. “Analyzing the Robustness of Fake-news Detectors under

Black-box Adversarial Attacks”. In: IEEE Access (2021).

[138] Jules Chenou, George Hsieh, and Tonya Fields. “Radial Basis Function

Network: Its Robustness and Ability to Mitigate Adversarial Examples”. In:

2019 International Conference on Computational Science and Computational

Intelligence (CSCI). IEEE. 2019, pp. 102–106.

[139] Wenqi Wei et al. “Adversarial examples in deep learning: Characterization

and divergence”. In: arXiv preprint arXiv:1807.00051 (2018).

[140] Florian Tramèr et al. “Stealing machine learning models via prediction

apis”. In: 25th {USENIX} Security Symposium ({USENIX} Security 16). 2016,

pp. 601–618.

[141] Timothy P Lillicrap et al. “Random synaptic feedback weights support error

backpropagation for deep learning”. In: Nature communications 7.1 (2016),

pp. 1–10.

[142] Abigail Graese, Andras Rozsa, and Terrance E. Boult. “Assessing Threat of

Adversarial Examples on Deep Neural Networks”. In: 2016 15th IEEE

International Conference on Machine Learning and Applications (ICMLA). 2016,

pp. 69–74. DOI: 10.1109/ICMLA.2016.0020.

https://doi.org/10.1109/ICMLA.2016.0020

184 Bibliography

[143] Kathrin Grosse et al. “On the (statistical) detection of adversarial examples”.

In: arXiv preprint arXiv:1702.06280 (2017).

[144] Jan Hendrik Metzen et al. “On detecting adversarial perturbations”. In: arXiv

preprint arXiv:1702.04267 (2017).

[145] Reuben Feinman et al. “Detecting adversarial samples from artifacts”. In:

arXiv preprint arXiv:1703.00410 (2017).

[146] Dongyu Meng and Hao Chen. “Magnet: a two-pronged defense against

adversarial examples”. In: Proceedings of the 2017 ACM SIGSAC conference on

computer and communications security. 2017, pp. 135–147.

[147] Weilin Xu, David Evans, and Yanjun Qi. “Feature squeezing: Detecting

adversarial examples in deep neural networks”. In: arXiv preprint

arXiv:1704.01155 (2017).

[148] Hyeungill Lee, Sungyeob Han, and Jungwoo Lee. “Generative adversarial

trainer: Defense to adversarial perturbations with gan”. In: arXiv preprint

arXiv:1705.03387 (2017).

[149] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. “Defense-gan:

Protecting classifiers against adversarial attacks using generative models”.

In: arXiv preprint arXiv:1805.06605 (2018).

[150] Guneet S Dhillon et al. “Stochastic activation pruning for robust adversarial

defense”. In: arXiv preprint arXiv:1803.01442 (2018).

[151] Yuchi Tian et al. “Deeptest: Automated testing of

deep-neural-network-driven autonomous cars”. In: Proceedings of the 40th

international conference on software engineering. 2018, pp. 303–314.

[152] Mengshi Zhang et al. “DeepRoad: GAN-based metamorphic testing and

input validation framework for autonomous driving systems”. In: 2018 33rd

IEEE/ACM International Conference on Automated Software Engineering (ASE).

IEEE. 2018, pp. 132–142.

[153] Siyue Wang et al. “Defensive dropout for hardening deep neural networks

under adversarial attacks”. In: Proceedings of the International Conference on

Computer-Aided Design. 2018, pp. 1–8.

Bibliography 185

[154] Mohammed Amer and Tomás Maul. “Weight Map Layer for Noise and

Adversarial Attack Robustness”. In: arXiv preprint arXiv:1905.00568 (2019).

[155] Ishai Rosenberg et al. “Defense methods against adversarial examples for

recurrent neural networks”. In: arXiv preprint arXiv:1901.09963 (2019).

[156] Giovanni Apruzzese et al. “Deep reinforcement adversarial learning against

botnet evasion attacks”. In: IEEE Transactions on Network and Service

Management 17.4 (2020), pp. 1975–1987.

[157] Giovanni Apruzzese et al. “Addressing adversarial attacks against security

systems based on machine learning”. In: 2019 11th International Conference on

Cyber Conflict (CyCon). Vol. 900. IEEE. 2019, pp. 1–18.

[158] Yan Zhou, Murat Kantarcioglu, and Bowei Xi. “A survey of game theoretic

approach for adversarial machine learning”. In: Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery 9.3 (2019), e1259.

[159] Giovanni Apruzzese et al. “Hardening random forest cyber detectors against

adversarial attacks”. In: IEEE Transactions on Emerging Topics in Computational

Intelligence 4.4 (2020), pp. 427–439.

[160] Chen Zhang et al. “A robust generative classifier against transfer attacks

based on variational auto-encoders”. In: Information Sciences 550 (2021),

pp. 57–70.

[161] Ning Wang et al. “MANDA: On Adversarial Example Detection for

Network Intrusion Detection System”. In: IEEE INFOCOM 2021-IEEE

Conference on Computer Communications. IEEE. 2021, pp. 1–10.

[162] Dawn Song et al. “Physical adversarial examples for object detectors”. In:

12th {USENIX} Workshop on Offensive Technologies ({WOOT} 18). 2018, p. 0.

[163] Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approximation:

Representing model uncertainty in deep learning”. In: international conference

on machine learning. PMLR. 2016, pp. 1050–1059.

[164] Nicholas Carlini and David Wagner. “Adversarial examples are not easily

detected: Bypassing ten detection methods”. In: Proceedings of the 10th ACM

Workshop on Artificial Intelligence and Security. 2017, pp. 3–14.

186 Bibliography

[165] Kexin Pei et al. “Deepxplore: Automated whitebox testing of deep learning

systems”. In: proceedings of the 26th Symposium on Operating Systems Principles.

2017, pp. 1–18.

[166] Battista Biggio, Giorgio Fumera, and Fabio Roli. “Adversarial pattern

classification using multiple classifiers and randomisation”. In: Joint IAPR

International Workshops on Statistical Techniques in Pattern Recognition (SPR)

and Structural and Syntactic Pattern Recognition (SSPR). Springer. 2008,

pp. 500–509.

[167] Nicholas Carlini. A complete list of all (arxiv) adversarial example papers. https:

//nicholas.carlini.com/writing/2019/all- adversarial- example-

papers.html. 2019.

[168] Andreas Sfakianakis et al. ENISA Threat Landscape Report 2018: 15 Top

Cyberthreats and Trends.

https://www.enisa.europa.eu/publications/enisa-threat-landscape-

report-2018. 2019.

[169] Anish Athalye, Nicholas Carlini, and David Wagner. “Obfuscated gradients

give a false sense of security: Circumventing defenses to adversarial

examples”. In: International conference on machine learning. PMLR. 2018,

pp. 274–283.

[170] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In:

Computer Vision – ECCV 2014. Ed. by David Fleet et al. Cham: Springer

International Publishing, 2014, pp. 740–755. ISBN: 978-3-319-10602-1.

[171] Cameron Buckner. “Understanding adversarial examples requires a theory

of artefacts for deep learning”. In: Nature Machine Intelligence 2.12 (2020),

pp. 731–736. ISSN: 2522-5839. DOI: 10 . 1038 / s42256 - 020 - 00266 - y. URL:

https://doi.org/10.1038/s42256-020-00266-y.

[172] Florian Tramèr et al. The Space of Transferable Adversarial Examples. 2017. arXiv:

1704.03453 [stat.ML].

https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018
https://www.enisa.europa.eu/publications/enisa-threat-landscape-report-2018
https://doi.org/10.1038/s42256-020-00266-y
https://doi.org/10.1038/s42256-020-00266-y
https://arxiv.org/abs/1704.03453

Bibliography 187

[173] Eduardo K Viegas, Altair O Santin, and Luiz S Oliveira. “Toward a reliable

anomaly-based intrusion detection in real-world environments”. In:

Computer Networks 127 (2017), pp. 200–216.

[174] Ayyaz Ul Haq Qureshi et al. “An Adversarial Approach for Intrusion

Detection Systems Using Jacobian Saliency Map Attacks (JSMA)

Algorithm”. In: Computers 9.3 (2020), p. 58.

[175] Tarfa Hamed, Rozita Dara, and Stefan C Kremer. “Network intrusion

detection system based on recursive feature addition and bigram

technique”. In: computers & security 73 (2018), pp. 137–155.

[176] Gholamreza Farahani. “Feature selection based on cross-correlation for the

intrusion detection system”. In: Security and Communication Networks 2020

(2020).

[177] Phil Legg, Jim Smith, and Alexander Downing. “Visual analytics for

collaborative human-machine confidence in human-centric active learning

tasks”. In: Human-centric Computing and Information Sciences 9.1 (Feb. 2019),

p. 5.

[178] Seunghoon Yoo et al. “Hyperion: A Visual Analytics Tool for an Intrusion

Detection and Prevention System”. In: IEEE Access 8 (2020),

pp. 133865–133881.

[179] Hervé Abdi and Lynne J. Williams. “Principal component analysis”. In: Wiley

interdisciplinary reviews. Computational statistics 2.4 (2010), pp. 433–459.

[180] Laurens van der Maaten et al. “Visualizing non-metric similarities in multiple

maps”. In: Machine learning 87.1 (2012), pp. 33–55.

[181] Leland McInnes et al. “UMAP: Uniform Manifold Approximation and

Projection”. English. In: Journal of open source software 3.29 (2018), p. 861.

[182] Serpil Ustebay, Zeynep Turgut, and Muhammed A. Aydin. “Intrusion

Detection System with Recursive Feature Elimination by Using Random

Forest and Deep Learning Classifier”. In: IEEE, 2018, pp. 71–76.

188 Bibliography

[183] Sydney M Kasongo and Yanxia Sun. “Performance Analysis of Intrusion

Detection Systems Using a Feature Selection Method on the UNSW-NB15

Dataset”. In: Journal of Big Data 7.1 (2020), pp. 1–20.

[184] David Sculley et al. “Hidden technical debt in machine learning systems”. In:

Advances in neural information processing systems. 2015, pp. 2503–2511.

[185] Zilong Lin, Yong Shi, and Zhi Xue. “Idsgan: Generative adversarial networks

for attack generation against intrusion detection”. In: Pacific-Asia Conference

on Knowledge Discovery and Data Mining. Springer. 2022, pp. 79–91.

[186] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. “Transferability in

machine learning: from phenomena to black-box attacks using adversarial

samples”. In: arXiv preprint arXiv:1605.07277 (2016).

[187] Dingcheng Yang, Zihao Xiao, and Wenjian Yu. “Boosting the Adversarial

Transferability of Surrogate Model with Dark Knowledge”. In: arXiv preprint

arXiv:2206.08316 (2022).

[188] Jun Zhang et al. “Internet traffic classification by aggregating correlated naive

bayes predictions”. In: IEEE transactions on information forensics and security 8.1

(2012), pp. 5–15.

[189] Ryan Sheatsley et al. “On the robustness of domain constraints”. In:

Proceedings of the 2021 ACM SIGSAC Conference on Computer and

Communications Security. 2021, pp. 495–515.

[190] Giovanni Apruzzese et al. “The Role of Machine Learning in Cybersecurity”.

In: Digital Threats: Research and Practice (2022).

[191] Report SimilarWeb. Top Websites Ranking”. https://www.similarweb.com/

top-websites/. 2022.

[192] Ángel Luis Perales Gómez et al. “Crafting adversarial samples for anomaly

detectors in industrial control systems”. In: Procedia Computer Science 184

(2021), pp. 573–580.

[193] Paulo Angelo Alves Resende and André Costa Drummond. “A survey of

random forest based methods for intrusion detection systems”. In: ACM

Computing Surveys (CSUR) 51.3 (2018), pp. 1–36.

https://www.similarweb.com/top-websites/
https://www.similarweb.com/top-websites/

Bibliography 189

[194] Sharon Qian et al. “Robustness from Simple Classifiers”. In: arXiv preprint

arXiv:2002.09422 (2020).

[195] François Chollet et al. Keras. https://github.com/fchollet/keras. 2015.

[196] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of

Machine Learning Research 12 (2011), pp. 2825–2830.

[197] Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, Ali A Ghorbani,

et al. “Characterization of tor traffic using time based features.” In: 2017.

[198] R.J. Hofstede et al. “Ethernet Flow Monitoring with IPFIX”. English. In:

TERENA Networking Conference 2011. TERENA Networking Conference 2011

; Conference date: 16-05-2011 Through 19-05-2011. Trans-European Research

and Education Networking Association, May 2011, p. 23.

[199] Rodolfo M Pereira, Yandre MG Costa, and Carlos N Silla Jr. “Toward

hierarchical classification of imbalanced data using random resampling

algorithms”. In: Information Sciences 578 (2021), pp. 344–363.

[200] Benedikt Langenberg et al. “A tutorial on using the paired t test for power

calculations in repeated measures ANOVA with interactions”. In: Behavior

Research Methods (2022), pp. 1–18.

[201] Nicolas Papernot et al. “Practical black-box attacks against machine

learning”. In: Proceedings of the 2017 ACM on Asia conference on computer and

communications security. 2017, pp. 506–519.

[202] Nicolas Papernot et al. “The limitations of deep learning in adversarial

settings”. In: 2016 IEEE European symposium on security and privacy

(EuroS&P). IEEE. 2016, pp. 372–387.

[203] Ryan Sheatsley et al. “Adversarial examples for network intrusion detection

systems”. In: Journal of Computer Security Preprint (2022), pp. 1–26.

[204] Aleksander Madry et al. “Towards Deep Learning Models Resistant to

Adversarial Attacks”. In: International Conference on Learning Representations.

2018. URL: https://openreview.net/forum?id=rJzIBfZAb.

https://github.com/fchollet/keras
https://openreview.net/forum?id=rJzIBfZAb

190 Bibliography

[205] Guillaume Jeanneret, Juan C Pérez, and Pablo Arbelaez. “A Hierarchical

Assessment of Adversarial Severity”. In: Proceedings of the IEEE/CVF

International Conference on Computer Vision. 2021, pp. 61–70.

[206] Ismail Alkhouri, George Atia, and Wasfy Mikhael. “Fooling the Big Picture

in Classification Tasks”. In: Circuits, Systems, and Signal Processing 42.4 (2023),

pp. 2385–2415.

[207] Fábio M Miranda, Niklas Köhnecke, and Bernhard Y Renard. “Hiclass: a

python library for local hierarchical classification compatible with

scikit-learn”. In: Journal of Machine Learning Research 24.29 (2023), pp. 1–17.

[208] Daphne Koller and Mehran Sahami. “Hierarchically Classifying Documents

Using Very Few Words”. In: Proceedings of the Fourteenth International

Conference on Machine Learning. 1997, pp. 170–178.

[209] Fionn Murtagh and Pierre Legendre. “Ward’s hierarchical agglomerative

clustering method: which algorithms implement Ward’s criterion?” In:

Journal of classification 31.3 (2014), pp. 274–295.

[210] Svetlana Kiritchenko et al. “Learning and evaluation in the presence of class

hierarchies: Application to text categorization”. In: Conference of the Canadian

Society for Computational Studies of Intelligence. Springer. 2006, pp. 395–406.

[211] Avery Ma et al. “Improving Hierarchical Adversarial Robustness of Deep

Neural Networks”. In: arXiv preprint arXiv:2102.09012 (2021).

[212] Erxue Min et al. “Su-ids: A semi-supervised and unsupervised framework for

network intrusion detection”. In: International conference on cloud computing

and security. Springer. 2018, pp. 322–334.

[213] Hossein Hosseini et al. “Blocking transferability of adversarial examples in

black-box learning systems”. In: arXiv preprint arXiv:1703.04318 (2017).

[214] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features

from tiny images”. In: (2009).

[215] Rodolfo M. Pereira, Yandre M.G. Costa, and Carlos N. Silla Jr. “Toward

hierarchical classification of imbalanced data using random resampling

algorithms”. In: Information Sciences 578 (2021), pp. 344–363. ISSN: 0020-0255.

Bibliography 191

DOI: https : / / doi . org / 10 . 1016 / j . ins . 2021 . 07 . 033. URL: https :

//www.sciencedirect.com/science/article/pii/S0020025521007234.

[216] Ishai Rosenberg et al. “Adversarial machine learning attacks and defense

methods in the cyber security domain”. In: ACM Computing Surveys (CSUR)

54.5 (2021), pp. 1–36.

[217] Puyudi Yang et al. “Greedy attack and gumbel attack: Generating adversarial

examples for discrete data”. In: The Journal of Machine Learning Research 21.1

(2020), pp. 1613–1648.

[218] Liwei Song, Reza Shokri, and Prateek Mittal. “Privacy Risks of Securing

Machine Learning Models against Adversarial Examples”. In: Proceedings of

the 2019 ACM SIGSAC Conference on Computer and Communications Security.

CCS ’19. London, United Kingdom: Association for Computing Machinery,

2019, pp. 241–257. ISBN: 9781450367479. DOI: 10.1145/3319535.3354211.

URL: https://doi.org/10.1145/3319535.3354211.

[219] Emilio Rafael Balda, Arash Behboodi, and Rudolf Mathar. “Perturbation

analysis of learning algorithms: Generation of adversarial examples from

classification to regression”. In: IEEE Transactions on Signal Processing 67.23

(2019), pp. 6078–6091.

[220] James Reason. “Human error: models and management”. In: Bmj 320.7237

(2000), pp. 768–770.

[221] Dule Shu et al. “Generative adversarial attacks against intrusion detection

systems using active learning”. In: Proceedings of the 2nd ACM Workshop on

Wireless Security and Machine Learning. 2020, pp. 1–6.

https://doi.org/https://doi.org/10.1016/j.ins.2021.07.033
https://www.sciencedirect.com/science/article/pii/S0020025521007234
https://www.sciencedirect.com/science/article/pii/S0020025521007234
https://doi.org/10.1145/3319535.3354211
https://doi.org/10.1145/3319535.3354211

	Declaration of Authorship
	Publications
	Abstract
	Acknowledgements
	Introduction
	What is Machine Learning?
	What are Adversarial Examples and Adversarial Machine Learning?
	Trustworthiness of Machine Learning Systems
	Definitions
	Aim of the Research
	Research Questions
	Research Objectives

	Research Strategy
	Experiments
	Case Study

	Value of the Research
	Research Context and Contributions
	Thesis Outline

	Literature Review
	Introduction
	Related Works
	Secure and Trustworthy Systems
	Adversarial ML in General
	Intrusion Detection

	Background
	Model Training
	Resampling
	Loss Functions
	Cross-Validation
	Bootstrapping

	Cyber-Physical Systems
	Contributions of this survey
	Robustness
	Common Adversarial Example Algorithms
	Threat Model - Adversary Capabilities
	Threat Model - Adversary Goals
	Threat Model - Common Attack Methods
	Poisoning
	Evasion
	Transferability

	Methodology
	Results
	Classification Scheme
	Adversarial Example Attacks
	Adversarial Examples - Similarity Metrics
	Adversarial Examples - Types of Attack
	Adversarial Examples - Attack Objectives
	Adversarial Examples in Traditional Domains
	Adversarial Examples in Cyber Security Domains
	Adversarial Examples and Model Type
	Adversarial Examples and Knowledge Requirement
	Adversarial Example Constraints

	Defences Against Adversarial Examples
	Pre-Processing as a Defence against Adversarial Examples
	Adversarial Training as a Defence against Adversarial Examples
	Architectural Defences against Adversarial Examples
	Detecting Adversarial Examples
	Defensive Testing
	Multi-Classifier Systems
	Game Theory
	Adversarial Example defences in Cyber Security Domains

	Discussion and Conclusion

	Feature Vulnerability and Robustness Assessment
	Introduction
	Related Work
	Adversarial Attacks
	Architectural Defences
	Feature Selection
	Visual Analytics

	This Work
	Method
	Dataset
	Feature Analysis
	Parallel Co-ordinates
	Training the Model

	Results and Discussion
	Feature Selection
	Interpreting Patterns in Parallel Co-ordinates

	Conclusion

	Defending against Adversarial Machine Learning Attacks using Hierarchical Learning
	Introduction
	Related Work
	Adversarial Machine Learning
	Threat Model
	Functionality Preserving Adversarial Examples
	Intrusion Detection
	Model Training for Robust Models
	Robustness
	Common Defences
	Ensemble classification

	Adversarial Attack of a Network Traffic Classification Model
	Preparing the CICIDS2017 Dataset
	Initial Classification Model
	Using the Surrogate Model to Attack the Target Model
	Functionality-Preservation in Adversarial Example Generation
	Summary of the Adversarial Attack Stage

	Hierarchical Classification for Model Robustness
	Hierarchical Classification
	Hierarchical Output Class
	Automated Hierarchical Clustering - K-Means
	Automated Hierarchical Clustering - Agglomerative

	Deployment of Hierarchical Classification
	Results of Hierarchical Classification

	Discussion
	Benefits of Hierarchical Classifiers
	Hierarchies
	Clustering Techniques
	Blocking Transferability
	Effectively Attacking Hierarchies

	Conclusion

	Further Exploration of Adversarial Machine Learning
	Introduction
	Case Study 1 - Consequences of Model and Dataset
	Model Choice
	Defensive Hierarchical Approach
	Dataset
	Features
	Classes

	Applying the Proposed Methods to the MQTT Dataset
	Case Study 2 - Discrete Datatypes
	Challenges of Discrete Features
	Generating Adversarial Examples for Discrete Features
	Lemmatizing and Hierarchies

	Scalability of Adversarial Machine Learning
	Potential Limitations
	Conclusion

	Conclusion
	Introduction
	Knowledge Gained
	Evaluation
	Answers to Research Questions
	RQ1 - To what extent can adversarial examples influence the output of machine learning systems for intrusion detection
	RQ2 - To what extent can countermeasures and defensive approaches mitigate the effects of adversarial examples for Intrusion Detection Systems?
	RQ3 - To what extent is this work generalizable to other scenarios, datasets, and data types?

	Recommendations and Future Challenges
	Future Challenges

	Overall Evaluation

	Code Repository Links
	Ethics

