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A B S T R A C T   

Observational studies consistently disclose brain imaging-derived phenotypes (IDPs) as critical markers for early 
diagnosis of both brain disorders and cardiovascular diseases. However, it remains unclear about the shared 
genetic landscape between brain IDPs and the risk of brain disorders and cardiovascular diseases, restricting the 
applications of potential diagnostic techniques through brain IDPs. Here, we reported genetic correlations and 
putative causal relationships between 921 brain IDPs, 20 brain disorders and six cardiovascular diseases by 
leveraging their large-scale genome-wide association study (GWAS) summary statistics. Applications of Men-
delian randomization (MR) identified significant putative causal effects of multiple region-specific brain IDPs in 
relation to the increased risks for amyotrophic lateral sclerosis (ALS), major depressive disorder (MDD), autism 
spectrum disorder (ASD) and schizophrenia (SCZ). We also found brain IDPs specifically from temporal lobe as a 
putatively causal consequence of hypertension. The genome-wide colocalization analysis identified three 
genomic regions in which MDD, ASD and SCZ colocalized with the brain IDPs, and two novel SNPs to be 
associated with ASD, SCZ, and multiple brain IDPs. Furthermore, we identified a list of candidate genes involved 
in the shared genetics underlying pairs of brain IDPs and MDD, ASD, SCZ, ALS and hypertension. Our results 
provide novel insights into the genetic relationships between brain disorders and cardiovascular diseases and 
brain IDP, which may server as clues for using brain IDPs to predict risks of diseases.   

1. Introduction 

Brain imaging-derived phenotypes (IDPs) are measured non- 
invasively using magnetic resonance imaging (MRI) (Miller et al., 
2016), and can potentiate the early diagnosis of brain disorders (Gong 

et al., 2021) and cardiovascular disease (McCracken et al., 2022). A 
previous study has found that adults with autism spectrum disorder 
(ASD) showed thicker frontal cortices compared with adult control 
subjects (Boedhoe et al., 2020). Fractional anisotropy (FA) has been 
found to be significantly lower in the corpus callosum and posterior 
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thalamic radiation regions of the brain in BID patients than among 
controls (Sarıçiçek et al., 2016). Interestingly, microstructural alter-
ations in the brain have been found to be associated with cardiovascular 
disease (Sarıçiçek et al., 2016) whilst white matter hyperintensities have 
been found to be associated with the progression of hypertension 
(Hajjar et al., 2011). In addition, sleep traits have been linked to brain 
size (Vreeker et al., 2021) whilst insomnia has been associated with the 
right angular gyrus (Wei et al., 2019). Taken together, these studies have 
provided a considerable body of evidence to support the contention that 
IDPs are phenotypically associated with the risk of psychiatric, neuro-
logical, cardiovascular and sleep traits. However, the precise nature of 
the genetic relationships between IDPs and these disorders is still far 
from clear. 

A number of genetic studies have been performed to identify variants 
associated with IDPs. Elliott et al. employed a genome-wide association 
study (GWAS) to reveal genetic variants associated with three MRI 
markers of brain disorders (Elliott et al., 2018). More recently, Smith 
et al. presented an open resource of GWAS summary statistics of 3144 
brain IDPs (Smith et al., 2021). Using these large-scale GWAS summaries 
of brain IDPs, researchers have made strenuous efforts to develop 
methods for detecting brain features associated with both behavioral 
and neuropsychiatric traits (Liang et al., 2022). Meanwhile, the growing 
number of published GWAS over the past two decades has stimulated the 
emergence of an increasing number of methods for detecting cross-trait 
shared genetic architecture based on GWAS summary statistics. Thus, 
the linkage disequilibrium score (LDSC) statistic was presented by 
Bulik-Sullivan et al. as a means to estimate single nucleotide poly-
morphism (SNP)-based genetic correlations between traits (Bulik-Sulli-
van et al., 2015a). Mendelian randomization (MR) has been proposed as 
a means to measure the putatively causal relationship between traits. 
The basic concept of MR is to use genetic variants as instruments to 
mimic a random allocation procedure in randomized controlled trials, 
thereby avoiding issues of confounding and reverse causation (Emdin 
et al., 2017). The approach to identify the shared genetic etiology across 
multiple traits is colocalization analysis, such as HyPrColoc (Foley et al., 
2021) and COLOC (Giambartolomei et al., 2014a). The purpose of 
colocalization analysis between traits is to identify variants associated 
with multiple traits (Foley et al., 2021). These variants may be causal 
according to the hypothesis of the colocalization analysis (Giambarto-
lomei et al., 2018). 

By using these approaches and datasets, researchers have achieved 
considerable success in terms of increasing our understanding of the 
shared genetic architecture between traits (Giambartolomei et al., 
2014a; Giambartolomei et al., 2018; May-Wilson et al., 2022), in so 
doing providing us with novel biomarkers with which to assess disease 
risk or to design new therapeutic approaches. A recent study revealed 
genetic correlations between food preferences and brain IDPs by using 
GWAS summary statistics of 2329 IDPs [including brain functional MRI 
(fMRI)-related IDPs] (May-Wilson et al., 2022). Another study (Guo 
et al., 2022) used GWAS summary data to identify putatively causal 
relationships between 587 IDPs (excluding brain fMRI-related IDPs) and 
psychiatric disorders. Zhao et al. (2021) discovered many common 
variants associated with white matter features as well as neuropsychi-
atric disorders. Efforts have also been made to identify the genetic 
relationship between IDPs and Alzheimer disease (Knutson and Pan, 
2020). However, as yet, no studies have been performed to identify the 
causal relationships between IDPs and neurological, psychiatric, and 
sleep traits and cardiovascular diseases, or the shared etiologies between 
them and IDPs. 

In this study, we leveraged large-scale GWAS summary statistics and 
applied linkage disequilibrium score regression (LDSC) to estimate the 
genetic correlation between 921 IDPs and 26 disorders, including 8 
psychiatric disorders, 6 neurological disorders, 6 cardiovascular dis-
eases and 6 sleep traits. The genetic relationships between the brain IDPs 
and these disorders were detected by MR and colocalization analysis. 
Additionally, we identified pleiotropic genes associated with the 

disorders and brain IDPs by gene-based genome-wide association study 
and pleiotropy testing. This study provides evidence for causal re-
lationships between eight IDPs and the risks of four psychiatric disorders 
and one cardiovascular disease. These IDPs represent potentially novel 
biomarkers for the early-stage diagnosis, prevention and monitoring of 
these disorders. Further, this study offers new insights into the shared 
genetic mechanisms underlying the relationship between the IDPs and 
the diseases through pleiotropic gene analysis. A schematic overview of 
the design of this study is depicted in Fig. 1. 

2. Methods 

2.1. Overview of the study 

Fig. 1 depicts the overall design of this study. The study itself com-
prises five modules. (1) We collected GWAS summary statistics of 921 
brain IDPs (Smith et al., 2021), and the GWAS summary statistics of 8 
psychiatric disorders, 6 neurological disorders, 6 cardiovascular dis-
eases and 6 sleep traits from the Psychiatric Genomics Consortium (PGC) 
and NHGRI-EBI GWAS Catalog data (MacArthur et al., 2017). (2) We 
analyzed the genetic correlations between the IDPs and these disorder-
s/diseases (rgIDP-dis) by LDSC. (3) We investigated whether the genetic 
correlations (rgIDP-dis) between them were sufficient to account for the 
genetic correlations (rg-dis-dis) between the disorders. (4) We evaluated 
the putative causal relationships between the brain IDPs and the disor-
ders by MR analysis. We further used colocalization analysis to identify 
the causal SNPs associated with brain IDPs and the disorders. (5) To 
identify the shared genetic mechanisms of the disorders and IDPs, we 
performed gene-level genome-wide association analysis. Below are the 
details describing the methods used in each module. 

2.2. Data resources 

GWAS summary statistics for 26 brain disorders and cardiovascular 
diseases were collected from the Psychiatric Genomics Consortium 
(PGC) and NHGRI-EBI GWAS Catalog data (MacArthur et al., 2017) 
(Supplementary Table 1), with sample sizes ranging from 10,240 to 977, 
323. These disorders included 8 psychiatric disorders (major depressive 
disorder, bipolar disorder, autism spectrum disorder, schizophrenia, 
attention deficit hyperactivity disorder, post-traumatic stress disorder, 
panic disorder and anorexia nervosa), 6 neurological disorders (stroke, 
Parkinson disease, Alzheimer disease, multiple sclerosis, amyotrophic 
lateral sclerosis and epilepsy), 6 cardiovascular diseases (coronary 
atherosclerosis, angina pectoris, hypertension, myocardial infarction, 
cardiac hypertrophy and heart failure) and 6 sleep traits (insomnia, 
narcolepsy, sleep apnea, waking too early, sleeping too much and 
trouble falling asleep). We selected these disorders and diseases because 
they are common in the population and have available GWAS summary 
data based on large sample size (>100,00). 

A total of 921 publicly available GWAS summary statistics of brain 
IDPs (Supplementary Table 2), generated from 33,224 individuals, were 
also downloaded from the Oxford Brain Imaging Genetics Server-BIG40 
(https://open.win.ox.ac.uk/ukbiobank/big40/) (Smith et al., 2021). 
The GWAS summary statistics of these 921 IDPs included 776 structural 
MRI features and 145 diffusion MRI features. These MRI measures 
covered the cerebral cortex, subcortical regions and white matter tracts. 
All GWAS summary statistics were European-based and processed after 
excluding non-biallelic SNPs, SNPs with strand-ambiguous alleles, 
duplicated SNPs, SNPs that were not identified by the 1000 Genomes 
Project European reference, SNPs located in the major histocompati-
bility complex (MHC) region (chromosome 6: 28.5–33.5 Mb) and SNPs 
with a minor allele frequency (MAF) < 0.01. In this study, we only 
considered structural MRI and diffusion MRI-related IDP, while most 
IDPs are resting-state functional MRI-related (n>1700). The reason why 
we did not include resting-state functional MRI-related IDPs is that they 
usually involve multiple brain regions and their genetic correlations to 
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disorder is relatively complex. 

2.3. Linkage disequilibrium score regression 

LDSC is used to estimate genetic correlations between traits based on 
GWAS summary statistics (Bulik-Sullivan et al., 2015b). The genetic 
correlations between the disorders and the IDPs were estimated by 
cross-trait LDSC. The European-ancestry population of 1000 Genomes 
Project Phase 3 was used as the reference panel for the analysis 
(Bulik-Sullivan et al., 2015a). Then, LDSC was performed, under a 
weighted linear model, by regressing the product of Z-statistics of two 
traits with the LD scores of the genome-wide SNPs. The significant ge-
netic correlations were determined with P < 0.05. 

2.4. Estimating genetic correlations between the brain disorders and 
cardiovascular diseases according to their correlations with brain IDPs 

The cross-trait LDSC was firstly used to estimate the genetic corre-
lations between the brain disorders/cardiovascular diseases and the 
IDPs (rgIDP-dis), as well as the genetic correlations between the brain 
disorders and the cardiovascular diseases (rg-dis-dis). Then, we wonder 
whether the genetic correlations between the brain disorders and the 
cardiovascular diseases could be explained proportionally by their cor-
relations with brain IDPs. We estimated the Pearson correlation co-
efficients (PCC) of rgIDP-dis for each pair of disorders/diseases, termed 
PCCdis-IDP-dis for the brain IDPs with significant genetic correlations with 
disorders (P rgIDP-dis <0.05). 

Then, we employed the random skewers method in the R packges 

Fig. 1. Schematics for the genetic analysis of 
relationships between IDPs and brain disorders. 
Step 1. GWAS summary statistics of 921 IDPs 
include 776 structural magnetic resonance im-
aging (MRI) features and 145 diffusion MRI 
features distributed in cerebral cortex, subcor-
tical regions and white matter tracts, and the 
GWAS summary statistics of diseases include 8 
psychiatric disorders, 6 neurological disorders, 
6 cardiovascular diseases and 6 sleep traits, 
which were downloaded from the Psychiatric 
Genomics Consortium (PGC) or the NHGRI-EBI 
GWAS Catalog. Step 2. Analysis of genetic 
correlations between the IDPs and the brain 
disorders/cardiovascular diseases (rgIDP-dis) by 
LDSC. Step 3. To investigate whether the ge-
netic correlations between the disorders and 
IDPs were able to account for the genetic cor-
relations between disorders, the Pearson corre-
lation coefficient (PCC) was calculated between 
the rgIDP-dis of all pairs of disorders. Step 4. We 
evaluated the putative causal relationships be-
tween the brain IDPs and the disorders by 
Mendelian Randomization (MR) analysis. We 
further used colocalization analysis to identify 
the causal SNPs associated with brain IDPs and 
the disorders. Step 5. To identify the shared 
genetic mechanisms between the disorders and 
IDPs, we performed gene-level genome-wide 
association analysis by MAGMA, and a gene- 
level pleiotropic test by PLACO.   
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“phytools” and ‘unifcorrmat’ (Revell, 2012) to estimate the similarity 
between PCCdis-IDP-dis matrix and rg-dis-dis matrix. The random skewed 
method has been widely used to estimate the similarity between two 
matrices (Cheverud, 1996). It calculates the vector correlation between 
the response vectors produced from the same set of random selection 
vectors applied to each matrix, using the Lande equation. Specifically, 
this method involves multiplying a matrix by many random vectors 
drawn from a uniform distribution over all possible vector directions 
and then measure the vector correlation between the response. The 
comparisons are usually made using the average angle (or cosine) of the 
response vectors to an a priori vector or to the response vectors corre-
sponding from another matrix. 

2.5. Mendelian randomization (MR) analysis 

Multiple MR models were applied to investigate the putative causal 
relationships between brain IDPs and brain disorders/cardiovascular 
diseases with a nominally significant genetic correlation. MR evaluates 
the causal effect of a risk factor (i.e., exposure) on a target trait (i.e., 
outcome) using exposure-associated genome-wide significant genetic 
variants as instruments, assuming that the instrumental genetic variants 
have causal effects on the outcome only through the exposure. However, 
causal relationship may be confounded by the presence of horizontal 
pleiotropy, referring to the situation that instrumental SNPs affect the 
outcome via a non-causal pathway. To distinguish causality from hori-
zontal pleiotropy, multiple MR models were applied, which are based on 
different assumptions on horizontal pleiotropy, including inverse 
variance-weighted (IVW), MR-Egger, weighted mode, weighed median, 
and generalized summary data-based Mendelian randomization 
(GSMR). IVW integrates the GWAS effect ratios of instrumental SNPs 
and uses a weighted linear regression to calculate the causal estimate 
without correcting horizontal pleiotropy (Burgess et al., 2016). 
MR-Egger is a simple modification of IVW through the addition of an 
intercept term that captures the non-zero (weighted) average pleiotropic 
effect (Bowden et al., 2015). The weighted mode model calculates the 
causal effect from the most frequent instrumental SNPs, which loosens 
the assumption of the weighted median model (i.e., pleiotropy occurs in 
less than half of instrumental SNPs) (Hartwig et al., 2017). The weighted 
median model measures the causal effect using the weighted median of 
the SNP ratio to reduce the impact from pleiotropic SNPs (Bowden et al., 
2016). GSMR assumes the presence of uncorrelated pleiotropy and ex-
cludes such effects by outlier removal using the heterogeneity inherent 
in the dependent instrument (HEIDI) approach (Zhu et al., 2018). The 
MR analyses were performed by R packages “TwoSampleMR” (version 
0.5.5) and “GSMR” (version 1.0.9). For these five MR methods, we 
selected instrumental SNPs with GWAS P < 5 × 10−8, and clumped with 
LD r2

<0.05 within a 1Mb window using PLINK 1.9 (Purcell et al., 2007) 
according to the same 1000 Genomes Project reference described above 
(Bulik-Sullivan et al., 2015a). In order to ensure that there are no 
common causes of the genetic variant(s) and the outcome of interest, we 
removed SNPs associated with confounders that interfere with the 
pathway between brain structures and psychiatric disorders. We 
considered four potential confounders, including education, drinking 
and smoking behavior. These traits have been reported by previous 
studies to influence both psychiatric disorders (Gurillo et al., 2015; 
Schneider et al., 2014) and alterations of brain structure (Noble et al., 
2015; Li et al., 2021). We obtained 2273 exposure-outcome pairs with 
the number of instrumental SNPs (SNPs robustly associated with the risk 
factor/exposure of interest) larger than 5. A significant causal rela-
tionship was determined if the P-value surpassed the 
Bonferroni-corrected significance level (i.e., P < 0.05/2273 = ~2.20 ×
10−5). We also conducted MR-PRESSO (Mendelian randomization 
pleiotropy residual sum and outlier) test (Verbanck et al., 2018) to 
detect whether there was an independent pathway between the genetic 
variants and the outcome other than through the exposure. P-value 
larger than 0.05 was regarded as no horizontal pleiotropy in the 

statistical significance test. 

2.6. Colocalization analysis 

Colocalization analysis was performed to assess whether the brain 
disorders/cardiovascular diseases and brain IDP share common genetic 
causal variants in a genomic region. We implemented colocalization 
analysis by using COLOC (Giambartolomei et al., 2014b) to detect 
shared causal SNPs between the two traits. COLOC assumes at most one 
association per trait in a test region and uses Approximate Bayes Factor 
computation to generate posterior probabilities (PP) of all possible 
configurations between two traits: 1) H0: no association with either 
trait; 2) H1: association with trait 1, not with trait 2; 3) H2: association 
with trait 2, not with trait 1; 4) H3: association with trait 1 and trait 2, 
two distinct SNPs; 5) H4: association with trait 1 and trait 2, one shared 
SNP. The PP of each configuration is respectively denoted by PP0, PP1, 
PP2, PP3, and PP4. A large PP4 (e.g., PP4 > 90%) was considered to be 
strong support for colocalization in the original method publication 
(Giambartolomei et al., 2014b), which indicated a shared variant be-
tween disorder and brain IDP. Genomic regions were defined within 
100 kb of the instrumental SNP variables. We set the prior probability of 
each SNP that is causal to either of the traits to 1  × 10−4 (i.e. one in 10, 
000 SNPs in the genome are causal to either trait) and causal to both 
traits to 1 × 10−6 (i.e. one in 100 SNPs in the genome causal to one trait 
are causal to both traits). SNPs with the maximum PP4 are most likely to 
be causal to both two traits, and are thus selected as the candidate causal 
SNPs. 

2.7. Gene-based association analysis and pleiotropic analysis 

Next, Multi-marker Analysis of GenoMic Annotation (MAGMA) (de 
Leeuw et al., 2015) was applied to detect candidate genes associated 
with specific pairs of brain IDPs and brain disorders/cardiovascular 
diseases. MAGMA converts GWAS-based SNP-level associations into 
gene-level associations using a multiple regression method to incorpo-
rate linkage disequilibrium (LD) between variants and to discover 
multi-variant effects. The 1000 Genomes Project European-based LD 
reference panels were utilized to correct LD structure. We defined the set 
of SNPs as those located within a given gene according to the annotation 
file provided by https://ctg.cncr.nl/software/magma. For each gene, 
MAGMA provided a P value to evaluate its association with the disorder. 
If FDRMAGMA < 0.05 in MAGMA test, the gene was considered to be 
significantly associated with the trait. 

The P value provided by the MAGMA analysis was converted into Z 
statistics. Employing these transformed Z statistics, we applied a method 
called Pleiotropic Analysis under Composite Null Hypothesis (PLACO) 
(Ray and Chatterjee, 2020) to carry out the pleiotropy analysis. PLACO 
is used to identify pleiotropic loci between two traits by testing the 
composite null hypothesis that a locus is associated with zero or one of 
the traits. We extended it here in order to discover pleiotropic associa-
tions between traits at the gene level. PLACO examines the associations 
of one gene with two traits according to Z-statistics and divides the 
composite null hypothesis of pleiotropy into three null sub-hypotheses: 
the gene is associated with the first disorder but not the second; the gene 
is associated with the second disorder but not the first; and the gene is 
not associated with either of the two disorders. The alternative hy-
pothesis is that the gene is associated with both disorders, corresponding 
to a pleiotropic association. The P values of MAGMA and PLACO were 
corrected by false discovery rate (FDR). If FDRPLACO<0.05, the gene was 
considered to be a pleiotropic gene associated with two traits. For the 
IDP that is genetically co-associated with two traits, A and B, we ob-
tained two sets of pleiotropic genes, A-IDP and B-IDP by conducting 
PLACO. Then, we applied hypergeometric distribution to check the 
significance of the overlap of the two pleiotropic gene sets. The signif-
icance is based on the Bonferroni-corrected P (i.e., less than 0.05/53 
disorder-disorder pairs with pleiotropic gene overlap ≈9.43 × 10−4). 
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3. Results 

3.1. Genetic correlations between brain IDPs and brain disorders/ 
cardiovascular diseases 

We used cross-trait LDSC to estimate the genetic correlation between 

921 brain IDPs and 26 brain disorders/cardiovascular diseases. A total of 
2171 pairs of brain IDPs and brain disorders/cardiovascular diseases 
were estimated with a nominally significant rg (P<0.05), ranging from 
−0.75 to 0.83 (Supplementary Table 3 and Supplementary Figure 1A). 
Fig. 2A shows the numbers of IDPs genetically correlated (P<0.05) with 
the disorders, where narcolepsy (NAR) was genetically correlated 

Fig. 2. The genetic correlations between IDPs and various disorders/diseases. A. The numbers of IDPs genetically correlated (P<0.05) with 26 disorders. B. The brain 
region distribution of IDPs that are genetically correlated with the psychiatric disorders, neurological disorders, cardiovascular diseases and sleep traits. “*” indicates 
Binomial test P<0.05/72 [72 is the number of tests (4 disorder categories × 18 brain regions)]. 
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(P<0.05) with 204 IDPs, followed by anorexia nervosa (AN, 160 IDPs), 
major depressive disorder (MDD, 150 IDPs) and stroke (STR, 145 IDPs). 
The genetic correlations between the brain disorders/cardiovascular 
diseases and the IDPs in 18 brain regions are shown in Supplementary 
Figure 1B-F. Among them, four pairs of brain IDPs and disorders sur-
passed the Bonferroni significance level (P < 0.05/921 = ~5.43 ×
10−5): mean fractional anisotropy (FA) in posterior right corona radiata 
and narcolepsy (rg = 0.54; P = 1.23 × 10−5), mean intra-cellular volume 
fraction (ICVF) in posterior left thalamic radiation and narcolepsy (rg =
0.51; P = 3.77 × 10−5), mean isotropic or free water volume fraction 
(ISOVF) in superior left longitudinal fasciculus and stroke (rg = −0.46; P 
= 2.27 × 10−5), and mean ICVF in genu of corpus callosum and major 
depressive disorder (rg = 0.15; P = 4.34 × 10−5). 

We also found that psychiatric disorders were more likely to genet-
ically correlate with brain IDPs from the whole brain (Binomial test P =
1.92 × 10−6), corona radiata (Binomial test P = 1.76 × 10−4) and corpus 

callosum (Binomial test P = 2.31 × 10−4), compared to other regions 
(Fig. 2B). In similar vein, cardiovascular diseases were more likely to 
genetically correlate with the brain IDPs from corona radiata (Binomial 
test P = 3.58 × 10−11), capsule (Binomial test P = 7.16 × 10−7) and 
whole brain (Binomial test P = 1.42 × 10−4), compared to other regions. 

3.2. Genetic correlations between the brain disorders and cardiovascular 
diseases explained by their correlations with brain IDPs 

Next, we explored whether the genetic correlations between the 
brain disorders and cardiovascular diseases could be explained propor-
tionally by their correlations with brain IDPs. The absolute value of rg 
(Prg <0.05) between brain IDPs and the disorders are ranged from 0.077 
to 0.832 (Supplementary Figure 1C). We examined the skewness of the rg 
distribution for each disorder by Kolmogorov-Smirnov Test, and found rg 
distribution does not have significant skewness (P>0.05). Thus, it is 

Fig. 3. Genetic correlations between disorders/diseases explained by the genetic correlations between the disorders/diseases and IDPs. A. The Pearson correlation 
coefficients (PCCdis-IDP-dis) of the rgIDP-dis (genetic correlations between IDPs and disorders) across disorders. “*” indicates Ppcc < 0.05/ (13×25). B. Distribution of 
PCCdis-IDP-dis for the disorders from the same categories. C. Distribution of PCCdis-IDP-dis for the disorders from the different disorder categories. “*” indicates 0.001<t- 
test P<0.05; “**” indicates t-test P<0.001. D. The Pearson correlation coefficients of PCCdis-IDP-dis and rg-dis-dis (genetic correlations between disorders). X-axis: rg-dis-dis; 
Y-axis: PCCdis-IDP-dis. PSY: psychiatric disorder; CAR: cardiovascular disease; NEU: neurological disorder; SLE: sleep trait. 
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reasonable to use PCC in estimating the correlations between rgIDP-dis. We 
estimated the Pearson correlation coefficients (PCC) of rgIDP-dis for each 
pair of disorders/diseases, termed PCCdis-IDP-dis (Supplementary Table 4). 
Here, rgIDP-dis is the genetic correlation between one IDP and one disor-
der/disease, which is estimated by LDSC. As shown in Fig. 3A, we 
identified 81 (81/118, 68.6%) pairs that exhibited a positive correlation 
(PCCdis-IDP-dis > 0 and Ppcc < 0.05/325 = ~1.54  × 10−4) with an average 
of PCCdis-IDP-dis of 0.28, and 37 pairs that displayed a negative correlation 
(PCCdis-IDP-dis < 0 and Ppcc < 0.05/325 = ~1.54 × 10−4). When we 
compared the PCCdis-IDP-dis values that were estimated based on the 
disorders/diseases from the same disorder/disease category (Fig. 3B), 
we observed that the PCCdis-IDP-dis values of the cardiovascular diseases 
(average PCCdis-IDP-dis = 0.55; t-test P = 5.34 × 10−8) and the psychiatric 
disorders (average PCCdis-IDP-dis = 0.31; t-test P = 2.30 × 10−3) were 
significantly higher than the other two disorder categories (neurological 
disorders and sleep traits). Intriguingly, all the cardiovascular diseases 
exhibit positive correlations with PCCdis-IDP-dis, ranging from 0.21 to 
0.79. When we examined the PCCdis-IDP-dis values of disorders from 
different disorder categories (Fig. 3C), we found that the neurological 
and psychiatric disorders exhibited the highest average value (average 
PCCdis-IDP-dis = 0.25) compared to others. We additionally used 
Spearman correlation (SPC) coefficient to estimate the correlations be-
tween rgIDP-dis, and found 107 pairs that exhibited a significant correla-
tion (Pspc < 0.05/325 = ~1.54 × 10−4 and Ppcc < 0.05/325 = ~1.54 ×
10−4), consistent with the Pearson correlation result (Supplementary 
Table 4). 

We further checked whether PCCdis-IDP-dis values significantly corre-
lated with rg-dis-dis (genetic correlations between two disorders/diseases). 
Using the random skewers approach (Rohlf, 2017), we found that the 
PCCdis-IDP-dis matrix was significantly (r = 0.73, P < 0.01) correlated to 
the matrix of rg-dis-dis. In addition, we estimated PCC between PCCdi-
s-IDP-dis and rg-dis-dis of 51 genetically correlated (P<0.05/325 = ~1.54 ×
10−4) disorders/disease pairs, and found the PCC reached 0.63 (P =
7.24 × 10−7) (Fig. 3D), indicating that disorders/diseases sharing sig-
nificant genetic associations tend to have similar genetic correlations 
with IDPs. 

Considering that many IDPs are from the same brain regions using 
different imaging techniques, we examined if the rg between IDPs from 
the same brain regions and disorders are highly correlated. Firstly, we 
examined if the rg between IDPs from the same brain regions and dis-
orders are highly correlated. The average of the absolute value of PCC is 
0.60 (absolute value of PCC ranged from 0.43 to 0.95 and including 96 
pairs with Ppcc < 0.05/325 = ~1.54 × 10−4) significantly higher (Pt-test =
1.27 × 10−3) than the average of the absolute value of PCC 0.43 (ab-
solute value of PCC ranged from 0.23 to 0.79 and including 118 pairs 
with Ppcc < 0.05/325 = ~1.54 × 10−4) obtained using IDPs from the 
different brain regions. Thus, although the IDPs from the same brain 
regions have higher correlations (PCC) in rg between IDPs and disorders, 
using the IDPs from the different brain regions to calculate PCC still 
shows consistent result with using IDPs from the same brain regions. 

3.3. Putative causal relationships among brain IDPs, brain disorders and 
cardiovascular diseases 

Afterwards, we applied multiple MR models to investigate whether 
the nominally significant rg between specific pairs of brain IDPs and 
brain disorders/cardiovascular diseases could be explained by causality 
or horizontal pleiotropy. The quality control of the GWAS summary 
statistics yielded 2273 exposure-outcome pairs (including 1404 IDP- 
disorder pairs and 869 disorder-IDP pairs, considering two causal di-
rections) with the number of instrumental SNPs larger than 5, including 
1527 pairs with more than 10 instrumental SNPs. The results of MR 
analysis are shown in Supplementary Table 5–6. No horizontal pleiot-
ropy was found by using the global test of MR-PRESSO (Supplementary 
Table 7). 

We identified statistically significant (P<0.05/2273 = ~2.20 ×

10−5) and putative causal effects of four IDPs in relation to the brain 
disorders. As shown in Fig. 4A, the mean orientation dispersion index 
(ODI) in right cerebral peduncle was identified as having a putatively 
causal effect on ALS (IVW OR = 0.80, 95% CI: 0.72 to 0.89, P = 1.93 ×
10−5). We found that a per standard deviation (s.d.) decrease of the ODI 
in right cerebral peduncle was associated with a ~20% increase in ALS 
risk. A reduced ODI appears to imply a reduction in the complexity of 
dendrites and axons. This supports the notion that loss of motor neuron 
axon density is a core feature of the neurodegenerative process associ-
ated with ALS, consistent with previous pathological studies (Broad 
et al., 2019; Kamagata et al., 2021). Another IDP, the volume of lateral 
posterior (LP) nucleus of the thalamic nuclei in the left hemisphere, was 
found to have a putatively causal effect on MDD (IVW OR = 1.22, 95% 
CI of 1.11 to 1.35, P =1.93 × 10−5), suggesting that a 1 s.d. increase of 
the volume of LP nucleus of the thalamic nuclei in the left hemisphere 
leads to a 22% increase in MDD risk (Fig. 4A). For ASD, we identified the 
mean intracellular volume fraction (ICVF) value of the superior 
fronto-occipital fasciculus in the right hemisphere as a putatively causal 
effect on ASD, suggesting that an increase of 1 s.d. in the ICVF value of 
the superior fronto-occipital fasciculus in the right hemisphere is asso-
ciated with a 31% higher risk of ASD (IVW OR = 1.31, 95% CI of 1.17 to 
1.46, P = 1.49 × 10−6). The fronto-occipital fasciculus is known to play 
a role in the control of neuropsychological behavior (D et al., 2021). 
Moreover, the increased ICVF appears to imply a reduction in the 
complexity of neurite density, which supports the notion that ASD is 
associated with the loss of motor neurite density (DiPiero et al., 2023). 
In addition, the volume of cerebellar white matter in the right hemi-
sphere was found to have a putatively causal effect on increased SCZ risk 
with an estimated OR of 1.54 (95% CI 1.30–1.81, P = 3.38 × 10−7) 
(Fig. 4A). This is consistent with the observation that cerebellar white 
matter activity is a contributory factor to schizophrenia pathology 
(Yang et al., 2020; Papiol et al., 2014). 

We also identified putative causal effects of hypertension (HBP) on 
four brain IDPs relate to the temporal lobe (superior, middle and infe-
rior), with IVW P ranging from 1.11 × 10−6 to 2.18 × 10−5 (Fig. 4B). 
Temporal lobe is most commonly associated with processing auditory 
information and with the encoding of memory. Higher risk of hyper-
tension was associated with decreased volume of the superior temporal 
lobe (IVW OR = 0.80, 95% CI of 0.73 to 0.89, P = 1.39 × 10−5), 
decreased thickness of the inferior temporal lobe (IVW OR = 0.79, 95% 
CI of 0.71 to 0.88, P = 1.88 × 10−5), decreased thickness of the middle 
temporal lobe (IVW OR = 0.81, 95% CI of 0.75 to 0.88, P = 1.11 ×
10−6) and inferior temporal lobe (IVW OR = 0.80, 95% CI of 0.73 to 
0.89, P = 2.18 × 10−5 ). Our result suggests that hypertension might be 
associated with reduced hippocampal connectivity and impaired mem-
ory. Fig. 4C summarizes the brain structure categories associated with 
the IDPs that exhibit putatively causal relationships with various dis-
orders. The results of MR analysis which were based on fewer than 10 
instrumental SNPs are shown in Supplementary Figure 4. 

When we performed phenotypic association analysis (using logistic 
regression adjusted by age and sex) between four disorders (ASD, SCZ, 
MDD and ALS) and IDPs by using 37,224 samples from UK-biobank, we 
have not found the strong correlations (ASD: effect size = 1.37, P = 3.93 
× 10−1; SCZ: effect size = 1.64, P = 1.21 × 10−2; MDD: effect size =
1.33, P = 5.14 × 10−2; ALS: effect size = 0.33, P = 6.23 × 10−2;). The 
underlying reason may due to the limited number of cases (12 ASD 
patients; 53 SCZ patients; 37 MDD patients; 25 ALS patients) in UK- 
Biobank. Further enlarging sample size is required in the to reveal the 
phenotypic correlations between ALS and ODI. 

3.4. Colocalization analysis for brain IDPs, brain disorders and 
cardiovascular diseases 

Although the MR analysis supports the casual relationships between 
brain IDPs and brain disorders/cardiovascular diseases, whether there 
are the genetic causal pathways shared between them is unknown. For 
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Fig. 4. Mendelian Randomization analysis to investigate the causal relationships between IDPs and various disorders/diseases. A. Forest plot showing the putative 
causal effects of IDPs on the disorders/diseases. B. Forest plot showing the putative causal effects of hypertension on the IDPs. C. Brain anatomical regions of the IDPs 
having putative causal relationships with ALS, MDD, ASD, SCZ and hypertension. ALS: amyotrophic lateral sclerosis; MDD: major depressive disorder; ASD: autism 
spectrum disorder; SCZ: schizophrenia; HBP: hypertension. 
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such purpose, we used COLOC to test shared causal SNPs between brain 
IDPs and brain disorders/cardiovascular diseases, which have shown 
putative causal relationships in MR analysis. The analysis indicated that 
MDD and volume of lateral posterior (LP) nucleus of the thalamic nuclei 

in the left hemisphere are colocalized (PP4 = 0.96) in one region of 
chromosome 7 (Fig. 5A), ASD and mean ICVF of the superior fronto- 
occipital fasciculus in the right hemisphere are colocalized (PP4 =
0.95) in a region of chromosome 17 (Fig. 5B), and SCZ and volume of 

Fig. 5. Colocalization analysis depicting the genomic regions and causal SNPs associated with both the brain IDPs and various disorders/diseases. The x- 
axis shows position within the genome (building Hg19) and y-axis denotes the −log10(P) for the association. Color denotes the LD between different variants. A. The 
colocalization analysis result for MDD and volume of lateral posterior nucleus of thalamus in the left hemisphere (IDP. 0310) indicated the SNP rs853676 (P = 5.13 
× 10−11 GWAS for MDD and P = 3.11 × 10−6 GWAS for IDP. 0310) as a causal SNP associated with MDD and IDP. 0310. B. The colocalization analysis result for ASD 
and mean ICVF in superior fronto-occipital fasciculus (right) (IDP. 1944) indicated the SNP rs199456 (P = 9.42 × 10−7 GWAS for ASD and P = 6.27 × 10−33 GWAS 
for IDP. 1944) as a causal SNP associated with MDD and IDP. 0310. C. The colocalization analysis result for SCZ and volume of cerebellum-white-matter in the right 
hemisphere (IDP. 0210) indicated the SNP rs7969401 (P = 1.59 × 10−5 GWAS for SCZ and P = 4.13 × 10−21 GWAS for IDP. 0210) as a causal SNP associated with 
SCZ and IDP. 0210. MDD: major depressive disorder; ASD: autism spectrum disorder; SCZ: schizophrenia. 
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cerebellar white matter in the right hemisphere are colocalized (PP4 =
0.90) in a region of chromosome 12 (Fig. 5C). The candidate causal SNPs 
in these three colocalized regions are rs853676, rs199456 and 
rs7969401 (Fig. 5A-C), respectively. Among these SNPs, rs199456 and 
rs7969401 have not been reported to be associated with ASD and SCZ, 
previously. The results of colocalization analysis are shown in Supple-
mentary Table 8. 

3.5. Candidate genes involved in the shared genetic mechanisms 
underlying brain IDPs and brain disorders/cardiovascular diseases 

The MAGMA analysis was firstly performed on the brain IDPs and 
brain disorders/cardiovascular diseases that showed putative causal 
relationships. MAGMA analysis identified 20, 64, 150, 0 and 62 genes 
significantly (FDRMAGMA< 0.05) associated with ALS, MDD, ASD, SCZ 
and HBP, respectively. MAGMA analysis also identified 250, 74, 87, 218, 
17, 43, 84 and 3 genes significantly (FDRMAGMA < 0.05) associated with 
eight IDPs (IDP.1991, IDP.0310, IDP.1944, IDP.0210, IDP.0572, 
IDP.1034, IDP.1122 and IDP.1223) (Table S2), which have putative 
causal effects on the disorders/diseases. The full name of each IDP was 
shown in Table S2. We further used Fisher’s exact test to examine the 
significance of the number of shared genes between these disorders/ 
diseases and the brain IDPs. The result indicated that the numbers of 
shared genes between the brain IDP, IDP.1944 (Table S2) and ASD 
(number of shared genes = 31, Fisher’s exact test P = 2.20 × 10−43), and 
between the brain IDP, IDP.0310 and MDD (number of shared genes = 6, 
Fisher’s exact test P = 2.10 × 10−7) are significantly more than the 
expected chance (Fig. 6A-B). The details of the shared genes are shown 
in Supplementary Table 9. 

We further used PLACO to identify the pleiotropic genes associated 
with the brain IDPs and brain disorders/cardiovascular diseases that 
showed the putative causal relationships. We found that 1 pleiotropic 
gene (FDRPLACO < 0.05) between ALS and mean ODI in right cerebral 

peduncle, 36 pleiotropic genes (FDRPLACO < 0.05) between MDD and 
volume of lateral posterior nucleus of the thalamic nuclei in the left 
hemisphere, 42 pleiotropic genes (FDRPLACO < 0.05) between ASD and 
mean ICVF of the superior fronto-occipital fasciculus in the right 
hemisphere, and 1 pleiotropic gene (FDRPLACO < 0.05) between SCZ and 
volume of cerebellar white matter in the right hemisphere (Supple-
mentary Table 10). The PLACO analysis further indicated 34 pleiotropic 
genes between HBP and four IDPs relating to the temporal lobe (Sup-
plementary Table 10). The pleiotropic genes discovered by PLACO 
(Bonferroni correctied P < 0.05) but not by MAGMA were shown in 
Fig. 6C. Notably, two genes (PGBD1 and ZKSCAN4) that are near to the 
candidate causal SNP rs853676 were identified to be the pleiotropic 
genes associated with MDD and the IDP, volume of lateral posterior 
nucleus of thalamus in the left hemisphere in both the MAGMA and 
PLACO analysis. 

Totally, 95 candidate genes were identified as associated with the 
brain IDPs and 5 disorders (ALS, SCZ, MDD, ASD, and HBP) by PLACO 
analysis. To evaluate their enriched functions, we performed KEGG and 
gene ontology (GO) enrichment analyses by Metascape (Zhou et al., 
2019) and KOBAS (Xie et al., 2011) web-based platform. By Metascape, 
the KEGG enrichment analysis shows that these genes are most enriched 
in systemic lupus erythematosus (P = 2.45 × 10−5), Alcoholism (P =

1.10 × 10−4) and Neutrophil extracellular trap formation (P = 1.20 ×
10−4); the gene ontology (GO) enrichment analysis shows the biological 
process (BP) of these pleiotropic genes is remarkably enriched in 
microtubule bundle formation (P = 2.88 × 10−4), axoneme assembly 
(P = 1.86 × 10−3) and regulation of mitotic cell cycle (P = 1.95 × 10−3). 
For the GO cellular component (CC) terms, these genes are concentrated 
in nucleosome (P = 2.04 × 10−4), neuron part (P = 2.33 × 10−3) and 
dendrite (P = 4.36 × 10−3). For the molecular function (MF) categories, 
these genes are enriched in structural constituent of chromatin (P = 7.08 
× 10−4), protein kinase binding (P = 4.27 × 10−3) and acyltransferase 
activity (P = 4.68 × 10−3). However, the FDR adjusted p-values of 

Fig. 6. Pleiotropic genes associated with the brain disorders/cardiovascular diseases and the brain IDPs discovered by MAGMA and PLACO. A. Genes 
(FDRMAGMA< 0.05) simultaneously associated with both the IDP.1944 and ASD, and with both the brain IDP.0310 and MDD. Darker color indicates the higher 
significance evaluated by [− log10(PMAGMA)]. B. Venn diagram to shown the number of shared genes (FDRMAGMA< 0.05) between the between the brain IDP.1944 and 
ASD, and IDP.0310 and MDD. The P-value out the Venn diagram is the Fisher’s exact test result showing the significance of shared genes between the IDPs and the 
diseases. C. The pleiotropic genes (Bonferroni corrected P < 0.05) identified by PLACO as associated with SCZ and IDP.0210, ASD and IDP.1944, MDD and IDP.0310, 
and hypertension (HBP) and IDP.0572 but not by MAGMA. Darker color indicates higher significance [− log10(PPLACO)] of PLACO test on the gene associations 
between the IDPs and the disorders. IDP.0210: Volume of cerebellum-white-matter in the right hemisphere; IDP.1994: Mean ICVF in superior fronto-occipital 
fasciculus (right); IDP.0310: Volume of lateral posterior nucleus of thalamus in the left hemisphere; IDP.0572: Volume of superior temporal in the left hemisphere. 
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pathway enrichment are not significant at 0.05 threshold. By KOBAS, 
the KEGG enrichment analysis shows that these genes are most enriched 
in systemic lupus erythematosus (P = 1.71 × 10−5), Alcoholism (P =

6.93 × 10−5) and Viral carcinogenesis (P = 1.29 × 10−3). The gene 
ontology (GO) enrichment analysis shows the biological process (BP) of 
these pleiotropic genes is remarkably enriched in microtubule bundle 
formation (P = 4.68 × 10−4), G protein-coupled serotonin receptor 
signaling pathway (P = 1.75 × 10−3) and positive regulation of 
DNA-templated transcription (P = 1.87 × 10−3). For the GO cellular 
component (CC) terms, these genes are concentrated in nucleus (P =

7.95 × 10−5), nucleoplasm (P = 5.21 × 10−4) and plasma membrane 
(P = 6.35 × 10−4). For the molecular function (MF) categories, these 
genes are enriched in protein binding (P = 3.70 × 10−14), cAMP binding 
(P = 1.50 × 10−3) and hormone activity (P = 1.64 × 10−3). Only FDR 
adjusted p-values of protein binding (P = 3.70 × 10−14, FDR = 1.73 ×
10−11) reaches the significant threshold (FDR<0.05). We also performed 
PLACO analysis for all the brain IDPs and brain disorders/cardiovascular 
diseases. The results are shown in Supplementary Material. 

4. Discussion 

Observational studies have reported that IDPs are associated with 
various disorders; however, the precise nature of the genetic associa-
tions is still far from clear. In this study, we have investigated the genetic 
correlations and putatively causal relationships between 921 brain IDPs 
and 26 brain disorders and cardiovascular diseases by means of LDSC 
and MR analysis. We identified four brain IDPs with putatively causal 
effects on the neurological disorder, amyotrophic lateral sclerosis (ALS), 
and three psychiatric disorders, major depressive disorder (MDD), 
autism spectrum disorder (ASD) and schizophrenia (SCZ), suggesting the 
brain structure change causing these brain disorders. Moreover, we 
found putatively causal effects of hypertension on four IDPs, indicating 
the influence of hypertension on brain structures. Then, we utilized 
random skewed method to compare the PCCdis-IDP-dis (Pearson correla-
tion coefficients (PCC) of rgIDP-dis for each pair of disorders/diseases) 
matrix with rg-dis-dis (genetic correlations between disorders/diseases) 
matrix. The results indicated that disorders/diseases sharing significant 
genetic associations tend to have similar genetic correlations with IDPs. 
Besides, although the MR analysis supports the casual relationships 
between brain IDPs and brain disorders/cardiovascular diseases, 
whether there are the genetic causal pathways shared between them is 
unknown. For such purpose, we used COLOC to test shared causal SNPs 
between brain IDPs and brain disorders/cardiovascular diseases, which 
have shown putative causal relationships in MR analysis. We further 
explored the shared genetic mechanisms potentially associated with 
both the brain disorders/cardiovascular diseases and the IDPs. Our 
analysis provides important new insights into the genetic background 
underlying these disorders at the imaging level. 

Brain IDPs can be also considered as intermediate phenotypes to 
investigate the genetic correlations between various disorders. Inter-
mediate phenotypes are traits positioned somewhere between genetic 
variation and disease, which represent a target for attempts to find 
disease-associated genetic variants and the shared mechanisms. In our 
study, we used brain IDPs as intermediate phenotypes to explore 
whether they can be a potential risk factor that may affect the outcome 
(i.e. brain disorders/cardiovascular diseases). We also used brain IDPs to 
discover candidate genes involved in the shared genetic mechanisms 
underlying brain disorders/cardiovascular diseases. 

In this study, we identified putatively causal effects of four IDPs on 
psychiatric disorders, ASD, SCZ and MDD. The increase in the mean 
intracellular volume fraction (ICVF) value of the superior fronto- 
occipital fasciculus in the right hemisphere is likely to be a cause of 
ASD (IVW OR = 1.31, 95% CI of 1.17 to 1.46, P =1.49 × 10−6). The 
fronto-occipital fasciculus is known to play a role in the control of 
neuropsychological behavior (D et al., 2021). And the increased ICVF 
appears to imply a reduction in the complexity of neurite density, which 

supports the notion that ASD is associated with the loss of motor neurite 
density (DiPiero et al., 2023). A previous study has also observed higher 
fractional anisotropy in the superior fronto-occipital fasciculus of chil-
dren with ASD than in controls (Cai et al., 2020). For SCZ, we identified 
the volume of cerebellar white matter in the right hemisphere as a pu-
tatively causal effect on this disorder (OR = 1.54, 95% CI 1.30–1.81, P 
= 3.38 × 10−7). Several previous studies have noted that an increased 
volume of cerebellar white-matter, possibly suggesting anomalous 
connectivity, is associated with SCZ (Lee et al., 2007; Kim et al., 2021; 
Klauser et al., 2017). This chimes with the observation that cerebellar 
white matter activity is a contributory factor to schizophrenia pathology 
(Yang et al., 2020; Papiol et al., 2014). Here, we provide genetic evi-
dence to support these findings regarding the relationship between the 
IDPs and SCZ. The increase in the volume of the lateral posterior nucleus 
of thalamus (LP) in the left hemisphere is likely to be a cause of MDD 
(IVW OR = 1.22, 95% CI of 1.11 to 1.35, P =1.93 × 10−5). The LP ap-
pears important for various functions including determining visual sa-
liency, visually guided behaviors and multisensory processing of 
information related to aversive stimuli (Allen et al., 2016). Changes in 
the activity of these sites leads to abnormalities in the perception and 
interpretation of reward valence, in the motivation for behaviors, and in 
subsequent decision-making. Besides, the mean orientation dispersion 
index (ODI) in the right cerebral peduncle was identified as having a 
putatively causal effect on amyotrophic lateral sclerosis (ALS) (IVW 
OR = 0.80, 95% CI: 0.72 to 0.89, P = 1.93 × 10−5). The ODI is used to 
characterize the angular variation of neurites (Zhang et al., 2012a) and 
serves to reflect the severity of neurodegenerative disorders (Vogt et al., 
2020; Zhang et al., 2012b). A reduced ODI appears to imply a reduction 
in the complexity of dendrites and axons (Zhang et al., 2012b). 
Consistent with our own results, previous studies have observed a 
significantly reduced ODI in ALS patients in the right internal capsule 
compared to controls (Broad et al., 2019; Kamagata et al., 2021). 

The MR analysis indicated hypertension to be a likely causal effect on 
four IDPs, the volume and thickness of the superior segment of the 
temporal lobe in the right hemisphere, and the thickness of the middle 
temporal and inferior temporal lobe in the left hemisphere. A previous 
study showed that hypertension affects the structure of the inferior 
temporal lobe (Feng et al., 2020), suggesting that hypertension might be 
associated with reduced hippocampal connectivity and impaired mem-
ory. It has been noted that the volume and thickness of the inferior 
temporal lobe are significantly lower in hypertension patients than in 
controls (Sible et al., 2021) while another study has observed that the 
hypertension is associated with the structure of the middle temporal 
lobe (Sible and Nation, 2022). Here, we have provided genetic evidence 
for the causal effects of hypertension on the temporal lobe structure in 
both left and right hemispheres. 

Fig. 4C summarized the brain structures associated the IDPs having 
causal relationships with the disorders. Briefly, the IDP associated with 
the right cerebral peduncle has a putatively causal effect on ALS. The 
IDP associated with the volume of lateral posterior (LP) nucleus of the 
thalamus, was found to have a putatively causal effect on MDD (Fig. 4C). 
Further, we identified the ICVF of the superior fronto-occipital fascic-
ulus in the right hemisphere as a putatively causal effect on ASD. The 
IDP corresponding to the volume of right cerebellar white matter has a 
putatively causal effect on increased SCZ risk (Fig. 4C). Finally, hyper-
tension was identified as having a putatively causal effect on the IDPs in 
the temporal lobe (superior, middle and inferior) (Fig. 4C), part of the 
brain which is associated with processing auditory information. 

This study set out to investigate the genetic correlations between 
various disorders. As was to be expected, we found that the disorders 
from the same category exhibited stronger genetic correlations than the 
disorders from different categories. Interestingly, we found that stroke 
was genetically correlated with all the cardiovascular diseases (CA, AP, 
HBP, MI, CH and HF) investigated in this study (Supplementary 
Figure 3A). Moreover, the genetic correlations (rgIDP-STR) between stroke 
and the IDPs were also significantly correlated with rgIDP-dis between the 
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cardiovascular diseases and the IDPs (Fig. 3A), suggesting that the IDP 
measures for the cardiovascular diseases may also have the potential to 
characterize stroke. 

We also found that stroke was genetically correlated with the psy-
chiatric disorders, PTSD, ADHD and MDD (Supplementary Figure 3). A 
9-year follow up study has previously indicated that patients with MDD 
have an increased tendency to experience stroke as compared to the 
general population without MDD (Li et al., 2012). Other studies have 
indicated that stroke survivors display an increased risk of developing 
depression or other mood disorders compared to the general population 
(Skajaa et al., 2022; Allan et al., 2013). For example, the most recent 
study of 86,111 stroke survivors showed that they had a 15% risk of 
developing a mood disorder, primarily depression, which is significantly 
higher than the general population (Skajaa et al., 2022). Clinical studies 
have also noted a significant correlation between stroke and ADHD: one 
study followed up 13,141 samples with childhood stroke and matched 
controls, and found a 2-fold increased risk of ADHD after stroke (Bolk 
et al., 2022). Clinically, PTSD has long been recognized as a risk factor 
for stroke (Kronish et al., 2014; Perkins et al., 2021). Here, we have 
presented genetic evidence that may help us to interpret the relationship 
between stroke and the psychiatric disorders, as well as providing the 
IDPs that may serve as preclinical indicators of the risk of stroke and/or 
psychiatric disorders. These findings are therefore potentially important 
for the early diagnosis or prevention of both stroke and psychiatric 
disorders. 

We also carried out gene-based pleiotropy analysis for the various 
disorders/diseases and IDPs. Compared to previous studies that mainly 
focused on identifying pleiotropic associations between disorders, our 
work has two pronounced advantages. First, we have shown that those 
disorders that share significant genetic associations also tend to share 
significant genetic associations with the same IDPs. Second, we explain 
the genetic correlations between two disorders from the perspective of 
brain morphology by applying PLACO to detect genes with pleiotropic 
effects between any two disorders and their co-associated IDPs. This 
investigation was designed under the assumption that one phenotype 
can share similar genetic components with the others under the influ-
ence of pleiotropic genes (Lu et al., 2021). We found that the genes 
associated with MDD, AN, BID and ADHD also tended to be associated 
with the IDPs associated with corona radiata, capsule and corpus cal-
losum (Supplementary Figure 5A and Supplementary Figure 6C). 
Additionally, the genes associated with hypertension, MI, HF and CA 
were also found to be associated with the IDPs in the thalamus and 
corona radiata (Supplementary Figure 5C and Supplementary 
Figure 6D). 

The gene-based PLAOC test further identified many genes simulta-
neously associated with IDPs from multiple brain regions and also with 
the cardiovascular diseases or the brain disorders. For example, genes, 
ZSCAN9, PGBD1 and ZKSCAN4 were pleiotropic genes for MDD, AN, 
BID, ADHD and brain IDPs from corona radiata, capsule and corpus 
callosum; TMEM116, ERP29 and MAPKAPK5 were found as pleiotropic 
genes of HBP, MI, HF and CA, and brain IDPs from thalamus and corona 
radiata (Supplementary Figure 6C-D and Supplementary Figure 7). The 
ZSCAN9 gene encodes a transcription factor that has been suggested to 
be associated with the MDD, BID and SCZ in a previous cohort study 
(Raskó et al., 2022). The PGBD1 gene is known to be involved in the core 
functionality of the brain (Yue et al., 2011), and mutations within 
PGBD1 may be associated with psychiatric disorders (Raskó et al., 
2022). In addition, the ZKSCAN4 gene has been identified as one of the 
most compelling risk genes associated with broad phenotypes related to 
psychosis (Yue et al., 2011; Sun et al., 2015a). Interestingly, PGBD1 gene 
is a paralog of ZSCAN12. Thus, all three genes may be part of the same 
Zinc finger protein family, and their variants could be involved in 
regulating the expression of psychosis-related genes, especially those 
genes involving the dopamine pathway (Sun et al., 2015b). TMEM116 
encodes a transmembrane protein which plays a role in blood coagula-
tion (Yang et al., 2012) and has been suggested as the potential CA gene 

in a previous study (Brænne et al., 2015). The ERP29 gene, which is 
thought to play a role in the processing of secretory proteins in the ER, 
may be involved in the development of ischemic heart disease (Azfer 
et al., 2006). Loss-of-function variants in MAPKAPK5 are known to cause 
neurocardiofaciodigital (NCFD) syndrome which is characterized by 
malformations of the heart and severe neurodevelopmental disturbances 
(Horn et al., 2021). This is the first time all these genes are reported as 
associated with brain IDPs, brain disorders, and cardiovascular diseases. 

This study has several limitations. First, the sample sizes of GWAS 
summary statistics of many disorders may be insufficient, thereby 
limiting the power of this study to identify putative causal relationships 
between the various disorders and the IDPs. Second, some disorders such 
as MDD, BID and ASD have insufficient (<10) instrumental SNPs (P<5 ×
10−8) to allow testing with MR models. Thus, additional GWAS studies 
of these disorders will be required for us to detect associations with IDPs. 
Third, the GWAS of IDPs were generated from samples derived from the 
UK-Biobank. Although we avoided using the GWAS summary statistics 
of the disorders based on samples in the UK-Biobank, we were unable to 
estimate the percentages of the sample overlap between the IDPs and the 
disorders because we did not have the sample information. Besides, 
multiple-source genomic data can be integrated into our study to reveal 
the specific mechanisms of brain disorders (Horn et al., 2021). 

In conclusion, this study performed bidirectional two-sample MR 
analyses to systematically estimate the underlying causal relationships 
between brain imaging-derived phenotypes (IDPs) and the risk of brain 
disorders and/or cardiovascular diseases using large-scale GWAS data. 
Our analysis revealed strong genetic evidence for causal relationships 
between IDPs and various disorders, which has the potential to 
contribute to early diagnosis of brain and cardiovascular diseases 
through brain-imaging biomarkers. Additionally, this study identified 
many pleiotropic genes that are significantly associated with these dis-
orders and IDPs, which could reflect the shared genetic mechanisms 
involving brain structural changes and the occurrence of the brain dis-
orders and cardiovascular diseases. 

Funding 

The work was funded by the National Key Research and Develop-
ment Program of China (2020YFB0204803), the Natural Science Foun-
dation of China (81,801,132, 81,971,190, 61,772,566), Guangdong Key 
Field Research and Development Plan (2019B020228001, 
2018B010109006, and 2021A1515010256). 

Data and code availability statement 

UK Biobank data are available through an application process. GWAS 
data are openly available from the Psychiatric Genomics Consortium 
(PGC) at https://pgc.unc.edu/ and NHGRI-EBI GWAS Catalog data at 
https://www.ebi.ac.uk/gwas/. All data generated or analyzed during 
this study are included in this published article and its supplementary 
information files. 

The Linkage disequilibrium score regression (LDSC) analysis was 
performed by third party code at https://github.com/bulik/ldsc 
(version 1.0.1). The Mendelian randomization (MR) analyses were 
performed by R packages TwoSampleMR (version 0.5.5) and GSMR 
(version 1.0.9). The colocalization analysis was performed by R pack-
ages COLOC (version 5). The MAGMA analysis was performed by third 
party code at https://ctg.cncr.nl/software/magma. The PLACO analysis 
was performed by third party code at https://github.com/RayDebash 
ree/PLACO. 

Ethics statement 

Informed consent was obtained from all UK Biobank participants. 
Ethical procedures are controlled by a dedicated Ethics Advisory Com-
mittee (http://www.ukbiobank.ac.uk/ethics). 

S. Lin et al.                                                                                                                                                                                                                                       

https://pgc.unc.edu/
https://www.ebi.ac.uk/gwas/
https://github.com/bulik/ldsc
https://ctg.cncr.nl/software/magma
https://github.com/RayDebashree/PLACO
https://github.com/RayDebashree/PLACO
http://www.ukbiobank.ac.uk/ethics


NeuroImage 279 (2023) 120325

13

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

We’d like to thank the UK Biobank (application number #51732) 
and FinnGen project to make the data available. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.neuroimage.2023.120325. 

References 
Allan, L.M., Rowan, E.N., Thomas, A.J., Polvikoski, T.M., O’Brien, J.T., Kalaria, R.N., 

2013. Long-term incidence of depression and predictors of depressive symptoms in 
older stroke survivors. Br. J. Psychiatry 203 (6), 453–460. 

Allen, A.E., Procyk, C.A., Howarth, M., Walmsley, L., Brown, T.M., 2016. Visual input to 
the mouse lateral posterior and posterior thalamic nuclei: photoreceptive origins and 
retinotopic order. J. Physiol. (Lond.) 594 (7), 1911–1929. 

Azfer, A., Niu, J., Rogers, L.M., Adamski, F.M., Kolattukudy, P.E., 2006. Activation of 
endoplasmic reticulum stress response during the development of ischemic heart 
disease. Am. J. Physiol.-Heart Circulat. Physiol. 291 (3), H1411–H1420. 

Boedhoe, P.S., et al., 2020. Subcortical brain volume, regional cortical thickness, and 
cortical surface area across disorders: findings from the ENIGMA ADHD, ASD, and 
OCD working groups. Am. J. Psychiatry 177 (9), 834–843. 

Bolk, J., Simatou, E., Soderling, J., Thorell, L.B., Persson, M., Sundelin, H., 2022. 
Association of Perinatal and Childhood Ischemic Stroke With Attention-Deficit/ 
Hyperactivity Disorder. JAMA Netw. Open 5 (4), e228884. 

Bowden, J., Smith, G.Davey, Burgess, S., 2015. Mendelian randomization with invalid 
instruments: effect estimation and bias detection through Egger regression. Int. J. 
Epidemiol. 44 (2), 512–525. 

Bowden, J., Smith, G.Davey, Haycock, P.C., Burgess, S., 2016. Consistent estimation in 
Mendelian randomization with some invalid instruments using a weighted median 
estimator. Genet. Epidemiol. 40 (4), 304–314. 

Brænne, I., et al., 2015. Prediction of causal candidate genes in coronary artery disease 
loci. Arterioscler. Thromb. Vasc. Biol. 35 (10), 2207–2217. 

Broad, R.J., et al., 2019. Neurite orientation and dispersion density imaging (NODDI) 
detects cortical and corticospinal tract degeneration in ALS. J. Neurol. Neurosurg. 
Psychiatry 90 (4), 404–411. 

Bulik-Sullivan, B.K., et al., 2015a. LD Score regression distinguishes confounding from 
polygenicity in genome-wide association studies. Nat. Genet. 47 (3), 291–295. 

Bulik-Sullivan, B., et al., 2015b. An atlas of genetic correlations across human diseases 
and traits. Nat. Genet. 47 (11), 1236–1241. 

Burgess, S., Dudbridge, F., Thompson, S.G., 2016. Combining information on multiple 
instrumental variables in Mendelian randomization: comparison of allele score and 
summarized data methods. Stat. Med. 35 (11), 1880–1906. 

Cai, K., et al., 2020. Mini-Basketball Training Program Improves Social Communication 
and White Matter Integrity in Children with Autism. Brain Sci. 10 (11). 

Cheverud, J.M., 1996. Quantitative genetic analysis of cranial morphology in the cotton- 
top (Saguinus oedipus) and saddle-back (S. fuscicollis) tamarins. J. Evol. Biol. 9 (1), 
5–42. 

D, E.B.A, Marras, C.E., Petit, L., Sarubbo, S., 2021. The inferior fronto-occipital fascicle: a 
century of controversies from anatomy theaters to operative neurosurgery. 
J. Neurosurg. Sci. 65 (6), 605–615. 

de Leeuw, C.A., Mooij, J.M., Heskes, T., Posthuma, D., 2015. MAGMA: generalized gene- 
set analysis of GWAS data. PLoS Comput. Biol. 11 (4), e1004219. 

DiPiero, M.A., Surgent, O.J., Travers, B.G., Alexander, A.L., Lainhart, J.E., Dean III, D.C., 
2023. Gray matter microstructure differences in autistic males: a gray matter based 
spatial statistics study. NeuroImage: Clinical 37, p. 103306.  

Elliott, L.T., et al., 2018. Genome-wide association studies of brain imaging phenotypes 
in UK Biobank. Nature 562 (7726), 210–216. 

Emdin, C.A., Khera, A.V., Kathiresan, S., 2017. Mendelian randomization. JAMA 318 
(19), 1925–1926. 

Feng, R., Rolls, E.T., Cheng, W., Feng, J., 2020. Hypertension is associated with reduced 
hippocampal connectivity and impaired memory. EBioMedicine 61, 103082. 

Foley, C.N., et al., 2021. A fast and efficient colocalization algorithm for identifying 
shared genetic risk factors across multiple traits. Nat. Commun. 12 (1), 764. 

Giambartolomei, C., et al., 2014a. Bayesian test for colocalisation between pairs of 
genetic association studies using summary statistics. PLoS Genet. 10 (5), e1004383. 

Giambartolomei, C., et al., 2014b. Bayesian test for colocalisation between pairs of 
genetic association studies using summary statistics. PLoS Genet. 10 (5), e1004383. 

Giambartolomei, C., et al., 2018. A Bayesian framework for multiple trait colocalization 
from summary association statistics. Bioinformatics 34 (15), 2538–2545. 

Gong, W., Beckmann, C.F., Smith, S.M., 2021. Phenotype discovery from population 
brain imaging. Med. Image Anal. 71, 102050. 

Guo, J., et al., 2022. Mendelian randomization analyses support causal relationships 
between brain imaging-derived phenotypes and risk of psychiatric disorders. Nat. 
Neurosci. 25 (11), 1519–1527. 

Gurillo, P., Jauhar, S., Murray, R.M., MacCabe, J.H., 2015. Does tobacco use cause 
psychosis? Systematic review and meta-analysis. The Lancet Psychiatry 2 (8), 
718–725. 

Hajjar, I., et al., 2011. Hypertension, white matter hyperintensities, and concurrent 
impairments in mobility, cognition, and mood: the Cardiovascular Health Study. 
Circulation 123 (8), 858–865. 

Hartwig, F.P., Smith, G.Davey, Bowden, J., 2017. Robust inference in summary data 
Mendelian randomization via the zero modal pleiotropy assumption. Int. J. 
Epidemiol. 46 (6), 1985–1998. 

Horn, D., et al., 2021. Biallelic truncating variants in MAPKAPK5 cause a new 
developmental disorder involving neurological, cardiac, and facial anomalies 
combined with synpolydactyly. Genet. Med. 23 (4), 679–688. 

Kamagata, K., et al., 2021. Diffusion Magnetic Resonance Imaging-Based Biomarkers for 
Neurodegenerative Diseases. Int. J. Mol. Sci. 22 (10). 

Kim, S.E., Jung, S., Sung, G., Bang, M., Lee, S.H., 2021. Impaired cerebro-cerebellar 
white matter connectivity and its associations with cognitive function in patients 
with schizophrenia. NPJ Schizophr. 7 (1), 38. 

Klauser, P., et al., 2017. White Matter Disruptions in Schizophrenia Are Spatially 
Widespread and Topologically Converge on Brain Network Hubs. Schizophr. Bull. 43 
(2), 425–435. 

Knutson, K.A., Pan, W., 2020. Integrating brain imaging endophenotypes with GWAS for 
Alzheimer’s disease. Quant. Biol. 1–16. 

Kronish, I.M., Lin, J.J., Cohen, B.E., Voils, C.I., Edmondson, D., 2014. Posttraumatic 
stress disorder and medication nonadherence in patients with uncontrolled 
hypertension. JAMA Intern. Med. 174 (3), 468–470. 

Lee, K.H., et al., 2007. Increased cerebellar vermis white-matter volume in men with 
schizophrenia. J. Psychiatr. Res. 41 (8), 645–651. 

Li, C.T., et al., 2012. Major depressive disorder and stroke risks: a 9-year follow-up 
population-based, matched cohort study. PLoS ONE 7 (10), e46818. 

Li, L., et al., 2021. Lower regional grey matter in alcohol use disorders: evidence from a 
voxel-based meta-analysis. BMC Psychiatry 21 (1), 1–11. 

Liang, Y., Melia, O., Caroll, T.J., Brettin, T., Brown, A., Im, H.K., 2022. BrainXcan 
identifies brain features associated with behavioral and psychiatric traits using large 
scale genetic and imaging data. medRxiv, p. 2021.06. 01.21258159.  

Lu, H., Qiao, J., Shao, Z., Wang, T., Huang, S., Zeng, P., 2021. A comprehensive gene- 
centric pleiotropic association analysis for 14 psychiatric disorders with GWAS 
summary statistics. BMC Med. 19 (1), 1–17. 

MacArthur, J., et al., 2017. The new NHGRI-EBI Catalog of published genome-wide 
association studies (GWAS Catalog). Nucleic Acids Res. 45 (D1), D896–D901. 

May-Wilson, S., et al., 2022. Large-scale GWAS of food liking reveals genetic 
determinants and genetic correlations with distinct neurophysiological traits. Nat. 
Commun. 13 (1), 2743. 

McCracken, C., et al., 2022. Multi-organ imaging demonstrates the heart-brain-liver axis 
in UK Biobank participants. Nat. Commun. 13 (1), 7839. 

Miller, K.L., et al., 2016. Multimodal population brain imaging in the UK Biobank 
prospective epidemiological study. Nat. Neurosci. 19 (11), 1523–1536. 

Noble, K.G., et al., 2015. Family income, parental education and brain structure in 
children and adolescents. Nat. Neurosci. 18 (5), 773–778. 

Papiol, S., et al., 2014. Polygenic determinants of white matter volume derived from 
GWAS lack reproducibility in a replicate sample. Transl. Psychiatry 4 (2) e362-e362.  

Perkins, J.D., Wilkins, S.S., Kamran, S., Shuaib, A., 2021. Post-traumatic stress disorder 
and its association with stroke and stroke risk factors: a literature review. Neurobiol. 
Stress 14, 100332. 

Purcell, S., et al., 2007. PLINK: a tool set for whole-genome association and population- 
based linkage analyses. Am. J. Hum. Gen. 81 (3), 559–575. 
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