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Abstract 
Interferon gamma (IFNγ) is a potent antiviral cytokine that can be produced by many innate and adaptive immune cells during infection. Currently, 
our understanding of which cells produce IFNγ and where they are located at different stages of an infection is limited. We have used reporter 
mice to investigate in vivo expression of Ifnγ mRNA in the lung and secondary lymphoid organs during and following influenza A virus (IAV) in-
fection. We observed a triphasic production of Ifnγ expression. Unconventional T cells and innate lymphoid cells, particularly NK cells, were the 
dominant producers of early Ifnγ, while CD4 and CD8 T cells were the main producers by day 10 post-infection. Following viral clearance, some 
memory CD4 and CD8 T cells continued to express Ifnγ in the lungs and draining lymph node. Interestingly, Ifnγ production by lymph node nat-
ural killer (NK), NKT, and innate lymphoid type 1 cells also continued to be above naïve levels, suggesting memory-like phenotypes for these 
cells. Analysis of the localization of Ifnγ+ memory CD4 and CD8 T cells demonstrated that cytokine+ T cells were located near airways and in the 
lung parenchyma. Following a second IAV challenge, lung IAV-specific CD8 T cells rapidly increased their expression of Ifnγ while CD4 T cells in 
the draining lymph node increased their Ifnγ response. Together, these data suggest that Ifnγ production fluctuates based on cellular source and 
location, both of which could impact subsequent immune responses.
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Abbreviations: APC: antigen presenting cell; BSA: bovine serum albumin; CCR: C-C chemokine receptor; CD: cluster of differentiation; CXCR: C-X-C chemokine 
receptor; EDTA: ethylenediaminetetraacetic acid; EpCAM: epithelial cellular adhesion molecule; EYFP: enhanced yellow fluorescent protein; GREAT: IFNγ 
reporter with endogenous polyA tail; IAV: influenza A virus; ICOS: inducible T cell co-stimulator; IFNγ: interferon gamma; i.n.: intranasal; IL: interleukin; ILC: innate 
lympjoid cell; i.v.: intravenous; Med LN: mediastinal lymph node; MFI: mean florescence intensity; MHC: major histocompatibility complex; mRNA: messenger 
ribonucleic acid; NK: natural killer; NP: nucleoprotein; PBS: phosphate buffer saline; PD1: programmed cell death protein 1; PFA: paraformaldehyde; PFU: 
plaque-forming unit; SMART: surface marker for transcription; Trm: tissue-resident memory; qPCR: quantitative polymerase chain reaction

Introduction
Interferon-gamma (IFNγ) is a key cytokine that plays mul-
tiple roles in the host immune response to viral infections, for 
example, influenza A virus (IAV). IFNγ promotes innate and 
adaptive leukocyte recruitment to the site of infection through 
the induction of CCR2 and CXCR3 ligands [1, 2]. Moreover, 
IFNγ signalling upregulates antigen presentation through 
major histocompatibility class I (MHCI) and MHCII pathways 
to CD8 and CD4 T cells, respectively [3–5], promoting T cell 
activation and ultimately facilitating viral clearance.

Various different immune cells have been documented to 
produce IFNγ following IAV infection. These include innate 
lymphoid cells (natural killer (NK) cells [6], innate lymphoid 
1 cells (ILC1s [7])), unconventional T cells (NKT [8] and γδ 
T cells [9, 10]) as well as classical αβ T cells (CD4 and CD8 
T cells [11, 12]). However, the dynamics of when and how 
much IFNγ these cells can produce at different stages of IAV 
infection, and after re-infection, have not been comprehen-
sively and simultaneously analysed.

IFNγ production by CD4 and CD8 T cells is correlated 
with protection from IAV infection in humans [13–16]. Most 
of these studies examine peripheral blood mononuclear cells, 
although IFNγ+ CD8 T cells increase in the bronchoalveolar 
lavage fluid during challenge infections [17]. Similar findings 
have been observed in mouse models of IAV infection 
demonstrating that IFNγ+ CD4 and CD8 T cells can protect 
mice from challenge infection [18–20]. A major advantage of 

mouse infection models is the ability to examine immune cells 
within different organs at multiple time points following in-
fection. This can provide a broader understanding of the cell 
types that are key IFNγ producers following IAV infection. A 
further advantage of mouse studies is the ability to identify 
cytokine-producing cells via fluorescent reporter proteins [21, 
22]. Thus, IFNγ+ cells can be detected without the need for ex 
vivo stimulation providing a more accurate view of the cells 
that respond to the virus in vivo.

Here, we characterised Ifnγ expression at different 
timepoints following IAV infection within the spleen, medias-
tinal lymph node (Med LN), and in the lungs of Ifnγ mRNA 
reporter mice [23]. As expected, innate cells, particularly NK 
cells, were the most prominent Ifnγ producers early post-
infection, while conventional T cells were the largest Ifnγ+ 
population at day 10. In contrast, following IAV re-challenge, 
T cells rapidly produced Ifnγ, demonstrating their memory 
potential.

Interestingly, elevated Ifnγ levels were sustained at day 40 
post-infection, even though IAV is cleared by day 10 [24, 25]. 
At this timepoint, CD4 and CD8 T cells were the only cells 
in the lungs that exhibited elevated Ifnγ expression. In con-
trast, raised Ifnγ expression at day 40 was found in ILC1s, 
NK, and NKT cells, as well as conventional T cells, in the 
Med LN. The continued heightened production of Ifnγ by 
non-adaptive immune cells echoes evidence that innate cells, 
including ILC1s [26, 27], NK [28], and NKT cells [29] can 
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display memory-like properties and increased responsiveness 
to inflammatory stimuli.

Together, these data provide a comprehensive study of im-
mune cell-derived Ifnγ expression over the course of IAV 
infection. This new in-depth understanding of Ifnγ expres-
sion from different cell types may facilitate the design of 
interventions that either boost or inhibit cytokine production.

Materials and methods
Study design
The aim of this study was to understand how Ifnγ expression 
by innate and adaptive immune cells changes over time fol-
lowing a viral infection. We used an influenza virus infection 
model in reporter mice and tracked responding memory T 
cells using MHCI and MHC II tetramers and the reporter 
systems in the GREATxSMART transgenic mice. A descrip-
tion of the experimental parameters, samples sizes, any 
samples that were excluded, and the statistical analysis are 
described in each figure legend. No specified randomization 
was conducted.

Animals
Ten-week-old female C57BL/6 mice were purchased from 
Envigo (UK). C57BL/6 and GREATxSMART mice, original 
made by Richard Locksley [23, 30] and initially provided by 
David Withers, University of Birmingham, were maintained 
at the University of Glasgow under specific pathogen-free 
conditions in accordance with UK home office regulations 
(Project Licenses P2F28B003 and PP1902420) and approved 
by the local ethics committee. GREATxSMART mice have 
been described previously [30].

Infections
IAV was prepared and titrated in MDCK cells. Mice were 
briefly anesthetized using inhaled isoflurane and infected 
with 200 plaque-forming units of IAV strain WSN in 20 μl of 
PBS intranasally (i.n.). Infected mice were rechallenged with 
200 PFU of X31 (H3N2) where stated. Infected mice were 
weighed daily for 14 days post-infection. Any animals that 
lost more than 20% of their starting weight were humanely 
euthanized.

Tissue preparation
Mice were injected intravenously (i.v.) with 1 μg anti-
CD45-PE (ThermoFisher: clone: 30F11) 3 min before being 
euthanized by cervical dislocation. Spleen and mediastinal 
lymph nodes were processed by mechanical disruption. 
Single-cell suspensions of lungs were prepared by digestion 
with 1 mg/ml collagenase and 30 μg/ml DNAse (Sigma) for 
40 min at 37°C in a shaking incubator. Red blood cells were 
lysed from spleen and lungs using lysis buffer (ThermoFisher).

Flow cytometry staining
Single-cell suspensions were stained with PE or APC-labelled 
IAb/NP311-325 or APC-labelled Db/NP368-374 tetramers (NIH 
tetramer core) at 37°C, 5% CO2 for 2 h in complete RPMI 
(RPMI with 10% foetal calf serum, 100 μg/ml penicillin-
streptomycin, and 2 mM l-glutamine) containing Fc block 
(24G2). Surface antibodies were added and the cells were 
incubated for a further 20 min at 4°C. Antibodies used 
were: anti-CD3 BV785 (BioLegend; clone: 17A2), anti-CD4 

BUV805 (BD Bioscience; clone: RM4-5), anti-CD8 BV421 
(ThermoFisher; clone: 53-6.7), anti-CD44 BUV395 (BD; 
clone: IM7), anti-CD45.2 BV605 (BioLegend; clone: 
104), anti-CD69 PE-Cy7 (ThermoFisher; clone: H1.2F3), 
anti-CD127 APC (ThermoFisher; clone: A7R34), anti- γδ 
TCR PE-Cy7 (BioLegend; clone: GL3), anti-ICOS BV785 
(BioLegend; clone: C398.4A), anti-NK1.1 APC-Cy7 
(BioLegend; clone: PK136), anti-PD1 BV711 (BioLegend; 
clone: 29F,1A12), and ‘dump’ antibodies: B220 (RA3-6B2), 
F4/80 (BM8), and MHC II (M5114) all on eFluor-450 
(ThermoFisher) or PerCP-Cy5.5 (ThermoFisher; B220 and 
F4/80, and BioLegend; MHCII). Cells were stained with a fix-
able viability dye eFluor 506 (ThermoFisher). Stained cells 
were acquired on a BD LSR Fortessa and analysed using 
FlowJo (version 10, BD Bioscience).

FACS
T cells were isolated from single-cell suspensions of medias-
tinal lymph nodes and lungs using a T cell isolation kit as 
per the manufacturer’s instructions (Stem Cell). Cells were 
stained with surface antibodies and sorted on a FACS Aria 
IIU. CD4+ or CD8+ TCRβ+CD44hi cells that were EYFP+ 
or EYFP negative were sorted into Qiagen RLT buffer and 
stored at –80°C.

qPCR
RNA was extracted following the manufacturer’s instructions 
(Qiagen RNAeasy microkit) and analysed by qPCR (SYBR Green 
FastMix (Quanta Bioscience). Ifnγ and 18s standards were 
generated from spleen cells from IAV-infected mice (Standard 
Primers: Ifnγ: Forward: ATCTGGAGGAACTGGCAAAA; 
Reverse: AGATACAACCCCGCAATCAC; 18s 
Forward: CGTAGTTCCGACCATAAACGA; Reverse: 
ACATCTAAGGGCATCACAGACC) and purified by 
gel extraction (Quick Gel Extraction kit, Invitrogen). 
qPCR was performed on a QuantStudio 7 flex and ex-
pression was calculated using standard curves and 
results normalized to 18s expression (qPCR Primers: 
Ifnγ: Forward: AGCAAGGCGAAAAAGGATG; 
Reverse: CTGGACCTGTGGGTTGTTG; 18s: 
Forward: GACTCAACACGGGAAACCTC; Reverse: 
TAACCAGACAAATCGCTCCAC).

Lung immunofluorescence imaging
Lungs from GREATxSMART mice were perfused with 5 mM 
EDTA and 1% PFA prior to removal and incubated at 4°C in 
1% PFA and 30% sucrose for 24 h each, frozen in OCT and 
stored at –80°C. Ten micrometre lung sections were cut onto 
SuperFrost microscope slides (ThermoFisher) and stored at 
–20◦C prior to staining. Sections were incubated in Fc block 
(24G2) for 10 min to block non-specific binding, washed in 
0.5% BSA/PBS (ThermoFisher), and stained with antibodies 
overnight. Antibodies used: anti-GFP (Life Technologies), 
anti-CD4 AF647 (BD; clone: RM4-5), anti-CD8b APC 
(BioLegend, clone; 53-5.8), anti-EpCAM AF594 (BioLegend: 
G8.8), and anti-MHCII eFluor450 (ThermoFisher; clone: 
M5114), slides were washed in 0.5% BSA/PBS and mounted 
using Vectashield mounting reagent (Vector Laboratories). 
Immunofluorescence images were acquired using a Zeiss 
LSM800 microscope, analysed using Volocity (version 7, 
Quorum Technologies), and example images were generated 
on Zen 2 lite.
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Statistical analysis
Data were analysed using Prism version 9 software (GraphPad). 
Groups were tested for normality using a Shapiro–Wilk test, 
and differences between groups were analysed by one-way 
ANOVAs, Kruskall–Wallis, or unpaired t-tests as indicated in 
figure legends. In all figures based on distribution normality, 
* represents a P value of <0.05; **P > 0.01, ***P > 0.001, 
****P > 0.0001.

Results
Unconventional T cells and innate lymphoid cells 
produce Ifnγ in the early and adaptive immune 
phases in response to IAV infection in the lung and 
mediastinal lymph node
We used reporter mice, GREAT [23], to identify immune cells 
that express cytokines in vivo during and following an in-
fluenza A virus infection (IAV). These mice were crossed to 
IL-17 reporter mice, SMART [30], but in these experiments, 
we have focused on Ifnγ-producing cells. GREAT mice report 
live expression of Ifnγ mRNA via expression of EYFP [23], 
which can be detected by flow cytometry (gating shown in 
Supplementary Fig. 1). EYFP+ cells may not be IFNγ pro-
tein positive, particularly in resting T cells, which are known 
to express Ifnγ mRNA in the absence of protein [31]. We 
examined immune cells in the spleen, the lung draining, Med 
LN, and in the lung at early (day 5), peak adaptive immune 
response (day 10), and memory (day 40) timepoints [32].

Following IAV infection, we could identify multiple 
populations of Ifnγ+ immune cells (Supplementary Figs. 2 
and 3). By injecting the animals with fluorescently labelled 
anti-CD45 shortly before euthanasia, we could distinguish 
cytokine-producing cells present in the blood from those in 
the tissues [33]. We have focused on the cells in the lung tissue 
rather than blood, as these are the cells that are most likely to 
contribute to viral control and clearance.

The majority of EYFP+ cells were cells known to produce 
IFNγ from previous studies: NK cells, NKT cells, ILC1s, 
γδ T cells, CD4, and CD8 T cells [6–12] (Fig. 1). Smaller 
populations were positive for our ‘dump’ antibodies that 
included B220, MHCII, and F4/80, suggesting a small pro-
portion of B cells and/or DCs and macrophages can produce 
Ifnγ. A small percentage (1–2%) of Ifnγ+ cells was not in-
cluded in any of the gates shown in Supplementary Fig. 1.

To track the dynamic changes in the main Ifnγ+ populations 
during IAV infection, we first quantified the total numbers 
and numbers of Ifnγ+ innate and unconventional T cells over 
time (Fig. 2A–C, Supplementary Tables 1–and 2).

There were minor, but in some cases significant, changes in 
the numbers of NK, NKT, ILC1s, and γδ T cells in the spleen 
following IAV infection (Fig. 2B). The numbers of Ifnγ+ NK, 
NKT, and γδ T cells did increase significantly at either day 5 
or day 10 post-infection but these changes were small (Fig. 
2C). At all timepoints, NK cells were the largest population 
of splenic Ifnγ+ cells.

IAV infection led to more substantial changes in the total 
populations and numbers of Ifnγ+ cells in the Med LN. Here, 
there were significant increases in the numbers of NK cells, 
NKT cells, ILC1s, and γδ T cells at all time points post-
infection compared to naïve animals (Fig. 2B). These results 
were also reflected in the numbers of Ifnγ+ cells. Ifnγ+ cells 
from all populations were increased at days 5 and 10, and 

all but γδ T cells remained increased at day 40 despite clear-
ance of IAV by day 10 [24, 25] (Fig. 2C). These data suggest 
a sustained immune response to IAV and evidence for innate 
or trained memory. As in the spleen, NK cells were the largest 
population of Ifnγ+ cells within these cell types.

In the lung tissue, the numbers of ILC1s, NK, and NKT cells 
were increased 5 days after IAV infection compared to naïve 
animals (Fig. 2B). While the numbers of ILC1s and NKT cells 
remained elevated in the lung 10 days post-infection, all four 
cell types returned to naïve levels by day 40 post-infection.

The numbers of Ifnγ+ cells within each of the four 
populations were increased at day 5 post-infection and ILC1s 
and γδ T cells remained elevated at day 10. Notably, the num-
bers of total NK cells and NKT cells dropped substantially 
by day 10 and were slightly lower than in naïve animals. In 
contrast to the sustained Ifnγ in the Med LN, the number 
of Ifnγ+ unconventional T cells and innate lymphoid cells 
returned to naïve levels by day 40 post-infection.

Together, these data suggest that of the innate cells, NK 
cells are the predominant source of Ifnγ in the spleen, Med 
LN, and lung. As expected, in the spleen and lung, the num-
bers of Ifnγ+ cells returned to naïve levels of Ifnγ by day 40 
post-infection. In contrast, in the Med LN, we found evidence 
for long-term changes to several innate immune lymphocyte 
populations.

CD4 and CD8 T cells are the predominant sources 
of Ifnγ after the clearance of IAV infection
T cells are key IFNγ-producing populations during IAV infec-
tion [11, 12]. In the same experiments, therefore, we examined 
changes in Ifnγ expression by CD4 and CD8 T cells over the 
course of IAV infection (Fig. 3A). There were minor changes 
in the numbers of total CD4 and CD8 T cells in the spleen 
after IAV infection (Fig. 3B and Supplementary Tables 1 and 
2). While the numbers of Ifnγ+ CD4 T cells remained stable, 
IAV infection did lead to a sustained increased in Ifnγ+ CD8 
T cells up to 40 days post-infection (Fig. 3C).

In the Med LN, at all time points following infection, the 
numbers of total cells, and numbers of Ifnγ+, CD4, and CD8 
T cells were increased compared to naïve animals (Fig. 3B 
and C). The numbers of Ifnγ+ T cells peaked at day 10 post-
infection with similar numbers of cytokine+ CD4 and CD8 T 
cells. At day 40, their numbers remained above those in naïve 
animals (Fig. 3C).

Within the lung tissue, there were no increases in the num-
bers of Ifnγ+ CD4 and CD8 T cells 5 days after infection (Fig. 
3C). By day 10, the numbers of total T cells and Ifnγ+ T cells 
increased substantially and then declined by day 40. In con-
trast to the innate and unconventional T cells, the numbers of 
Ifnγ+ CD4 and CD8 T cells did remain above naïve levels at 
day 40, indicating persistence of effector cytokine-producing 
memory T cells. Additionally, by comparing the numbers of 
Ifnγ+ cells from the different populations in the Med LN and 
lung at days 10 and 40 post-infection, we found that CD4 
and CD8 T cells were the largest population of cytokine+ cells 
(Supplementary Fig. 3).

We also examined the mean fluorescence intensity (MFI) 
of the EYFP signal to determine the relative amounts of Ifnγ 
produced by the different lymphocytes across the time course 
(Supplementary Fig. 4). For most of the innate cell types, 
there were limited, but in some cases significant, changes in 
the EYFP MFI in the spleen. Interestingly, CD4 and CD8 T 
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cells expressed low levels of Ifnγ at day 10 in the spleen and 
Med LN, suggesting these cells may receive a negative feed-
back signal at this time or the high cytokine+ cells may have 
migrated to the lung. At day 5 post-infection, in parallel with 
the increase in the numbers of Ifnγ+ ILC1, NK, and NKT 
cells in the Med LN and lung, these cells increased the amount 
of Ifnγ they produced. Similarly, lung CD4 and CD8 T cells 
increased their expression of Ifnγ at day 10 post-infection, 
matching their increase in cell number.

To confirm that the Ifnγ reporter marked cells still 
expressed Ifnγ transcript at the memory timepoints, we FACS 
sorted EYFP+ and negative CD44 high CD4 and CD8 T cells 
from the Med LN and lungs of IAV-infected mice. The EYFP+ 
CD4 T cells from these organs expressed more Ifnγ transcript 
than non-EYFP+ cells (Supplementary Fig. 5). In contrast, the 
CD8 EYFP+ cells expressed similar transcript levels to EYFP 
negative cells and the transcripts levels were lower than for 

the CD4 T cells. Potentially there may be a technical reason 
for this difference, including a loss of Ifnγ transcript ex vivo 
by the CD8 T cells. Alternatively, Ifnγ transcript may be more 
rapidly degraded by CD8 than CD4 T cells in vivo.

EYFP+ CD4 and CD8 T cells are located near 
airways and in the lung parenchyma
We used immunofluorescence to investigate the location of 
the lung CD4 and CD8 T cells that continue to express Ifnγ. 
We hypothesized that these cells would be located near the 
airways, ready to respond to a subsequent infection. Both 
Ifnγ+ and negative CD4 and CD8 T cells were located both 
near EpCAM+ airways and in the parenchyma and this varied 
between animals (Fig. 4). These data suggest that during the 
maintenance of T cell memory, there is no specialized niche in 
which the Ifnγ cytokine+ T cells are located.
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Figure 1: altered populations of Ifnγ+ immune cells at different time points following influenza virus infection. GREATXSMART mice were infected with 
IAV on day 0 and injected with fluorescently labelled anti-CD45 i.v. 3 min prior to removal of the spleen, Med LN, and lung at days 5, 10, or 40 post-
infection. Single-cell suspension were analysed by flow cytometry. Representative tSNE plots depict CD45iv-negative Ifnγ/EYFP+ clusters within the 
spleen, Med LN, and lung were examined by flow cytometry at the indicated timepoints. Cell types identified as gated in Supplementary Fig. 1 as NK 
cells (red), NKT cells (orange), ILCs, (yellow), CD4 T cells (green), CD8 T cells (blue), γδT cells (purple), and dump (B220, MHCII, and F4/80) channel cells 
(grey).
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IAV-specific CD4+ T cells continue to produce Ifnγ 
following viral clearance
To confirm that IAV-specific CD4 and CD8 T cells were Ifnγ+, 
we stained cells from IAV-infected reporter mice with MHC I 
and MHC II tetramers containing immunodominant IAV nu-
cleoprotein (NP) peptides, NP368-74, and NP311-325, respectively 
at days 10 and 40 post-infection (Fig. 5A and B).

In the spleen, Med LN, and lung, the numbers of Ifnγ+ IAb/
NP311-325 tetramer + CD4 and Db/NP368-374 tetramer+ CD8 T 
cells declined between the peak of the T cell response (day 10) 
and the memory time point (day 40) (Fig. 5C). This decline 
in T cell number coincides with the vast majority of effector 

T cells dying by apoptosis, and the formation of long-lived 
memory T cells [34, 35].

We also compared the percentages of CD4 and CD8 T cells 
that were Ifnγ+ between day 10 and day 40 (Fig. 5C). For 
IAV-specific CD4 T cells, there were no differences in any of 
the organs. This suggests cells that express Ifnγ are as likely 
as non-Ifnγ+ cells to enter the memory pool. Alternatively, 
memory CD4 T cells may fluctuate in their ability to express 
Ifnγ depending on their location. In the spleen, 29% (±5.5%), 
and Med LN, 29% (±5.8%), of the MHCII tetramer + cells 
were Ifnγ+. In contrast, 59% (±3.5%) of the MHCII tet-
ramer+ cells were Ifnγ+ in the lung.
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At day 10 post-infection, the majority of CD8 MHCI tet-
ramer+ cells in the lung were Ifnγ+. This dropped by approx-
imately half by day 40 suggesting that non-Ifnγ+ CD8 T cells 
are more likely to enter the memory pool. In contrast, in the 
spleen, there was a greater percentage of Ifnγ+ CD8 MHCI 
tetramer+ cells at day 40 than day 10, while in the Med LN, 
there were no differences between day 10 and 40. These data 
may suggest that entry into the memory pool for CD8 T cells 
may follow different rules depending on the cell’s migra-
tion ability, and/or reflect changes in memory cell function 
depending on location at the time of analysis.

 Ifnγ+ NK cells and ILCs rapidly increase in the lung 
following re-infection
We next examined the impact of a second IAV infection on 
Ifnγ producing immune cells.

Reporter mice were infected with WSN IAV (H1N1) and 
30 days later some of these animals were re-infected with 
X31 (H3N2) and responding cells were analysed after a fur-
ther 3 days. As these viruses have different surface proteins, 
neutralizing antibody cannot prevent infection. However, as 
internal IAV proteins are more conserved, T cell epitopes are 
shared between these viruses and these contribute to rapid 
immune protection to the re-challenge infection [36–39].

We focused on the innate and unconventional T cells in the 
lung as IFNγ is implicated in early IAV control [18, 40]. In 
comparison to naïve animals, we only found increased num-
bers of Ifnγ+ NK cells and ILCs in mice rechallenged with 

IAV, suggesting cytokine from these cells may be involved in 
early viral control (Fig. 6).

IAV-specific CD4 and CD8 T cells are more activated 
and increase in Ifnγ expression following challenge 
infection
While we did not observe changes in the numbers of Ifnγ+ 
CD4 and CD8 T cells between memory and re-infected an-
imals (Fig. 6), by examining the antigen-specific T cell pools 
we found clear evidence for the re-activation of IAV-specific 
T cells (Fig. 7).

After re-infection, Med LN IAV-specific CD4 T cells 
increased their expression of Ifnγ and were more activated 
compared to IAV-specific CD4 T cells from memory mice 
based on increased expression of CD69 and ICOS (Fig. 7A 
and B). Splenic IAV-specific CD4 T cells were also activated 
by the re-infection, increasing their expression of CD69 and 
ICOS, although the expression of Ifnγ was equivalent to that 
in memory animals.

IAV-specific CD4 T cells in the lung did not display increased 
expression of CD69, ICOS, or Ifnγ following re-infection 
(Fig. 7B). However, we found that IAV-specific lung CD4 T 
cells were more likely to express these molecules than those in 
spleen or Med LN prior to infection. This suggests these cells 
remain in a semi-activated state following the initial infection.

We also compared the Ifnγ expression and activation state 
of Db/NP368-374 tetramer+CD8 T cells in the lung and spleen 
of memory and recall mice. There were no changes in splenic 
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Figure 7: IAV-specific CD4 and CD8 T cells are activated and increase Ifnγ expression following challenge infection. GREATxSMART mice were either 
infected i.n. with IAV WSN (H1N1) for 40 days (memory) or re-infected with X31 (H3N2) for 3 days. Antigen-specific CD4 and CD8 T cells from the 
lung, spleen, and Med LN were examined. (A) Representative flow plots of IAb/NP311-3250-specific CD4+ T cells from the Med LN in memory (top) 
and recall infection (bottom) and expression of (B) Ifnγ, CD69, and ICOS from IAb/NP311-325-specific CD4+ T cells in the spleen, Med LN, and lung. (C) 
Representative flow plots of Db/NP368-374-specific CD8+ T cells from the lung in memory (top) and recall infection (bottom) and expression of (D) Ifnγ, 
CD69, and PD1 from Db/NP368-374-specific CD8+ T cells in the spleen and lung of memory and recall. Each point represents an individual mouse from 
9 to 11 mice combined from two independent experiments; error bars are SEM. Significance tested via an unpaired t test, *P < 0.05, **P < 0.01, 
***P < 0.001. Some samples were removed from these groups for technical reasons: too few MHC tetramer + cells, thymus contamination in the Med 
LN, or loss of cells during analysis.
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IAV-specific CD8 T cells and too few tetramer+ CD8 T cells 
in the Med LN for analysis. There was, however, a significant 
increase in Ifnγ expression from Db/NP368-374 tetramer+ CD8 
T cells in the lungs following re-infection (Fig. 7C and D). 
These cells showed some evidence for increased expression of 
CD69 and PD1, although these changes were not significant.

Discussion
Our data demonstrate triphasic in vivo Ifnγ expression fol-
lowing IAV infection. Unconventional T cells and innate 
lymphoid cells were early cytokine producers, prior to the ex-
pansion and infiltration of Ifnγ+ effector CD4 and CD8 T 
cells in secondary lymphoid organs and the lung. After viral 
clearance, Ifnγ levels remained above naïve levels in a number 
of cell types, including adaptive and innate immune cells, for 
at least 40 days.

We examined Ifnγ expression at four different time points 
following infection. Our data identified different populations 
as the largest producers in the antiviral response at different 
times. This was linked with the expansion of first innate and 
then adaptive cells in the lung and draining lymph nodes 
during the infection. We also examined cells at a late memory 
time point, and at day 3 post a re-challenge infection. Very 
early Ifnγ produced by memory CD8 T cells and NK cells has 
been observed in previously infected animals following a re-
peat infection with the same strain of IAV [41]. In our studies, 
we have used two different strains of IAV that do not share 
viral surface proteins and, therefore, cannot be controlled by 
neutralizing antibody. In such heterologous IAV infections, 
enhanced viral control is mainly mediated by T cells that rec-
ognize more conserved internal viral proteins and in mice 
is observed from day 3 post-infection onwards [36–39]. 
Therefore, we focused on a timepoint at which it is likely that 
the memory T cells would be acting to reduce the virus.

Our finding that NK cells provide early Ifnγ expression 
agrees with studies from Stegemann-Koniszewski and Wang 
[6, 42]. We have extended these data by demonstrating that 
NK cells are the dominant producers of Ifnγ during early IAV 
infection, both in terms of numbers of cells and amount of 
cytokine produced. We also provide evidence that NKT cells, 
ILC1s, and γδ T cells also produce Ifnγ early during infec-
tion as other studies have described [7–10]. As expected, large 
numbers of CD4 and CD8 T cells produced Ifnγ at day 10 
post infection [32, 43]. Unexpectedly, we found that a number 
of cell types continued to express Ifnγ at levels above naïve 
animals for at least 40 days. In the Med LN, these included 
CD4 and CD8 αβT cells, NKT cells, NK cells, and ILC1s. In 
all cases, the total numbers of these cells were also higher at 
day 40 post-IAV than in naïve animals suggesting either con-
tinued recruitment to or retention within the lymph node.

While long-term alterations to conventional T cells fol-
lowing viral challenge are to be expected, classically, un-
conventional T cells and innate immune cells do not display 
memory characteristics. This view has been challenged in 
the last 10–20 years, in particular in the fields of NK cells 
and monocytes [44, 45]. In IAV infection studies, Li et al. 
identified protective NK cells in the liver, but not the lung, 
of infected animals [46]. In contrast, Zheng et al. describe an 
alteration to splenic NK cells following IAV infection, leading 
to reduced cytotoxicity and an inability to protect adoptive 
immunodeficient hosts [47]. We found a rapid recruitment of 

cytokine + cells to the lungs following a secondary infection. 
The response may be a result of the increased Ifnγ + NK cells 
in the lymph node after the initial infection. Alternatively, the 
lung CD4 and CD8 T cell response to re-infection could lead 
to enhanced migration of NK cells to the lung. Such collab-
oration between different types of immune cells would dem-
onstrate a coordinated response that would be difficult to 
unpick using traditional single adoptive transfer approaches.

The Ifnγ+ lung CD4 and CD8 T cells were negative for 
the CD45 antibody injected prior to analysis demonstrating 
that these cells are within the lung tissue at this time. At least 
a proportion of these cells may be tissue-resident memory 
(Trm) cells, in particular the CD69+ cells, although CD69 is 
not found in all Trms, especially CD4 Trm cells [48, 49]. CD4 
and CD8 Trm T cells can protect against re-infection with 
IAV, including via IFNγ production [20, 50, 51]. The high 
baseline level of Ifnγ in the CD4 T cells and the rapid increase 
in expression by CD8 T cells suggest ongoing and new cyto-
kine production may both contribute to this protection.

An alternative explanation for the continued elevated expres-
sion of Ifnγ by multiple cell types is that persistent IAV antigens 
fuel a low-level immune response. Studies from Jelly-Gibbs et al. 
and Zammit et al. demonstrate the presentation of IAV antigens 
to CD4 and CD8 T cells respectively for 1–2 months post in-
fection [52, 53]. The continued presentation to conventional T 
cells could drive Ifnγ expression which in turn supports the cy-
tokine production by the unconventional and innate T cells, for 
example, via promoting IL-12 production [54].

Zammit et al. tracked the persistent IAV antigen to the Med 
LN, but we found that T cells in the lung also continued to 
express Ifnγ to day 40 post-infection. Antigen could also be 
retained in the lung, for example, within clusters of immune 
cells [41, 55]. Various APC populations have been implicated 
in presenting antigen to tissue-resident memory cells including 
different dendritic cell populations [56, 57], upper and lower 
airway epithelial cells [58, 59], and lung fibroblasts [60]. 
From our imaging data, we found that Ifnγ+ memory CD4 
and CD8 T cells were located near EpCAM+ airways and 
in the parenchyma. This perhaps suggests that if persistent 
antigen drives this Ifnγ response, a number of different cell 
types could drive this response.

In summary, our data demonstrate triphasic production 
of in vivo Ifnγ production, started by unconventional T cells 
and innate lymphoid cells early in infection, followed by ef-
fector T cells. IAV infection led to a classical T cell memory 
response in the lung, but also increases in Ifnγ+ ILC1, NK, and 
NKT cells in the draining lymph node, suggesting memory-like 
phenotypes. These novel findings identify different sources and 
localization of Ifnγ following viral infection that may impact 
on subsequent infections and improve our understanding of the 
generation of both classical and non-classical immune memory.
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Supplementary data are available at Discovery Immunology 
online.
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