
The Evolution, Analysis, and Design of Minimal

Spiking Neural Networks for Temporal Pattern

Recognition

Submitted to the University of Hertfordshire in Partial
Fulfilment of the Requirement of the Degree of

Doctor of Philosophy

Muhammad Yaqoob

Supervisors:

Professor Volker Steuber

Professor Borys Wróbel

August 2022

UH Biocomputation Group
Centre for Computer Science and Informatics Research
School of Physics, Engineering and Computer Science

University of Herfordshire
Hatfield, UK

Acknowledgements

First and foremost, I would like to express my profound gratitude to my supervisors

Prof. Borys Wróbel and Prof. Volker Steuber for their consistent support, guidance,

and encouragement throughout my studies and research. Their expertise and men-

torship have been instrumental in shaping my academic and professional growth. I

am grateful for the time they invested in me and I will always value their guidance

and support. I extend my sincere gratitude to Prof. Rene te Boekhorst and Dr

Reinoud Maex for taking the time to review my work and providing their valuable

feedback.

I am obliged to the University of Hertfordshire for offering the means and financial

support over the past three years. I am thankful to the staff members of the Doctoral

College for creating a supportive and welcoming environment for graduate students.

I also acknowledge the support of the KNOW RNA Research Center in Poznan (No.

01/KNOW2/2014). The initial experiments on the evolution of minimal spiking

neural networks were conducted at the Evolving Systems Laboratory, led by Prof.

Wróbel at Adam Mickiewicz University in Poznan, Poland.

I would like to thank all members of the Bio-computation Lab (Agi, Ankur, David,

Deepak, Emil, Eleonora, Harpreet, Julia, Mahsa, Maria, Ming, Mohammad, Nathen,

Nik, Rebecca, Reinoud, Retish, Ronak, Sam, and Shavika) for creating a pleasant

and conducive learning environment.

Above all, I express my sincere gratitude to my family, especially my parents, for

their guidance and unconditional support throughout my life. A special thanks to

my siblings for their immense love, care and support in everything I do. Also, I

truly appreciate the friendship of Aamir Khan and Tahir Mehmood, who I know I

can always count on.

Finally, thanks to all those I have missed out on – you are not forgotten!

ii

Abstract

All sensory stimuli are temporal in structure. How a pattern of action potentials

encodes the information received from the sensory stimuli is an important research

question in neurosciencce. Although it is clear that information is carried by the

number or the timing of spikes, the information processing in the nervous system is

poorly understood. The desire to understand information processing in the animal

brain led to the development of spiking neural networks (SNNs). Understanding

information processing in spiking neural networks may give us an insight into the

information processing in the animal brain. One way to understand the mechanisms

which enable SNNs to perform a computational task is to associate the structural

connectivity of the network with the corresponding functional behaviour. This work

demonstrates the structure-function mapping of spiking networks evolved (or hand-

crafted) for recognising temporal patterns. The SNNs are composed of simple yet bi-

ologically meaningful adaptive exponential integrate-and-fire (AdEx) neurons. The

computational task can be described as identifying a subsequence of three signals

(say ABC) in a random input stream of signals (”ABBBCCBABABCBBCAC”).

The topology and connection weights of the networks are optimised using a genetic

algorithm such that the network output spikes only for the correct input pattern

and remains silent for all others. The fitness function rewards the network output

for spiking after receiving the correct pattern and penalises spikes elsewhere.

To analyse the effect of noise, two types of noise are introduced during evolution: (i)

random fluctuations of the membrane potential of neurons in the network at every

network step, (ii) random variations of the duration of the silent interval between

input signals. It has been observed that evolution in the presence of noise produced

networks that were robust to perturbation of neuronal parameters. Moreover, the

networks also developed a form of memory, enabling them to maintain network

states in the absence of input activity. It has been demonstrated that the network

states of an evolved network have a one-to-one correspondence with the states of

a finite-state transducer (FST) – a model of computation for time-structured data.

iii

The analysis of networks indicated that the task of recognition is accomplished by

transitions between network states.

Evolution may overproduce synaptic connections, pruning these superfluous connec-

tions pronounced structural similarities among individuals obtained from different

independent runs. Moreover, the analysis of the pruned networks highlighted that

memory is a property of self-excitation in the network. Neurons with self-excitatory

loops (also called autapses) could sustain spiking activity indefinitely in the absence

of input activity. To recognise a pattern of length n, a network requires n+1 network

states, where n states are maintained actively with autapses and the penultimate

state is maintained passively by no activity in the network. Simultaneously, the role

of other connections in the network is identified.

Of particular interest, three interneurons in the network are found to have a special-

ized role: (i) the lock neuron is always active, preventing the output from spiking

unless it is released by the penultimate signal in the correct pattern, exposing the

output neuron to spike for the correct last signal, (ii) the switch neuron is responsible

for switching the network between the inter-signal states and the start state, and (iii)

the accept neuron produces spikes in the output neuron when the network receives

the last correct input. It also sends a signal to the switch neuron, transforming the

network back into the start state

Understanding how information is processed in the evolved networks led to hand-

crafting network topologies for recognising more extended patterns. The proposed

rules can extend network topologies to recognize temporal patterns up to length six.

To validate the handcrafted topology, a genetic algorithm is used to optimise its con-

nection weights. It has been observed that the maximum number of active neurons

representing a state in the network increases with the pattern length. Therefore, the

suggested rules can handcraft network topologies only up to length 6. Handcraft-

ing network topologies, representing a network state with a fixed number of active

neurons requires further investigation.

iv

Allama Iqbal, Bal-e-Jibril-015

v

vi

Contents

I Introduction 1

1 Introduction 2

1.1 Motivation . 3

1.2 Aim . 4

1.3 Contributions to Knowledge . 6

1.4 Structure of the Thesis . 8

1.5 Publications . 11

II Background 13

2 Neural Computation and Pattern Recognition 14

2.1 Introduction . 14

2.2 The Neuron . 15

2.3 Neural coding . 18

2.3.1 Rate Coding . 19

2.3.2 Temporal coding . 21

2.3.3 Rank order code . 23

2.4 Neural Networks . 23

2.5 Temporal pattern recognition . 39

vii

viii CONTENTS

3 The GReaNs Platform 44

3.1 Linear Genome Representation . 45

3.2 Artificial Gene Regulatory Network 46

3.3 Mapping of GRNs to SNNs . 50

3.4 Structure of SNNs . 51

3.5 Temporal Pattern Recognition Task 52

3.6 Genetic Algorithm for Evolving SNNs 54

3.7 Conclusion . 56

III Results 57

4 Evolution of SNNs in the Absence of Noise 58

4.1 Experimental Setup . 59

4.2 Analysis of the Evolved SNNs . 63

4.2.1 Minimal FST for Recognising a String 64

4.2.2 Mapping Network States onto the FST States 66

4.2.3 Network State Transitions . 69

4.2.4 Robustness . 73

4.2.5 Longer silent intervals . 74

4.3 Conclusion . 78

5 Noise Promotes Robustness 79

5.1 Types of Noise . 80

5.2 Experimental Setup I . 81

5.2.1 Evolution . 84

5.2.2 Robustness to Varying a Single Neuronal Parameter 86

5.3 Experimental Setup II . 91

CONTENTS ix

5.3.1 Robustness to Varying All Neuronal Parameters 92

5.4 Conclusion . 99

6 Dynamics of Evolved SNNs 100

6.1 Experimental Setup . 101

6.2 Pruning Excessive Connections . 102

6.3 Understanding Dynamics of Pruned SNNs 106

6.4 Conservation of Dale’s rule . 116

6.5 Conclusion . 118

7 Handcrafting SNNs for longer Patterns 120

7.1 Rules for Handcrafting Network Topologies 121

7.2 Optimization of Connection Weights 122

7.3 Specialised Role of Neurons . 124

7.4 Contribution of Connections to Pattern Recognition 126

7.5 Performance of the handcrafted Networks 127

7.6 Conclusion . 130

IV Conclusion 132

8 Conclusion 133

8.1 Development of Ideas . 133

8.2 Results . 135

8.3 Future Work . 139

Appendix A 143

A.1 Networks Evolved in the Presence or Absence of Noise 143

A.2 Networks Evolved in the Presence of Intrinsic and Extrinsic Noise . . 148

A.3 Network Topologies Handcrafted for Recognizing a Pattern 151

A.4 Git Repositories . 155

Appendix B Enclosed Papers 156

B.1 IEEE SSCI 2017 M. Yaqoob and B. Wróbel 156

B.2 ALIFE 2018 M. Yaqoob and B. Wróbel 165

B.3 ICANN 2018 M. Yaqoob and B. Wróbel 174

B.4 ICANN 2019 M. Yaqoob and B. Wróbel 185

x

Part I

Introduction

1

Chapter 1

Introduction

Over the past 15 years, it has been established that the temporal activity of neurons

represents information in the somatosensory, auditory, visual and olfactory systems

[131, 63, 122, 94, 85, 47, 120, 137]. However, information processing in the brain

is poorly understood. Due to its biological relevance and resemblance to sensory

information processing, temporal pattern recognition using spiking neural networks

(SNNs) is among the most exciting and widely studied topics in computational neu-

roscience. There are two common ways of learning to recognise temporal patterns

using spiking neural networks: (i) adjusting conduction delays [119], and (ii) select-

ing conduction delays from a spectrum of existing delays [14]. This work provides

a new way of learning to recognise temporal patterns by evolving (constructing fol-

lowing the rules borrowed from the natural evolution of population and selection)

the topology and connections weights of SNNs, without changing or selecting con-

duction delays. An abstract way to get insight into how information is processed

in spiking neural networks is to first evolve artificial spiking neural networks for a

simpler computational task, and then understand the dynamics of the developed

networks. In view of this, a computational task is designed in which bio-plausible

2

1.1. Motivation 3

(yet simple) spiking neural networks have to recognise a temporal pattern (a sub-

sequence of signals) in a stream of input signals. In the first stage, a population

of SNNs is evolved (both in noisy and noiseless conditions) such that the readout

neuron of the SNNs responds only to a particular ordering of signals. Then the

evolved networks are cleaned by pruning superfluous connections (if any exist) to

ease the analysis. Pruning revealed structural similarities and commonalities among

the evolved SNNs, which helped in understanding the mechanisms driving SNNs to

perform temporal pattern recognition. Finally, the insight into the evolved SNNs

enabled handcrafting network topologies for recognizing longer patterns.

1.1 Motivation

Our perception of information works both in time and space. Most biological ner-

vous systems can detect relations and connections in patterns related to a certain

time frame or space [3]. In general, the information we receive from all senses, in-

cluding odour, [56] sight, [127] and sound [67] is temporal in structure. The brain

must process these signals to represent the external world accurately. Processing of

information in the brain and artificial spiking neural networks (SNNs) is represented

by the temporal activity of neurons [66, 106, 126]. Understanding how temporal sig-

nals are processed by the brain and spiking neural networks is of great interest to the

neuroscience community. Several studies have shown that information processing in

the nervous systems is linked to the transition from one type of spiking behaviour

to another [3, 10, 25, 39, 55, 78, 101]. However, despite extensive research, the

relationship between the structural connectivity and functional behaviour of neural

systems remains unclear. Unfolding the mechanisms that enable SNNs to process

information is one of the most challenging problem in computational neuroscience

4 Chapter 1. Introduction

[8, 19]. A possible way to study the complex computational processing capabilities

of the brain is to artificially evolve networks with biologically simple neurons that

can learn to perform a specific task. Explaining the mechanisms driving the evolved

networks performing temporal pattern recognition may provide an insight into the

information processing in the nervous system.

More importantly, a solution to a computational task is considered reliable if its

functionality can be explained. Explainable SNNs, even small ones, will open a new

dimension in the field of computational neuroscience. In particular, the algorithms

used by known SNNs to perform a task can be employed to handcraft network

topologies for similar yet more complex computational tasks. Furthermore, these

SNNs can be extended/wired together to perform even more complicated operations.

This bottom-up approach is interesting for two reasons: smaller networks are easier

to train and understand; second, the functionality of a large network made up of

smaller interpretable building blocks can also be explained.

1.2 Aim

This work aims to understand spiking neural networks evolved to recognise a specific

temporal pattern. How biological neuronal networks process information and main-

tain functionality in the presence of noise and damage is one of the primary interests

in neuroscience. At the same time, understanding information processing in SNNs is

a fundamental problem in computational neuroscience. The interpretation of simple

yet biologically meaningful SNNs may give us an insight into information processing

in their counterpart biological nervous systems. The work presented in this thesis

can be divided into three parts: (i) first, the evolutionary setup for obtaining min-

imal networks for recognising temporal patterns is refined, (ii) then, the structural

1.2. Aim 5

regularities and commonalities among the evolved networks are identified. These

similarities can explain the mechanisms driving the evolved network to behave as a

perfect-recogniser, an over-recogniser or a wrong-recogniser. With this knowledge,

the specific role of each individual neuron in the computation is identified, and (iii)

finally, after acquiring a complete insight into the evolved networks, rules are defined

for handcrafting network topologies for recognising longer patterns in a particular

order. This study aims to answer the following research questions:

• How can spiking neural networks learn to generate the desired output?

• How does the network process information?

• Why is the presence of noise important, and what are the potential benefits

of noise in the system?

• What is the functional role of autapses (synapses a neuron makes with itself)

and why they are essential? Is there any relationship between the length of

the pattern being recognized and the number of autapses in the network?

• What is the relationship between the length of the pattern being recognized

and the number of interneurons required in the minimal network?

• Is there any specific role for individual neurons in the network? If yes, how do

they contribute to the recognition of a signal?

• Can we handcraft the topology of a network for recognising a pattern of arbi-

trary length?

6 Chapter 1. Introduction

1.3 Contributions to Knowledge

I have evolved the topology and connections weights of very small spiking neural

networks for temporal pattern recognition, which has resulted in the following con-

tributions to knowledge:

• I have demonstrated that both the topology and connection weights of a very

small spiking neural network can be evolved to recognise temporal patterns in a

continuous stream of input. This is true for both noisy and noiseless evolution;

the noise is modelled as random fluctuations of the membrane potential of

neurons in the network at every simulation step. Of particular interest, I

observed that recognition happens with transitions between network states

[147, 148, 149, 150].

• Networks evolved in the absence of noise are extremely fragile. A slight vari-

ation in the values of parameters or incoming input signals severely impaired

the network’s performance. In contrast, the networks evolved in the presence

of noise showed a graceful degradation of performance to the disturbance level

of parameters [149]. Moreover, I proposed a probabilistic algorithm to find

the robustness range of all inter-dependent neuronal parameters of the AdEx

model [150].

• In biological nervous systems, a neuron can either excite or inhibit other neu-

rons but not both [15]. This property of a neuron is called Dale’s principle. To

keep the network small during evolution, I allowed the neurons to excite and

inhibit other neurons simultaneously. To show that this violation is benign,

I have demonstrated that an evolved network could be transformed to follow

Dale’s principle by splitting the violating neurons into an excitatory and an

inhibitory part [147].

1.3. Contributions to Knowledge 7

• Evolution may overproduce synaptic connections. While analysing the evolved

network, I found that unlike noiseless evolution, SNNs evolved in the presence

of noise are also robust to connection pruning. Pruning is essential for under-

standing the working mechanism of the networks [147].

• I have associated functional roles to the interneurons in the network. The

interneurons have specialised behaviours that contribute to recognising the

pattern. In particular, the lock neuron prevents the output from spiking unless

it is released by the penultimate signal in the target pattern, the switch neuron

is responsible for switching the network between the inter-signal state and the

start state, and the accept neuron produces spikes in the output neuron when

the network receives the last correct input. This neuron also sends a signal to

the switch neuron, transforming the network back into the start state.

• I have suggested two possible functional roles for excitatory autapses: (i) net-

works with excitatory autapses are capable of maintaining network states in

the absence of input activity, and (ii) autapses enable smooth transitions be-

tween network states.

• Based on the switching mechanism and structural commonalities of the evolved

networks, I defined rules for handcrafting network topologies for recognising

longer temporal patterns. The constructed topology is then validated by op-

timising connection weights for the target pattern.

8 Chapter 1. Introduction

1.4 Structure of the Thesis

This thesis consists of 8 chapters, starting with an introductory chapter (this one).

The subsequent two chapters (2 & 3) provide a detailed background of the study.

Then, the findings of the study comprise four chapters (4, 5, 6, and 7), and the last

chapter (8) concludes the thesis with possible future directions.

I. Introduction

Chapter 1 starts with briefly introducing the topic, followed by the mo-

tivations behind the study, then the aim and the research questions are

presented, the contributions to the knowledge made in this study are listed,

the structure of the thesis is detailed, and a list of publications is given.

II. Background

Chapter 2 begins with the historical background of the neuron with its

morphology and biophysical properties. Then two generally accepted neu-

ral codes (rate and temporal) are discussed. Neural coding refers to the

study of how neurons represent information. In the subsequent section the

three generations of neural networks are detailed. Then, three widely used

computational neuron models are described: (i) the integrate-and-fire model

(LIF), (ii) the adaptive exponential integrate and fire model (AdEx), (iii) the

Hodgkin-and-Huxley model. Finally, a literature review on temporal pattern

recognition is presented.

Chapter 3 begins with introducing the Gene Regulatory evolving artificial

Networks (GReaNs) platform, originally developed to simulate the evolution

of artificial gene regulatory networks (GRNs). It uses a genetic algorithm to

evolve a population of artificial organisms in a variety of settings including

1.4. Structure of the Thesis 9

multi-cellular development, signal processing and foraging. The artificial

organisms are encoded as a linear genome in GReaNs. In the next section

the structure of the linear genome is adapted to represent a spiking neural

network (SNN). The subsequent section illustrates GRN to SNN mapping,

followed by a general sketch of the genetic algorithm used in GReaNs to

evolve a population of linear genomes.

III. Results

Chapter 4 starts with the basic experimental setup for evolving spiking

neural networks using the genetic algorithms in GReaNs. The individuals

presented in this chapter are evolved without noise. In order to understand

the mechanism driving these networks, first the network states of a network

are identified. Then, a correspondence is established between the identified

network states and the state of a finite state transducer (FST). Finally, the

robustness of the individual is assessed. The chapter concludes with findings

and possible improvements for the experimental setup.

Chapter 5 demonstrates the benefits of noise when introduced during evo-

lution. Noise is modelled as random fluctuations of the membrane potential

of neurons at every 1 ms network step. This chapter contains two inde-

pendent experimental setups. The first setup updates genetic operators and

introduces noise during evolution. Networks evolved in a noisy environment

developed robustness to neuronal parameters. Then the robustness range of

varying a single neuronal parameter (keeping others at their default values)

is determined. The second experimental setup is a further refinement, espe-

cially in the way the fitness is calculated. This modification in the fitness

function improved both yield and evolvability. Then, the robustness range

to varying all inter-dependent neuronal (AdEx) parameters is obtained.

10 Chapter 1. Introduction

Chapter 6 sheds light on the importance of pruning. Superfluous con-

nections in the network are deceitful – making the analysis of the network

difficult. Networks presented in this chapter are evolved in the presence of

both noise and variation. Results obtained show that introducing variation

on the duration of silence intervals during evolution favours the emergence of

memory. Furthermore, the dynamics driving the minimal networks to recog-

nise a target pattern are revealed. Finally, the transformation of a network

to follow Dale’s rule is described.

Chapter 7 suggests rules for handcrafting network topology. The con-

structed topologies are then validated by optimising their connection weights.

Then the specialized roles of neurons in the network are identified, followed

by the contribution of connections to pattern recognition. The subsequent

section demonstrates the performance of the handcrafted network for recog-

nizing a pattern of 6 signals. The chapter is concluded with a list of findings.

IV. Conclusions

Chapter 8 begins with the development of ideas, reviews the key findings,

and concludes the thesis with a section detailing potential future directions.

1.5. Publications 11

1.5 Publications

1. M. Yaqoob, B. Wróbel, and V. Steuber (2022) Autapses Enable Temporal

Pattern Recognition in Spiking Neural Networks (in preparation for Scientific

Reports).

2. M. Yaqoob, V. Steuber, and B. Wróbel (2019) The Importance of Self-excitation

in Spiking Neural Networks Evolved to Recognise Temporal Patterns, ICANN

2019 Munich, Germany, September 17-19, 2019.

3. M. Yaqoob and B. Wróbel (2018) Robust Very Small Spiking Neural Networks

Evolved with Noise to Recognise Temporal Patterns, ALIFE 2018 Tokyo,

Japan, July 23-27, 2018.

4. M. Yaqoob and B. Wróbel (2018) Very Small Spiking Neural Networks Evolved

for Temporal Pattern Recognition and Robust to Perturbed Neuronal Param-

eters, ICANN 2018 Rhodes, Greece, October 5-7, 2018.

5. M. Yaqoob and B. Wróbel (2017) Very Small Spiking Neural Networks Evolved

to Recognise a Pattern in a Continuous Input Stream, IEEE Symposium Series

on Computational Intelligence (IEEE SSCI 2017) at Honolulu, Hawaii, USA,

Nov. 27 to Dec. 1, 2017.

Abstracts

6. M. Yaqoob, V. Steuber and B. Wróbel (2022) Spiking Neural Networks as Fi-

nite State Transducers for Temporal Pattern Recognition, 31st Annual Com-

putational Neuroscience Meeting CNS 2022, Melbourne, Australia, July 16-20,

2022.

7. M. Yaqoob, B. Wróbel, and V. Steuber (2022) Analysing Spiking Neural Net-

works Evolved for Temporal Pattern Recognition, PECS 2022, April 12, 2022,

12 Chapter 1. Introduction

University of Hertfordshire, Online.

8. M. Yaqoob, V. Steuber and B. Wróbel (2020) Autaptic Connections Can Im-

plement State Transitions in Spiking Neural Networks for Temporal Pattern

Recognition, CNS 2020 Organization for computational neurosciences, Online,

July 18-22, 2020.

9. M. Yaqoob and B. Wróbel (2019) Robustness to the Removal of Connections

in Spiking Neural Networks Evolved for Temporal Pattern Recognition, CNS

2019 Organization for computational neurosciences Barcelona, Spain, July 13-

17, 2019.

10. M. Yaqoob and B. Wróbel (2018) Artificial Evolution of Very Small Spiking

Neural Network Robust to Noise and Damage for Recognising Temporal Pat-

terns, CNS 2018 Organization for computational neurosciences, Seattle, USA,

July 13-18, 2018.

11. M. Yaqoob and B. Wróbel (2017) Evolving Spiking Neural Networks as Finite

State Machine to Recognise Patterns in a Continuous Input Stream, Aspects

of neuroscience, University of Warsaw, Poland, Nov. 26-27, 2017.

Part II

Background

13

Chapter 2

Neural Computation and Pattern

Recognition

2.1 Introduction

This chapter describes the common terms and mechanisms in the neuroscience lit-

erature and in the present study. In particular, the structural unit of the brain,

the neuron; the generation mechanism of spikes, the action potential; and the con-

nections between neurons, the synapse. The aim is to understand the theoretical

background and the composition of artificial spiking neural networks in general.

Starting from a brief history of neurons, three state-of-the-art mathematical models

of neurons with their system of differential equations are presented. Then, spik-

ing neural networks are discussed, and finally, the significance of temporal pattern

recognition is detailed.

14

2.2. The Neuron 15

2.2 The Neuron

The story began in 1832, when Johannes Purkinje observed the individual nerve cells

for the first time in the cerebellum. Three decades later, in 1860, Otto Friedrich

obtained the most precise picture of the nerve cell with two unusual protrusions.

They were named ”protoplasmatic processes” and ”axis cylinder, ” later becoming

dendrites and axons. However, the structure of a nerve cell could not explain the

organization of nerve cells in the brain. At that time, two opposing theories about

the nervous system intrigued the researchers. The neuronists claimed that the brain

comprises distinct cellular units – nerve cells, whereas the reticularists favoured the

notion of a continuous network that can not be divided into discrete cells. In 1873

Camillio Golgi put an end to the debate by developing a staining technique called

black reaction (Golgi’s method) and demonstrated the gaps between two nerve cells.

Later, Ramon y Cajal improved Golgi’s method, confirmed the nervous system’s

cellular nature, and produced the famous drawing of neurons in the mammalian

cortex in 1909 (Figure 2.1).

Moreover, the vocabulary we use today was established in the last decade of the

19th century. Heinrich Wilhelm used the term ”neuron” for the first time in 1891.

The name axon was given to ”axis cylinder” by Rudolph Albert. Then Wilhelm His

Sr. addressed ”protoplasmic processes” as dendrites in his work, and in 1897 the

junction between two neurons was called synapse by Sir Charles Sherrington. At

the beginning of the 20th century, it was already believed that a neuron

• is the basic structure and processing unit of the brain,

• acts as an independent unit,

• consists of three parts: dendrites, soma and axon,

16 Chapter 2. Neural Computation and Pattern Recognition

Figure 2.1: Drawing of the visual cortex of a human infant using Golgi’s method
by Ramon y Cajal (1909). A, B and C show layers 5, 6 and 7 respectively. With
the staining procedure, only a small number (about 1%) of neurons are coloured.
However, In reality, the neurons are extremely dense in the visual cortex. The
dendrites extend vertically upwards whereas the axons branch out downwards in
the left and right directions. For example label (a) shows a gigantic pyramidal
neuron, (b) an average-sized pyramidal neuron.

• is uni-directional, the information flows from dendrites to axon via soma.

As stated above, the neuron – a unit of information processing in the brain, comprises

three parts: dendrites, a cell body (soma) and an axon which can be considered as

inputs, processing unit and output, respectively. The dendrites of a given neuron

receive input information from other neurons in the form of spikes – action potentials.

This information propagates in one direction from dendrites to axon through the

cell body – soma. Both the integration and the process of generating a spike occur

in the soma. If the total voltage crosses a certain threshold, the neuron generates

2.2. The Neuron 17

an action potential (Figure 2.2) and sends it to other efferent neurons through the

axon. This induces neurotransmitter release at synapses – connections between axon

terminals and dendrites. This neurotransmitter release in turn causes current to flow

in the dendrites of efferent neurons. The neuron sending the signal is referred to

as a presynaptic neuron while the one at the receiving end is called a postsynaptic

neuron.

Spikes are short (1-2 ms duration) electrical signals of amplitude roughly 100 mV.

Since all spikes emitted by a given neuron have the same characteristic waveform,

it is clear that the shape of spikes does not contain much information. Instead, the

information is carried by the number and the precise timing of spikes. A chain of

spikes generated by a given neuron is known as a spike train – a sequence of time-

structured action potentials. A spike train is used to represent neurophysiological

activity by recording only the timing of spikes and discarding their shape.

Figure 2.2: (a) spike generation mechanism: when the membrane potential V(t)
reaches the firing threshold a spike is fired. Right after the spike, the voltage returns
to a value below Vrest – the resting potential. (b) Parallel RC circuit to describe cell
membrane voltage when a neuron receives a spike at one of its synapses. The charge
inside the cell charges the cell membrane capacitor C. Leakage of charge from the
cell membrane is modelled as the leak resistance R.

18 Chapter 2. Neural Computation and Pattern Recognition

The membrane potential remains constant at Vrest in the absence of input, when a

current pulse I is injected, the potential difference builds up across the cell mem-

brane; if the potential difference crosses a certain level, the sodium channels open,

allowing sodium ions Na+ to enter the cell – called depolarization. This continues

until the concentration of sodium ions Na+ inside and outside the cell reaches equi-

librium. Further depolarization activates the potassium channels and the K+ ions

leave the cell to repolarize it. Simultaneously, sodium channels are closed while the

potassium channel remains open until the membrane potential drops to a value less

than the resting potential Vrest – called the hyperpolarization state. In this state the

neuron is unable to generate another spike for a short while – called the refractory

period.

Nowadays, the morphology and the biophysical mechanism (Figure 2.2) of a neuron

are well understood, e.g. how a spike is generated? how does a sequence of spikes

cause the release of the transmitter at the axon terminals? and how does this

transmitter act on the connected neurons? However, it is less clear how a series

of spikes affect other neurons. What do they represent? and how this information

contributes to a certain behaviour?

2.3 Neural coding

Neural coding– the study of how neurons represent information – is the first step to

understanding the brain. Neurons in the nervous system receive information (in the

form of spikes) from sensory modalities as well as from other neurons. As a result,

the membrane potential of the neuron fluctuates, and in many cases produces an

irregular spike train. To describe a spike train, we study neural codes. Simply put,

neuronal coding attempts to relate the neuronal response to the input stimuli. In

2.3. Neural coding 19

contrast, neural decoding refers to reconstructing the stimulus from the sequence of

spikes. For instance, the firing rate of motor neurons may represent the stretching

of muscles, and the precise timing of spikes may describe the onset of a sensory

stimulus. Due to fast processing capabilities, the notion that sensory information

is carried by spike times rather than spike-rate gained attention in the past two

decades [131, 90]. More importantly, it is possible to define a range of new coding

schemes with spike times [101, 82]. In artificial systems, the feasibility of a coding

scheme for a certain processing task is determined by its processing speed, resilience

to noise, and simplicity (in terms of implementation) [98]. For more details please

refer to the paper of Simon Thorpe et al. [128].

2.3.1 Rate Coding

The notion that spike trains represent information dates back to the very first record-

ings of sensory fibres in 1920 by Adrian [2]. In his experiments, he showed that

stimulus intensity is positively correlated to the spike rate of the electrical activity

of the fibre, hence representing information by a single real number. As the name

suggests, rate coding is the average number of spikes in a time interval. There are

three ways to define a rate code: temporal averaging, trial averaging, and population

averaging.

Temporal averaging is recordings from one single neuron in the period during and

after the presentation of the stimulus (say 10 ms); count the number of spikes and

normalize it with the duration of the interval (equation 2.1). To analyze the data

recorded from real neurons, interspike interval distribution measures the regularity

of the spike train, whereas the Fano factor determines the repeatability across trials.

Therefore temporal averaging is considered good for analyzing experimental data.

20 Chapter 2. Neural Computation and Pattern Recognition

However, it is too slow to be used by real neurons in the brain.

V (t) =
nspikes

T
(2.1)

where nspikes is the number of spikes produced in the duration of the interval T.

Trial averaging repeats K ”temporal averaging” trials, and then the spikes are

counted in n tiny intervals ∆t (say 10 ms) across all repetitions. This time-dependent

response is called peri-stimulus time histogram (PSTH) (equation 2.2). The rate

measure across K repetitions is determined at a temporal resolution of ∆t. PSTH

is a powerful tool for experimental analysis. However, this is definitely not how

the real neuron codes information, simply because it requires a repeated number

of trials of the stimulus (An animal does not average across different trials before

responding).

PSTH(t) =
n(t; t+ ∆t)

K∆t
(2.2)

where K is the number of trials a stimulus is repeated and ∆t is the time resolution

in which the spike rate is determined.

Population averaging is recording from a population of neurons simultaneously

in a single trial. In this case the rate is determined across n neurons at temporal

resolution ∆t. This is a natural way of coding information. The average firing rate

of a single neuron across different trials can be approximated as the firing rate of a

population if the neurons in the population have similar properties.

A(t) =
n(t; t+ ∆t)

N∆t
(2.3)

2.3. Neural coding 21

where A(t) is the average spike rate of a neuron in the population, N is the number

of neurons in the population and ∆t is the time resolution at which the spike rate

is determined.

For several decades the spike rate was considered as the only information encoding

mechanism of neurons, due to ease of implementation and robustness to noise. How-

ever, in the past three decades, the possibility of alternative coding schemes gained

attention because the processing of many behavioural situations is performed too

fast to rely on the firing rate of neurons [10, 82, 99]. These behaviours include

somatosensory, olfactory, auditory and visual responses [66, 106, 126, 131].

2.3.2 Temporal coding

Temporal coding uses temporal relations between spikes to represent information.

Temporal codes can be divided into two sub-types: (i) time-of-arrival (TOA) codes

and (ii) temporal pattern codes. Time-of-arrival (TOA) coding encodes information

in the arrival time of spikes at a target neuron or a group of neurons. It refers to the

idea that the timing of spikes relative to the arrival of a stimulus carries information

about the stimulus. Moreover, the information about the location or direction of

a stimulus is represented by the difference in the arrival time of spikes at different

neurons [48].

Time-to-first-spike encodes information based on the delay between the onset of

the stimulus and the time to the first spike (Figure 2.3a). Instead of counting the

number of spikes in a window, ample information can be accumulated by recording

the timing of the first spike. It has been documented that time-to-first-spike encodes

the touch information in the tactile system [107, 64]. This code is simple and can

be implemented with a single neuron. Moreover, the action is taken as soon as the

22 Chapter 2. Neural Computation and Pattern Recognition

Figure 2.3: (a) Time-to-first-spike, neuron N2 is the first one to spike after the
stimulus onset. (b) Phase code, the neurons fire relative to the ongoing background
oscillation.

first spike is generated after the stimulus. Thus, the processing is particularly fast

with this coding technique.

There is always some oscillation in the brain that can be recorded in the electroen-

cephalogram (EEG). In Phase coding the neuronal spike patterns encode informa-

tion in the phase of spikes relative to the ongoing internal oscillations in the nervous

system. The neurons may repeat the spike pattern periodically if the stimulus re-

mains the same from one cycle to the next (Figure 2.3b). Time-to-first-spike can

also be employed to encode information with reference to the ongoing background

oscillation instead of the input stimulus. It has been observed in the olfactory sys-

tem and hippocampus [91, 78]. Early experiments on rat hippocampal place cells

suggested a correlation between the receptive field and the phase of the oscillatory

neural activity [53]. Furthermore, phase coding is also observed in electric fish [48].

Temporal pattern code encodes information based on the spike patterns and

the relationship between spikes that are generated by a target neuron. It utilizes

inter-spike interval (ISI) to convey information such that the information about

temporally varying signals is conveyed by changes in the inter-spike interval [17, 136].

For example, a neuron might have a longer ISI in response to a weak stimulus and

2.4. Neural Networks 23

a shorter ISI in response to a stronger stimulus. In this way, the neuron conveys

information about the intensity of the stimulus by changing its spike timing. It has

been demonstrated that H1 neurons in the fly visual system can efficiently represent

events in the temporally varying stimulus and duration of ISI before each spike [24].

Moreover, the distribution of inter-spike interval can rapidly convey information

about the stimulus variance in an identified H1 neuron in the fly visual system as

well as in a simulated Hodgkin-Huxley neuron model [81].

2.3.3 Rank order code

As the name suggests, this coding scheme looks at the order in which a set of

neurons generate their first spikes. Each neuron is given a rank according to its first

spike. This coding scheme only transmits the order in which the neurons fire in an

observation window. Thus rank order code is robust to possible time jitters. Van

Rullen and Thorpe [105] have demonstrated that the information between the retina

and brain is represented by rank order coding. They have shown that the first few

spikes of the retinal ganglion cells in response to a visual stimulus carry sufficient

information to reconstruct a stimulus, even when the precise timing of spikes is

subject to noise. Moreover, a single spike per neuron is sufficient for decoding [105].

2.4 Neural Networks

Neural networks process information in a brain-like fashion by incorporating individ-

ual computational units – neurons. Since information processing is accomplished by

computations, neural networks are computational systems [96]. However, the paral-

lel nature of these systems makes them substantially different from a typical digital

24 Chapter 2. Neural Computation and Pattern Recognition

(Von Neumann) computer (Figure 2.5a). Furthermore, unlike digital computers,

the memory is distributed throughout the system (in the network’s parameters) and

is readily available for computation (activation of the processing unit – neuron).

Consequently, the functionality of the system degrades gracefully in the case of de-

veloping breakdown (missing units, damaged paths). Moreover, the event-driven

nature of neural systems consumes less power as compared to the procedure-driven

approach of digital computers [132]. There are no step-by-step instructions, thus,

neural networks are trained (not programmed). Training a network requires a sam-

ple of input/output pairs, and an algorithm to adjust the weights of the connections

in order to produce the desired output. This intensive process involves repetitive in-

put feeding, output monitoring and connection-strength adjustments among neural

units to obtain the desired output.

Both artificial intelligence and cognitive science (including computational neuro-

science) employ the neural-network approach to build intelligent systems. Artificial

intelligence concentrates on designing algorithms to develop intelligent systems. On

the other hand, cognitive science studies the mechanism driving cognition.

Feed-forward and Recurrent Neural Networks

According to the structure of the network, neural networks can be categorised as

Feed-forward Neural Networks (FNNs) and Recurrent Neural Networks (RNNs).

FNNs consist of an input layer, one or more hidden layers, and an output layer.

The information flows in one direction from the input layer to the output layer via

the hidden layers. The network does not have any feedback connections and does

not maintain any state from one trial to the next. Thus, FNNs do not keep memory

and are generally used for regression and classification tasks.

2.4. Neural Networks 25

On the other hand, Recurrent Neural Networks (RNNs) are designed to process

time-series or sequential data. These networks keep a ”memory” of the previous

hidden state and use that along with the current input to update the current hidden

state. RNNs also have three layers; input layers, one or more hidden layers, and the

output layers. However, unlike FNNs the networks have feedback connections such

that each neuron in a hidden layer is connected not only to the inputs but also to

the hidden layer outputs. This creates a feedback loop that allows information to

be passed from one-time step to the next. RNNs are used for tasks such as language

translation, image captioning, speech recognition, and natural language processing.

The feedback connections in RNN architecture enable them to process the previ-

ous state and the current input to update the current state. The traditional RNNs

[32, 65, 18, 141, 102, 118] consisting of standard cells have shown remarkable per-

formance in dealing with short-term dependencies. However, they cannot handle

long-term dependencies because the magnitude of the error signals vanishes or ex-

ploded when back-propagated in time (multiplied several times with the same weight

matrix), making it difficult to capture information from earlier steps. In order to

overcome this issue LSTM networks were developed as an improvement over tradi-

tional recurrent neural networks.

Long Short-Term Memory

In 1997 Hochreiter and Schmidhuber proposed LSTM (Long Short-Term Memory) to

handle the problem of long-term dependencies by using gates and memory cells, al-

lowing the network to selectively retain or discard the information for long durations,

preventing the typical problems of gradient vanishing and exploding in standard re-

current networks [50]. To this date, several variants of LSTM have been proposed

for a variety of machine learning problems [44]. The standard LSTM architecture

26 Chapter 2. Neural Computation and Pattern Recognition

Figure 2.4: An LSTM cell consists of forget gate, input gate and output gate. The
cell receives information from the current input Xt and the previous hidden state
ht−1. The forget and the input gate update the cell state Ct and the output gate
determines the next hidden state ht.

is given in Figure 2.4.

An LSTM cell comprised of three gates: (i) forget gate, (ii) input gate, (iii) output

gate. These cells are implemented using a combination of the sigmoid and hyperbolic

tangent (tanh) activation functions allowing the cell to selectively retain or discard

information to deter the problem of vanishing gradient in the case of long-term

dependencies.

The forget gate decides when to forget the information from the cell-state Ct−1. The

information from the current input Xt and the previous hidden state ht−1 is passed

through a sigmoid function, generating a value between 0 and 1 (Equation 2.4). A

value close to 1 means that the old output is important.

ft = σ(Wf .[ht−1, Xt] + bf) (2.4)

where ft is the output of the forget gate at time t, Wf is the weight matrix between

forget and input gate, ht−1 is the previous hidden state at t, Xt is the current input,

2.4. Neural Networks 27

and bf is the connection bias with respect to Wf .

The input gate is implemented using a combination of sigmoid and tanh as acti-

vation functions. An input vector it is generated by passing the current state Xt

and the previous hidden state ht−1 through the sigmoid function (Equation 2.5).

Simultaneously, the same information is passed through the tanh function, creating

a vector Ĉt with values between -1 and 1 (Equation 2.6).

it = σ(Wi.[ht−1, Xt] + bi) (2.5)

Ĉt = tanh(Wc.[ht−1, Xt] + bc) (2.6)

where it is the input at time t, Wi (Wc) is the weight matrix of the sigmoid (tanh)

operator between the input and output gate, bi (bc) is the connection bias with

respect to Wi (Wc), and Ĉt is the vector generated by tanh activation function.

To update the cell state Ct, the input vector it and Ĉt are multiplied and the result

is added to the product of forget vector ft and the previous cell state Ct−1 (Equation

2.7).

Ct = ft ∗ Ct−1 + it ∗ Ĉt (2.7)

The output gate determines the next hidden state ht by passing the current input Xt

and the previous hidden state ht−1 through a sigmoid function and convolving the

output with the new cell state Ct after passing it through a tanh function (Equation

2.8 and 2.9).

ot = σ(Wo.[ht−1, Xt] + bo) (2.8)

ht = ot ∗ tanh(Ct) (2.9)

28 Chapter 2. Neural Computation and Pattern Recognition

where ot is the output gate at time t, Wo is the weight matrix at the output gate,

bo is the connection bias with respect to Wo, and ht is the next hidden state.

The Three Generations of Neural Networks

According to the properties of the computational units, neural networks can be

divided into three generations. The first generation employs McCulloch-Pitts [82]

artificial neurons. These neurons accumulate the synaptic inputs and pass them to

a simple step function to produce the output (Figure 2.5b). Thus, these neurons

are digital (both input and output are digital) also referred to as threshold-gates

or perceptron [103]. The Hopfield net [52, 54] and Boltzmann machine [49] are

well-known examples of first-generation networks [82].

In the second generation of neural networks, the artificial neurons produce a contin-

uous set of output values based on a non-linear function – the ”activation function”.

Sigmoid and hyperbolic tangents are widely used activation functions. The sum of

synaptic inputs is transformed using the neuron’s activation function to produce

the output – a real number. Therefore, second-generation artificial neural networks

(ANNs) are more potent than first-generation networks and can deal with analogue

inputs/outputs (Figure 2.5c). Furthermore, the output of the non-linear activa-

tion function can represent the firing rate of a real neuron. Therefore the second

generation is considered more biological than the first [134].

It has been demonstrated that visual information in the brain is processed too

swiftly to be encoded by firing rate [126, 125]. At the same time, several studies

have indicated the significance of the temporal dimension of individual spikes in

biological neurons to encode information [10, 131, 47, 101, 137, 34, 72]. To enable

temporal and spatial aspects in the computation and transmission of information,

2.4. Neural Networks 29

Figure 2.5: (a) Digital computer (Von Neumann architecture) performs digital com-
putations (b) First-generation neural network (Perceptron): both inputs and out-
puts are digital. (c) Second-generation neural networks (feed-forward/ recurrent) are
known for universal analogue computation. (d) Third-generation neural networks
(integrate-and-fire model) incorporate temporal dimension by introducing individual
spikes.

the third-generation neural networks incorporate a further level of realism by intro-

ducing individual spikes. These spiking neurons send/receive a series of spikes like

biological neurons in the brain and networks employing spiking neurons are termed

spiking neural networks (SNNs) (Figure 2.5d). The following section describes the

mathematical formulation of three state-of-art neural models: (i) the integrate-and-

fire (LIF) model, (ii) the Hodgkin and Huxley model, (iii) the adaptive exponential

integrate-and-fire (AdEx) model.

30 Chapter 2. Neural Computation and Pattern Recognition

The Leaky Integrate-and-Fire Model

The early history of the integrate-and-fire model dates back to Louis Lapicque’s

work on the excitability of nerves [77, 13]. The simplest integrate-and-fire neuron

can be defined with two essential components: (i) an equation to approximate the

membrane potential of the neuron, and (ii) a mechanism to produce spikes [75, 114,

117, 138]. The leaky integrate-and-fire model is one of the simplest spiking neuron

models. A fixed voltage threshold triggers the spike generation in LIF neurons. The

membrane potential of a neuron increases with incoming spikes from other neurons;

when it crosses a certain threshold, a spike is fired, and the membrane potential

is reset to the resting potential Vreset. The membrane potential V of a neuron

integrates the input current I(t) given by the following equation:

C
dV

dt
= I(t)

some charges may leak away; adding the leak term to the above equation, we get

the simplest leaky integrate-and-fire neuron model.

C
dV

dt
+ glV = I(t),

where gl is the leak conductance, and V is the membrane potential with respect to

the resting potential, therefore:

C
dV

dt
+ gl(V − Vr) = I(t).

Adding excitatory and inhibitory conductance with respect to their specific reversal

potential, gives:

2.4. Neural Networks 31

C
dV

dt
+ gl(V − Vr) + gex(V − Eex) + gin(V − Ein) = I(t).

The above equation can be re-written as

C
dV

dt
= gl(Vr − V) + gex(Eex − V) + gin(Ein − V) + I(t). (2.10)

This equation models the membrane potential of a LIF neuron, where V is the

membrane potential, gl is the leak conductance, Vr is the resting potential, gex is the

excitatory conductance, Eex is the excitatory reversal potential, gin is the inhibitory

conductance, Ein is the inhibitory reversal potential, and C is the capacitance. When

the membrane potential V of a neuron exceeds the threshold Vth, a current impulse

is fired, and V is reset to Vreset. The values of the parameters for LIF neurons [1]

are given in Table 2.1.

When the presynaptic neuron(s) spike, the excitatory (gex) or the inhibitory con-

ductance (gin) of the postsynaptic neuron is updated instantaneously by a value

proportional to the synaptic weight according to the polarity of the synaptic con-

nection. The excitatory and the inhibitory conductances decay exponentially:

dgex
dt

=
−gex
τ

(2.11)

dgin
dt

=
−gin
τ

(2.12)

where tau τ is the decay time constant, τ = 5 ms is used in GReaNs for experiments

[1, 144].

32 Chapter 2. Neural Computation and Pattern Recognition

Table 2.1: LIF parameters

Parameter Value
Vr resting potential -65 mV
Eex excitatory reversal potential 0 mV
Ein inhibitory reversal potential -70 mV
Vreset reset voltage -58 mV
gl leak conductance 5 nS
τ decay time constant 5 ms
C total capacitance 1 nF

The Adaptive Exponential Integrate-and-Fire Model

The leaky integrate-and-fire model (Equation 2.10) can precisely generate spikes and

can predict the spike timings of a real neuron. However, it has several limitations

including the purely linear integration of input current, the fixed firing threshold,

and the lack of memory of its own spiking history. Therefore extensions have been

proposed in these three directions: (i) adding an exponential term enabling more

realistic spike initiation [37], (ii) introducing adaptation of the membrane potential

by adding another state variable [59], (iii) allowing conductance injection instead

of current to mimic a real neuron [28]. Brette and Gerstner proposed the adaptive

exponential integrate-and-fire (AdEx) model that extends the leaky integrate-and-

fire model by introducing the above three generalizations [12].

An AdEx neuron in the network is governed by 4 state variables and 14 parameters.

Differential equations of the state variables (membrane potential V , adaptation cur-

rent w, excitatory conductance gex and inhibitory conductance gin) are given below:

2.4. Neural Networks 33

C
dV

dt
= gex(Eex − V) + gin(Ein − V)− w + gl(El − V + ∆T e

(
V −VT
∆T

)
) (2.13)

τw
dw

dt
= a(V − El)− w (2.14)

dgex
dt

=
−gex
τex

(2.15)

dgin
dt

=
−gin
τin

(2.16)

Out of the 14 parameters, four bifurcation parameters are responsible for spiking

behaviour: the adaptation conductance a, the spike-triggered adaptation b, the

adaptation time constant τw, and the resting potential Vr. The remaining scaling

parameters are: the total capacitance C, the total leak conductance gl, the effective

rest potential El, the inhibitory Ein and the excitatory Eex reversal potential, the

threshold slope factor ∆T , the effective threshold potential VT , and the two time

constants: excitatory synapses τex, inhibitory synapses τin.

The exponential term in equation 2.13 defines the spike generation mechanism and

the ascent of the action potential. In the mathematical description of the model,

Table 2.2: AdEx parameters for tonic spiking

Parameter Value
El effective rest potential -70 mV
Ein inhibitory reversal potential -70 mV
Eex excitatory reversal potential 0 mV
Vr reset voltage -58 mV
VT effective threshold potential -50mV
Vth spike detection threshold 0 mV
∆T threshold slope factor 2 mV
C total capacitance 0.2 nF
gl total leak conductance 10 nS
a adaptation conductance 2 nS
b spike-triggered adaptation 0 pA
τw adaptation time constant 30 ms
τex excitatory time constant 5 ms
τin inhibitory time constant 5 ms

34 Chapter 2. Neural Computation and Pattern Recognition

a spike is fired at time tf when the membrane potential crosses an arbitrary firing

threshold value (much larger than VT , say +30 mV). When this happens the inte-

gration of the differential equations (Equations 2.13 to 2.16) is stopped, the spike

time tf is recorded, and the voltage is reset to a fixed value Vr. This reset describes

the descent of the action potential, given by:

at t = tf reset V −→ Vr

Simultaneously, when a spike is recorded at time tf , the adaptation current w is

increased by an amount b.

at t = tf reset w −→ w + b

Although we use the parameters (Table 2.2) for tonic spiking in all experiments in

this work, the interaction between the differential equations of the AdEx model and

the above two discrete resets can generate a variety of spiking behaviour [58, 88]. In

future studies, it would be interesting to explore how a neuron in the network can

represent other meaningful network states by changing its spiking behaviour (for

instance, from tonic spiking to bursting behaviour).

The Hodgkin-Huxley Model

The giant squid axon (diameter up to 1 mm) is the largest known axon, approx-

imately 1000 times thicker than the human axon [92, 152]. Regardless of the size

difference, the functionality of the nerve cell remains the same [135]. In 1952 Hodgkin

and Huxley [51] observed three different ion currents in the giant axons of the squid.

Together with measuring the three different ion currents (sodium, potassium and

2.4. Neural Networks 35

leak – mostly Cl−), they described their dynamics using differential equations. This

fantastic revolutionary work was awarded a Nobel Prize 11 years later in 1963. The

elegance of Hodgkin and Huxley’s experiment was that for the Na+ and K+ ion

channels, they were able to fit (by hand) the gating variables (m, n, h), the station-

ary values (m0, n0, h0), and the time constants (τm, τn, τh). In short, they provided a

general computational model for neurons with an arbitrary number of ion channels.

Gating variables describe the state of activation or inactivation of a channel. The

general equation of an ion channel is described as:

Iion = −gionrn1sn2(V − Eion) (2.17)

where r (activation) and s (inactivation) are gating variables, n1 represents the num-

ber of activation gates, and n2 is the number of inactivation gates. The differential

equations of gating variables r and s are given as:

dr

dt
= −r − r0(V)

τr(V)
(2.18)

ds

dt
= −s− s0(V)

τs(V)
(2.19)

Hodgkin and Huxley provided stationary values (r0, s0) and time constants (τr, τs)

for gating variables by clamping the membrane at a range of voltage V.

In Figure 2.6, the capacitor C describes the cell membrane, the ion channels (Na,K, leak)

are modelled as conductances (resistors RNa, RK , RL) and the drive of ions to

move back and forth (the Nernst or reversal potential) is represented by batter-

ies (ENa, EK , EL).

36 Chapter 2. Neural Computation and Pattern Recognition

Figure 2.6: Parallel RC circuit diagram for Hodgkin and Huxley model

By the conservation of current:

I(t) = INa + IK + IL + IC

where Iion is given by Ohm’s law Iion = Vion/Rion, the total voltage across the

circuit for each ion Vion = V − Eion. If the membrane potential is equal to the

Nernst potential, no current of that ion will flow.

IC = − 1

RNa

(V − ENa)−
1

RK

(V − EK)− 1

RL

(V − EL) + I(t)

The capacitive current IC = dq/dt, using the definition of capacitance C = q/V the

capacitive current can be re-written as: IC = CdV/dt.

Therefore:

C
dV

dt
= − 1

RNa

(V − ENa)−
1

RK

(V − EK)− 1

RL

(V − EL) + I(t)

2.4. Neural Networks 37

As conductance gion = 1/Rion therefore:

C
dV

dt
= −gNa(V − ENa)− gK(V − EK)− gl(V − EL) + I(t)

by introducing gating variables m, n, and h we get:

C
dV

dt
= −gNam3.h(V − ENa)− gKn4(V − EK)− gL(V − EL) + I(t) (2.20)

Equation 2.20 is the main differential equation for Hodgkin and Huxley’s model,

where the gating variables m, n, and h are probabilities between 0 and 1 associated

to the activation of various channel subunits. For example, each potassium channel

has 4 activation gates represented by n4 (all 4 K+ gates need to be open to allow

the passage of K+ ions), each sodium channel has 3 activation gates (m3) and an

inactivation gate h. The equation for gating variables m, n, and h is given by

equation 2.18 and 2.19.

The choice of neuron model depends on the computational problem and the level of

detail required. The LIF model is computationally efficient and used for simulations

that require simplicity. The simplest LIF model assumes the neuron as a leaky

Figure 2.7: Step current injection into LIF (I = 2.1 nA), and AdEx (I = 0.5 pA)
neuron model. Image source [40].

38 Chapter 2. Neural Computation and Pattern Recognition

Figure 2.8: Step current injection (I = 7.2 µA) into Hodgkin-Huxley neuron model,
where m, n, and h are gating variables associated with activation of various channel
subunits. Image source [40].

capacitor that integrates input and generates spikes when the membrane potential

reaches a fixed threshold (Figure 2.7). The AdEx model extends the LIF model

by introducing exponential spike initiation and an adaptation mechanism which

causes the threshold to increase over time, resulting in a decrease in the firing rate

of the neuron. These extensions enable the AdEx model to mimic several spiking

behaviours of biological neurons (Figure 2.7). Both LIF and AdEx models do not

take the dynamics of ion channels of a biological neuron into account. Therefore,

they are considered simple neuronal models. On the other hand, Hodgkin-Huxley

model provides a general framework for neurons with an arbitrary number of ion

channels. It includes a detailed description of the ionic mechanisms of biological

neurons. A depolarizing current is injected into a neuron, resulting in an increase

in the membrane potential, causing sodium channels to open. As a result, a spike

is generated due to a rapid influx of sodium ions (Figure 2.8). After the spike, the

potassium channels open and potassium ions leave the neuron which restores the

membrane potential to its resting value. This is called repolarization.

2.5. Temporal pattern recognition 39

2.5 Temporal pattern recognition

In the context of neuronal systems, the problem of temporal pattern recognition

refers to identifying a sequence of spikes carrying information. The brain processes

such sequences elegantly and responds in a timely manner [56, 67, 127]. Biological

nervous systems can efficiently differentiate spike trains featuring time and space

surprisingly well [64]. However, very little is known about how individual neurons

contribute to processing temporal signals. Interpreting a sequence of spikes gen-

erated by a neuron (or a group of neurons) to determine the spatial or temporal

structure of a stimulus is a fundamental problem in neuroscience [3].

Analogue sensory information from different modalities including olfactory, auditory,

and visual is encoded in the form of spikes [53], and processed precisely by the brain

with an incredible speed [70]. Spike timings capture the varying transient intensity

of the stimulus, and even a single spike represents remarkable information after the

stimulus onset [42, 131]. These results suggest that temporal features of spikes can

precisely represent a stimulus, and convey information in artificial spiking neural

networks [72].

From a computational perspective, processing temporal spike patterns is a general

computational task performed by the brain [30, 23]. There are two common ways of

learning to recognise temporal patterns: (i) adjusting conduction delays, (2) select-

ing conduction delays from a spectrum of existing delays. Spiking neural networks

(SNNs) are documented to differentiate temporal patterns by exploiting different

time delays and pathways in the network [53]. In the context of neural networks,

time delays can be adjusted at the level of synapse, axon or soma (the cell body).

Adjusting these delays at one or more levels in the network can uncover features

of a signal [123]. On the other hand, it is possible that signals produced at differ-

40 Chapter 2. Neural Computation and Pattern Recognition

ent timings arrive together at the readout neuron – generating a maximal response.

This phenomenon is used for edge detection in the visual system [100]. Moreover,

delays in the network can also be used to identify keywords in a continuous speech

[129].

In his influential paper, Hopfield suggested that artificial neural networks consisting

of neurons with radial basis function (RBF) as activation function can recognize

temporal patterns by using different latencies and coincidence detection [53]. An

input signal encoded as the timings of spikes is processed irrespective of the stimulus

intensity and scale. If the intensity of the stimulus is doubled the spikes will occur

earlier in time by a proportional amount. Similarly using delays the pattern is

recognized invariant of the scale – the stimulus is shifted in time. Moreover, it

is possible to divide the stimulus into two halves, recognize them separately by

independent networks and use coincidence detection to recognize the stimulus. If

the two distinct readouts support each other, the input pattern is correct otherwise

the pattern is wrong.

In another study, Steuber and Willshaw [119] presented a biophysical model of

metabotropic glutamate receptors (mGluR) and showed that Purkinje cells could

learn to perform pattern recognition by adjusting delays of the calcium response.

The response time of the calcium influx is negatively correlated to the concentra-

tion of available receptors. Increasing the concentration of the receptors will result

in decreased latency of the calcium response. Thus, learning is accomplished by

adapting the concentration of the receptors [119].

The other way of learning to recognise temporal patterns is by selecting delays from

a spectrum of existing delays – the spectral time model proposed by Bulloc et al.

[14] for learning to select timed responses in the cerebellum. In their experiment on

the conditioned nictating membrane response (NMR) of a rabbit, they showed that

2.5. Temporal pattern recognition 41

the cerebellum learns to adaptively delay responses by selecting conditioned delays.

After repeated trials of pairing a conditional stimulus to an unconditional stimulus

(corneal air-puff) the rabbit’s NMR is conditioned to a conditional stimulus (light

stimulus), anticipating the expected arrival of the air-puff by initiating eyelid closure

before the onset of the corneal air puff. Studies have shown the involvement of the

cerebellar cortex in the timing of behavioural responses [71, 95]. In the spectral

time model, the axon of cerebellar granules cells divides into parallel fibres which

excite both Golgi and Purkinje cells. The Golgi cells in turn inhibit the response

of granule cells, attenuating their activation in time which is essentially learning to

select timed responses [14].

Numerous studies have documented the integration of sensory information received

from different modalities in the brain [16, 41, 133, 116]. Neurons responding to

more than one modality perform this integration in the super-modal layer of the

brain [31]. Also, experimental evidence of cross-modal coupling in the brain exists

in which one modality interpolates in the regions belonging to other modalities

[16]. According to this biological principle an SNN-based architecture has been

proposed for integrating audio and visual modalities to authenticate a person[146].

Both modalities are temporal in structure, an independent SNN is employed for

each modality, and the readout neurons of each modality represent a person. In the

integration step, the output of both modalities is combined in the supramodal layer

using the phenomenon of coincidence detection (Figure 2.9). The supramodal layer

performs cross-modal coupling in which the neurons are able to process information

received from different modalities [146].

Event-driven computation in SNNs makes them memory-and-energy efficient as com-

pared to traditional ANNs. Several studies have indicated that SNNs can outper-

form conventional ANNs especially when processing event-based data both in terms

42 Chapter 2. Neural Computation and Pattern Recognition

Figure 2.9: Integration of modalities in the supramodal layer. Both individual modes
and supramodal layers employ spiking neurons. Image source [146].

of accuracy and efficiency (computational cost) [7, 26, 76, 82, 84, 135]. Moreover,

the discrete nature of spiking neurons makes them fully parallel and highly energy

efficient on neuromorphic hardware [4, 22, 38]. In addition to their biological rele-

vance, the temporal encoding of SNNs naturally allows the processing of time-series

data. Therefore, SNNs are considered appealing for investigating properties of time-

structured data in general and spike trains in particular [115].

In this regard, efficient optimization techniques have been proposed to utilize the

learning capabilities of SNNs. These techniques include unsupervised learning mech-

anisms such as Long-Term Potentiation (LTP) [124], Long-Term Depression (LTD)

[57], Spike-Time-Dependent Plasticity (STDP) [9], Input-Time-Dependent Plastic-

ity (ITDP) [110], and supervised learning mechanisms including Spike-Prop [11],

Tempotron [45], ReSuMe [97], Chronotron [36], and SPAN [87]. In addition, based

on evolving connectionist (ECoS) [69] methodology many algorithms are proposed

for evolving SNNs for various computational tasks [29, 68, 108, 146]. Furthermore,

two recent hybrid approaches filled the performance gap between SNNs and the

typical ANNs on high-dimensional data: (i) the conversion approach transforms

pre-trained ANNs into SNNs by mapping ReLU activation to integrate-and-fire ac-

tivation [104, 109], (ii) the surrogate approach deals with the differentiation problem

2.5. Temporal pattern recognition 43

of leaky integrate-and-fire (LIF) networks by estimating the gradient function [89].

Although SNNs are complex and compute-intensive, advancement in optimization

algorithms for SNNs has been remarkably successful. Even in some instances, SNNs

are documented to outperform traditional ANNs both in terms of accuracy and

speed [26, 76, 84, 135]. However, despite improvements in learning and optimiza-

tion algorithms, very little is known about the computational mechanism of SNNs

[20]. This study focuses on exploiting the computational abilities of SNNs for a

computational task of temporal pattern recognition.

Chapter 3

The GReaNs Platform

The Gene Regulatory evolving artificial Networks (GReaNs) platform was originally

developed to simulate the evolution of artificial gene regulatory networks (GRNs) –

it uses a genetic algorithm to generate a population of artificial organisms in a variety

of settings, including multi-cellular development (organisms in 2D & 3D, morpho-

genesis, soft-body animats), signal processing (pattern recognition and gain modula-

tion) and robotic control (animat control, foraging, and movement of a robotic arm)

[62, 73, 145, 147]. This chapter begins with the representation of the linear genome

followed by the structure of artificial gene regulatory networks (GRNs) in GReaNs.

Then the mapping of GRNs to SNNs is detailed. Subsequently, constraints on the

structure of SNNs are given. Then, the computational task of pattern recognition

is formulated. At the end, the genetic algorithm for the evolution of minimal SNNs

is presented.

44

3.1. Linear Genome Representation 45

3.1 Linear Genome Representation

Due to scarce availability of resources, an organism expresses a gene only when it

is required. Using this inspiration, the linear genome (representing an organism) in

GReaNs consists of four genetic elements: external factors, cis-regulatory elements

(CRE) a.k.a. promoters, trans-regulatory elements (TRE) a.k.a. products, and

effectors. External factors are inputs to the cell, and effectors are the readouts,

whereas CREs and TREs regulate the expression of the gene as per the requirement.

In a real genome, TRE sites bind to CRE sites to activate or repress the transcription

of genes into mRNA, which is then translated to proteins. This binding is termed

an operon. An operon is abstracted in the artificial linear genome as a sequence of

CREs followed by TREs. Thus, the number of operons is not fixed in a randomly

created linear genome, where each operon has a variable number of cis and trans

elements.

A genetic element in the linear genome has three attributes: a type (external factor,

effector, CRE, TRE), a sign (positive, negative) and 2D (x, y) coordinates in R2.

The affinity between elements is determined by the Euclidean distance between their

x and y coordinates; the closer the elements in R2, the stronger the affinity, while

the sign denotes activation (positive) and repression (negative) of transcription.

Figure 3.1: Encoding the gene regulatory network as a linear genome, an operon is a
sequence of cis-regulatory elements (CRE) followed by a sequence of trans-regulatory
elements (TRE).

46 Chapter 3. The GReaNs Platform

3.2 Artificial Gene Regulatory Network

A gene regulatory network is a network of interactions between genes that explains

how one gene promotes or suppresses the transcription of other genes. Here, a linear

genome encodes the topology of an artificial gene regulatory network. In order to

generate a GRN, the linear genome is first scanned for operons – a sequence of CREs

followed by TREs. A multigraph is then created with the concept that products

bind to the promoters with affinities calculated as a function of their Euclidean

distance in R2. Each operon in the GRN consists of at least one product with a

certain concentration in the cell (the concentration of the product is an abstraction

of the amount of protein in the cell). A connection between two operons means that

one gene regulates the other, that is the concentration of one influences (positively,

or negatively) the synthesis of the other. These interactions are uni-directional from

promoters to products with a cut off distance of 5 units. For example, if two elements

are five or more units apart from each other in R2, there is no affinity between them,

meaning they do not influence each other. This limits the full connectivity of the

GRN. On the other extreme, if the distance between two elements is 0, an edge

with the maximum (minimum) value of weight 10 (-10) is created in the GRN. The

affinity between genetic elements is given by expression 3.1.

wi,j =

 si.sj
2(5−di,j)β
10di,j+β

when di,j ≤ 5

0 when di,j > 5
(3.1)

where si and sj are the signs of genetic elements, the weight contribution is positive

(negative) when both signs are the same (different). The distance between two

elements is represented by di,j, and the beta β parameter controls how fast the

weight contribution drops with increasing distance. Figure 3.2 shows the distance

conversion into affinity between elements for two values of beta (β = 1 and 5). All

3.2. Artificial Gene Regulatory Network 47

Figure 3.2: The distance affinity curve shows how the distance between genetic
elements corresponds to the weight contribution in GRN.

experiments presented in this thesis use β=1. The weight contribution is given by

the function sisj
2(5−di,j)β
10di,j+β

, when the distance between two elements is less than or

equal to 5, otherwise the weight contribution is 0, thus, preventing full connectivity

of the GRN by imposing a threshold value of 5 on the distance.

To sum up, if a product (TRE) is located inside the interaction distance of the

promoter (CRE), an edge with weight equal to the computed affinity is added to

the GRN. In the same way, the external factors (inputs) are connected to the CREs.

The inputs are operated externally, and the network dynamics cannot control them.

Finally, the effectors (outputs) are connected to the TREs according to the weight

contribution given by Equation 3.1. Their concentration can be read externally.

Furthermore, effectors cannot regulate the operations in the GRN, and the external

factors cannot interact with them directly.

As an example, the decoding of a linear genome is given in Figure 3.3. After the

identification of operons, the Euclidean distance between elements is translated to

their corresponding affinities, and an edge is created in the network accordingly.

Since an operon can have multiple CREs and TREs, the obtained GRN has multiple

connections between operons. Moreover, external factors and effectors also connect

48 Chapter 3. The GReaNs Platform

Figure 3.3: (a) Encoding of the linear genome into corresponding GRN. Structure
of linear genome. (b) Position of genetic elements in 2D space. (c) Topology of the
obtained GRN; red (blue) connections mean positive (negative) gene regulation.

to operons with more than one connection (Figure 3.3c). Multiple connections are

then coalesced (by adding their weights) to form one connection. The combined

effect of a coalesced connection is equal to the sum of individual connections.

All products in an operon have the same level of concentration (the amount of

protein in the cell at a given time), biologically this abstraction can be interpreted

as proteins with identical concentrations. The concentration L of each operon in the

network is updated during the simulation in discrete time steps. The concentration

level L is calculated as the sum of a degradation and a sigmoidal term given by

Equation 3.2.

3.2. Artificial Gene Regulatory Network 49

∆L =

(
1− e−A
1 + e−A

− L
)

∆t (3.2)

where ∆L is the change in concentration, A is the activation level of the promoter

(CRE) given by Equation 3.4, L is the current level of concentration, and ∆t is the

integration time. Forward Euler integration with a 1 ms time step is used to update

concentrations. Since a single promoter can have K binding factors, the activity of

a promoter is calculated by the following Equation 3.3.

pi =
K∑
k=1

Lkwk,i (3.3)

where pi is the activity of a given promoter, Lk is the concentration level of kth

factor and wk,i is the weight of the connection between factor k and promoter i. The

activity of all promoters is then used to calculate the activation level of operons in

the network.

A =
I∏
i=0

pm,i

J∑
j=0

pa,j (3.4)

where I and J represent the number of multiplicative and additive promoters whereas

pm,1...i and pa,1...j are described by the promoter activation function Equation 3.3

(note that pm,0 = 1 is the multiplicative identity and pa,0 = 0 is the additive iden-

tity). The presence of multiplicative promoters is required to ensure all-or-none

regulation, that is a given promotor pm is multiplied by all multiplicative promoters

(1 to I) in the GRN, thus the unit is expressed only if all products have an affinity

to it, such all-or-none regulations are common in biological networks.

For more details on evolving gene regulatory networks, please refer to [60, 61, 62].

The GReaNs platform is extended for the evolution of spiking neural networks, SNNs

[143]. The structure of a linear genome can be adapted to represent an SNN. The

50 Chapter 3. The GReaNs Platform

following section describes how the encoding of a GRN can be employed to represent

an SNN as a linear genome.

3.3 Mapping of GRNs to SNNs

To adapt the linear genome representation for the encoding of spiking neural net-

works (SNNs), two essential modifications are required: (i) renaming the labels of

genetic elements, (ii) updating the activation function. First, the cis and trans-

regulatory elements (CRE and TRE) are renamed as dendrites Ds and axon termi-

nals ATs. Like an operon, a sequence of dendrites followed by axon terminals encodes

for a neuron (Figure 3.4). The strength of the connections (synapse) between the

coordinates of genetic elements (inputs, outputs, dendrites and axon terminals) is

determined by using the distance-affinity function (Equation 3.1) of the GRN. Sim-

ilarly, the interactions (activation/ repression) between genes in the GRN map to

the polarity (excitatory, inhibitory) of synaptic connections in the SNN [143].

Figure 3.4: Encoding of the spiking neural network as a linear genome, a neuron is
a sequence of dendrites (D) followed by a sequence of axon terminals (AT).

Second, the activation function (product concentration equation 3.4) is updated

to a neuronal activation function. In a simple neuron model, when a presynaptic

neuron spikes, an amount of conductance proportional to the synaptic strength is

injected into the postsynaptic neurons. Consequently, the membrane potential of

the postsynaptic neuron increases (for excitatory inputs) and emits a spike when it

3.4. Structure of SNNs 51

crosses a certain threshold.

Activation functions of two neuronal models ”leaky integrate-and-fire – LIF” [117]

and ”adaptive exponential integrate-and-fire – AdEx” [12] are implemented in GRe-

aNs (described in Chapter 2). Although the task of temporal pattern recognition can

be accomplished with spiking networks composed of LIF neurons [143], the present

work employs only AdEx neurons to exploit their ability to produce rich spiking

patterns [88], which can be used in future studies to represent distinct network

states.

3.4 Structure of SNNs

The spiking neural networks (SNNs) constructed for the temporal pattern recog-

nition task consist of three layers: the input layer receives the input signals, the

hidden layer processes these signals, and the output layer indicates the network’s

response (Figure 3.5). The number of nodes in the input layer is equal to the length

of the pattern to be recognised. Each input signal is given to the network through a

dedicated input channel. The minimum duration for which a signal can be presented

to the input channel is one network step (1 ms). However, it must be presented for

a moderate amount of time because short signals of length 1 ms produce networks

with stronger synaptic connections which causes inconsistent responses while long

signals with no (or small) gaps produce stateless solutions. In this study, the length

of a signal is kept between 4 and 6 ms. Furthermore, an interval of silence separates

input signals. Without silent gaps during evolution, the obtained solutions cannot

sustain a network state in the absence of an input signal. Also, silent intervals pro-

mote stable switching between network states. Moreover, variable intervals between

input signals tend to form memory in the network. The networks are less likely to

52 Chapter 3. The GReaNs Platform

develop memory if the duration of intervals is fixed. In the initial experiments, the

length of the silent interval was 8 ms which was later increased to 16 ms.

Recognising a temporal pattern of size n requires n input channels, m interneurons

(m ≥ n) and a single output neuron. At the beginning of evolution, the number of

inputs and output are set beforehand according to the computational task. Also,

the upper limit on the number of interneurons in the network is preset. The evo-

lution cannot employ more than the allowed number of interneurons, however, it is

possible to produce a solution with fewer interneurons. A neuron is allowed to be

excitatory and inhibitory at the same time. Inputs are not allowed to connect to

the output directly and the interneurons can form self-loops. The maximum num-

ber of connections in this structure recognising a pattern of length n is given by the

expression nm+m2 +m (Figure 3.5). The strength of the connection is determined

by a function of the Euclidean distance (Equation 3.1). Inputs connect to interneu-

rons, interneurons connect to each other and to the output neuron. In the initial

generation, all individuals are created at random. An individual is considered valid

if the inputs and the output are connected to interneurons. Moreover, a solution is

marked abnormal if an input or output node is removed from the network during

evolution. Such solutions are not transferred to the next generation.

3.5 Temporal Pattern Recognition Task

The neural activity in the brain continuously recognises temporal patterns received

from different sensory modalities. To explore the working mechanism of spiking

neural networks, a computational task of identifying a specific sequence of signals

in a continuous stream of inputs is designed. Spiking neural networks employed for

this task are made up of recurrently connected artificial neurons. These neurons

3.5. Temporal Pattern Recognition Task 53

communicate with each other through spikes when an input signal is received and

produces an output. For the pattern recognition task, the networks are optimised

during evolution such that the readout neuron spikes only for the correct ordering

of the input pattern and remains silent for others. The shortest possible temporal

pattern is composed of two signals. The complexity of the task increases with the

length of the pattern; recognising a shorter pattern is easier than a longer one

because a shorter pattern has fewer possible orderings, and the network requires a

smaller number of states. For example, the possible ordering of 2 signals (say A,

B) is 4 (AA, AB, BA and BB). Similarly, the number of possible permutations of 3

signals is 27 (AAA to CCC).

Initially, the networks are evolved to recognise a temporal pattern of 3 signals. After

analysis of the minimal networks obtained, the evolutionary algorithm is optimised

Figure 3.5: An example of a fully connected structure of a spiking neural network
suggested for recognizing a temporal pattern ABC. The input layer receives the
input signals, the interneurons process the incoming signals, and the output layer
indicates the network’s response. The arrows show synaptic connections (excitatory
or inhibitory) between inputs, interneurons and the output.

54 Chapter 3. The GReaNs Platform

to produce networks for recognising 4 signals in a particular order. Analysis of

solutions obtained with independent evolutionary runs for recognising 3 signals re-

vealed the recognition mechanism of SNNs. For recognizing 4 signals and above,

the evolutionary algorithm could not produce a minimal solution (with less than 10

interneurons). Moreover, the problem of pattern recognition is analogous to process-

ing a regular expression. Therefore, the paradigm of finite-state transducer (FST)

is used to understand the switching mechanism of SNNs.

3.6 Genetic Algorithm for Evolving SNNs

The structure of the linear genome remains the same regardless of the network (GRN

or SNN) being encoded. In the linear genome representation of a SNN, a neuron

is encoded as a sequence of dendrites followed by axon terminals. The required

numbers of inputs and outputs are inserted at the beginning of the genome. The

product-promoter space is R2 and each genetic element (input, output, dendrites

and axon terminal) is associated to a point (x, y) in R2. The distance between

the coordinates of the genetic elements determines the strength of the synaptic

connections. All the genetic operators are defined on the linear genome. A one-point

mutation moves the coordinates associated with an element in R2 that corresponds

to strengthening or weakening synaptic connections and re-wiring the structure of

the neural network. The deletion (duplication) operator removes (copies) a random

number of contiguous elements starting at a random site in the linear genome. The

length of elements to be duplicated or deleted is drawn from a geometric distribution

(P (X = k) = p(1−p)k−1) with a mean of 10 (p = 0.1). To ensure inputs and outputs

are intact during evolution, the first n+1 genetic elements (where n is the required

number of inputs and 1 indicates a single output) in each genome are excluded from

3.6. Genetic Algorithm for Evolving SNNs 55

acting as the start elements for duplication or deletion, however, their coordinates

can change – updating the weights connecting them to the network. A fixed number

of individuals are subject to crossover (recombination), a crossover point is picked

at random for each of the two parental genomes, and the right parts of the crossover

points are exchanged, producing two new offsprings.

In the initial generation, a random population is created with a fixed number of

inputs, outputs and an upper limit on the number of interneurons. A neuron in the

linear genome has a random number of dendrites followed by a random number of

axon terminals. These numbers are drawn from Gaussian distribution with a mean

value of 3 and a standard deviation of 1. If the drawn number is less than 1, a single

element (dendrite or axon terminal) is created. The coordinates of each element are

drawn from a uniform distribution between [-10, 10] in R2, while the sign of the

elements is either positive or negative determined by a coin flip (p = 0.5). As noted

above, the strength of the synaptic connection between dendrites and axon terminals

is determined by the distance function (Equation 3.1). The closer (further away)

the genetic elements are in R2, the stronger (weaker) is the synaptic connection.

To extensively explore the search space for these minimal solutions the rate of du-

plications is kept higher than that of deletions. This results in lengthening of the

genome (size of neuron) during evolution (but not the number of neurons in the

network as they are set beforehand). Thus the dendrites and axon terminals tend

to grow for a single neuron during evolution – precisely adjusting the weights of

the connections in the network. Subsequent generations are created with a binary-

tournament selection i.e. two individuals are chosen at random, and the best one

according to the fitness value is transferred to the next generation after going through

genetic operators (mutation, deletion, duplication and crossover). To ensure good

solutions in the population, elitism is enabled during evolution. Fitness is defined

56 Chapter 3. The GReaNs Platform

as a function of reward and penalty. In this study of temporal pattern recognition,

the fitness function rewards spiking of the output neuron for the correct pattern and

penalises spikes elsewhere.

3.7 Conclusion

The structure of the linear genome in GReaNs can be adapted to describe the evo-

lution of complex networks. Moreover, the linear encoding can efficiently explore

the search space to produce optimal networks (with less than 10 interneurons) for

various computational tasks in the presence of noise. However, the number of ele-

ments exposed to mutation increases multiple times with the network’s size (several

elements encode for a single neuron – the sequence of Ds followed by ATs). This

causes an exponential increase in the search space with the number of neurons in

the network. Therefore, the GReaNs platform is not suitable for evolving large

networks.

Part III

Results

57

Chapter 4

Evolution of SNNs in the Absence

of Noise

This chapter focuses on the evolution of spiking neural networks (SNNs) in the

absence of noise for recognising a pattern of three signals. Noise can be introduced

intrinsically or extrinsically during evolution. Intrinsic noise is random fluctuations

of the membrane potential of each neuron in the network at every network step, while

extrinsic noise is random variations of the duration of silent intervals in the input

stream. An individual network consists of three input nodes (a dedicated channel

for each input signal), up to five interneurons, and one output neuron. Using a

genetic algorithm a population of SNNs is evolved, such that the output neuron

spikes after receiving signals in the correct order (say ABC). During evolution, the

networks are allowed to have up to five interneurons. However, the evolutionary

algorithm produced perfect recognizers with only two interneurons. The network

is presented with a continuous random sequence of signals (pulses) to the input

channels (A, B and C). These signals are encoded as intervals of time. A signal’s

duration is 4 ms followed by a silent interval of 8 ms. Input signals are forwarded

58

4.1. Experimental Setup 59

to the connected interneurons modelled as adaptive exponential integrate-and-fire

(AdEx) neurons [2]. The recurrent interneurons successively process these signals

and produce output. An AdEx neuron is governed by four state variables: membrane

potential V , adaptation variable w, excitatory (gex) and inhibitory conductance

(gin). Their differential equations are given in Chapter 2, Equation 2.13 to 2.16.

The values of initial parameters are chosen such that the interneurons generate

tonic spiking for a constant input current (Chapter 2, Table 2.2). It is important to

note that all the neurons in the network are conductance-based, such that when an

input signal is received or a pre-synaptic neuron fires, the waveform of the synaptic

conductance is convolved with the input and multiplied by a factor reflecting the

strength of the connection (Chapter 2, Equation 2.13).

4.1 Experimental Setup

An independent evolutionary run consisted of a population of 300 individuals. The

initial generation was created by generating random genomes, each coding for a

network of up to five interneurons, three inputs and one output neuron. The length

of a genome in the population was variable such that each region coding for a single

neuron had an arbitrary number of dendrites and axon terminals. The genetic

operators were defined by the linear genome; the structure of the linear genome is

described in Chapter 3. To preserve good solutions in the population, the top 10 out

of 300 individuals were transferred to the next generation without mutation, i.e. elite

count = 10. Subsequent generations were created with binary tournament selection,

i.e. two individuals were picked at random and the best one was transferred to the

next generation after going through the three genetic operators simultaneously: (i)

one point mutation, (ii) duplication, and (iii) deletion.

60 Chapter 4. Evolution of SNNs in the Absence of Noise

One-point mutation. Each genetic element (inputs I, output O, dendrites D, and

axon terminals AT) of the genome had a probability of 0.01 to undergo a one-point

mutation. If an element was chosen for one-point mutation, the x, y coordinates

associated with the element were being moved in the affinity space in a random

direction by a distance drawn from a normal distribution with mean 0 and standard

deviation 3.

Duplication. The rate of duplication was 0.001 per genome. A random element

was picked as a starting point on the chosen genome, and the number of elements

to be duplicated was drawn from a geometric distribution with a mean value of 10.

Then, the duplicated part of the genome was inserted at a randomly chosen insertion

site.

Deletion. The rate of deletion was 0.0005 (half of the rate of duplication). A

sequence of elements drawn from a geometric distribution with a mean value of 10

was deleted from a randomly picked site on the chosen genome.

The first four genetic elements (the three inputs and the output) were excluded

from duplication and deletion. However, they were allowed to undergo a one-point

mutation. Since the rate of duplication rate was higher than that of deletion, the

genomes were likely to grow during evolution, but the size of the network stayed the

same (set to five interneurons beforehand). Therefore, the neurons enlarged during

evolution (number of dendrites and axon terminals), which accounted for fine-tuning

of the synaptic connections.

Fitness. The fitness function represents error, 0 means the network has no error

and 1 means maximum error. The fitness function rewards spiking of the output

neuron in the interval after the correct pattern is received and penalises spike(s)

in all other intervals (Figure 4.1). It is calculated by combining the following two

4.1. Experimental Setup 61

functions (equation 4.1, 4.2). Theoretically, either of them can be used as a fitness

function. In practice, however, using one of them did not work well; combining the

two increased evolvability and resulted in a better yield (equation 4.3).

ffitness1 = 1− (R− CP) (4.1)

ffitness2 =
R

R + CP
(4.2)

The two fitness functions are combined as follows

ffitness = 1−
(R− CP) + R

R+CP

2
(4.3)

where R is the normalised reward: the number of correctly identified patterns divided

by the total number of correct patterns in the sequence, and P is the normalised

penalty: the number of intervals in which the output neuron spiked incorrectly

divided by the total number of incorrect intervals, and the constant C is the penalty

Figure 4.1: The fitness function rewards (R) spiking of the network output after
receiving the correct input pattern ABC and penalizes (P) spikes elsewhere. In
a random input stream, the number of intervals in which the output can spike
incorrectly is a large number. Therefore the normalized penalty is amplified by a
constant C.

62 Chapter 4. Evolution of SNNs in the Absence of Noise

Figure 4.2: These plots show how reward and penalty correspond to the fitness value
for C = 20. (a) The first fitness function defined by equation 4.1 can get a min value
of 0 and a max of 21 (CP+1). (b) The second fitness defined by equation 4.2 can
get a min value of 0 and a max of 1. (c) The combined fitness defined by equation
4.3 can get a min value of 0 and a max of 10.

amplifier. Since incorrect intervals are large in number, the normalised penalty P

approaches zero when the number of false positives reduces. Therefore, a large value

of C is required to penalise the wrong patterns in the later generations strongly. The

value of C for experiments in this chapter is set to 20.

Employing only the first fitness function (Equation 4.1, Figure 4.2a) with a small

value of C (below 10) produced over-recognizer networks (the punishment for re-

sponding to a wrong pattern gets negligible in the later generations). As a solution,

when the value of C was increased to 20, the individuals preferred to remain silent

because they were strongly penalized for responding to wrong patterns. To kick-start

the evolutionary process the second fitness function (Equation 4.2, Figure 4.2b) was

combined with the first fitness function. The combinations of two fitness functions

(Equation 4.3, Figure 4.2c) not only encouraged evolution in the initial generations

but also strongly penalized individuals responding to wrong patterns in the later

generations.

Theoretically, for C = 20, the value of fitness (Equation 4.3) ranges from 0 to 10.

4.2. Analysis of the Evolved SNNs 63

In practice, however, the fitness value is almost always between 0 and 1, because

the normalised P is a very small number. The stopping criterion for the genetic

algorithm is when the fitness value becomes zero or when the maximum number of

generations (1000) is reached.

Recognizing a pattern of three signals

In the absence of noise, a network recognising a pattern of three signals requires

three input nodes, at least two interneurons, and one output neuron. A pattern

of three signals (say A, B and C) has 27 possible permutations (AAA to CCC).

Out of 27 patterns, only one pattern (say ABC) is considered correct. The output

neuron of an evolved network responds only to the correct pattern ABC with at

least one spike and remains silent for all other patterns. During evolution, every

individual in the population is evaluated on six random sequences containing 5000

signals each, created with equiprobable occurrence of the three signals (A, B, and

C). The pattern in the correct order (ABC) constitutes approximately 10% (1/27

* 3) of the continuous sequence of the form ABBACAABCCACBCAB... . Each

signal is presented to the network on the designated channel for 4 ms (emitting a

spike at every network/integration step 1 ms) followed by a silent interval of 8 ms.

4.2 Analysis of the Evolved SNNs

Out of 200 independent evolutionary runs, each optimising 300 SNNs up to 1000

generations, the top 10 individuals based on their fitness value are analysed in this

chapter. These champions were tested with a new random sequence of 500,000

signals. Four out of 10 individuals behaved as perfect recognisers. The output

neuron of a perfect recogniser spiked only after receiving the correct pattern ABC.

64 Chapter 4. Evolution of SNNs in the Absence of Noise

All the perfect recognisers had a fitness value of 0 (Table 4.1). The next three

individuals by rank (5, 6, and 7) did spike incorrectly after receiving certain patterns

ending with ..CBC, ..BBC and ..BBA. However, the networks did not respond when

the same patterns were given to the network again with different preceding signals.

This clearly indicates that the networks responded to these wrong patterns due to

preceding signals in a specific order – a form of history. In the next two individuals

(no. 8 and 9), the output neuron always responded to wrong patterns (CBC and

BBC) with 2 (BBCBC) and 3 (ACBBBC) preceding signals, respectively. The

last individual can be classified as an under-recogniser. This individual failed to

recognise all ABCs preceded by CCB, and couldn’t identify any pattern of the

form ...CCBABC. However, it recognised all other ABCs and never responded to

any wrong pattern. Therefore, the normalised penalty for this individual was zero

(Table 4.1).

Table 4.1: The number of states and performance of the top individuals evolved for
recognising a pattern of 3 signals with short intervals of 8 ms.

number of network states
Champion Reward Penalty Problematic sequences Start hA hAB hABC Total

1 1.0000 0.0000 none 2 1 1 1 5
2 1.0000 0.0000 none 3 2 1 1 7
3 1.0000 0.0000 none 3 2 1 1 7
4 1.0000 0.0000 none 4 2 1 1 8
5 0.9976 0.0000 BAACBC sometimes 3 2 1 1 7
6 0.9952 0.0002 CBBBBC sometimes 4 2 1 1 8
7 0.9502 0.0002 ABABBA sometimes 2 2 1 1 6
8 0.9774 0.0014 BBCBC always 3 3 1 1 8
9 0.9317 0.0022 ACBBBC always 4 4 2 1 11
10 0.6454 0.0000 CCBABC never 4 2 2 1 9

4.2.1 Minimal FST for Recognising a String

A finite state transducer (FST) is a formal model of computation for time-structured

data [113]. The FST paradigm is used to understand the working mechanism of the

networks evolved to recognise a temporal pattern of 3 signals.

4.2. Analysis of the Evolved SNNs 65

In language processing FST has several applications including string recognition,

generation, and translation [113]. A recognizer FST encodes the internal structure

of a string and computes a function that maps the input string to the output string

{0, 1}. Formally, an FST for recognizing a string of three letters ABC is described

by 6-tuple FST = (Q,Σ,∆, q0, F, σ) where, Q is the finite set of states = {S (start),

hA (had A), hAB, hABC}, Σ is the finite set of input symbols = {A, B, C}, ∆ is

the finite set of output symbols = {0,1}, q0 is the designated start state = start, F

is the set of final states = {hABC}, and σ is the transition function from input to

output (σ ⊆ Q× Σ×∆×Q). The set of all possible transitions is given by:

σ ={(start, A, 0, hA), (start, B, 0, start), (start, C, 0, start),

(hA,A, 0, hA), (hA,B, 0, hAB), (hA,C, 0, start),

(hAB,A, 0, hA), (hAB,B, 0, start), (hAB,C, 1, hABC),

(hABC,A, 0, hA), (hABC,B, 0, start), (hABC,C, 0, start)}

where each 4-tuple represents a transition, for example, the first 4-tuple (start, A, 0,

hA) descibes that input symbol A transforms the transducer (currently in the start

state) in to hA state, and produces no ouput. The minimal FST for recognising

a string of three letters can be constructed by hand (Figure 4.3), where S is the

start state of the FST. The FST transitions from S to state hA (had A) when A

is received, then to state hAB (had AB) only when this A is followed by a B, and

lands in the state hABC (had ABC) when AB is followed by a C. When the FST

transitions to the state hABC, it produces an output symbol 1, indicating that the

correct string has been received. The preceding signal – history determines the

current state of the FST, for example, if the symbol just received is B preceded by

C, the FST must be in the start state (S), as this is the only state that could be

66 Chapter 4. Evolution of SNNs in the Absence of Noise

reached after a sequence of symbols that ends with CB.

Figure 4.3: The minimal FST for recognising a string of three letters has four
states. The circles represent states, and the edges show the transition from one
state to another state. An output symbol (0 or 1 after ”/”) is produced upon each
transition (0 or no output means reject the input, 1 means accept the input).

4.2.2 Mapping Network States onto the FST States

The behaviour and the constituents of the evolved SNNs are found to have a one-to-

one correspondence with the 6-tuple of FST that maps the input string ABC to the

output string {0, 1}. Therefore, a spiking neural network recognising a temporal

pattern of three signals can be formalised as a 6-tuple FST = (Q,Σ,∆, q0, F, σ),

described in the previous section. Here, ∆ represents the finite set of spiking be-

haviours of the output neurons = {quiet, spiking}.

Information processing in SNNs can be understood by mapping the spiking activity

in the network onto the states of an FST. This is accomplished by observing the

spiking behaviour of the interneurons and the output neuron in the silent interval (8

ms). A neuron state refers to the spiking pattern of the neuron in the silent interval

after receiving an input signal, whereas a network state refers to the state of all

neurons in the network in a given silent interval. Input signals have many-to-one

correspondences with the network states, i.e. several input signals may transform

the network into the same network state.

4.2. Analysis of the Evolved SNNs 67

Identification of Network States

In order to identify the possible network states of an evolved SNN, the network

was given all possible orderings of signals A, B, and C (from AAA to CCC), and

the network states were identified. It was observed that all networks converged to

a single final network state upon receiving the last signal C in the correct pattern

ABC. However, it is possible that the network produces different spiking patterns

(due to preceding signals – history) upon receiving A and AB. Consequently, a

network can have multiple hA or hAB states. Similarly, a network can have more

than one start state for signals received in the wrong order.

Out of 4 perfect recognisers, two were chosen for analysis as an example of the least

(champion 1 evolved 5 network states) and the most (champion 4 evolved 8 network

states) number of network states (Table 4.1).

Champion 1. The network states of champion 1 are given in Figure 4.4c. When the

network receives A, both interneurons and the output neuron turn off, transforming

the network to hA state, represented by 000 (meaning the output, N1, and N2 do

not spike – no activity in the network). When this A is followed by a B, the network

goes into state hAB represented by 000, indicating no activity in the network. At

this stage, if the network receives C, the network transforms to state hABC, denoted

by 131 (output spikes once, N1 spikes 3 times, and N2 spikes once). In a similar

fashion spiking patterns for the start state S are identified. For network states hA,

hAB, and hABC, the spiking behaviour of all neurons remained consistent regardless

of the preceding symbols. However, the start state S is represented by two different

spiking patterns assigned to S0 and S1 (Figure 4.4b). When C is preceded by A, BB,

BC or C the network goes in state S0, represented by spiking pattern 030. Likewise,

if B is preceded by B or C, the network transforms to state S1, denoted by spike

68 Chapter 4. Evolution of SNNs in the Absence of Noise

pattern 010.

An evolved SNN recognising pattern ABC should have at least 4 network states

equal to the number of computationally different states in the minimal FST (Figure

4.3). However, it is possible to have more than one network state for each computa-

tional state of the minimal FST. Therefore, an evolved SNN has 4 groups of states,

where each group can have multiple states except the last group which contains only

one state. On the other hand, it is also possible that two computationally different

network states have the same spiking pattern but obviously different neuron vari-

ables. Therefore, the spiking behaviour of a neuron is not sufficient to represent its

current state. In the example of Champion 1, two computationally different states

hA and hAB are represented by no activity in the network even though they can be

differentiated based on the momentary membrane potential of neurons. When the

network receives B after A the membrane potential V of both neurons rises, and if C

arrives at this point, both neurons spike (N1 three times, N2 once) followed by the

output neuron emitting a spike. This does not happen, if the order of the signals

AB is reversed (BA) or B is preceded by any other signal B or C.

Champion 4. Network states of Champion 4 were identified in the same way as

for Champion 1, and are illustrated in Figure 4.5. The spiking pattern of both

interneurons and the output neuron in the silent interval (8 ms), after receiving

input signals, determined the number of network states for recognising ABC. This

individual accomplished the recognition task with 8 well-defined network states.

The network states for this individual also converged to a single final state (hABC),

represented by a unique spiking pattern. According to the input signals, this network

generates 4 different spiking patterns for the start state S, represented by S0, S1, S2

and S3, and two different spiking patterns for state hA represented by states hA1

and hA2 in Figure 4.5 c.

4.2. Analysis of the Evolved SNNs 69

4.2.3 Network State Transitions

A transformation of the network from one network state to another is referred to

as a network state transition. Given the network topology, connections weights, the

Figure 4.4: Analysis of champion 1 which recognises a pattern of 3 signals in order
ABC with 5 network states. (a) Spiking activity of the network. (b) Identified
network state for each spiking pattern when the network receives different input
signals. (c) Corresponding FST based on the network states identified in panel
(b) for recognising a string of three letters ABC. (d) Evolved spiking network for
recognising ABC.

70 Chapter 4. Evolution of SNNs in the Absence of Noise

spiking behaviour of the neurons, and the possible network states (Figure 4.4), it is

straightforward to describe network state transitions when an external input signal

is received.

Champion 1. Looking at the network topology (Figure 4.4d), it is obvious that only

N2 can activate the output as indicated by the strong excitatory connection from N2

to the output neuron, so the output neuron can only spike after N2 has activated.

The moment when signal C is received, N2 can be activated only if two conditions are

met: (i) N1 is inactive because N1 is strongly inhibiting N2 with a strong negative

connection of weight -19.87, (ii) C is preceded by B, this is important because the

connection from input B to N2 brings N2 to a higher sub-threshold value, ready to

spike when C is received. Input signal B also excites N1 with a connection weight of

1.25 but cannot activate it due to the previous inhibition from input signal A in the

correct order. Input signals received in orders other than ABC cannot activate N2

either because N1 is active (inhibiting N2) or N2 is at a lower sub-threshold value

(when C is preceded by A) and therefore signal C cannot activate N2.

For a wrong pattern, when BC is preceded by B, the excitatory connection from B

to N1 raises the membrane potential of N1 to a higher sub-threshold value, thereby,

upon receiving the second B, N1 spikes and in turn strongly inhibits N2. Receiving

a C at this moment will not activate N2, which would be required for the output

neuron to spike. As a result, the output neuron remains silent for input pattern BBC.

On the other hand, if BC is preceded by C, the strong excitatory connection from

input C to N1, activates N1 which in turn suppresses N2, a B arriving at this point

will maintain the spiking activity of N1, which results in extending the inhibition

of N2. Due to the strong inhibition from N1, the last signal C cannot activate

N2, and therefore the output neuron does not spike for CBC. Another possibility

is when A follows C. The inhibitory connections from input A to N1 and N2 drop

4.2. Analysis of the Evolved SNNs 71

the membrane potential of both interneurons to a lower sub-threshold value. If a

C is received after A, N1 activates faster than N2 (thanks to the strong excitatory

connection from C to N1), and inhibits N2 before it manages to spike due to the

excitatory connection from C to N2. Consequently, N2 never spikes for AC and the

output neuron gracefully remains silent for input AC. It is important to note that

the direct connection from C to N2 (2.52) is not enough to make it spike before the

inhibition arrives through N1.

Champion 4. The perfect recogniser with the greatest number of states accom-

plished the pattern recognition task in a different way than the one with the least

number of states (described above). Here, the output neuron receives a strong nega-

tive input from N1 and a positive connection from N2 (Figure 4.5). As a result, the

output spikes only when N2 spikes but N1 does not spike. The positive connection

from input B to N2 always induces two spikes in N2 after receiving B, whereas N2

is solely responsible for activating N1. Consequently, the membrane potential of N1

rises slowly, regardless of the following input signal, so N1 always spikes when the

penultimate signal is B. However, if B is preceded by A in the correct pattern ABC

then N1 does not spike due to the precise extra inhibition received from A in such a

way that the positive contribution from N2 is unable to produce a spike in N1. On

the other hand, the spiking of N1 in the case of BBC and CBC could be explained

by the precise extra excitation received by N2. As a result, N2 spikes earlier in time,

and activates N1 before the sub-threshold voltage drops.

Let us now consider two input sub-sequences, one ending with ...AABC and the

other ending with ...ACBC. In the case of ...AABC, the network will transform

to hA2 (000) state when AA is received, followed by hAB (002) state, finally the

network transforms to hABC (100) state, and the ouput neuron spikes for receiving

the correct input. On the contrary, a similar input ending with ...ACBC, upon

72 Chapter 4. Evolution of SNNs in the Absence of Noise

receiving A, the network will transform to hA1 or hA2 state depending on the

previous signal, followed by S1 (000) state AC, then the network switches to S2

(002) state ACB, and finally the network transforms to S0 (010) state ACBC.

In this example, it is important to note that regardless of the same preceding signal

Figure 4.5: Analysis of champion 4, recognising a pattern of 3 signals in order
ABC with 8 network states. (a) Spiking activity of the network. (b) Identified
network state for each spiking pattern when the network receives different input
signals. (c) Corresponding FST based on the network states identified in panel
(b) for recognising a string of three letters ABC (d) Evolved spiking network for
recognising ABC.

4.2. Analysis of the Evolved SNNs 73

B in the sub-sequences AABC and ACBC, the network transformed to different

network states when the final C is received i.e. hABC and S0. This shows that only

the spiking pattern in the silent interval (signal length (4 ms) + silence length (8 ms)

= 12 ms) is not enough to explain the transition from one network state to another.

In addition to the spiking pattern, the network also relies on the history (preceding

signals), the precise timing of spikes, and the momentary values of the two-state

variables of a neuron, i.e. membrane potential V and adaptation w. A feasible

way to confirm the dependency on the precise timing of spikes is to investigate

the robustness of these individuals to a noisy membrane potential and a variable

duration of silent intervals.

4.2.4 Robustness

In order to assess the ability of the networks to function in a disturbed environment,

the perfect recognisers were tested for slightly different lengths of signals and silent

intervals than what they were evolved for (signal 4 ms and silent interval 8 ms). As

expected, the networks (evolved without noise) were not robust to a small variation

of 1 ms in the duration of either signals or silent intervals.

Variation of silent intervals. When the silent intervals were reduced from 8 ms

to 7 ms, all the top 10 individuals stopped working. On the other hand, when

silent intervals were extended to 9 ms, only two out of four perfect recognisers

showed some robustness. Champion 4 was able to function almost perfectly with a

reward outcome of 0.9979 and a penalty of 0.0000. Similarly, champion-1 continued

to recognise ABC with a reward of 0.9995 but started responding to BBC with a

penalty of 0.0002. Among the other six sub-optimal solutions three (champion 5,

6, and 9) were able to maintain functionality for extended intervals with rewards

0.9881, 0.9993, 0.8470 and penalties 0.0000, 0.0027, 0.0100, respectively.

74 Chapter 4. Evolution of SNNs in the Absence of Noise

Variation of signals. None of the top 10 individuals was robust to shortening

(lengthening) of signals to 3 ms (5 ms). However, when a random step (1 ms) was

turned off in this 5 ms duration of signals (01111, 10111, 11011, 11101, 11110), two

individuals (champion 1 and 6) demonstrated some robustness with rewards 0.8938,

0.9246 and penalties of 0.0025, 0.0069, respectively.

Disturbed neuronal parameters. The functionality of the individuals broke

down completely with a small variation of AdEx neuronal parameters, for example,

a slight variation (-69.1 or -70.1 instead of -70 mV) of the EL parameter impaired the

performance of all individuals. This abrupt performance degradation of individuals

explains the necessity of introducing noise during evolution. It is therefore concluded

that the networks evolved without variation (on input) or noise (in the network) are

not robust to perturbation. Moreover, the performance of these networks dropped

with extending the duration of silence which confirms that these networks are unable

to maintain the network states when the silent intervals are prolonged. Before

introducing noise during evolution in Chapter 5, the state maintenance of individuals

is investigated in the following section.

4.2.5 Longer silent intervals

In order to promote state maintenance in the evolved networks, another set of ex-

periments was performed with exactly the same settings except for an increased

length of the silent interval from 8 ms to 100 ms. In addition to state maintenance,

it was expected that the obtained solutions will mature unique network states for

computational states of FST because each neuron will stabilise in the long period

of silence. Out of 40 independent evolutionary runs with longer intervals of 100 ms,

10 ended with producing perfect recognisers (Table 4.2). This yield is much higher

than the previous experiments with short intervals of 8 ms (where there were only 4

4.2. Analysis of the Evolved SNNs 75

perfect recognisers). The network states were identified in a similar way as for short

intervals: the spikes were counted in the silent interval of 100 ms window after all

possible patterns of 3 signals (AAA to CCC).

Table 4.2: The number of states and top performing individuals evolved for recog-
nising a pattern of 3 signals with longer intervals of 100 ms.

network states
Champion Reward Penalty Problematic sequences Start hA hAB hABC Total

1 1.0000 0.0000 none 3 1 1 1 6
2 1.0000 0.0000 none 2 1 1 1 5
3 1.0000 0.0000 none 2 1 1 1 5
4 1.0000 0.0000 none 3 2 1 1 7
5 1.0000 0.0000 none 2 1 1 1 5
6 1.0000 0.0000 none 2 1 1 1 5
7 1.0000 0.0000 none 2 1 1 1 5
8 1.0000 0.0000 none 3 1 1 1 6
9 1.0000 0.0000 none 3 2 1 1 7
10 1.0000 0.0000 none 2 1 1 1 5

In contrast to my expectations, the evolved solutions were unable to maintain net-

work states, and a small variation of the silent interval substantially compromised

the performance of the individuals. For example, 5 out of 10 individuals (champion

1, 4, 6, 7 and 10) sustained shortening the length of the interval to 99 ms with

a reward of 1.0 and a penalty below 0.0005. The other 5 broke down completely

down with reward 0, meaning none of the correct patterns was recognised. When

the duration of the interval was further reduced to 90 ms only one individual (cham-

pion 10) showed some robustness with a reward 1.0 and a penalty 0.0008. All other

individuals stopped working for 90 ms intervals except Champion 6 (with only one

interneuron) which was able to recognise almost half of the ABCs in the sequence

with a reward 0.45 and a penalty 0.0005. On the other hand, when intervals were

extended from 1 ms to 101 ms, 8 out of 10 individuals showed robustness and were

able to recognise all ABCs in the sequence. However, only 4 (champion 1, 6, 7, and

10) out of these 8 were flawless and never responded in any wrong interval with a

penalty of 0.0. The other 4 (champion 2, 4, 5 and 7) started responding to other

76 Chapter 4. Evolution of SNNs in the Absence of Noise

patterns with penalty 0.002. This result prevailed even when the intervals were

increased to 110 ms. All 8 champions recognised all correct patterns in the input

sequence with a reward 1.0 but responded to wrong patterns with penalty <0.002

as well. The individuals were then tested for disturbed input signals of the form

(01111, 10111, 11011, 11101, 11110) – dropping a signal at random in the input

sequence. Four out of ten individuals continued to recognise almost all ABC with

rewards above 0.9980 but the output spiked wrongly after other patterns BBC and

CBC with penalties below 0.0055. Moreover, the performance of all individuals

dropped abruptly when the duration of input signal increased (decreased) to 5 ms

(3 ms).

Thus, the hypothesis that introducing longer intervals during evolution will produce

solutions that could maintain network states, invariant of the length of the silence

intervals, did not hold. The networks were not very robust to the duration of the

interval. Hence, the recognition happens based on the precise timing of spikes and

momentary state variables in such a way that the output neuron spikes in the interval

(100 ms) after receiving C in the correct input pattern ABC. Although introducing

longer intervals between signals during evolution did not produce the expected solu-

tions, an interesting solution (champion 6) was obtained with only one interneuron,

which was not possible with a short interval between signals. Furthermore, this

individual accomplished the recognition task with only 5 network stats (S0, S1, hA,

hAB, and hABC), where each state was represented by a unique spiking pattern

(Figure 4.6c). All connections in the network were excitatory (Figure 4.6d). After

receiving the correct first signal A, N1 spikes 3 times (hA 03). If this A is followed

by input signal B, the network transforms to a quiescent state hAB represented by

no activity in the network 00. Finally, if AB is followed by the last correct signal

C, the only interneuron N1 spikes 8 times and activates the output neuron midway

during spiking, recognising the correct pattern. However, if C is preceded by other

4.2. Analysis of the Evolved SNNs 77

patterns (AC, BBC, CBC, CC), N1 still spikes 8 times but does not activate the

output neuron. This shows a strong dependence on the interplay between the state

variables of neurons and the spike timings. Therefore, a very small change in the

reversal potential EL from -70 mV to 70.1 or 69.9 mV broke down the network

completely.

Figure 4.6: Analysis of champion 6, recognising a pattern ABC with 8 network
states. (a) Spiking activity of the network. (b) Identified network state for each
spiking pattern when the network receives different input signals. (c) Corresponding
FST based on the network states identified in panel (b) for recognising a string of
three letters ABC. (d) Evolved spiking network for recognising ABC.

78 Chapter 4. Evolution of SNNs in the Absence of Noise

4.3 Conclusion

The individuals generated with longer intervals were slightly robust to input vari-

ation, while the individual with short intervals could sustain functionality to small

disturbance in parameters. However, both short and long intervals between the

signals during evolution could not produce robust individuals that could maintain

network states and sustain performance to a disturbed set of parameters. A pre-

vious study with a similar model suggested that evolving gene regulatory networks

(GRNs) in the presence of noise produce robust individuals [145]. Although the au-

thors in [145] evolve only GRNs in the presence of noise, it would be interesting to

explore the benefits of introducing noise in SNNs during evolution. The next chapter

investigates the evolution of spiking neural networks (SNNs) in the presence of noise

on the membrane potential and variation of silent intervals in the input stream. The

aim is to obtain networks that are: (i) robust to a disturbed set of parameters, and

(ii) capable of maintaining network states indefinitely.

Chapter 5

Noise Promotes Robustness

Noise permeates biological nervous systems, yet they continue to function reliably

in a disturbed environment. How biological neurons process information in the

presence of noise and variability is a fundamental question in computational neuro-

science. Experimental evidence exists that noise contributes to variability–a unique

feature of behaviour. In fact, ”trial-to-trial” variability is the only trait that dis-

tinguishes behaviour from script. In the nervous system, variability emanates from

both deterministic and non-deterministic sources. An example of the deterministic

source is the initial state of the system (neuronal circuitry), i.e. a slight variation

in the initial parameters results in a different response of the system. Noise – the

non-deterministic source of variability in the nervous system – originates from many

sources, including transduction of sensory input, synaptic transmission, and the

number of ion channels [33]. This chapter addresses how introducing noise during

evolution affects the evolvability of SNNs for a temporal pattern recognition task.

Why is the presence of noise essential during evolution? And what are the potential

benefits of noise? The aim is to obtain robust spiking networks that are resilient to

break down in a disturbed environment.

79

80 Chapter 5. Noise Promotes Robustness

This chapter contains two independent experimental setups. The first setup updates

the genetic operators and introduces noise during evolution. Networks evolved in a

noisy environment developed robustness to neuronal parameters. Then the robust-

ness range of varying a single neuronal parameter (keeping others at their default

values) is determined. The second experimental setup is a further refinement, espe-

cially in the way the fitness is calculated. This modification in the fitness function

improved both yield and evolvability. Finally, the robustness range to varying all

inter-dependent neuronal (AdEx) parameters is obtained.

5.1 Types of Noise

Noise originates from many sources in biological networks, including unreliable

synapses, thermal variation and stochastic opening and closing of membrane chan-

nels. Biological networks not only maintain their functionality in the presence of

noise and perturbation, but studies have also shown that some computational tasks

are accomplished better in the presence of noise. This phenomenon is known as

stochastic resonance [83]. Furthermore, the ability to operate in a noisy environ-

ment and trial-to-trial variability of biological neurons is intriguing and a salient

feature of the nervous system.

In order to introduce stochasticity, two types of disturbance are introduced during

evolution in the networks: intrinsic noise is introduced at the level of the neuron,

modelled as random fluctuations of the membrane potential of neurons, whereas

extrinsic noise is modelled as variations of the duration of silent intervals in the

input stream. Although the evolutionary algorithm took longer to converge in the

presence of noisen, the obtained networks were robust to perturbation and could

maintain network states in the case of longer silent intervals.

5.2. Experimental Setup I 81

This chapter focuses on evolution in the presence of intrinsic noise only, where noise

is introduced during evolution as a random disturbance of the membrane potential of

each neuron at every 1 ms network step. Since the membrane potential determines

whether a neuron should spike or not (adaptive threshold) at a given network step,

adding randomness to the membrane potential may prevent a neuron from spiking

and defer the next spike. Similarly, a noisy membrane potential may trigger a

spike earlier in time. Since information is carried by precise timing of spikes, it is

important to investigate the impact of spike timing variability on the performance

and evolvability of the networks.

During evolution, a random value of noise drawn from a normal distribution with

mean 0 and standard deviation of 2 mV is added (at every 1ms step) to the mem-

brane potential V of each neuron in the network. This moderate level of noise is also

observed in biological nervous systems [93, 27, 5, 35]. Moreover, another commonly

used noise model, ”Ornstein-Uhlenbeck”, was also investigated and introduced in

the membrane potential of each neuron during evolution. However, the evolution-

ary algorithm could not converge and no optimal solution (perfect recognizer) was

produced. Moreover, the obtained sub-optimal solutions were neither robust to in-

trinsic noise nor extrinsic noise. In future studies, it would be interesting to explore

the feasibility of introducing Ornstein-Uhlenbeck noise during evolution. All exper-

iments in this work employ Gaussian noise on the membrane potential V of neurons

in the network.

5.2 Experimental Setup I

The artificial-evolution setup described in the previous chapter is updated for evolv-

ing SNNs in the presence of intrinsic noise. The initial generation is created in the

82 Chapter 5. Noise Promotes Robustness

same way from random genomes with a population size of 300. The population size

is kept fixed with a binary tournament selection, and the top 10 out of 300 individ-

uals are transferred to the next generation without undergoing genetic operators –

elite count = 10. To obtain recognizer solutions in the presence of noise, the genetic

operators are updated for better evolvability. The previous setup in Chapter 4 was

unable to explore the search space due to a very low rate of mutation (0.01) and a

high strength of mutation. Therefore, the rate of one-point mutation is increased

from 0.01 to 0.1; if a genetic element is chosen for one-point mutation, its x, and y

coordinates are moved by a distance drawn from a normal distribution with mean 0

and standard deviation 1 instead of 3 (in Chapter 4). The length (drawn from a geo-

metric distribution with a mean of 10) and the probability of deletion (duplication)

are kept the same at 0.001 (0.0005). A new genome level operator – multi-point

crossover is introduced. In each generation, 10% (30 out of 300) individuals are

subject to multi-point crossover.

Multi-point crossover. Two parental genomes A and B are chosen for recombi-

nation with binary tournament selection. The crossover begins at the first genetic

element of the parents. Consider 2 pointers, each pointing to the first genetic ele-

ment of parental genomes A and B. Elements are copied to the offspring with one of

the two following schemes. The schemes are implemented by generating a uniform

random number between 0 and 1. Scheme 1: the pointer advances on both parents;

A (B) is chosen if the number is in the interval [0 0.03] ([0.03 0.06]). Scheme 2:

the pointer advances on the chosen parent: A (B) is chosen if the number is in the

interval [0.06 0.18] ([0.18 0.30]). The scheme remains the same if the number lies

in [0.30 1]. Otherwise, one of the above two schemes is re-chosen according to the

obtained random number.

In the absence of noise, two neurons were sufficient to recognize a pattern of 3 signals

5.2. Experimental Setup I 83

in a particular order. However, the evolutionary algorithm could not produce any

solutions with two interneurons in the presence of noise. The minimal solution

obtained had three interneurons. Therefore, we can say that evolution in a noisy

environment requires more computational units (neurons) in the network.

Fitness. In the previous setup, the simple fitness (Equation 5.1) could not fully

explore the search space due to two explanations: (i) the low mutation rate with

an aggressive mutation strength, (ii) the lack of crossover operator may result in a

homogeneous population. Thus, limiting the search space. As expected, when the

multi-point crossover operator was introduced, and the mutation rate and strength

were adjusted (described in Section 5.2), the complex fitness function (combining the

two fitnesses used in Chapter 4, Equation 4.3) was no longer required. Therefore, the

fitness function was updated to a simpler one (Equation 5.1), which was again based

on reward and penalty. If the output neuron of the network spikes in the silence

interval of 16 ms after the last signal of the pattern-to-be-detected, the individual

was rewarded. Otherwise, the individual was penalized. A normalized reward R

and penalty P were then calculated as the number of rewards (penalties) divided by

the number of correct (incorrect) 16 ms silence intervals in the sequence.

ffitness = 1− (R− CP) (5.1)

where

0 ≤ R ≤ 1

0 ≤ P ≤ 1

P is amplified by an arbitrary constant C (set to 4, optimized with grid search [1,

10]) because the number of incorrect intervals is a large number as compared to the

84 Chapter 5. Noise Promotes Robustness

number of target patterns in a randomly generated input sequence. Without the

crossover operator and a high rate of mutation with low strength, C = 4 did not

work in the noise-free setup.

In the absence of the penalty coefficient, the evolutionary algorithm is biased and

produced over-recognizers that respond to other patterns in addition to the target

pattern. In later generations during evolution, when the normalized P approaches 0

(the number of incorrect 16 ms silence intervals in the sequence remains the same),

the evolutionary algorithm could not penalize the remaining wrong patterns enough.

Therefore, the penalty P needs to be amplified. Although in theory, the normalized

P can get a value of 1, in practice P is always a very small number, so even with

amplification, the fitness value (Equation 5.1) ranges between 0 and 1, where 0

means a perfect individual.

5.2.1 Evolution

Each individual in the population was evaluated for 6 input sequences of 500 signals

each. Four out of six sequences were generated randomly with an equally likely

occurrence of A, B and C. The remaining 2 sequences were created by concatenating

four patterns ABA, ABB, ABC, and BBC (3 closer to the target and one target

pattern). In this set of experiments, the duration of a signal was increased to 6 ms

followed by a silence of 16 ms, with the intuition that in the presence of noise with

increased silent intervals the individuals may transform smoothly from one network

state to the next.

In addition to the above modifications, to obtain networks with small weights of the

connections, the excitatory and inhibitory gains were increased to 9 nS (instead of 5

nS in Chapter 4). Moreover, the offset current was removed from the output neuron

5.2. Experimental Setup I 85

because now the noise will account for sub-threshold activity in the output neuron.

With these adjustments in the experimental setup, the yield and the evolvability

improved: out of 100 independent runs without noise 33 ended up with fitness value

0 (perfect recognizers) in less than 500 generations. However, in the presence of

intrinsic noise (mean 0 and SD 2 mV), at least 1000 generations were required to

obtain 10 champions in 100 evolutionary runs. Due to noise, when the champions

were re-evaluated on a large sequence (100000 signals), the fitness remained close to

zero. Moreover, when re-evaluated without noise, the champions proved to be perfect

recognizers by identifying the correct patterns and remaining silent for others.

True Positive Rate

The true-positive rate (TPR) is defined as how often a network responds to the

target pattern in a random sequence. The TPR is 1 if all occurrences of the target

patterns are correctly identified (spiking of the output neuron in the correct interval)

. On the other hand if the output neuron does not respond to any of the target

patterns in the sequence then the TPR is 0. The TPR is the same as the normalized

reward R in the fitness equation 5.1.

TRP =
identified target patterns

number of occurrences of the target pattern
(5.2)

False Discovery Rate

The false discovery rate (FDR) is the ratio between the number of times the network

responded incorrectly and the total number of times the network responded. The

FDR is given by the following expression:

86 Chapter 5. Noise Promotes Robustness

FDR =
number of times the network responded incorrectly

total number of times the network responded
(5.3)

The false discovery rate can be re-written as:

FDR =
FP

FP + TP
(5.4)

where FP false positive is the number of times the network responds to incorrect

patterns, and TP true positive is the number of times the network responds to the

target patterns. The FDR is 0 if the network does not respond to any incorrect

pattern whereas FDR is 1, if the network does not identify the target pattern and

responds to at least one incorrect pattern.

5.2.2 Robustness to Varying a Single Neuronal Parameter

The individuals produced in the noisy evolutionary setup could sustain function-

ality to a disturbed set of neuronal parameters. To assess the robustness, a range

around the default values of the neuronal parameters was explored in which the

individual was robust. First, the range of robustness was obtained for changing a

single neuronal parameter at a time while keeping all others at their default value.

The range of robustness was defined as the largest range around the default value of

each parameter for which the true positive rate (TPR) was above 0.99 and the false

discovery rate (FDR) was below 0.05. Next, the range of robustness for varying all

neuronal parameters at once was obtained such that an individual was robust to a

random set of initial parameters drawn from the robustness range. As expected, the

networks evolved in the presence of intrinsic noise were more robust to disturbed

5.2. Experimental Setup I 87

Table 5.1: Robustness of networks evolved without noise. Robustness range
of neuronal parameters, gain (E and I), properties of input and the noise itself. The
values in square brackets show the range of robustness, the values above them show
relative robustness.

Top 10 individuals evolved without noise
P Default 1 2 3 4 5 6 7 8 9 10
EL -70 mV 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.04 0.00 0.07

[-70, -70] [-70, -70] [-70, -70] [-70, -70] [-70, -70] [-70, -69] [-70, -70] [-70, -69] [-70, -70] [-70, -68]
Vr -58 mV 0.00 0.00 0.13 0.04 0.08 0.00 0.13 0.13 0.00 0.13

[-58, -58] [-58, -58] [-58, -55] [-58, -57] [-59, -57] [-58, -58] [-60, -57] [-60, -57] [-58, -58] [-59, -56]
VT -50 mV 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20

[-50, -50] [-50, -50] [-50, -50] [-50, -50] [-50, -50] [-50, -50] [-50, -50] [-50, -50] [-50, -50] [-50, -49]
τm 20 ms 0.01 0.00 0.04 0.03 0.01 0.03 0.01 0.06 0.01 0.02

[19, 20] [20, 20] [19, 23] [19, 22] [19, 20] [19, 22] [19, 20] [16, 21] [20, 21] [19, 21]
∆T 2 mV 0.07 0.00 0.07 0.07 0.00 0.00 0.00 0.13 0.00 0.20

[1.9, 2.0] [2.0, 2.0] [1.9, 2] [1.9, 2.0] [2.0, 2.0] [2.0, 2.0] [2.0, 2.0] [2.0, 2.2] [2.0, 2.0] [1.9, 2.2]
C 0.2 nF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22

[0.2, 0.2] [0.2, 0.2] [0.2, 0.2] [0.2, 0.2] [0.2, 0.2] [0.2, 0.2] [0.2, 0.2] [0.2, 0.2] [0.2, 0.2] [0.19, 0.21]
a 2 nS 0.00 0.00 0.03 0.00 0.00 0.03 0.03 0.03 0.00 0.10

[2, 2] [2, 2] [1, 2] [2, 2] [2, 2] [1, 2] [1, 2] [2, 3] [2, 2] [2, 5]
b 0 pA 0.02 0.00 0.04 0.13 0.13 0.06 0.11 0.13 0.02 0.13

[0, 1] [0, 0] [0, 2] [0, 7] [0, 7] [0, 3] [0, 6] [0, 7] [0, 1] [0, 7]
τE 5 ms 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.18 0.00 0.18

[5.0, 5.0] [5.0, 5.0] [5.0, 5.2] [5.0, 5.0] [5.0, 5.0] [5.0, 5.0] [5.0, 5.0] [4.9, 5.1] [5.0, 5.0] [5.0, 5.2]
τI 5 ms 0.60 0.00 0.30 0.25 0.10 0.00 0.45 1.00 0.05 0.20

[4.6, 5.8] [5.0, 5.0] [4.5, 5.1] [4.8, 5.3] [4.9, 5.1] [5.0, 5.0] [4.5, 5.4] [4.1, 6.1] [4.9, 5.0] [4.7, 5.1]
EE 0 mV 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.08 0.00 0.25

[0, 0] [0, 0] [0, 1] [0, 0] [0, 0] [0, 0] [0, 0] [-1, 0] [0, 0] [0, 3]
EI -70 mV 0.56 0.00 0.11 0.22 0.00 0.00 0.44 1.00 0.11 0.11

[-73, -68] [-70, -70] [-70, -69] [-71, -69] [-70, -70] [-70, -70] [-75, -69] [-74, -65] [-70, -69] [-70, -69]
gainE 9 nS 0.00 0.00 0.05 0.10 0.00 0.00 0.00 0.05 0.05 0.30

[9.0, 9.0] [9.0, 9.0] [9.0, 9.1] [8.9, 9.1] [9.0, 9.0] [9.0, 9.0] [9.0, 9.0] [8.9, 9.0] [9.0, 9.1] [9.0, 9.6]
gainI 9 nS 0.28 0.00 0.11 0.14 0.12 0.01 0.26 1.00 0.05 0.09

[8.6, 11.1] [9.0, 9.0] [8.4, 9.3] [8.3, 9.6] [8.4, 9.4] [9.0, 9.1] [8.6, 10.8] [7.1, 15.6] [8.6, 9.0] [8.3, 9.1]
noise 0 mV 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

[0, 0.1] [0, 0.1] [0, 0.1] [0, 0.1] [0, 0.1] [0, 0.1] [0, 0.1] [0, 0.1] [0, 0.1] [0, 0.1]
silence 16 ms 0.00 0.00 0.11 0.05 0.00 0.11 0.21 0.16 0.00 0.05

[16, 16] [16, 16] [15, 18] [16, 17] [16, 16] [15, 17] [16, 20] [15, 18] [16, 16] [15, 16]
signal 6 ms 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

[6, 6] [6, 6] [6, 6] [6, 6] [6, 6] [6, 6] [6, 6] [6, 8] [6, 6] [6, 6]
ARR 0.09 0.00 0.07 0.06 0.03 0.02 0.10 0.30 0.02 0.14

neuronal parameters than the ones evolved without noise (Table 5.1 and 5.2, see

Figure A.1.1 and Figure A.1.2 in Appendix A.1 for information on the connection

weights of individuals, see Appendix A.4 for network topologies of all individuals in

Table 5.1 and 5.2).

The asymmetric robustness range for a single parameter was determined by extend-

ing the range at both sides while keeping all other parameters at their default values.

The largest range around the default value in which the TPR was above 0.99 and

FDR was below 0.05 for each parameter is given in Table 5.2. Similarly, the ro-

88 Chapter 5. Noise Promotes Robustness

Table 5.2: Robustness of networks evolved with noise. Robustness range of
neuronal parameters, gain (E and I), properties of input and the noise itself. The
values in square brackets show the range of robustness, the values above them show
relative robustness.

Top 10 individuals evolved with noise
P Default 1 2 3 4 5 6 7 8 9 10
EL -70 mV 0.77 1.00 0.48 0.61 0.68 0.77 0.58 0.29 0.48 0.32

[-81, -57] [-91, -60] [-76, -61] [-78, -59] [-86, -65] [-88, -64] [-78, -60] [-75, -66] [-77, -62] [-73, -63]
Vr -58 mV 0.42 0.79 0.46 0.71 0.50 0.46 0.21 0.79 0.58 1.00

[-63, -53] [-63, -44] [-63, -52] [-62, -45] [-60, -48] [-60, -49] [-60, -55] [-64, -45] [-61, -47] [-65, -41]
VT -50 mV 0.40 1.00 0.40 0.80 0.80 0.80 0.80 0.40 0.60 0.20

[-51, -49] [-53, -48] [-51, -49] [-52, -48] [-51, -47] [-51, -47] [-52, -48] [-52, -50] [-51, -48] [-51, -50]
τm 20 ms 0.39 1.00 0.95 0.55 0.35 0.42 0.53 0.17 0.96 0.22

[8, 44] [6, 99] [12, 100] [8, 59] [6, 39] [7, 46] [8, 57] [10, 26] [11, 100] [9, 29]
∆T 2 mV 0.28 0.89 1.00 0.83 0.83 0.83 0.83 0.44 0.89 0.28

[1.7, 2.2] [1.3, 2.9] [1.5, 3.3] [1.3, 2.8] [1.6, 3.1] [1.7, 3.2] [1.5, 3.0] [1.4, 2.2] [1.6, 3.2] [1.6, 2.1]
C 0.2 nF 0.40 1.00 0.50 0.50 0.50 0.60 0.30 0.40 0.60 0.20

[0.17, 0.21] [0.15, 0.25] [0.17, 0.22] [0.18, 0.23] [0.17, 0.22] [0.17, 0.23] [0.19, 0.22] [0.16, 0.20] [0.17, 0.23] [0.19, 0.21]
a 2 nS 0.60 0.87 0.37 0.87 1.00 0.87 0.90 0.27 0.40 0.73

[-4, 14] [-7, 19] [-4, 7] [-5, 21] [-2, 28] [-5, 21] [-8, 19] [-1, 7] [-3, 9] [-9, 13]
b 0 pA 0.60 0.74 0.28 0.79 1.00 0.68 0.82 0.28 0.47 0.39

[0, 34] [0, 42] [0, 16] [0, 45] [0, 57] [0, 39] [0, 47] [0, 16] [0, 27] [0, 22]
τE 5 ms 0.73 0.91 0.64 1.00 0.64 0.73 0.91 0.45 0.55 0.64

[4.7, 5.5] [4.7, 5.7] [4.6, 5.3] [4.4, 5.5] [4.5, 5.2] [4.6, 5.4] [4.4, 5.4] [4.9, 5.4] [4.7, 5.3] [4.9, 5.6]
τI 5 ms 0.43 0.57 1.00 0.95 1.00 0.76 0.43 0.29 0.71 0.43

[4.5, 5.4] [4.6, 5.8] [4.5, 6.6] [4.5, 6.5] [4.8, 6.9] [4.8, 6.4] [4.7, 5.6] [4.8, 5.4] [4.6, 6.1] [4.5, 5.4]
EE 0 mV 0.50 0.83 0.75 0.92 1.00 0.83 0.75 0.58 0.67 0.50

[-2, 4] [-4, 6] [-4, 5] [-4, 7] [-8, 4] [-6, 4] [-5, 4] [-1, 6] [-4, 4] [0, 6]
EI -70 mV 0.33 0.56 0.89 0.78 0.67 0.56 0.33 0.33 0.44 0.22

[-71, -68] [-72, -67] [-76, -68] [-74, -67] [-75, -69] [-74, -69] [-72, -69] [-71, -68] [-73, -69] [-70, -68]
gainE 9 nS 0.50 1.00 0.75 0.95 0.95 0.85 0.75 0.65 0.80 0.50

[8.6, 9.6] [8.2, 10.2] [8.2, 9.7] [8.3, 10.2] [7.7, 9.6] [7.9, 9.6] [8.1, 9.6] [8.8, 10.1] [8.2, 9.8] [8.9, 9.9]
gainI 9 nS 0.21 0.40 0.92 0.46 0.46 0.35 0.28 0.26 0.40 0.15

[8.0, 9.8] [7.2, 10.6] [7.9, 15.7] [7.1, 11] [8.2, 12.1] [8.2, 11.2] [7.7, 10.1] [7.7, 9.9] [7.7, 11.1] [8.0, 9.3]
noise 2 mV 0.85 1.00 0.93 0.85 0.78 0.78 0.89 0.74 0.93 0.74

[0, 2.5] [0, 2.9] [0, 2.7] [0, 2.5] [0, 2.3] [0, 2.3] [0, 2.6] [0, 2.2] [0, 2.7] [0, 2.2]
silence 16 ms 0.95 0.25 0.25 1.00 0.20 0.20 0.70 0.55 0.20 0.60

[13, 32] [14, 19] [13, 18] [10, 31] [12, 16] [13, 17] [11, 25] [12, 23] [14, 18] [10, 22]
signal 6 ms 0.50 0.50 0.50 1.00 1.00 0.50 0.50 0.00 1.00 0.00

[6, 7] [5, 6] [6, 7] [5, 7] [4, 6] [5, 6] [5, 6] [6, 6] [6, 8] [6, 6]
ARR 0.52 0.78 0.65 0.80 0.73 0.65 0.62 0.41 0.63 0.42

bustness range was obtained for the top 10 individuals without noise (Table 5.1).

The value above the range is the relative robustness of a given parameter across the

top 10 champions of both categories (evolution in the presence of noise and without

noise). To calculate the relative robustness for a given parameter, the difference

between the maximum and minimum value of each parameter (row) was divided by

the maximum difference value across the 20 individuals (top 10 champions in each

category). The last row of Table 5.1 and 5.2 shows the average relative robustness

(ARR).

A comparison of the ARR values of top individuals in both categories clearly indi-

cates that the individuals evolved in the presence of noise were more robust to the

5.2. Experimental Setup I 89

disturbed neuronal parameters and variation of the input signal. In the absence of

noise individual number 8 (as the only individual) showed the highest robustness

with an ARR value of 0.30. In contrast, the least (most) robust individual evolved

in the presence of noise secured an ARR value of 0.41 (0.80). Likewise, the second-

best individuals without noise obtained an ARR value of 0.13 while the remaining

8 were below 0.1.

Furthermore, unlike the networks evolved in the absence of noise, those evolved in

the presence of intrinsic noise did not break abruptly beyond the robustness range.

Instead, their performance degraded slowly. For example, Figure 5.1 shows the

performance comparison of varying EL – the effective resting potential for the best

individual with noise and without noise. Champion 4, the best individual evolved

with noise secured an ARR value of 0.80. This network was robust to different

values of EL between -78 and -59 (default -70 mV). Interestingly, the performance

of the network degraded gracefully beyond this range (Figure 5.1 left). On the other

hand, the functionality of the best individual (Champion 8) evolved without noise

Figure 5.1: Performance comparison of the network evolved with noise and without
noise to changes of parameter EL (Vrest). The range of robustness is shown by the
dashed green lines, the default value is -70 mV. The network evolved (and tested)
with noise (left; the network of champion 4) shows graceful degradation of network
performance and a larger range of robustness than the network evolved (and tested)
without noise (right; the most robust network (Champion 8) evolved without noise).

90 Chapter 5. Noise Promotes Robustness

(ARR 0.30) broke down completely beyond the robustness range [-70, -69] (Figure

5.1 right).

A comparison of the performance to varying the silence interval between the signals

showed that individuals obtained in the presence of intrinsic noise were also robust

to longer silent intervals between signals. The default duration of silent intervals

was 16 ms; the range was extended asymmetrically on both sides around the default

value. The left(right) panel of Figure 5.2 shows the best individual obtained in

the presence(absence) of noise. The robustness range was obtained by lengthening

and shortening the silence interval around the default value of 16 ms such that the

TPR(FDR) remained above(below) 0.99(0.05). The best individual evolved with

noise (Champion 4) was robust to silent intervals between 10 and 31 ms. Further-

more, beyond this range, this individual showed robustness to indefinite lengthening

of silent intervals with a slightly low value of TPR = 0.96, while the FDR remained

below 0.05 (Figure 5.2 left). In contrast, the best individual evolved without noise

Figure 5.2: Performance comparison of the network evolved with noise and without
noise to variation of silence interval Silence. The range of robustness is shown by
the dashed green lines, the default duration is 16 ms. The network evolved (and
tested) with noise (left; the network of champion 4) shows the performance of the
network is hardly affected by increasing the duration of silence interval. The network
evolved (and tested) without noise (right; the most robust network (Champion 8)
evolved without noise is not robust to variation of intervals).

5.3. Experimental Setup II 91

(Champion 8) was robust only to the duration of silences between [15, 18] ms and

beyond this range, its performance deteriorated abruptly (Figure 5.2 right).

Robustness to silent intervals is essential for network states’ maintenance. A network

is capable to maintain states if it can recognize patterns with longer silent intervals

between input signals. The presence of recurrent excitatory connections in the

network explains the state maintenance – a form of memory. In short, evolution

in the presence of noise also leads to the emergence of memory in spiking neural

networks (see Figure A.1.3 in Appendix A.1 for information on the robustness of all

top 10 individuals to all parameters).

5.3 Experimental Setup II

The analysis of the individuals obtained with the settings of Section 5.2 fostered

three important modifications in the evolutionary algorithm. The most important

modification is the way normalised reward (R) and penalty (P) are calculated in

the fitness function (Equation 5.1). As the length of a signal is 6 ms followed by a

silence interval of 16 ms, R is now calculated as the spiking of the output neuron

in the interstimulus interval (ISI) after the onset of the last signal C in the target

pattern ABC, divided by the total number of target patterns in the sequence. The

ISI is the interval between the onsets of two consecutive signals (ISI = length of

the signal + length of the following interval = 6 ms + 16 ms = 22 ms). Similarly,

P is the number of interstimulus intervals (signal + silence = 22 ms) in which the

output neuron spikes incorrectly, divided by the total number of such intervals (ISIs)

in the sequence. This is in contrast to the previous fitness function where R and P

were calculated only in the 16 ms silence interval. The second important update is

reducing the length of the duplicated and deleted elements. In this setup the length

92 Chapter 5. Noise Promotes Robustness

of elements to be deleted or duplicated is drawn from a geometric distribution with

a mean value of 6, previously it was 10 which resulted in unwanted lengthening

or shortening of the genome; deleting a large portion of the genome may remove

useful connections and neurons. Similarly duplicating a large portion can strengthen

excessive connections. Furthermore, the excitatory and the inhibitory gains are fine-

tuned to 7 nS with a grid search [5, 9] nS.

Since an input signal lasts for 6ms, it is possible for the output neuron of the network

to spike while receiving the input. The previous fitness functions (used in Chapter

4 and Chapter 5, Section 5.2) did not take this into account. These modifications

in the evolutionary setup, especially the way fitness is calculated, had a pronounced

impact on the evolvability and yield. Without noise, out of 100 independent runs

of 300 individuals, 81 ended up being perfect recognizers as compared to 33 in

the previous setting (Section 5.2). In the presence of intrinsic noise, however, 100

independent runs yielded only 13 perfect recognizers with a maximum limit of 3

interneurons in the network during evolution. When this limit was increased to 4

interneurons, the number of perfect recognizers was raised to 19. Conversely, no

solution was produced when the limit was reduced to 2 interneurons.

5.3.1 Robustness to Varying All Neuronal Parameters

In Section 5.2.2, the robustness range was obtained for varying a single parame-

ter while keeping all others at their default values. However, this range did not

provide any information about the robustness of the network when more than one

parameter was disturbed. Therefore, the robustness range for varying all neuronal

parameters was investigated in which the network was robust to any random set of

parameters. Since the neuronal parameters are inter-dependent, changing the value

of one parameter could constrict or relax room for other parameters. Due to this

5.3. Experimental Setup II 93

interdependence among neuronal parameters, finding a robustness range for varying

all parameters at once was not straightforward.

Range-extension Algorithm

A probabilistic algorithm is proposed to obtain the robustness range for varying all

parameters at once. This algorithm runs in 2 steps: (i) the range of all parameters

is extended in both directions around their default value by a small amount (1% of

the default value), (ii) the extended range is evaluated, if the extension is accepted

(TPR above 0.95 and FDR below 0.05), step 1 is repeated. Otherwise, the extension

is reversed, and the parameter causing the break is identified (Algorithm 1).

To evaluate the robustness-range, one hundred random sets of neuronal pa-

rameters are drawn from the extended range and copies of the evolved network are

created such that all neurons in a network are given one set of parameters. The

range is accepted only if 90 out of 100 same networks, but with different parameter

values have a TPR above 0.90 and FDR below 0.10 for a random input sequence of

50000 signals with equiprobable occurrence of signals.

To find the parameter-causing-the-break, the range of all parameters is extended

one by one in the left or right direction, and the extended robustness range is

evaluated. The extension of the parameter(s) rejecting the extended range in one of

the two directions is stopped.

The algorithm stops when all parameters are excluded from extension in both direc-

tions, producing the robustness range. The network is robust to any set of neuronal

parameters drawn from this range (Table 5.3).

94 Chapter 5. Noise Promotes Robustness

Algorithm 1 Robustness range algorithm for varying all neuronal parameters

Input: An evolved SNN for recognizing temporal patterns
Output: Robustness range for all neuronal parameters

procedure Extend Range
while !converged do . initially converged = false

while extend range do . initially extend range = true
extend range in both directions
sample 100 sets of random parameters within the range
robust sets count=0
for each set do

if corresponding network is robust then
increment robust sets count

end if
end for
if robust sets count<90 then

shrink range of all parameters in both directions
extend range = false

end if
end while

. find parameter causing breaking
for each parameter do

for each direction left or right do
extend the range of parameter
sample 100 sets of random parameters within the range
robust sets count=0
for each set do

if corresponding network is robust then
increment robust sets count

end if
end for
if robust sets count<90 then

shrink range of parameter
parameter extension flag = false
extend range = true

end if
end for

end for
. check convergence

check convergence = true
for each parameter do

for each direction left or right do
if extension flag = true then

check convergence = false
end if

end for
end for
if check convergence == ”true” then

converged = true
end if

end while
end procedure

5.3. Experimental Setup II 95

Table 5.3: Robustness range obtained by varying neuronal parameters at once.
The values in square brackets show the range of robustness in the left and right
directions. The table below shows the performance of individuals with 100 different
sets of neuronal parameters, sampled from the ranges of robustness specific for each
individual.

Top 10 individuals
P Default 1 2 3 4 5 6 7 8 9 10
EL -70 mV [-71, -65] [-74, -64] [-72, -66] [-72, -67] [-73, -65] [-73, -67] [-72, -68] [-71, -67] [-72, -66] [-72, -66]
Vr -58 mV [-59, -56] [-60, -57] [-60, -56] [-59, -55] [-61, -56] [-60, -56] [-60, -56] [-59, -55] [-60, -54] [-60, -55]
VT -50 mV [-51, -48] [-52, -49] [-52, -48] [-51, -48] [-52, -47] [-52, -47] [-52, -48] [-51, -48] [-51, -48] [-52, -48]
τm 20 ms [16, 25] [17, 21] [18, 22] [19, 22] [18, 23] [16, 22] [18, 22] [19, 22] [18, 23] [18, 22]
∆T 2 mV [1.5, 2.2] [1.8, 2.3] [1.8, 2.2] [1.6, 2.4] [1.8, 2.2] [1.8, 2.3] [1.8, 2.1] [1.9, 2.2] [1.8, 2.3] [1.8, 2.3]
C 0.2 nF [0.19, 0.22] [0.16, 0.21] [0.18, 0.22] [0.19, 0.22] [0.18, 0.22] [0.18, 0.22] [0.18, 0.21] [0.19, 0.22] [0.17, 0.23] [0.17, 0.22]
a 2 nS [-2, 7] [-2, 5] [0, 4] [-2, 4] [0, 5] [0, 4] [-1, 4] [0, 5] [1, 6] [0, 5]
b 0 nA [0, 1] [0, 0] [0, 2] [0, 7] [0, 7] [0, 3] [0, 6] [0, 7] [0, 1] [0, 7]
τE 5 ms [4.9, 5.2] [4.7, 5.3] [4.8, 5.2] [4.8, 5.2] [4.8, 5.3] [4.7, 5.2] [4.8, 5.2] [4.9, 5.3] [4.9, 5.3] [4.8, 5.2]
τI 5 ms [4.6, 5.6] [4.5, 5.1] [4.8, 5.2] [4.9, 5.2] [4.7, 5.6] [4.7, 5.3] [4.8, 5.2] [4.9, 5.2] [4.9, 5.3] [4.8, 5.2]
EE 0 mV [-1, 2] [-2, 3] [-2, 2] [-2, 2] [-2, 2] [-2, 5] [-4, 1] [-4, 4] [-2, 4] [-2, 3]
EI -70 mV [-71, -68] [-73, -69] [-72, -68] [-71, -67] [-72, -68] [-72, -68] [-72, -68] [-71, -67] [-73, -68] [-72, -68]

gainE 7 nS [6.9, 7.2] [6.7, 7.1] [6.8, 7.2] [6.9, 7.3] [6.8, 7.5] [6.7, 7.3] [6.8, 7.1] [6.9, 7.3] [6.9, 7.3] [6.8, 7.3]
gainI 7 nS [6.9, 7.3] [6.6, 7.1] [6.8, 7.2] [6.8, 7.3] [6.8, 7.4] [6.9, 7.5] [6.8, 7.6] [6.9, 7.2] [6.8, 7.4] [6.8, 7.3]

Test: when each neuron in the network has a different set of parameters.
TPR>0.99 & FDR<0.01 37 37 27 80 19 53 47 52 67 14
TPR>0.95 & FDR<0.05 71 79 75 97 68 99 93 98 93 80
TPR>0.90 & FDR<0.10 84 86 86 100 85 99 97 99 99 91

Test: when the silence interval between signals is increased.
Silence 16 ms ≥ 100 35 ≥ 100 28 ≥ 100 ≥ 100 48 ≥ 100 ≥ 100 ≥ 100

The last row in Table 5.3 shows robustness to the duration of silence intervals be-

tween signals. Out of 10 individuals, 7 were robust to an indefinite increase in

the silence interval. In other words, these 7 networks were capable of maintaining

network states indefinitely in the absence of input activity (see Figure A.1.4 in Ap-

pendix A.1 for more information on the connections weights of the in the individuals

in Table 5.3, see Appendix A.4 for network topologies of all individuals presented

in Table 5.3).

To further test the robustness of individuals, each neuron in the network was given

a different set of neuronal parameters drawn from the obtained robustness range.

Afterwards, the TPR and FDR were reported for a random sequence of 50000 signals.

One hundred such evaluations were made for the top-10 networks and the TPR

and FDR were reported (Table 5.3). Individual numbers 4, 6, 7, 8 and 9 showed

robustness to this change.

To understand the working mechanism of the networks, the most robust individual

was explored further. Although individual no. 4 was the most resilient to the

96 Chapter 5. Noise Promotes Robustness

disturbed neuronal parameters, it could not maintain network states when the silent

intervals between signals were increased. Therefore, individual 9 was chosen for

further analysis. This individual was robust to disturbed set of neuronal parameters,

and it could maintain performance to an indefinite increase in the silent intervals.

A minimal finite-state transducer FST for recognizing a pattern of three signals

requires at least four network states (Figure 5.3c). To explore how the evolved

network accomplished the task in the presence of intrinsic noise, first the network

states were identified. Unlike individuals obtained without noise in Chapter 4, all

individuals (top 10) performed the task with only 4 network states that could be

mapped onto the states of minimal FST. Furthermore, 7 out of 10 individuals were

able to maintain network states when the interval between signals was increased.

With the initial analysis, it was observed that in the presence of intrinsic noise all the

networks evolved self-excitatory loops. For example, all interneurons of individual

no. 9 (Figure 5.3a) had self-excitatory loops (two strong and one weak) and were

fully connected. However, this was not a sufficient condition for the emergence

of memory (state maintenance) in the network. As a counter-example, individual

no. 7 shared a similar topology with two strong self-excitatory loops but could not

maintain network states. The network topology of individual no. 7 is provided in

Appendix A.1, Figure A.1.5.

To explain the working mechanism of an evolved network, the spiking behaviour of

the network is observed in one of the four (start, hA, hAB, hABC) possible network

states. The spiking state of neurons is classified as one of the three identified states:

a low spiking state (denoted by L) 0 to 3 spikes, a high spiking state (denoted by

H) approx. 330 Hz, no spiking activity (denoted by Z). Using this notation the four

network states (start, hA, hAB, hABC) of individual no. 9 are described as (LHH,

ZLH, ZZL, LHH). In each triplet, a symbol (Z, L, or H) represent the state of a

5.3. Experimental Setup II 97

Figure 5.3: Analysis of individual no. 9 evolved to recognize ABC in the presence
of intrinsic noise. (a) Topology and connection weights of the network. (b) The
activity of the network for short 16 ms, and (c) long silent intervals. (d) Minimal
FST for recognizing a pattern of 3 letters. (e) The identified network states.

neuron, and the order corresponds to the order of interneurons in the network.

98 Chapter 5. Noise Promotes Robustness

The network remains in the start state unless the first correct signal A is received.

The start state of the network is represented by high spiking of N2 and N3, and low

spiking of N1. The high spiking of N2 and N3 can be explained by strong excitatory

connections from B and C to N2, which in turn excites N3. Both N2 and N3 sustain

the spiking activity by exciting themselves with strong excitatory loops. Therefore,

the network remains in the start state even in the case of long silent intervals. When

the network receives the first signal A in the correct order, the negative connection

from input A to N2 inhibits the high state of N2, switching it to a low state. At

the same time, the excitatory connection from A to N3 speeds up N3 for the input

duration which gets back to the normal H state. Hence, the hA state is maintained

by continuous spiking of N3 even if the silent intervals are increased to 100 ms

(Figure 5.3d), thanks to the strong self-excitatory connection on N3.

The next correct state hAB is maintained by an absence of activity in the network

that can be explained by the topology of the network (Figure 5.3a). Assume the

network transforms to the hA state after receiving A, represented by continuous

spiking of N3. If the network receives an input signal B while in state A, the

inhibitory connection to N3 shuts down N3 and transforms it to the L state. On

the other hand, the weak excitatory connection from B to N2 is unable to produce

any spikes in N2. However, a second B can activate N2 which in turn actives N3,

and transforms the network into the start state. Furthermore, if input A is followed

by B, the network goes into a quiescent state (hAB state) and the inhibition from

the output neuron is released. At this stage, if the network gets a C, the strong

excitatory connection from C to N1 activates N1 which triggers the output neuron

to fire for the correct pattern ABC. Moreover, N1 also excite N2 which activates

N3, putting the network back into the start state (H state of N2 and N3 neurons).

5.4. Conclusion 99

5.4 Conclusion

Noise induces robustness. Introducing intrinsic noise during evolution as random

fluctuations of membrane potential of neurons, is beneficial and has a computational

role. Consequently, the obtained networks are robust to a disturbed set of neuronal

parameters. Furthermore, the networks are more likely to maintain network states,

which implies that noise also facilitates the emergence of memory in these minimal

networks. The memory appears to be stored in the self-excitatory loops. Thus the

formation of self-loops during evolution is linked to the emergence of memory in

the network. To quantify the robustness, first, the robustness range is obtained for

changing a single parameter and keeping all others at their default values. Further-

more, a probabilistic algorithm is proposed to find the robustness range for varying

all parameters at once. It has been demonstrated that the individuals evolved in

the presence of intrinsic noise are robust to disturbed neuronal parameters sampled

from the obtained range.

Chapter 6

Dynamics of Evolved SNNs

In Chapter 4 and Chapter 5, the experimental setup for the evolution of SNNs to

perform temporal pattern recognition was refined with fine-tuning of the genetic op-

erators and the fitness function. As a result, robust SNNs were obtained. However,

the working mechanism of the evolved networks is not yet obvious. For example, in

the presence of noise, why are some networks capable of maintaining network states

but not all? Why do two networks with the same structure but different connection

weights exhibit inconsistent behaviour when the silent intervals between signals are

increased? What is the contribution of each connection in recognition? Are there

any superfluous connections in the network? Is a weaker connection less significant

than a stronger one? What is the role of self-loops (autapses)? This chapter focuses

on understanding the working mechanism of the evolved networks.

In this chapter, a connection pruning algorithm is proposed which removes super-

fluous connections from the network to pronounce the essential connections. Af-

terwards, the network states of the pruned network are mapped onto the states

of a finite state transducer (FST). Successively, the emergence of memory and the

switching mechanism of the pruned networks are explored.

100

6.1. Experimental Setup 101

6.1 Experimental Setup

To understand, why memory emerges in some networks but not all, two different

experiments were conducted each with 100 independent evolutionary runs of 300

individuals. The setup for the first one was kept similar to the one used in Chapter

5, Experimental setup II. In the second experiment, the duration of silent intervals

between input signals was kept variable in the interval [16 32] ms during evolution

instead of fixed intervals of 16 ms. The intuition behind introducing variable silent

intervals during evolution was to obtain state-maintaining individuals. Moreover,

the level of intrinsic noise remained the same for both experiments; a random value

drawn from Gaussian distribution with a mean of 0 and a standard deviation of 2

mV, was added to the membrane potential of each neuron at every network step.

Out of 100 independent runs, the experiment with constant silent intervals of 16 ms

produced 15 perfect recognisers. In the case of variable silent intervals [16 32] ms, 12

out of 100 runs ended with producing perfect recognisers. Although the experimen-

tal setup was capable of deleting neurons during evolution, the champions of both

experiments had three interneurons. Furthermore, the individuals evolved with vari-

able silent intervals had a slightly higher number of connections as compared to the

ones evolved with constant silent intervals (mean 19.20, standard deviation 0.54 vs

mean 18.83, standard deviation 1.333) as shown in Table 6.1. Despite the structural

dissimilarities among the individuals obtained with the two setups, the individuals

evolved with variable silent intervals were more likely to maintain network states.

Out of 12 champions, 11 were capable of keeping memory, in contrast to fixed silent

intervals, where only 4 out of 15 were able to maintain states for longer duration of

silent intervals. Furthermore, regardless of the experiment, all the state-maintaining

individuals had exactly 2 self-excitatory loops. However, this was not a sufficient

condition for state maintenance. As a counter-example, 5 individuals (4, 7, 11, 12,

102 Chapter 6. Dynamics of Evolved SNNs

14) formed 2 self-excitatory loops yet they were unable to sustain states in the ab-

sence of input activity. This question will be revisited after examining the evolved

networks for excessive connections. The connections weights of all individuals pre-

sented in Table 6.1 are provided in Appendix A.2, Figure A.2.1 and Figure A.2.2.

6.2 Pruning Excessive Connections

Evolution may produce superfluous connections which can be pruned without im-

pairing the performance of the network [147]. Evolved networks are pruned by

removing a random connection and evaluating the network for a random sequence

of length 10000. If the TPR value drops below 0.95 and FDR rises above 0.05, the

connection is restored and is labelled as vital. Otherwise the excessive connection

is removed from the network. This process is repeated until all connections in the

network are labelled as vital. With this procedure, all the top individuals (15 + 12)

are pruned. It is important to mention that connections are pruned irrespective of

their weight contribution. A connection with a large weight can be pruned if it is

not vital i.e. the removal of this connection from the network does not affect the

network’s performance (TPR ≥ 0.95andFDR ≤ 0.05).

Although the pruning algorithm allowed the deletion of nodes, none of the top in-

dividuals was left with less than 3 interneurons. Hence, in the presence of noise, at

least 3 interneurons were required to recognise a pattern of three signals. Further-

more, the individuals capable of maintaining network states continued to maintain

network states after pruning. This indicated that the superfluous connections were

neither needed for recognition nor for state maintenance. Both networks (evolved

and the pruned) performed equally well when they were re-evaluated for a random

sequence of length 100000, where the duration of each signal was 6 ms signal followed

6.2. Pruning Excessive Connections 103

Figure 6.1: Individual no. 5 evolved with noise and fixed silent intervals of 16 ms.
This individual cannot maintain a network state. (a) the topology of the evolved
network. (b) the simplified network after pruning.

by a silent interval of 100 ms.

Table 6.1: The number of edges and self-excitatory loops in perfect recognisers
evolved in the presence of noise. Top: evolved with constant silent intervals between
signals (15 champions). Bottom: evolved with variable silent intervals between
signals (12 Champions). The last two rows show their robustness to increased silent
intervals from 16 ms to 100 ms.

Champions evolved in the presence of constant (16 ms) silent intervals
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

evolved edges 19 21 20 19 18 19 19 18 21 16 20 20 19 20 19
edges after pruning 10 14 15 13 11 14 16 15 16 16 17 16 15 13 13

self ex-loops 1 3 2 3 2 2 2 2 3 3 3 2 2 2 2
100 ms TPR 0.02 0.98 0.98 0.97 0.96 0.95 0.99 0.55 0.99 0.00 0.00 0.00 0.96 0.99 0.96
100 ms FDR 0.99 0.37 0.01 0.12 0.56 0.01 0.03 0.90 0.20 1.00 1.00 0.99 0.58 0.01 0.56

Champions evolved in the presence of noise and variable (16-32 ms) intervals of silence
1 2 3 4 5 6 7 8 9 10 11 12

evolved edges 19 21 20 19 20 18 16 20 18 19 18 18
edges after pruning 13 12 14 14 14 13 11 13 15 12 13 13

self ex-loops 2 2 2 2 3 2 2 2 2 2 2 2
100ms TPR 0.99 0.99 0.99 0.98 0.90 0.98 0.99 0.98 0.99 0.97 0.98 0.99
100ms FDR 0.04 0.01 0.01 0.01 0.40 0.04 0.01 0.01 0.04 0.01 0.02 0.01

Network topologies of individual no. 5 before and after pruning are presented in

Figure 6.1. In this network, out of 19 connections, 7 were superfluous and removing

104 Chapter 6. Dynamics of Evolved SNNs

them from the network did not impair the performance of the network. The pres-

ence of superfluous connections in the evolved networks was misleading which made

the analysis of the networks more challenging. After pruning, the network (Figure

6.1b) was left with only 11 connections (8 excitatory and 3 inhibitory) and three

interneurons. This not only helped to understand the network in more depth but

was also efficient in terms of both memory consumption and computational power.

It was interesting to observe that all the state-maintaining networks formed exactly

2 self-excitatory loops, while the individuals that could not maintain network states

had 2.42 self-excitatory loops on average. In contrast to that, the average sum of

the weights of the self-loops was higher in the networks that could maintain states

14.6 vs 12.3. Furthermore, all the memory keepers had exactly 2 active neurons.

All these observations indicated that memory is a property of self-excitatory loops.

Figure 6.2: Individual no. 7 evolved with noise and variable silent interval [16, 32]
ms. This individual maintains network states when the intervals between signals
are increased. (a) the topology of the evolved network. (b) the simplified network
after pruning.

6.2. Pruning Excessive Connections 105

Figure 6.2 shows the topologies of a memory keeper before and after pruning. This

individual was obtained in the presence of intrinsic and extrinsic noise. Out of 16

connections in the evolved network 5 were marked superfluous by the pruning algo-

rithm and therefore removed from the network (Figure 6.2b). The performance of

the pruned network with only 11 connections remained intact; both the recognition

ability and the property of state maintenance were not affected.

Despite being obtained from independent evolutionary runs in the presence of noise,

the network topology of the two pruned networks (Figure 6.1 and 6.2) were exactly

the same. However, one was a memory keeper and the other was not. Since both

networks shared the same topology, it was the weights of the connections that main-

tained the states of the network. Without pruning, it was difficult to make this

observation in the evolved networks.

To reveal the working mechanism and the dynamics that enable the property of state

maintenance, the network states of the pruned individuals are identified in Section

6.3. The same formal model of finite-state transducer (FST) is used to demonstrate

that the recognition task is accomplished by transitions between network states. In

Chapter 4, the network states of individuals evolved without noise were mapped

onto the states of an FST. Subsequently, chapter 5 described the importance of

noise during evolution and established that SNNs evolved in the presence of noise

developed robustness to perturbed neuronal parameters. In this chapter, the focus

is on understanding the dynamics of pruned networks and mapping their network

states onto the states of the FST.

106 Chapter 6. Dynamics of Evolved SNNs

6.3 Understanding Dynamics of Pruned SNNs

The pruned individuals were reevaluated for a random sequence of 100000 signals

with 100 ms silent intervals between signals. In the case of short intervals of 16

ms, all 27 individuals (15 + 12) performed as perfect recognisers. However, 12 out

of 27 individuals broke down when silent intervals between signals were increased,

resulting in a different true positive rate (TPR) and false discovery rate (FDR).

According to the reevaluated TPR and FDR values, the individuals were classified

into one of the four categories as follows:

Perfect-recognisers. Also termed memory keepers, they secured a high TPR and

low FDR value. Out of 27 individuals 15 were classified as perfect-recognizers. All

individuals evolved in the presence of both types of noise performed as perfect-

recognizers except individual no. 5. In addition, four individuals evolved in the

presence of intrinsic noise only performed as perfect-recognizers: no. 3, 6, 7, 13.

Over-recognisers. Individuals with high TPR and high FDR values were classified

as over-recognizers. Out of 27 individuals 7 behaved as over-recognizers, out of which

6 were evolved with intrinsic noise: no. 2, 4, 5, 9, 13, 15, and the last one was evolved

with both types of noise: no. 5.

Wrong-recognisers. These individuals obtained a low TPR and a high FDR when

reevaluated for a large sequence. Only 4 individuals evolved in the presence of only

intrinsic noise operated as wrong recognizers: no. 1, 8, 11, 12.

Aphonic-networks. These individuals could not keep the spiking activity of the

output neuron, resulting in low TPR and low FDR values. The output neuron of

an aphonic network never spikes irrespective of the input pattern. Individual no 10,

evolved with only intrinsic noise acted as an aphonic network.

6.3. Understanding Dynamics of Pruned SNNs 107

To sum up, 11 out 12 individuals evolved with both types of noise could maintain

network states when the silent intervals were increased to 100 ms. In contrast,

just 4 out of 15 networks evolved with intrinsic noise could maintain states. This

indicated that extrinsic noise played an essential role in producing memory keepers.

To understand why the performance of some individuals deteriorated when silent

intervals between signals were increased, the individuals from each category are

explored further.

Individuals that broke down to an increase of silent intervals to 100 ms also expe-

rienced impaired performance for 50 ms intervals. Therefore, the network activity

(Figure 6.3c) is presented with silent intervals of 50 ms only. Moreover, considering

the fact that excessive connections are misleading (in terms of understanding the

mechanism driving a network to recognize a pattern) and make the analysis more

difficult, only pruned networks are discussed in the next section. For simplicity, a

neuron can be either in a low (L) or high (H) spiking state at a time. The state

of a neuron is determined in the interstimulus interval (ISI). In the case of short

intervals, a network state represents the state of all neurons in 6 + 16 = 22 ms

intervals (Figure 6.3b), while the length of the ISI is increased to 6 + 50 = 56 ms

(Figure 6.3c) when the silent intervals are increased to 50 ms. Furthermore, a net-

work state LHL means that neurons N1 and N3 are in the L state, and N2 is in the

H state. The order of the network state LHL follows the numbering (N1, N2, N3)

of the interneurons in the network.

Perfect-recognizer

Individual no. 7 (Figure 6.3), evolved in the presence of both types of noise is anal-

ysed as an example of a perfect recogniser. The topology of the pruned network has

only 11 connections (8 excitatory and 3 inhibitory) and three interneurons (Figure

108 Chapter 6. Dynamics of Evolved SNNs

Figure 6.3: Individual no. 7 evolved with both intrinsic and extrinsic noise. (a)
The topology of the pruned network. (b) The activity of the network for short 16
ms, and (b) for long 50 ms silent intervals, which indicates that this individual can
maintain network states when the silence prolongs. (d) The FST for accepting a
string of 3 letters ABC. (e) the identified network states.

6.3. Understanding Dynamics of Pruned SNNs 109

6.3a). Before receiving the first correct signal A, the network is in the start state

represented by LHH, where N1 is in a low spiking state, while N2 and N3 are spik-

ing with a high rate. As soon as, the network receives the first correct signal A, it

transforms to the hA state. The strong excitatory connection from A to N2, along

with the self-excitatory loop on N2, speeds up N2, which in turn inhibits N3. Con-

sequently, N3 shuts down, and the network goes to the hA state denoted by LHL.

If the next input signal is B, N2 shuts down, and the network transforms to the

hAB state represented by LLL. This transition is explained by the strong inhibitory

connection from B to N2. In addition, input B excites N3 weakly with a connection

weight of 0.95. This connection can activate N3 only if the first B shuts down N2,

releasing inhibition to N3. Therefore, getting a second B can activate N3 which in

turn activates N2, transforming the network back into the start state. Intuitively,

when this connection (from B to N3) was removed the network started responding

to ABBC, ABBBC, ... in addition to the target pattern ABC. Suppose the network

is in the hAB state, upon receiving the last correct signal C, the network goes into

the hABC state denoted by LHH with the spiking of the output neuron. The only

connection from C to N1 activates N1,and N1 activates N3 and the output neuron.

The output neuron spikes for receiving the correct pattern ABC. N3 also passes the

activity to N2, transforming the network back to the start state LHH – maintained

actively by continuous spiking of N2 and N3.

The analysis of the 15 perfect-recognizers uncovered topological and behavioural

commonalities among pruned networks. All memory keepers were left with exactly

2 self-excitatory loops after pruning. This stood out as one of the most salient topo-

logical features which accounts for state maintenance in these minimal networks.

Moreover, the output neuron of all memory keepers received both inhibition and ex-

citation from interneurons. This common structural observation could be explained

by the correct spiking behaviour of the output neuron. Out of 4, three network states

110 Chapter 6. Dynamics of Evolved SNNs

(start, hA, hABC) inhibited (prevent from spiking) the output neuron. In the hAB

state the inhibition from the output neuron was released, making it ready to spike

for the last input signal C in the correct order. The hAB state was maintained

passively by no activity in the network.

Figure 6.4: Individual no. 5 evolved with intrinsic noise and fixed silent intervals
of 16 ms. (a) The topology of the pruned network. (b) The activity of the network
for short 16 ms, and (b) for long 50 ms silent intervals, which indicates that this
individual can maintain network states when the silence prolongs.

6.3. Understanding Dynamics of Pruned SNNs 111

Over-recognizer

Out of 27 individuals, 7 start responding to other patterns in addition to the correct

pattern ABC, when the silent intervals between the signals are increased to 100

ms. Here, individual no. 5, evolved with only intrinsic noise is chosen for further

analysis as an example of an over-recogniser network. This individual shares the

same topology with the memory keeper (Figure 6.3 and 6.4). In the case of short

silent intervals between signals, both individuals perform as perfect recognizers (a

high TPR and a low FDR) where the start and the hABC states are maintained

by high spiking of N2 and N3 neurons denoted as LHH. Unfortunately, when the

silent intervals are prolonged, the activity of N3 dies out during the interval (due

to the weaker self-loop on N3 in individual no. 5, Figure 6.4). This unwanted

transition transforms the network to the hA state (LHL) while A is not actually

received. The arrival of B at this stage turns off N2, transforming the network into

a passively maintained state. Thus, receiving an input signal C, while in state hB

would produce spike(s) wrongly in the output neuron. In this way, the network starts

responding to all patterns ending with ...BC. Consequently, the FDR increases and

the TPR remains high as the network continues to recognize the correct pattern

ABC.

The network topology of the over-recognizer and the perfect-recognizer (Figure 6.3)

are similar. Thus, it is obvious that because of the weaker strength of the self-

excitatory loop on N3 in individual no. 5, the network could not maintain the

start/hABC state when the silent intervals are increased. As a result, the activity of

N3 dies out during the silence (state forgetting), transforming the network wrongly

to the hA state. It can be deduced that the weights of the self-excitatory loops play

an important role in maintaining network states.

112 Chapter 6. Dynamics of Evolved SNNs

Wrong-recognizer

The four wrong recognizers are the outcome of the evolution in the presence of

only intrinsic noise. In the case of short intervals (16 ms) they performed perfectly

Figure 6.5: Individual no. 8 evolved with intrinsic noise and fixed silent intervals
of 16 ms. (a) The topology of the pruned network. (b) The activity of the network
for short 16 ms, and (b) for long 50 ms silent intervals, which indicates that this
individual can maintain network states when the silence prolongs.

6.3. Understanding Dynamics of Pruned SNNs 113

well. However, when silent intervals between signals were increased, the network

experienced unstable transitions between network states. The working mechanism of

individual no. 8 (Figure 6.5a) is explored as an example of a wrong-recognizer. This

network is left with 15 (10 excitatory and 5 inhibitory) connections after pruning.

The start state is represented by high spiking of all the 3 interneurons HHH (Figure

6.5b) with short silent intervals of 16ms. When the network receives an A, N1

accelerates and shuts down N2, transforming the network into the hA (HLH) state.

Since N1 does not have a loop, therefore the activity dies out precisely as soon as

B arrives. Thus the network goes into LLH state. The weak excitatory loop on

N3 cannot prevent the spiking activity from dying out. Consequently, the network

switches to the LLL state, releasing inhibition from the output neuron and exposing

it to spiking for the last correct signal C.

In contrast, the network forgets the hA state (HLH) when the silent intervals are

increased. During the silent interval, both N1 and N3 die out. The reason is that

there is no self-loop on N1 while the self-excitatory loop on N3 is too weak to prevent

it from dying out for long. As a result, the network relaxes to the LLL state during

the silent interval, leaving the output neuron exposed. If a C arrives at this moment,

the output neuron spikes and the network transforms back into the start state HHH.

Similarly, when the network is in LLL state (has forgotten A), receiving a B at this

point transforms the network back to the start state – continuous spiking of all

interneurons denoted as HHH. Due to this reason the network remains silent for the

correct pattern ABC, resulting in a low TPR.

A perfect recognizer behaves as a wrong-recognizer if it forgets the hA state during

silent intervals. On the other hand, a perfect network operates as an over-recognizer

if it cannot maintain the start or the hABC state when the silence continues.

114 Chapter 6. Dynamics of Evolved SNNs

Aphonic-recognizer

A perfect-recognizer for short intervals can act aphonic to long silences. The work-

ing mechanism of the only aphonic-recognizer individual no. 10 (Figure. 6.6) is

discussed here. The pruned network has 16 connections (9 excitatory and 7 in-

Figure 6.6: Individual no. 10 evolved with noise and fixed silent interval 16 ms. (a)
The topology of the pruned network. (b) The activity of the network for short 16
ms, and (b) for long 50 ms silent intervals, which indicates that this individual can
maintain network states when the silence prolongs.

6.3. Understanding Dynamics of Pruned SNNs 115

hibitory). In comparison with other individuals the increased number of inhibitory

connections in this solution indicates its aphonic nature. For short intervals, the

recognition is accomplished with unstable state transitions. When the network gets

an A, it goes into the hA state denoted by HLL – high spiking of N1 which in

turn inhibits the output neuron (preventing it from spiking for wrong inputs). If

this A follows a B, the inhibitory connection from B to N1 shuts down N1, while

the excitatory connection from B to N2 activates N2, which now inhibits the output

neuron. This handing over the responsibility of preventing output from spiking with

the transition from one network state to another is intriguing. The hAB state is

represented by continuous slow spiking of N2. Successively N2 excites N3. If an

input signal C is received at this point, N3 accelerates and the output spikes for the

correct pattern ABC.

On the other hand, when the silent intervals between signals are prolonged, the

network goes into the only stable state hA (HLL) after receiving A. If B follows A,

it shuts down N1 and activates N2 which in turn activates N3 slowly with a delay.

However, N2 dies out before the silence ends, thus releasing inhibition from N1.

Consequently, N3 activates the exposed N1. After the cessation of activity in N2,

N3 cannot sustain itself for long with a weak self-excitatory loop. In this situation,

if a C arrives N3 speeds up but it can never activate the output due to strong

inhibition from N1. In short, regardless of the input pattern, the precise conditions

for the output neuron to spike never occur in the case of prolonged silent intervals.

Therefore, the network is termed aphonic.

116 Chapter 6. Dynamics of Evolved SNNs

6.4 Conservation of Dale’s rule

The motivation behind producing minimal networks that could recognize a temporal

pattern is two-fold. First, small networks are easier to evolve (due to smaller search

space). Second and more important, it is easier to explain the dynamics of a small

network. In order to roughly halve the number of neurons in a network, Dale’s rule

[15] is relaxed during evolution. According to Dale’s rule, a neuron cannot inhibit

and excite other neurons at the same time.

All the champions presented in this chapter have at least one neuron that violates

Dale’s rule - exciting and inhibiting other neurons at the same time. This violation

is benign because an evolved network can be transformed to conform to Dale’s rule.

The transformation requires splitting the violating neuron into two new neurons;

one excitatory and one inhibitory. Both neurons receive the same input connections

with the same weight as the original one. The outgoing connections are also kept

the same. If the original neuron has an excitatory self-loop, the new excitatory

neuron inherits this loop, and an excitatory connection with the same weight is

made from the excitatory neuron to the inhibitory neuron. Similarly, in the case

of an inhibitory self-loop, the inhibitory neuron keeps the loop and an inhibitory

connection is created from the inhibitory to the excitatory neuron. This new con-

nection could affect the performance of the network due to introducing an extra

delay of 1 ms. However, the networks evolved in the presence of noise were robust

to this structural perturbation. Furthermore, the networks also showed robustness

to the extra noise incurred by splitting a neuron into two neurons. For example,

individual no. 7, the perfect recognizer, has one neuron N2, which violates Dale’s

rule. The splitting of this neuron is demonstrated in Figure 6.7a, and the activity

of the transformed network for short and long intervals is shown in Figure 6.7. The

performance of the network is not affected by Dale’s transformation. Moreover, the

6.4. Conservation of Dale’s rule 117

network not only remained perfect but also continued to maintain states in the case

of prolonged silent intervals. It is important to note that individual no. 7 is evolved

in the presence of both types of noise which explains the robustness of the network

to such a transformation. On the contrary, without noise the networks were hardly

Figure 6.7: Transforming individual no 7 (Figure 6.3) to confirm to Dale’s rule. (a)
The only violating neuron N2 is divided into two neurons, one excitatory and one
inhibitory. (b) The activity of the network for short 16 ms, and (c) for long 50 ms
silent intervals, which indicate that an evolved network can be transformed to follow
Dale’s rule.

118 Chapter 6. Dynamics of Evolved SNNs

robust to any type of perturbation.

6.5 Conclusion

It is very likely for evolution to over-produce connections which can be pruned

without impairing the performance of the network. Superfluous connections are

misleading and make the analysis of the networks more challenging. It is much

easier to observe commonalities among the pruned networks. Furthermore, the

role of each connection stood out in the pruned networks which helped greatly in

understanding how these minimal networks function.

Self-excitatory loops are more likely to form in the presence of both intrinsic and

extrinsic noise which play an important role in state maintenance when the silent

intervals are longer. In the presence of noise, recognizing a pattern of three signals

requires at least 3 interneurons. A state-maintaining individual must form at least

2 self excitatory loops with sufficient weights to keep the spiking activity from dying

out. A perfect-recognizer accomplishes the recognition task by switching between

network states. A network-state is defined as the state of all neurons in the inter-

stimulus interval (ISI) – the duration between the onsets of two consecutive signals

(ISI = length of the signal + length of the following interval). The minimal FST

accomplishes the task of recognizing a string of three letters by 4 network states, and

so do the networks evolved in the presence of noise. Mapping network states onto

the states of an FST explains the basis of the recognition mechanism, i.e. switching

from one network state to another. Furthermore, it has been observed that the

penultimate state hAB (had AB) is always maintained passively by no activity in

the network. On the other hand, the start and the hABC states are maintained

actively in a similar way, with the only difference of intermittent activity in the

6.5. Conclusion 119

output neuron.

In the case of prolonged silent intervals, over-recognition happens when a network

cannot maintain the start or the terminal (hABC) state. On the other hand, if the

network cannot maintain the inter-pattern state hA or hAB, it stops recognizing the

correct pattern and starts responding to the wrong patterns. Another possibility is

becoming completely quiet regardless of the input signal.

Finally, the results have demonstrated that the network evolved in presence of noise

can be transformed to obey Dale’s rule – a neuron can either excite or inhibit other

neurons at the same time but not both.

Chapter 7

Handcrafting SNNs for longer

Patterns

In Chapter 6, we analysed the behaviour of the evolved networks in the presence

or absence of noise during evolution. This chapter uses that knowledge to define

rules for handcrafting network topologies. Analysis of the pruned networks revealed

several commonalities among the evolved networks obtained from different evolu-

tionary runs. An important observation is that the network topologies of perfect

recognisers evolved in the presence of noise are similar in structure. Other common-

alities include: (i) the network states of an evolved network can be mapped onto

the states of a finite state transducer (FST), accepting a string of letters, (ii) the

recognition happens with transitions from one network state to another, (iii) for

state maintenance, the weights of the self-excitatory loops should be strong enough

to keep the spiking activity from dying out in the absence of input activity, (iv)

the output neuron is prevented from spiking in the start and in the hA state by

continuous inhibition, (v) the inhibition from the output is released when the net-

work transforms to the penultimate state, passively maintained by no activity in the

120

7.1. Rules for Handcrafting Network Topologies 121

network, exposing the output to spike for the last signal in the correct order. These

findings led to handcrafting network topologies for recognising longer patterns for

which the evolutionary algorithm failed to produce minimal solutions.

The following section suggests rules for handcrafting network topology. The next

section validates the constructed topologies by optimising their connection weights.

Then the specialized roles of neurons in the network are identified, followed by the

contribution of connections to pattern recognition. The subsequent section demon-

strates the performance of the handcrafted network for recognizing a pattern of 6

signals. The chapter is concluded with a list of findings.

7.1 Rules for Handcrafting Network Topologies

The switching mechanism of the evolved three-signal networks is employed to hand-

craft network topologies for recognising patterns of lengths four and above. For

example, a network topology recognising a pattern composed of three signals can be

extended by adding a new input A, an inter-neuron N4, and six synaptic connections

(Figure 7.1b-c). In the extended network, the input stimuli are renamed as ABCD.

The newly added input A excites the neuron N4. The input B (previously named

input A) connects to neuron N2 (the switch neuron) with an excitatory connection.

It also inhibits the newly added neuron N4. Neuron N4 connects to N3 and to itself

with excitatory connections. Furthermore, N4 and N2 (the switch neuron) inhibit

each other and thus are mutually exclusive. For seamless transitions, two more

connections are essential for switching the network back to the start state after re-

ceiving the last correct input signal. Therefore, these connections are introduced in

the network to recognise patterns of length four and above: (i) the last input excites

the switch neuron (N2), (ii) the lock neuron (N3) inhibits the accept neuron (N1).

122 Chapter 7. Handcrafting SNNs for longer Patterns

Figure 7.1: Networks recognising patterns of lengths 2 to 6: The network in panel
b is obtained with artificial-evolution. The table below each network shows the
network transitions between states, represented by the number of active neurons.
The topology is extended to recognise patterns up to length 6 (c-e).

These rules can extend the topology of a four-signal network to recognise patterns

composed of five and six signals (Figure. 7.1d-e, see Figure A.3.1 in Appendix A.3

for connections weights of the handcrafted topologies).

7.2 Optimization of Connection Weights

The structural topology and the polarity of connections were predefined in the hand-

crafted networks. To optimise connection weights, I used a genetic algorithm where

an individual’s genome was the adjacency list of the handmade network. The num-

ber of individuals (100) in the population was kept constant during the evolution,

7.2. Optimization of Connection Weights 123

with an elite count of 10 individuals. In the first generation, the synaptic weights

were drawn from a uniform distribution between 0 and 10 (-10 and 0) for excitatory

(inhibitory) connections. The only mutation was adding a random number drawn

from a normal distribution with mean = 0 and SD = 1 to the connection weights

with a probability of 0.1 for choosing a connection. Subsequent generations were

created with size-two tournament selection; two individuals were picked randomly

from the population and the best one (according to the fitness value) was transferred

to the next generation after undergoing the genetic operator. The fitness function

rewarded spikes in the correct inter-stimulus interval and penalised spikes elsewhere.

The number of possible patterns increases exponentially with the length of the pat-

tern to be recognised; there are nn possible orderings for n signals. For examples,

a pattern of 4 signals has 44 = 256 (AAAA to DDDD) possible permutations, and

a pattern of 6 signals has 66 = 46656 (AAAAAA to FFFFFF) permutations. This

implies that when n gets large, the patterns occur less frequently in the continuous

random input stream of signals, or some patterns may not occur at all. Since indi-

viduals are evaluated for a random sequence in every generation, a simple genetic

algorithm could not optimize connection weights. Therefore, a genetic algorithm

is proposed that runs in two stages. Consider evolving networks for recognising a

pattern of four signals, n = 4. In the first stage, the individuals are optimised only

for the patterns similar to the target pattern of the form AXXX, XXXD, where

XXX in AXXX (XXXD) is replaced by all possible 27 patterns of BCD (ABC). A

sequence of 10000 signals is created by randomly concatenating 54 patterns (ABBB

to ADDD and AAAD to CCCD). When the genetic algorithm converges (finds a

network that only responds to the correct pattern ABCD and remains silent for all

other patterns), in the second stage the hard to recognise patterns are identified by

evaluating the champion individual for all possible patterns of signals A, B, C and

D with a different preceding history. A pattern is considered hard if the network

124 Chapter 7. Handcrafting SNNs for longer Patterns

fails to identify it correctly (at least 10% of its total number of occurrences in the

input stream). The hard patterns are then added to the input sequence, and the

penalty coefficient in the fitness function is increased to 50 (which remains 50 in the

subsequent iterations of stage 2). The evolution is then continued and the popula-

tion is further evolved with the new fitness function. In the subsequent iterations of

stage 2, each individual in the population is evaluated for a new training sequence

of 10000 signals created randomly by concatenating the 54 patterns of the form

(AXXX + XXXD) and the identified hard patterns with equal probability. The

genetic algorithm halts when a perfect individual is obtained for the new training

sequence. The second stage is repeated until no hard patterns remain.

7.3 Specialised Role of Neurons

The network topologies of the pruned networks recognising a pattern of 3 signals

were similar in their structure [150, 147]. In particular, these networks accomplished

the task with four neurons (3 interneurons and an output neuron) and 11 connec-

tions (3 inhibitory and 8 excitatory). Moreover, these networks preserved three

network states actively; the hA state by persistent spiking of the lock neuron and

hABC/start state by tonic spiking of the lock and the switch neurons (Figure 7.2a).

The only difference between the start and the hABC state was the intermittent spik-

ing of the output neuron. During evolution, both the lock and the switch neurons

formed self-excitatory loops with sufficient weights to prevent the spiking activity

from dying out. The formation of autapses in these minimal networks explained

their ability to maintain network states when silent intervals between signals were

increased [149, 147].

The interneurons of an evolved network are observed to have specialised roles of

7.3. Specialised Role of Neurons 125

Figure 7.2: (a) Network states with corresponding active neurons. (b) Minimal finite
state transducer for recognizing a string of three letters ABC. (c) The behaviour of
each neuron in the network. (d) Handcrafted network for recognising a pattern of
length 3.

locking, switching and accepting. The self-excitation of the lock neuron prevents

the output neuron from spiking, except when the second to the last correct input

signal shuts down the lock neuron, enabling the output neuron to spike for the

last correct input signal. If the lock is released by the penultimate correct input

signal, the accept neuron activates the output neuron on receiving the last correct

input. The accept neuron also sends a signal to the switch neuron, transforming

the network back into the start state. The switch neuron is responsible for the

transition between the network’s start state and inter-signal states; it is active in

the start state of the network and shuts down as soon as the network goes into an

inter-signal state (hA and hAB).

126 Chapter 7. Handcrafting SNNs for longer Patterns

7.4 Contribution of Connections to Pattern Recog-

nition

The contribution of each synaptic connection to pattern recognition is determined by

the behaviour of postsynaptic neurons. Consider the network recognising a pattern

of 3 signals (Figure 7.2): the excitatory connection from input A to neuron N3

(A → N3) activates the N3 neuron, N3 excites itself with an autaptic connection

(N3 → N3) and inhibits N2 with an inhibitory connection (N3 → N2). The

persistent spiking of N3 represents the hA state of the network. In addition, the

spiking of N3 also prevents the output neuron from spiking with a strong inhibitory

connection from N3 to the output neuron. The second input B connects N3 (B →

N3) with an inhibitory connection. When A is followed by B, this connection shuts

down the N3 neuron that maintained the hA state, and the network goes into a

quiescent state hAB. The weak excitatory connection from input B to N2 prevents

repeated input signal B. The weight of this connection is adjusted such that the

first B cannot activate the switch (N2) neuron due to continued inhibition from N3.

However, when N3 is deactivated by the first B in the correct order, the second B

can activate the switch (N2) neuron which in turn activates the N3. As a result, the

network goes back into the start state (continuous spiking of N3 and N2). As could

be expected, when this connection is removed, the output neuron of the network

starts responding to ABBC, ABBBC, etc. Furthermore, the positive connection

from C to N1 triggers several spikes in N1 neurons, N1 passes the activity to

the output neuron which spikes for receiving the last correct input C. Note that

a C received in the wrong order (after A or C) cannot activate the output due to

continued inhibition from the lock neuron, which is released only if A is followed by

B. In addition, N1 activates N2–the switch neuron which in turn activates N3–the

lock neuron, transforming the network back into the start state.

7.5. Performance of the handcrafted Networks 127

7.5 Performance of the handcrafted Network for

Recognising a Pattern of 6 Signals

The analysis of a handcrafted network for identifying a pattern of 6 signals showed

that the network accomplished the task of recognition with seven well-defined net-

work states (Figure 7.3a). As the network received the first correct input signal

A around 180 ms (Figure 7.3c), the network transformed to the hA (had A) state

represented by four active neurons N6, N5, N4 and N3. The input A connects to

N6 directly with a strong excitatory connection, causing N6 to spike. The spiking

continues on N6 due to the self-excitatory loop (Figure 7.3b), which in turn activates

N5 and inhibits N2 (the switch neuron) from spiking. The spiking activity persists

Figure 7.3: (a) Network states with corresponding active neurons. (b) Handcrafted
network for recognising a pattern of length 6. (c) The behaviour of each neuron in
the network.

128 Chapter 7. Handcrafting SNNs for longer Patterns

in N5 (due to the self-excitatory loop on N5). N5 passes the activity to N4, which

in turn activates N3 (the lock neuron) in a similar fashion. Meanwhile, if a B is re-

ceived, the inhibitory connection from input B to N6 shuts down N6, transforming

the network into the hAB state, which is maintained by continuous spiking of the

remaining three neurons (N5, N4 and N3). Input B also excites the switch neuron

with a precise connection weight such that only a second B can activate the switch

neuron and transform the network back into the start state. Similarly, if AB is

followed by input signal C in the correct order, the inhibitory connection from input

C to N5 shuts down N5, transforming the network into the hABC state, denoted by

continuous spiking of N4 and N3 neurons. Next, if the network receives an input D,

the inhibitory connection from D to N4 switches off N4, transforming the network

into the hABCD state, maintained by continuous spiking of N3 only. All the four

states from hA to hABCD are maintained actively by persistent spiking of 4, 3, 2,

and 1 neuron(s), respectively. It is important to note that N3 (the lock neuron) is

always active except when the network receives the second to the last input signal

in the correct order, allowing the output neuron to spike for the correct last input

signal F. The strong inhibitory connection from N3 (the lock neuron) to the output

neuron secures the output from spiking for incorrect patterns. If the network is in

the hABCD state (represented by continuous spiking of N3–the lock neuron) and

it receives the penultimate input signal E, the inhibitory connection from E to the

lock neuron deactivates the lock, exposing the output neuron to spike for the last

correct input signal F. The input F activates N1 with a positive connection, which

in turn passes the activity to both the output and the switch neuron. The output

spikes for receiving the correct pattern, and the switch neuron activates the lock

neuron, putting the network back into the start state where the switch (N2) and the

lock (N3) spike continuously (network topologies for recognizing patterns of length

4 and 5 are provided in Appendix A.3, Figure A.3.2 and Figure A.3.3).

7.5. Performance of the handcrafted Networks 129

Figure 7.4: Performance degradation of handcrafted networks with increasing pat-
tern length. Precision (left) and sensitivity (right) of the top 10 networks for each
pattern size (3 to 6) are evaluated for a random sequence of length 1 million and all
possible patterns of length n, n+1 and n+2.

The performance of the handcrafted networks is evaluated in terms of precision and

sensitivity. Precision is defined as how often the output neuron spikes correctly,

i.e. the number of true positives divided by the total number of times the output

spiked (Equation 7.1), whereas sensitivity is the average number times of the output

neuron spiked correctly, i.e. the number of true positives divided by the actual

number of correct patterns in the sequence (Equation 7.2). The top 10 networks

for patterns of lengths 3, 4, 5 and 6 are re-evaluated for a random sequence of

1 million signals (Figure 7.4). The performance of the networks degrades with

increasing length of the pattern. For example, the precision of the top 10 networks

obtained for recognising ABCDEF is between 0.73 and 0.96, whereas for length 5

(ABCDE) and below the precision is always above 0.94. The networks are then

tested with all possible permutations of 6 signals in 6 spots with replacement 6P6

(from AAAAAA to FFFFFF), 6P7 (from AAAAAAA to FFFFFFF) and 6P8 (

from AAAAAAAA to FFFFFFFF). The testing of the networks with all possible

130 Chapter 7. Handcrafting SNNs for longer Patterns

patterns of lengths 7 and 8 ensures that the network’s performance is not affected

by the preceding signals – history. Similarly, all possible permutations of lengths 3,

4, and 5 are evaluated up to 2 preceding signals (Figure 7.4).

precision =
TP

TP + FP
(7.1)

sensitivity =
TP

P
(7.2)

To demonstrate that all false positives were caused by history or noise, each pattern

was given to the network 10 times. All the perfect networks responded to the correct

pattern XXABCDEF at least 8 out of 10 times, and they responded to a very

small number of false positives not more than 4 out of 10 times. This clear margin

indicated that handcrafted networks could perfectly recognise correct patterns up

to 6 signals.

7.6 Conclusion

This chapter revealed the relationship between the structural connectivity and the

functional behaviour of spiking neural networks for the pattern recognition task.

In addition, rules are proposed for handcrafting network topologies for recognising

longer patterns. The constructed topologies are validated by optimising their con-

nection weights. Moreover, the functional role of excitatory autapses is highlighted

both in memory maintenance and network state transition.

To conclude, handcrafting SNNs adds a novel investigative tool to the field of com-

putational neuroscience. Understanding the functioning of minimal spiking neural

7.6. Conclusion 131

networks can greatly help in designing low-power intelligent solutions. Furthermore,

explainable SNNs may also give an insight into information processing in the animal

brain. In the future work, we expect to see handcrafted spiking networks for other

computational tasks.

Part IV

Conclusion

132

Chapter 8

Conclusion

8.1 Development of Ideas

This study suggested a new way of learning to recognise distinct temporal patterns

by optimising the topology and connections weights of small spiking neural networks

(SNNs) without changing or selecting conduction delays in the network. In the

initial experimental setup, the genetic algorithm (GA) in GReaNs was adapted to

optimise a population of SNNs such that the output neuron of the network spikes

only for the correct pattern and remains silent for all others. The focus was on fine-

tuning the GA parameters to obtain minimal SNNs that perform temporal pattern

recognition [148]. However, despite the success in obtaining such minimal SNNs,

they were found to be rigid in nature, and even a slight change in the parameters

could result in a complete breakdown of the network’s performance. A previous

study on the evolution of SNNs for animate control has found that introducing

noise in the membrane potential of neurons during evolution allows for efficient

control and promotes robustness to disturbed neuronal parameters [142]. Therefore,

I conducted another set of experiments in the presence of two types of noise during

133

134 Chapter 8. Conclusion

evolution: (i) modelled as random fluctuations of the membrane potential, and (ii)

modelled as random variations of the silent intervals in the input stream [150, 147].

Interestingly, the networks obtained in presence of noise were not only robust but

were also simpler, which helped greatly in understanding the operation mechanism

of these minimal networks.

The task of identifying a subsequence of signals is analogous to string recognition,

as both involve recognizing a pattern within a large sequence. Therefore, one way to

understand the properties of an evolved SNN is to map the activity in the network

(network states) onto the states of a finite state transducer (FST) – a general model

of computation for time-structured data. Since the networks in this work contain

less than 10 interneurons, I was able to construct FSTs for the evolved SNNs by

hand. It was interesting to see that all of the perfect recognizer networks could

be mapped onto an FST. This intriguing observation prompted a deeper investiga-

tion of understanding how these minimal networks operate at the level of synaptic

connections and individual neurons.

The analysis of the evolved networks uncovered the possibility of overproduced

synaptic connections during evolution. Removal of these superfluous connections

eased the analysis without impairing the network’s performance. More importantly,

it pronounced structural similarities and commonalities among the evolved networks.

It soon became apparent that self-excitatory loops in the networks have a functional

role in state maintenance – a form of memory. Moreover, the special role of each

neuron in the evolved networks was identified, which led to the idea of constructing

the networks by hand for recognizing longer and more complex patterns. Hand-

crafted networks are important for two reasons: (i) a handcrafted network confirms

a complete understanding of the network, (ii) the GA could not produce any minimal

network that could perfectly recognise patterns of length 4 and above.

8.2. Results 135

8.2 Results

The aim of this study was to understand information processing in artificial spiking

neural networks evolved for temporal pattern recognition. The key focus was on

the evolution, analysis, and handcrafting of very small spiking neural networks for

temporal pattern recognition. The main results can be summarised as follows:

• The genetic algorithm implemented in GReaNs can be adopted to optimise

the network topologies and connection weights of a population of SNNs for a

temporal pattern recognition task in the presence or absence of noise. Noise

can be introduced intrinsically or extrinsically during evolution. Intrinsic noise

is modelled as random fluctuations of the membrane potential of neurons in

the network at every network step, while extrinsic noise is random variations

of silent intervals in the input stream.

• In the absence of noise during evolution, the networks’ performance breakdown

completely with a slight perturbation in the values of parameters or with a

small variation in the duration of the silent interval between input signals.

• Noise promotes robustness, introducing an optimal noise level during evolution

is beneficial and has a computational role [33, 142]. Minimal SNNs evolved in

the presence of noise developed robustness to:

– disturbed neuronal parameters,

– prolonged silent intervals,

– removal of superfluous connections,

– transformation of the network to follow Dale’s principle by splitting the

violating neurons into an excitatory and an inhibitory half.

136 Chapter 8. Conclusion

• The network states of an evolved network that recognizes a temporal pattern

can be mapped onto the states of a finite state transducer (FST) [113], ac-

cepting a string of letters. As a matter of fact, the network accomplishes the

task of pattern recognition by transitioning between different network states,

where a network state refers to the state of all neurons in the network during

the inter-stimulus interval (ISI), while a neuron state refers to the spiking pat-

tern of a neuron during a given ISI. The inter-stimulus interval is the interval

between the onsets of two consecutive signals.

To see how an evolved SNN transitions from one network state to the next,

first the network states were identified (by hand) by giving all possible order-

ings of signals A, B, and C (from AAA to CCC) to the network and observing

the spiking patterns of the neurons in the ISI. It is observed, that the net-

work exhibits a similar network state when it receives either B or C, which

corresponds to the start state of the FST. However, if the network receives

an A, the network state changes, representing the ”hA” (had A) state of the

FST. While in state hA, the network remains in hA state if it receives another

A but the network state changes if it receives either B or C. If the network

receives a B, the network state transforms into ”hAB” state, representing the

next state of the FST. If the network receives a C, the network goes back to

the start state. By following this process, the network successfully recognizes

the correct pattern ABC. This mechanism can be extended to recognize longer

patterns.

In addition, it is observed that the network states of the SNNs that are evolved

in the presence of noise have a one-to-one correspondence with the states of

the FST [147]. Whereas in the absence of noise, the network states have many-

to-one correspondences with the states of the FST. i.e. more than one network

states map on the same FST state [148].

8.2. Results 137

Furthermore, the network states of all perfect recognizers could be mapped

onto the state of the deterministic FST; that is for each input signal the

current network state has only one unique next state. On the contrary, the

imperfect recognizer networks failed to map on the deterministic FST because

for a given input signal the network may transform to multiple next states

based on the preceding history or variation in the network. Consequently, the

networks respond to incorrect patterns.

• The shortest possible recurrent connection observed in the nervous system is a

self-connection. Self-connections (autaptic connections or autapses) are recur-

rent synaptic connections between the axon and dendrites or soma of a single

neuron (either excitatory or inhibitory). Autapses were discovered five decades

ago [130], in the mammalian brain. They are common in the brain and have

been observed in the neocortex, hippocampus and cerebellum [6]. Recent stud-

ies suggest possible roles of autapses in synchronisation of the networks [139],

flexible working memory networks [74] and coherence resonance [151]. How-

ever, their functional role remains unknown [140]. This study demonstrates

a functional role of autapses (self-excitatory loops) in maintaining network

states in the absence of input activity – a form of memory. Moreover, the

relationship between the pattern length and the number of autapses in the

network is identified i.e. at least n-1 self-excitatory loops are required in the

minimal network to perform temporal pattern recognition in the presence of

noise, where n is the length of the pattern. Without noise, the relationship be-

tween the number of self-excitatory loops and the length of the pattern cannot

be determined.

• An SNN recognising a pattern of length n requires at least n interneurons

in the minimal SNN. Three interneurons in the network are found to have

138 Chapter 8. Conclusion

a specialised role based on their behaviour: (i) the lock neuron prevents the

output from spiking unless it is released by the penultimate signal in the correct

pattern, (ii) the switch neuron is responsible for switching the network between

the inter-signal states and the start state, and (iii) the accept neuron produces

spikes in the output neuron when the network receives the last correct input,

and sends a signal to the switch neuron, transforming the network back into

the start state.

• Although the primary focus of this study is on evolving SNNs to recognize pat-

terns composed of distinct signals, it is interesting to note that both the evolved

and handcrafted networks can be readily adapted to recognize the regular ex-

pression of the form AB+C, AB+C+D, AB+C+D+E and AB+C+D+E+F .

For example, in the three-signal SNN, the excitatory connection from input

channel B to the switch neuron prevents the repeated signal B, when this con-

nection was removed, the network starts responding to ABBC, ABBBC, etc.

Similarly in four-single SNN, the excitatory connection from input channels B

and C to the switch neuron prevents the repeated signal B and C, respectively

(Figure 7.1 b-c). Thus, these networks can be easily adapted to recognize

patterns with repetitions.

• SNNs can be handcrafted to recognize a temporal pattern. Rules are defined

for handcrafting network topologies to identify temporal patterns up to length

6, in a random stream of input signals.

• An incremental genetic algorithm can optimise connection weights of the hand-

crafted topology such that the output neuron of the network spikes only for

the correct pattern received by the network inputs.

8.3. Future Work 139

8.3 Future Work

The preliminary setup for evolving minimal SNNs to perform temporal pattern

recognition presented in Chapter 4, and Chapter 5, can be adapted for temporal

pattern classification tasks. In the case of pattern classification, a network requires

more than one output neuron, depending on the number of classes. Each output

neuron is designated for one class. The GA can be adapted to evolve a population of

SNNs such that an output neuron spikes only for one class of patterns and remains

silent for all others. Understanding how a classifier network functions is challenging,

because a single connection in the network may contribute to the recognition of more

than one pattern. Similarly, a neuron might have several roles in the network.

An adaptive exponential integrate-and-fire (AdEx) neuron can generate several spik-

ing behaviours based on different values of initial parameters, e.g. tonic spiking,

bursting, spike once, delayed spiking etc. [88]. This study is limited to the pa-

rameters generating tonic spiking behaviour for a constant input current. It is not

clear how to exploit the rich spike generation mechanism of AdEx neurons in these

minimal networks. This will involve transforming a neuron into a different state by

changing its behaviour from one spiking state to another.

In the presence of noise (both intrinsic and extrinsic), the SNNs obtained using the

artificial-evolution in GReaNs had a similar structure, i.e. (i) all perfect recognisers

maintained network states with self-excitatory loops (autapses), (ii) the penulti-

mate state was always maintained by an absence of activity in the network. (ii)

all networks were found to have a lock, a switch and an accept neuron. It would

be interesting to explore different solutions with less number of active neurons by

tuning the parameters of the genetic algorithm to exhaustively explore the search

space.

140 Chapter 8. Conclusion

The rules for handcrafting the network topologies defined in Chapter 7 are limited

to recognising patterns up to length 6. This is because the maximum number of

interneurons representing a state in the network increases with the length of the

pattern. In future studies, it would be interesting to explore the possibility of hand-

crafting networks with an upper limit on the number of active neurons representing

network states, invariant of the length of the pattern. Networks with a small num-

ber of active neurons are energy efficient. Furthermore, the connection weights in

the handcrafted topology strengthen with the number of active neurons. SNNs with

strong synaptic connections between neurons are less likely to optimise due to the

maximum limit on the neuronal spike rate.

Processing more extended patterns with the proposed solution suffers from strong

synaptic weights in the network which results in highly active neurons. It could

be solved by incorporating short-term potentiation, i.e. a short-term increase (fa-

cilitation) or decrease (depression) in synaptic strengths. Facilitation refers to a

short-term increase in the synaptic strength of a pre-synaptic neuron when it fires.

Figure 8.1: (a) The table shows the network states, e.g. when the network receives
an input signal A, it goes to the hA state, represented by only two active neurons
N6 +N3. (b) Handcrafted network topology for recognising signal of length 6 with
a maximum of 2 active neurons representing a state.

8.3. Future Work 141

Hence, improving the likelihood of the postsynaptic neuron to elicit spikes in re-

sponse to successive inputs. On the contrary, depression refers to a short-term

decrease in the synaptic strength of a pre-synaptic neuron when it fires with high

frequency. Thus, reducing the likelihood of postsynaptic neurons to fire spike(s) in

response to successive inputs [121].

A preliminary handcrafted topology for recognising a pattern of length 6 with a

maximum of 2 active neurons expressing a network state is presented in Figure

8.1b. The connection weights of this topology can be optimised using the incremental

genetic algorithm (described in Chapter 7, Section 7.2) to identify the correct pattern

ABCDEF in an input stream created randomly by concatenating patterns of the

form ABCXXX and XXXDEF, where XXX is DEF and ABC, respectively. However,

the algorithm could not find any perfect recogniser that could identify the correct

pattern in a random input stream of signals (A, B, C, D, E, and F). Handcrafting

network topology with an upper limit on the number of active neurons representing

a network state requires further investigation.

LSTM (long short-term memory) is widely regarded as the preferred choice for pro-

cessing time series data. They have shown remarkable performance to handle large

sequential data with long-term dependencies [112]. The standard LSTM model em-

ploys three gates: the forget gate, the input gate, and the output gate [50]. Since its

inception, many LSTM variants have been proposed [153]. A recent study has intro-

duced a non-linear spiking neural P system that employs a modified LSTM model

for processing time series data (LSTM-SNP). Unlike the standard LSTM model,

the LSTM-SNP employs three non-linear gates: the reset gate, the consumption

gate, and the generation gate. These gates determine the extent to which the previ-

ous state needs to be reset, consumed, and the number of output spikes generated,

respectively [79].

142 Chapter 8. Conclusion

Due to the complex nature of recurrent SNNs, a large amount of the literature

focuses on training one-layer SNNs [46, 86]. However, there has been a growing

interest in recent years in training multi-layer SNNs [111]. Moreover, the recent

exciting work on the spiking LSTM models has gained the interest of the computa-

tional neuroscience community [21, 43, 79, 80]. In biological neurons, the mechanism

of spike generation is controlled by different ions that move through specific gates

in the cell membrane [51]. Similarly, in the standard LSTM model, the information

is controlled by a gating mechanism [50]. Therefore, I believe that this work can

be extended to a multi-layer architecture, where the identified properties of neurons

such as locking, switching, and accepting a network state can be adapted to develop

a new novel variant of spiking LSTM. In future, it would be interesting to investigate

the possibility of wiring up the lock, switch, and accept gate for low-cost training

and processing of large sequential data.

This work indicates the functional role of excitatory autapses in maintaining network

states when the input activity is absent – a form of memory. However, the role of

inhibitory autapses (self-inhibitory connections) in these minimal networks yet needs

to be explored. In future work, it would interesting to identify the role of inhibitory

autapses. One possible way is to encourage the formation of inhibitory autapses

during evolution.

Appendix A

A.1 Networks Evolved in the Presence or Ab-

sence of Noise in the Membrane Potential of

each Neuron in the Network

Network files and topologies of all individuals presented in Chapter 5 are available

on GitHub: https://github.com/yaqoobcs/greans-snns-tpr.

143

144 Chapter A.

Figure A.1.1: Experimental setup I (chapter 5). The top (bottom) table shows the
weights of the excitatory and inhibitory connections in the top 10 networks that
were evolved without (with) noise. The network topologies of all individuals are
available on GitHub.

Figure A.1.2: Experimental setup I (chapter 5). The top (bottom) table shows
the number and weight-sum of the excitatory and inhibitory connections evolved
without (with) noise.

A.1. Networks Evolved in the Presence or Absence of Noise 145

Figure A.1.3: Performance comparison of the top 10 networks evolved with and
without noise to disturbed neuronal parameters and input conditions. The left
column shows the top 10 individuals evolved without noise, numbered from 1 to 10
on the x-axis. The red dashed line in each subplot indicates the default value of the
parameter for which the networks were evolved. For example, individual number
8 (the most robust individual evolved without noise) obtained robustness to signal
length between 6 and 8 (default at 6). The right column shows the top 10 individuals
evolved with noise, also numbered from 1 to 10. The plot clearly demonstrates that
introducing noise during evolution promotes robustness in these minimal networks.

146 Chapter A.

Figure A.1.4: Experimental setup II (chapter 5). The top table shows the weights of
the excitatory and inhibitory connections in the top 10 networks that were evolved
with noise. The bottom table shows the number and weight-sum of the excitatory
and inhibitory connections. The network topologies of all individuals are available
on GitHub.

A.1. Networks Evolved in the Presence or Absence of Noise 147

Figure A.1.5: (a) Network topology of individual no. 7 which is unable to maintain
network states in the absence of input activity. (b) Network topology of individ-
ual no. 9 which is capable of maintaining network states in the absence of input
activity. It is not clear whether network state maintenance is solely a property of
self-excitatory loops in the network, because both networks have two strong exci-
tatory loops, yet one is capable of maintaining network states while the other is
not.

148 Chapter A.

A.2 Networks Evolved in the Presence of Noise

in the Membrane Potential of each Neuron in

the Network and random variation of silence

interval between the input signals

Network files and topologies of all individuals presented in Chapter 6 are available

on GitHub: https://github.com/yaqoobcs/greans-snns-tpr.

A.2. Networks Evolved in the Presence of Intrinsic and Extrinsic Noise 149

Figure A.2.1: Experimental setup chapter 6. Networks were evolved in the presence
of noise and constant (16 ms) silent intervals. The green bar shows the number of
self-loops in the network. The color blue indicates the network’s ability to maintain
network states, while the color grey means the network is unable to maintain network
state. Only individuals 3, 6, 7, and 14 could maintain network states. The network
topologies of all individuals are available on GitHub.

150 Chapter A.

Figure A.2.2: Experimental setup chapter 6. Networks were evolved in the presence
of noise and variable (16-32 ms) silent intervals. The green bar shows the number of
self-loops in the network. The color blue indicates the network’s ability to maintain
network states, while the color grey means the network is unable to maintain network
state. On;y individual 5 could not maintain network states. The network topologies
of all individuals are available on GitHub.

A.3. Network Topologies Handcrafted for Recognizing a Pattern 151

A.3 Network Topologies Handcrafted for Recog-

nizing a Pattern of Length 3, 4, 5 and 6

Network topologies of all individuals presented in Chapter 7 are available on GitHub:

https://github.com/yaqoobcs/greans-snns-tpr.

152 Chapter A.

Figure A.3.1: Handcrafted network topologies recognising patterns of lengths 2 to
6. The red (blue) connections indicate excitatory (inhibitory) connections. The
number next to each connection shows the weight of the connection. The table
below each network shows the network transitions between states, represented by
the number of active neurons. The network in panel b is obtained with artificial-
evolution. The topology is extended to recognise patterns up to lengths 4 (c), 5 (d),
and 6 (e).

A.3. Network Topologies Handcrafted for Recognizing a Pattern 153

Figure A.3.2: (a) Network states with corresponding active neurons. (b) Hand-
crafted network for recognising a pattern of length 4. (c) Behaviour of each neuron
in the network.

154 Chapter A.

Figure A.3.3: (a) Network states with corresponding active neurons. (b) Hand-
crafted network for recognising a pattern of length 5. (c) Behaviour of each neuron
in the network.

A.4. Git Repositories 155

A.4 Git Repositories

Code for optimizing connections weights of handcrafted network topologies is avail-

able on GitHub: https://github.com/yaqoobcs/evosnns

Network files and topologies of the evolved SNNs presented in Chapters 5, 6, and 7

are available on Github: https://github.com/yaqoobcs/greans-snns-tpr

Appendix B

Enclosed Papers

B.1 M. Yaqoob and B. Wróbel (2017) Very Small

Spiking Neural Networks Evolved to Recog-

nize a Pattern in a Continuous Input Stream,

IEEE Symposium Series on Computational

Intelligence, IEEE SSCI 2017, Honolulu, Hawaii,

USA, Nov. 27 to Dec. 1, 2017.

156

B.2. ALIFE 2018 M. Yaqoob and B. Wróbel 165

B.2 M. Yaqoob and B. Wróbel (2018) Robust Very

Small Spiking Neural Networks Evolved with

Noise to Recognize Temporal Patterns, Arti-

ficial Life, ALIFE 2018, Tokyo, Japan, July

23-27, 2018.

Robust Very Small Spiking Neural Networks Evolved with Noise to Recognize
Temporal Patterns

Muhammad Yaqoob1, Borys Wróbel1,2

1Evolving Systems Laboratory, Adam Mickiewicz University in Poznan, Poland
2Systems Modeling Group, IOPAN, Sopot, Poland

yaqoob@evosys.org
wrobel@evosys.org

Abstract

To understand how biological and bio-inspired complex com-
putational networks can function in the presence of noise and
damage, we have evolved very small spiking neural networks
in the presence of noise on the membrane potential. The net-
works were built with adaptive exponential integrate and fire
neurons. The simple but not trivial task we evolved the net-
works for consisted of recognizing a short temporal pattern in
the activity of the network inputs. This task can be described
in abstract terms as finding a specific subsequence of symbols
(”ABC”) in a continuous sequence of symbols (”..ABCC-
CAAABCAC..”). We show that networks with three interneu-
rons and one output neuron can solve this task in the pres-
ence of biologically plausible levels of noise. We describe
how such a network works by mapping its activity onto the
state of a finite state transducer—an abstract model of com-
putation on continuous time series. We demonstrate that the
networks evolved with noise are much more robust than net-
works evolved without noise to the modification of neuronal
parameters and variation of the properties of the input. We
also show that the networks evolved with noise are denser and
have stronger connections than the networks evolved with-
out noise. Finally, we demonstrate the emergence of memory
in the evolved networks—sustained spiking of some neurons
maintained thanks to the presence of self-excitatory loops.

Introduction
Natural complex systems, including networks of biological
neurons, maintain their functionality in the presence of noise
and damage. Noise in natural neural networks originates
from many sources, including thermal variations and small
number of cellular components (for example, ion channels).
These components, moreover, undergo constant turnover,
and so do parts of the cell (such as dendrites), and the cells
themselves. Including noise in models of biological systems
helps in our understanding how reliable computation can be
performed in the presence of noise, and in building more
reliable artificial systems (Florian, 2003).

In biological neuronal networks and in artificial spiking
neural networks, the timing of discrete events (spikes) rep-
resents the information received from the senses. Processing
this information requires recognizing temporal patterns in

neuronal activity by other neurons (Bialek et al., 1989; Ger-
stner et al., 1996; Laurent, 1996; Rieke, 1999; Decharms and
Zador, 2000; Ahissar and Arieli, 2001; Huxter et al., 2003).
Recognition of temporal patterns requires delays or main-
taining the state of the network (Steuber and Willshaw, 1999;
Steuber and De Schutter, 2002; Steuber and Willshaw, 2004;
Steuber et al., 2006; Maex and Steuber, 2009). Intuitively,
the necessity for precise synaptic delays seems a more frag-
ile solution.

In this paper, we evolve very small spiking neural net-
works for simple pattern recognition in the presence of
noise. We hope that analyzing the diverse solutions ob-
tained using artificial evolution will allow us to identify the
way robust pattern recognition can be accomplished. To
represent the computation performed by the evolved spik-
ing neural networks, we will use a formal computational
model of the finite state transducer—a deterministic finite
state automaton that receives a continuous sequence of sym-
bols and produces a continuous output (Sipser, 1996). Our
focus here is not the induction of a specific finite state au-
tomaton (as in Natschläger and Maass, 2002; Tiňo and Mills,
2005; Rutishauser and Douglas, 2009; where large recurrent
multilayer spiking neural networks were used). Rather, we
will use the formalism to illustrate how the evolved networks
work. Finally, we will compare the functioning and structure
of networks evolved in the presence of noise to networks
evolved without it (which were the subject of our previous
work, Yaqoob and Wróbel, 2017). Our preliminary analysis
shows that even a relatively low level of noise during evo-
lution results in much more robust networks, and that the
networks evolved with noise are denser than the networks
evolved without it.

inputs

output

N0

N1

N2

I I I O C C C CT T TT

type sign (x, y)

Figure 1: Encoding of a spiking neural network in a linear
genome. See text for details.

The Model
We use the model of evolution of spiking neural networks for
temporal pattern recognition introduced previously in the ar-
tificial life software platform GReaNs (Wróbel et al., 2012;
Wróbel, 2016; Yaqoob and Wróbel, 2017). The networks in
this model are encoded in linear genomes built from genetic
elements. Each element has a type (input, output, cis and
trans; the biological inspiration for such a representation
and these terms has been discussed previously; Fig. 1), sign
and two coordinates. The elements encode the nodes in the
network: three input nodes (encoded by an input element
each), up to three interneurons (each encoded by a series of
cis elements followed by a series of trans elements), and
one output neuron (encoded by a single output element). To
determine the connectivity, every pair of input-cis, trans-
cis and trans-output elements is considered. If the coordi-
nates of two elements in a pair are such that the Euclidean
distance is below a threshold (equal to 5), the presence of
such a pair contributes to the weight of the connection be-
tween two nodes; the contribution is positive if the signs of
the two elements coincide and negative otherwise (the con-
tribution is sisj

2(5−di,j)
10di,j+1 , where si, sj are signs and di,j is

distance; the threshold prevents full connectivity). If the
overall sum of such contributions for two neurons is positive,
the link (synapse) is excitatory, otherwise it is inhibitory.

In our previous work (Yaqoob and Wróbel, 2017) we have
shown that two interneurons are sufficient for the simple pat-
tern recognition task considered here, with no noise. We
have subsequently found out that artificial evolution could
not find any efficient solution when noise was present and
the network size was limited to two interneurons, but could
do so with three interneurons. In the evolutionary runs de-
scribed here we have thus limited the number of interneu-
rons in the decoded network to up to three, by ignoring the
rest of the genetic elements. This restriction was imposed
both to limit the search space and to ease the analysis of the
networks. Similarly, superfluous input or output elements,
introduced for example by unequal crossing over (see be-
low) were ignored.

As in our previous work (Yaqoob and Wróbel, 2017), in
this paper we used the adaptive exponential integrate and
fire neuronal model for each interneuron and output neuron.
Each adaptive exponential neuron has four state variables
(membrane potential V , adaptation w, excitatory conduc-
tance gE , and inhibitory conductance, gI):

dV

dt
=

1

C
(gE(EE − V) + gI(EI − V)− w)

+
1

τm
(EL − V + ∆T e

(
V −VT
∆T

)
) (1)

τw
dw

dt
= a(V − EL)− w (2)

dgE
dt

=
−gE
τE

(3)

dgI
dt

=
−gI
τI

(4)

The default values of the parameters we used here (Ta-
ble 1) were the same as in our previous work (Yaqoob and
Wróbel, 2017). They result in tonic spiking in response to
constant input current (Naud et al., 2008).

When V in the adaptive exponential neuron is high
enough, V quickly diverges to infinity because of the expo-
nential term; this models a spike. For simulation purposes,
the spike is cut at a finite value (here, 0 mV). After a spike
occurs in a neuron, this neuron’s V is reset to Vr, and adapta-
tion w is incremented by b. In any neuron to which the neu-
ron that spiked connects (in any postsynaptic neuron) with
positive (negative) weight, the excitatory (inhibitory) con-
ductance gE (gI) is increased by synaptic gain (gainE or
gainI , respectively; here, 9 nS) multiplied by the absolute
weight.

Modifying four parameters in the adaptive exponential
neuron can bring qualitative change in neuronal behavior
(qualitatively different responses to constant input current).
These four bifurcation parameters (which are directly pro-
portional to the four free parameters; Touboul and Brette,
2008; Naud et al., 2008) are: adaptation time constant
τw, adaptation conductance a, reset voltage Vr, and spike-
triggered adaptation b. The remaining ones are scaling pa-
rameters: membrane capacitance C, threshold slope fac-
tor ∆T ; three time constants, membrane (τm), and excita-
tory/inhibitory (τE /τI); four potentials, effective rest (EL),
inhibitory (EI) and excitatory (EE) reverse, and effective
threshold (VT).

We used Euler integration with 1 ms step. When evolving
with noise, a random value taken from a Normal distribution
(mean 0, standard deviation 2 mV) was added to V at every
step. This level of noise is similar in magnitude to the level
observed in biological neurons resulting from spontaneous
or background synaptic activity (Paré et al., 1998; Destexhe
and Paré, 1999; Anderson et al., 2000; Finn et al., 2007).

The task for the network was for the output neuron to
spike at least once after the network received the activation
from the input nodes in a specific order: first from input A,
second from input B, third from input C. During both evo-
lution and testing, input nodes were activated in a random
order. Each such activation lasted for 6 ms. Only one input
node could be active at a time. Each activation of an input
node was followed by an interval of 16 ms during which no
input node was active.

In abstract terms, this task corresponds to recognizing a
pattern of symbols (”ABC”) in a continuous stream of sym-
bols {A, B, C} received in a random order. In terms of mod-
eling, when a network receives a symbol, it means that six
spikes, each one 1 ms apart, are received by all the interneu-
rons to which the input node corresponding to the symbol
connects.

Ta
bl

e
1:

R
ob

us
tn

es
s

to
ch

an
ge

of
ne

ur
on

al
pa

ra
m

et
er

s
an

d
pr

op
er

tie
s

of
th

e
in

pu
ts

eq
ue

nc
es

fo
r1

0
be

st
ch

am
pi

on
s

ev
ol

ve
d

w
ith

no
is

e
an

d
th

e
m

os
tr

ob
us

tc
ha

m
pi

on
ev

ol
ve

d
w

ith
ou

tn
oi

se
.T

he
va

lu
es

in
sq

ua
re

br
ac

ke
ts

sh
ow

th
e

ra
ng

e
of

ro
bu

st
ne

ss
,t

he
va

lu
es

ab
ov

e
th

em
sh

ow
re

la
tiv

e
ro

bu
st

ne
ss

(s
ee

te
xt

fo
rd

et
ai

ls
).

To
p

10
in

di
vi

du
al

s
ev

ol
ve

d
w

ith
no

is
e

m
os

tr
ob

us
t

Pa
ra

m
et

er
de

fa
ul

tv
al

ue
0

1
2

3
4

5
6

7
8

9
w

ith
ou

tn
oi

se
E

L
-7

0
m

V
0.

77
1.

00
0.

48
0.

61
0.

68
0.

77
0.

58
0.

29
0.

48
0.

32
0.

04
[-

81
,-

57
]

[-
91

,-
60

]
[-

76
,-

61
]

[-
78

,-
59

]
[-

86
,-

65
]

[-
88

,-
64

]
[-

78
,-

60
]

[-
75

,-
66

]
[-

77
,-

62
]

[-
73

,-
63

]
[-

71
,-

70
]

V
r

-5
8

m
V

0.
42

0.
79

0.
46

0.
71

0.
50

0.
46

0.
21

0.
79

0.
58

1.
00

0.
13

[-
63

,-
53

]
[-

63
,-

44
]

[-
63

,-
52

]
[-

62
,-

45
]

[-
60

,-
48

]
[-

60
,-

49
]

[-
60

,-
55

]
[-

64
,-

45
]

[-
61

,-
47

]
[-

65
,-

41
]

[-
60

,-
57

]
V
T

-5
0

m
V

0.
40

1.
00

0.
40

0.
80

0.
80

0.
80

0.
80

0.
40

0.
60

0.
20

0.
00

[-
51

,-
49

]
[-

53
,-

48
]

[-
51

,-
49

]
[-

52
,-

48
]

[-
51

,-
47

]
[-

51
,-

47
]

[-
52

,-
48

]
[-

52
,-

50
]

[-
51

,-
48

]
[-

51
,-

50
]

[-
50

,-
50

]
τ m

20
m

s
0.

39
1.

00
0.

95
0.

55
0.

35
0.

42
0.

53
0.

17
0.

96
0.

22
0.

06
[8

,4
4]

[6
,9

9]
[1

2,
10

0]
[8

,5
9]

[6
,3

9]
[7

,4
6]

[8
,5

7]
[1

0,
26

]
[1

1,
10

0]
[9

,2
9]

[1
6,

21
]

∆
T

2
m

V
0.

28
0.

89
1.

00
0.

83
0.

83
0.

83
0.

83
0.

44
0.

89
0.

28
0.

13
[1

.7
,2

.2
]

[1
.3

,2
.9

]
[1

.5
,3

.3
]

[1
.3

,2
.8

]
[1

.6
,3

.1
]

[1
.7

,3
.2

]
[1

.5
,3

.0
]

[1
.4

,2
.2

]
[1

.6
,3

.2
]

[1
.6

,2
.1

]
[2

.0
,2

.2
]

C
0.

2
nF

0.
40

1.
00

0.
50

0.
50

0.
50

0.
60

0.
30

0.
40

0.
60

0.
20

0.
00

[0
.1

7,
0.

21
]

[0
.1

5,
0.

25
]

[0
.1

7,
0.

22
]

[0
.1

8,
0.

23
]

[0
.1

7,
0.

22
]

[0
.1

7,
0.

23
]

[0
.1

9,
0.

22
]

[0
.1

6,
0.

20
]

[0
.1

7,
0.

23
]

[0
.1

9,
0.

21
]

[0
.2

,0
.2

]
a

2
nS

0.
60

0.
87

0.
37

0.
87

1.
00

0.
87

0.
90

0.
27

0.
40

0.
73

0.
03

[-
4,

14
]

[-
7,

19
]

[-
4,

7]
[-

5,
21

]
[-

2,
28

]
[-

5,
21

]
[-

8,
19

]
[-

1,
7]

[-
3,

9]
[-

9,
13

]
[2

,3
]

b
0

pA
0.

60
0.

74
0.

28
0.

79
1.

00
0.

68
0.

82
0.

28
0.

47
0.

39
0.

01
3

[0
,3

4]
[0

,4
2]

[0
,1

6]
[0

,4
5]

[0
,5

7]
[0

,3
9]

[0
,4

7]
[0

,1
6]

[0
,2

7]
[0

,2
2]

[0
,7

]
τ E

5
m

s
0.

73
0.

91
0.

64
1.

00
0.

64
0.

73
0.

91
0.

45
0.

55
0.

64
0.

18
[4

.7
,5

.5
]

[4
.7

,5
.7

]
[4

.6
,5

.3
]

[4
.4

,5
.5

]
[4

.5
,5

.2
]

[4
.6

,5
.4

]
[4

.4
,5

.4
]

[4
.9

,5
.4

]
[4

.7
,5

.3
]

[4
.9

,5
.6

]
[4

.9
,5

.1
]

τ I
5

m
s

0.
43

0.
57

1.
00

0.
95

1.
00

0.
76

0.
43

0.
29

0.
71

0.
43

1.
00

[4
.5

,5
.4

]
[4

.6
,5

.8
]

[4
.5

,6
.6

]
[4

.5
,6

.5
]

[4
.8

,6
.9

]
[4

.8
,6

.4
]

[4
.7

,5
.6

]
[4

.8
,5

.4
]

[4
.6

,6
.1

]
[4

.5
,5

.4
]

[4
.1

,6
.1

]
E

E
0

m
V

0.
50

0.
83

0.
75

0.
92

1.
00

0.
83

0.
75

0.
58

0.
67

0.
50

0.
08

[-
2,

4]
[-

4,
6]

[-
4,

5]
[-

4,
7]

[-
8,

4]
[-

6,
4]

[-
5,

4]
[-

1,
6]

[-
4,

4]
[0

,6
]

[-
1,

0]
E

I
-7

0
m

V
0.

33
0.

56
0.

89
0.

78
0.

67
0.

56
0.

33
0.

33
0.

44
0.

22
1.

00
[-

71
,-

68
]

[-
72

,-
67

]
[-

76
,-

68
]

[-
74

,-
67

]
[-

75
,-

69
]

[-
74

,-
69

]
[-

72
,-

69
]

[-
71

,-
68

]
[-

73
,-

69
]

[-
70

,-
68

]
[-

74
,-

65
]

g
a
in

E
9

nS
0.

50
1.

00
0.

75
0.

95
0.

95
0.

85
0.

75
0.

65
0.

80
0.

50
0.

05
[8

.6
,9

.6
]

[8
.2

,1
0.

2]
[8

.2
,9

.7
]

[8
.3

,1
0.

2]
[7

.7
,9

.6
]

[7
.9

,9
.6

]
[8

.1
,9

.6
]

[8
.8

,1
0.

1]
[8

.2
,9

.8
]

[8
.9

,9
.9

]
[8

.9
,9

.0
]

g
a
in

I
9

nS
0.

21
0.

40
0.

92
0.

46
0.

46
0.

35
0.

28
0.

26
0.

40
0.

15
1.

00
[8

.0
,9

.8
]

[7
.2

,1
0.

6]
[7

.9
,1

5.
7]

[7
.1

,1
1]

[8
.2

,1
2.

1]
[8

.2
,1

1.
2]

[7
.7

,1
0.

1]
[7

.7
,9

.9
]

[7
.7

,1
1.

1]
[8

.0
,9

.3
]

[7
.1

,1
5.

6]
n
oi
se

2
m

V
0.

85
1.

00
0.

93
0.

85
0.

78
0.

78
0.

89
0.

74
0.

93
0.

74
0.

04
[0

,2
.5

]
[0

,2
.9

]
[0

,2
.7

]
[0

,2
.5

]
[0

,2
.3

]
[0

,2
.3

]
[0

,2
.6

]
[0

,2
.2

]
[0

,2
.7

]
[0

,2
.2

]
[0

,0
.1

]
si
le
n
ce

16
m

s
0.

95
0.

25
0.

25
1.

00
0.

20
0.

20
0.

70
0.

55
0.

20
0.

60
0.

16
[1

3,
32

]
[1

4,
19

]
[1

3,
18

]
[1

0,
30

]
[1

2,
16

]
[1

3,
17

]
[1

1,
25

]
[1

2,
23

]
[1

4,
18

]
[1

0,
22

]
[1

5,
18

]
si
g
n
a
l

6
m

s
0.

50
0.

50
0.

50
1.

00
1.

00
0.

50
0.

50
0.

00
1.

00
0.

00
1.

00
[6

,7
]

[5
,6

]
[6

,7
]

[5
,7

]
[4

,6
]

[5
,6

]
[5

,6
]

[6
,6

]
[6

,8
]

[6
,6

]
[6

,8
]

A
ve

ra
ge

re
la

tiv
e

ro
bu

st
ne

ss
0.

52
0.

78
0.

65
0.

80
0.

73
0.

65
0.

62
0.

41
0.

63
0.

42
0.

30

The genomes in the initial population were created ran-
domly as described previously (Yaqoob and Wróbel, 2017).
Each evolutionary run had a constant population size (300),
with size two tournaments, elitism (10 individuals) and
crossover (30 individuals in each generation; there was no
crossover in Yaqoob and Wróbel, 2017).

Multi-point crossover was implemented in the following
manner. First, two parents (A and B) are selected from pop-
ulation as winners of two independent size two tournaments.
A cursor pointing to the genetic elements to be copied is ini-
tiated at the first element for both genomes. Then, one of the
four schemes is chosen: copy an element from parent (i) A
or (ii) B to offspring, advance cursor on both genomes, or
copy from (iii) A or (iv) B, advance cursor only on the tem-
plate copied from (each with probability 0.03). The prob-
abilities of choosing actions (i) and (ii) were equal and 4
times larger than the (again, equal) probabilities of choosing
(iii) or (iv). After an element is copied, the scheme stays
the same as previously with probability 0.7, and otherwise
a scheme is re-chosen (the same one can be chosen again),
maintaining the ratio between the probabilities as above.

If an element was chosen for a point mutation (per ele-
ment probability of 0.1), the coordinates were changed so
that the associated point was moved in a random direction
(drawn from a uniform distribution) by a distance drawn
from a normal distribution (mean 0, standard deviation 1).
Duplications (probability of 0.001 per genome) occurred
twice as often as deletions (probability 0.0005). The starting
element and the insertion site were chosen randomly (each
element had the same chance of being chosen). The length
of duplication/deletion was drawn from a geometric distri-
bution with mean 11.

Each individual in the population was evaluated on six
random sequences (different from each other, for each in-
didvidual, and in each generation), each with 500 symbols.
Four sequences were generated with equiprobable occur-
rence of A, B, and C (and thus contained about 16 ABC
subsequences each), and two other continuous sequences
were constructed by concatenating, in random order, ABC
with ABB, and ABA (two subsequences that are the most
problematic to discriminate from ABC; Yaqoob and Wróbel,
2017).

The fitness function rewarded for spike(s) after the target
subsequence and penalized for spikes elsewhere:

ffitness = 1−R+ 4P (5)

R (for reward) is the fraction of time intervals when the
input nodes are silent (each such silence is 16 ms long) after
the last C in ”ABC” and the output spikes at least once. In
other words, it is the fraction of instances in which the output
spikes correctly. P (for penalty) is the fraction of instances
in which the output spikes incorrectly. These instances can
happen either in (i) 16 ms silence intervals not after ABCs,
or in (ii) 6 ms time intervals in which one of the input nodes

is active. Although P in principle could reach 1, in prac-
tice it was always quite small, and the ffitness was below 1.
We call an individual a perfect recognizer if ffitness = 0.
The number by which P is multiplied, 4, was chosen after
preliminary exploration to find a value that resulted in the
highest evolvability (number of evolutionary runs that ended
with perfect recognizers).

Results and Discussion

Among 100 independent evolutionary runs without noise, 33
ended with perfect recognizers—champions with ffitness =
0 when re-evaluated (tested) on 500 random input sequences
(thus different than the sequences experienced during evo-
lution) with equal probability of each symbol (in Yaqoob
and Wróbel, 2017 we used different settings for artificial
evolution—in particular, no cross over, different probabili-
ties of duplications and deletions—and the yield was much
lower; other difference were: time during which outputs
were active were 4 ms, with 8 silences; the fitness function
was more complex; excitatory/inhibitory gain was 5 nS; the
output neuron had an offset current).

In the presence of noise, 1000 generations were needed to
obtain 10 champions in 100 independent runs that were per-
fect recognizers when re-evaluated as above without noise—
with noise they failed to produce a spike on output at most
after 1 in 100 ABCs.

All perfect recognizers evolved without noise always pro-
duced only 1 spike in output after an ABC in the input
sequence. The perfect recognizers evolved with noise be-
longed to two classes: when evaluated without noise, either
(i) the output always spiked once, or (ii) always twice after
each ABC. When evaluated with noise, the output neurons
in both classes spiked once after some ABCs, and twice after
the other ABCs in the same input sequence, but never more
times.

To measure the robustness, we first analyzed what was the
range of robustness for each parameter. In this preliminary
analysis, only one parameter was changed at a time. The
range of robustness was defined as the largest continuous
set of parameter values around the default value for which
a given network had the true positive rate of at least 99%
and the false discovery rate of at most 5%. We define here
the true positive rate and the false discovery rate as follows.
The true positive rate is the average number of recognized
ABCs (the number of 16 ms intervals after ABCs in which
the output neuron spiked, correctly) divided by the actual
number of ABCs in the input sequence. The false discov-
ery rate is the average number of intervals (6 ms or 16 ms)
in which the output spiked incorrectly (not in the interval of
silence after an ABC), divided by the total number of inter-
vals in which the output spiked. Since we are interested in
temporal pattern recognition in a continuous input sequence,
we actually evaluated the champions on 600-symbol input

Figure 2: Network activity of the champion 3 evolved with noise on membrane potential. The individual is tested for signal
length 6 ms, silence interval 100 ms (it evolved for 16 ms). The output neuron spikes after ABC around 330 ms and 700 ms

Figure 3: Example of robustness of network performance to change of a parameter (here, EL). Blue circles show the true
positive rate, red triangles show the false discovery rate (see text for more details). The range of robustness is showed by two
continuous vertical lines, the dashed vertical line shows the default value, -70 mV. The network evolved (and tested) with noise
(left; the network of champion 3) shows graceful degradation of network performance and a larger range of robustness than the
network evolved (and tested) without noise (right; the network of the most robust champion evolved without noise).

sequences and considered the response to the last 500 sym-
bols, over 500 such sequences. This is a very conservative
approach as in practice discarding the response to the first
symbol or a few at most would work equally well.

Second, we compared the ranges (differences between
maximum and minimum value) for a given parameter across
champions, defining relative robustness as the fraction of the
maximum range for a given parameter among the champions
(thus the champion with the largest range has the relative ro-
bustness 1.00, and the one with, say, half that range, has
0.50).

Third, we calculated the average relative robustness for
each champion (Table 1; only the most robust champion

evolved without noise is shown for simplicity). All the
champions evolved with noise were robust to setting τw in
the range from 1 to more than 1000 ms (the default value was
30 ms). Only the best champion evolved without noise was
equally robust to changes of τw, other champions evolved
without noise had smaller ranges. When the integration step
was changed from 1 ms to 0.5 ms, the champions evolved
with noise displayed a drop in the true positive rate (from
0.99 to 0.98), while the false discovery rate remained unaf-
fected. The networks evolved without noise were not robust
to such a change.

The comparison between champions evolved and re-
evaluated with noise to the champions evolved and re-

evaluated without noise is conservative, as champions
evolved with noise have much larger ranges of robustness
when re-evaluated in the absence of noise. Moreover, the
average relative robustness is a crude measure, as robustness
to change of a particular parameter may be highly correlated
to the robustness to change of other one(s); a more refined
measure would give lower weights to relative robustness for
parameters that belong to such a group.

We expected that noise will promote robustness to dam-
age (here, change of neuronal parameters), as has been ob-
served before in GReaNs for evolving gene regulatory net-
works, were damage affected an artificial developmental
process (Joachimczak and Wróbel, 2012), and spiking neu-
ral networks (Wróbel, 2016).

In accordance with our expectations, the networks
evolved with noise were much more robust to change in
neuronal parameters than networks evolved without noise
(Table 1; the second best, in terms of robustness, champion
evolved without noise had average robustness 0.13, the rest
had average robustness below 0.1).

Moreover, the networks evolved with noise showed grace-
ful degradation beyond the range of robustness (for most of
the parameters; EL is shown as an example in Fig. 3, tak-
ing champion 3 as the one evolved with noise and the most
robust champion evolved without noise for comparison).

In contrast to gene regulatory networks regulating artifi-
cial development, networks evolved with noise functioned
very well (in fact, better) when tested without noise. The
most robust champion evolved with noise (champion 3) was,
in particular, the most robust to lengthening the silences be-
tween the activity of the input nodes, and when this cham-
pion was tested without noise, these silences could be ex-
tended with no discernible limit, indicating that this network
is able to maintain its states forever (Fig. 2).

Table 2: States of the finite state transducer corresponding to
states of the network of the champion 3 evolved with noise

S hA hAB hABC
Neuron 0 330 Hz 333 Hz 0 331 Hz
Neuron 1 333 Hz 0 0 333 Hz
Neuron 2 0 0 0 1 spike
Output 0 0 0 1 spike

We can describe how this network functions by mapping
the network activity to the states in a finite state transducer
(Table 2, Fig. 4). Let us first assume that the network has
already received some symbols (some input subsequence).
If this subsequence ends with a C that did not follow AB
or with a B that did not follow an A, the network is in the
state S (starting state), in which (inter)neuron 0 and neuron
1 spike continuously, at high frequency. If an A is received,
the network goes to a state hA (”had A”), in which only
neuron 0 spikes in this fashion. If this A is followed by

a B, all interneurons do not spike (state hAB, ”had AB”).
If this AB is followed by a C, neurons 0 and 1 again start
spiking continuously, while neuron 2 and then the output
neuron produce one spike each, immediately after the C (the
state hABC, ”had ABC”).

Although this is not actually relevant for computing the
output in response to a continuous input sequence, if the
network receives a B with no previous history, it goes, es-
sentially, to the state S. However, no previous history (and
no activity in the network) is indistinguishable in this net-
work from the state hAB. This is why the output neuron of
this network will incorrectly spike after receiving a C with
no previous history—in other words, if an input sequence
starts with a C.

S hA hAB hABC

B/0, C/0 A/0

A/0

C/0

B/0

A/0

C/1

A/0B/0

B/0, C/0

Figure 4: Minimal finite state transducer for recognizing
ABC; the nodes represent states and edges represents tran-
sition from one state to another state on receiving an in-
put symbol {A,B,C} and with producing an output {0: no
spike(s), 1: spike(s) of the output neuron}.

The analysis of the network of the champion 3 evolved
with noise (Fig. 5) shows that all interneurons connect to
one another and each connects to itself (each has a self-
loop). Two interneurons, neuron 0 and 1, have excitatory
self-loops, which seem to be responsible for maintaining the
continuous high-frequency spiking of these two neurons in
states S, hA, hAB, and hABC. On the other hand, the recur-
rent inhibitory connections between interneurons (neuron 1
excites neuron 0, while 0 inhibits 1; neuron 2 excites 0, while
0 inhibits 2; neurons 1 and 2 inhibit one another) seem to,
together with inhibitory connections from the input nodes to
interneurons, bring the end of continuous spiking of neuron
0, or both neuron 0 and neuron 1, that corresponds to state
transitions from S to hA, from hA to hAB, and from hABC
to S. Finally, inhibitory connections from neurons 0 and 1
to the output neuron, together with an excitatory connec-
tion from neuron 2 to the output neuron, ensure that a spike
in the output neuron is possible only after neuron 2 spikes
(state hABC).

If we count the number of connections in the networks
disregarding the associated weights (in other words, giving
each one the same weight, 1), the 10 champion networks
evolved with noise show significantly higher density (av-
erage 18.5, standard deviation 1.6) than the 10 champion

Neuron 0

Input

C

Input

B

Input

A

Output

Neuron 1

Neuron 2

2.70

-8.89

4.08

-8.45

-6.62

7.72

0.71

6.54

1.29

-1.06

-0.80

-9
.8

1

3.77

2.58

-1.25

-3.89

-7
.9

2

-7.26

6.68

Figure 5: The topology of the network of the champion 3
evolved with noise. Blue lines are inhibitory connections,
red lines are excitatory, numbers next to the lines show the
weights.

networks evolved without noise (16.2, 2.1, respectively;
p = 0.01, Mann-Whitney U test). Summing the absolute
weight for all the edges gives an even more striking, more
than 2-fold, difference (average for champions evolved with
noise: 82.1, standard deviation: 13.8; without noise: 34.2,
11.8, respectively; p = 0.0012).

Conclusions and future work

Our results show that evolving networks with noise leads
to high robustness to modifying the neuronal parameters
and variations of the input. In addition, the results show
that networks evolved with noise are capable of maintain-
ing their internal state infinitely. This memory seems to be
kept thanks to excitatory self-loops, while switching state is
possible thanks to inhibitory recurrent connections.

In future work, we plan to further investigate the robust-
ness of the spiking neural networks evolved with noise to
modifying parameters. The adaptive exponential model it-
self has in fact only four free parameters (Touboul and
Brette, 2008), which are directly proportional to four bi-
furcation parameters in the model with the parametrization
used here (τw, a, Vr, and b; Naud et al., 2008). Similarly,

we may expect that robustness to changes in synaptic gains
(gainE or gainI), C, EE , and EI will be related, and net-
works robust to changing them will be expected to be ro-
bust to variation of synaptic weights. Therefore, it should
be possible to change more than one parameter at a time,
perhaps provided that certain relationships between them is
maintained (for example, their quotient would have to stay
within a certain range).

It will be also interesting if the networks are robust
to changes of the parameters which actually result in the
changed behavior of the neuron in terms of the response
to constant input current. For example, we could evolve
the networks with neurons showing tonic spiking, and then
change parameters so that the behavior is tonic bursting or
delayed spiking (Naud et al., 2008). Our preliminary results,
incidentally, show that it is possible to evolve networks with
neurons displaying all types of responses to the constant in-
put current demonstrated for this model (Naud et al., 2008).
It will be interesting to see if the networks evolved with
noise in neurons showing other behavior than tonic spiking
are equally robust to parameter changes.

We also plan to analyze robustness to introducing synaptic
delays and absolute refractory periods. Such changes, simi-
larly to changes in some neuronal parameters, could lead to
lower firing rates in neurons whose continued spiking pro-
vides memory.

We would also like to know if the networks will be ro-
bust to changes in parameters affecting each neuron in the
network independently (in this paper a particular change af-
fected all neurons in the network in the same fashion). This
last type of robustness is particularly interesting for transfer-
ring an evolved network able to perform a particular com-
putation to analog neuromorphic hardware, in which setting
particular (and the same) parameters for all the neurons in
the network may be problematic.

Although the level of noise we have used here is biolog-
ically plausible, it is on a lower end of the spectrum ob-
served for biological neurons (Paré et al., 1998; Destexhe
and Paré, 1999; Anderson et al., 2000; Finn et al., 2007).
It will be interesting to find out if higher, still biologically
plausible, levels of noise (for example, noise as in this paper
but with standard deviation of 4 mV) allow for evolvability,
and if possibly result in more robustness to changes in neu-
ronal parameters—and if lower levels of noise will result in
lower robustness. Moreover, other models of noise (for ex-
ample, an Ornstein-Uhlenbeck process; commonly used to
model noise in neuroscience) on neuronal variables could
be introduced—also, the presence of noise on input (such
as variable signal or silence length). We wonder if differ-
ent models of noise lead to similar levels of robustness to
changes in neuronal parameters.

Another possible direction of future work could be evolu-
tion of networks for more complex tasks involving tempo-
ral pattern recognition (for example: more symbols, regular

expressions, recognition of several patterns by the same net-
work, with several output neurons). Our preliminary results
indicate that our model scales up for more complex tasks.
This direction of possible future research would allow us to
find out what are the relationships between the complexity
of the tasks and the size (and complexity) of the minimal-
size spiking neural networks necessary to solve them.

Acknowledgements
This work was supported by the Polish National Science
Center (project EvoSN, UMO-2013/08/M/ST6/00922). MY
acknowledges the support of the KNOW RNA Research
Center in Poznan (No. 01/KNOW2/2014). We are grateful
to Volker Steuber and Neil Davey for discussion and sugges-
tions.

References
Ahissar, E. and Arieli, A. (2001). Figuring space by time. Neuron,

32:185–201.

Anderson, J. S., Lampl, I., Gillespie, D. C., and Ferster, D. (2000).
The contribution of noise to contrast invariance of orientation
tuning in cat visual cortex. Science, 290:1968–1972.

Bialek, W., Rieke, F., van Steveninck, R. R. d. R., Warland, D.,
et al. (1989). Reading a neural code. In Neural Information
Processing Systems, pages 36–43.

Decharms, R. C. and Zador, A. (2000). Neural representation and
the cortical code. Annual Review of Neuroscience, 23:613–
647.

Destexhe, A. and Paré, D. (1999). Impact of network activity on
the integrative properties of neocortical pyramidal neurons in
vivo. Journal of Neurophysiology, 81:1531–1547.

Finn, I. M., Priebe, N. J., and Ferster, D. (2007). The emergence
of contrast-invariant orientation tuning in simple cells of cat
visual cortex. Neuron, 54:137–152.

Florian, R. V. (2003). Biologically inspired neural networks for
the control of embodied agents. Center for Cognitive and
Neural Studies (Cluj-Napoca, Romania), Technical Report
Coneural-03-03.

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H.
(1996). A neuronal learning rule for sub-millisecond tempo-
ral coding. Nature, 383:76.

Huxter, J., Burgess, N., and O’Keefe, J. (2003). Independent rate
and temporal coding in hippocampal pyramidal cells. Nature,
425:828–832.

Joachimczak, M. and Wróbel, B. (2012). Evolution of robustness to
damage in artificial 3-dimensional development. Biosystems,
109:498 – 505.

Laurent, G. (1996). Dynamical representation of odors by oscillat-
ing and evolving neural assemblies. Trends in Neurosciences,
19:489–496.

Maex, R. and Steuber, V. (2009). The first second: Models of short-
term memory traces in the brain. Neural Networks, 22:1105–
1112.

Natschläger, T. and Maass, W. (2002). Spiking neurons and the
induction of finite state machines. Theoretical Computer Sci-
ence, 287:251–265.

Naud, R., Marcille, N., Clopath, C., and Gerstner, W. (2008).
Firing patterns in the adaptive exponential integrate-and-fire
model. Biological Cybernetics, 99.

Paré, D., Shink, E., Gaudreau, H., Destexhe, A., and Lang, E. J.
(1998). Impact of spontaneous synaptic activity on the rest-
ing properties of cat neocortical pyramidal neurons in vivo.
Journal of Neurophysiology, 79:1450–1460.

Rieke, F. (1999). Spikes: exploring the neural code. MIT press.

Rutishauser, U. and Douglas, R. J. (2009). State-dependent com-
putation using coupled recurrent networks. Neural Computa-
tion, 21:478–509.

Sipser, M. (1996). Introduction to the Theory of Computation,
page 87. International Thomson Publishing, 1st edition.

Steuber, V. and De Schutter, E. (2002). Rank order decoding of
temporal parallel fibre input patterns in a complex Purkinje
cell model. Neurocomputing, 44:183–188.

Steuber, V. and Willshaw, D. (2004). A biophysical model of
synaptic delay learning and temporal pattern recognition in
a cerebellar Purkinje cell. Journal of Computational Neuro-
science, 17:149–164.

Steuber, V., Willshaw, D., and Van Ooyen, A. (2006). Generation
of time delays: Simplified models of intracellular signalling
in cerebellar Purkinje cells. Network: Computation in Neural
Systems, 17:173–191.

Steuber, V. and Willshaw, D. J. (1999). Adaptive leaky integrator
models of cerebellar Purkinje cells can learn the clustering of
temporal patterns. Neurocomputing, 26:271–276.

Tiňo, P. and Mills, A. (2005). Learning Beyond Finite Memory
in Recurrent Networks of Spiking Neurons, pages 666–675.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Touboul, J. and Brette, R. (2008). Dynamics and bifurcations of
the adaptive exponential integrate-and-fire model. Biological
Cybernetics, 99:319.

Wróbel, B. (2016). Evolution of spiking neural networks robust to
noise and damage for control of simple animats. In Parallel
Problem Solving from Nature – PPSN XIV, pages 686–696.

Wróbel, B., Abdelmotaleb, A., and Joachimczak, M. (2012).
Evolving networks processing signals with a mixed
paradigm, inspired by gene regulatory networks and spiking
neurons. In BIONETICS, volume 134 of Lecture Notes of
the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, pages 135–149. Springer.

Yaqoob, M. and Wróbel, B. (2017). Very small spiking neural
networks evolved to recognize a pattern in a continuous input
stream. In 2017 IEEE Symposium Series on Computational
Intelligence (SSCI), pages 3496–3503.

174 Chapter B. Enclosed Papers

B.3 M. Yaqoob and B. Wróbel (2018) Very Small

Spiking Neural Networks Evolved for Tempo-

ral Pattern Recognition and Robust to Per-

turbed Neuronal Parameters, International

Conference on Artificial Neural Networks, ICANN

2018, Rhodes, Greece, October 5-7, 2018.

Very Small Spiking Neural Networks
Evolved for Temporal Pattern

Recognition and Robust to Perturbed
Neuronal Parameters

Muhammad Yaqoob1 and Borys Wróbel1,2(B)

1 Evolving Systems Laboratory, Adam Mickiewicz University in Poznan,
Poznan, Poland

{yaqoob,wrobel}@evosys.org
2 IOPAN, Sopot, Poland

Abstract. We evolve both topology and synaptic weights of recurrent
very small spiking neural networks in the presence of noise on the mem-
brane potential. The noise is at a level similar to the level observed in
biological neurons. The task of the networks is to recognise three signals
in a particular order (a pattern ABC) in a continuous input stream in
which each signal occurs with the same probability. The networks con-
sist of adaptive exponential integrate and fire neurons and are limited to
either three or four interneurons and one output neuron, with recurrent
and self-connections allowed only for interneurons. Our results show that
spiking neural networks evolved in the presence of noise are robust to
the change of neuronal parameters. We propose a procedure to approx-
imate the range, specific for every neuronal parameter, from which the
parameters can be sampled to preserve, at least for some networks, high
true positive rate and low false discovery rate. After assigning the state
of neurons to states of the network corresponding to states in a finite
state transducer, we show that this simple but not trivial computational
task of temporal pattern recognition can be accomplished in a variety of
ways.

Keywords: Temporal pattern recognition · Spiking neural networks
Artificial evolution · Minimal cognition · Complex networks
Genetic algorithm · Finite state automaton · Finite state machine

1 Introduction

Information in biological neuronal systems is represented temporally by pre-
cise timing of voltage spikes [1,3,5,6,12,13,15]. Thus noise poses a fundamental
problem for informational processing in biological systems [9] (and also artificial
systems inspired by them). On the other hand, noise has been postulated to play
a computational role [14]. For example, neuronal noise enables the phenomenon
of stochastic resonance in neural networks—a process in which a weak signal

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 322–331, 2018.
https://doi.org/10.1007/978-3-030-01418-6_32

Robust Small SNNs for Temporal Pattern Recognition 323

gets amplified to reach a threshold, or a strong signal is prevented from spiking
[7,20,21]. Moreover, neural networks formed in the presence of background noisy
synaptic activity can be expected to be robust to disturbances [11].

In this work, we analyse very small spiking neural networks (SNNs) evolved to
perform a simple temporal pattern recognition task in the presence of noise. We
will show that networks evolved with noise maintain functionality even when the
parameters of the neuronal model are changed. In contrast to our previous work
[23] in which just one neuronal parameter was varied at any given time (while
all the other parameters were kept at the default value), here we investigate
the robustness against varying all the parameters simultaneously. Although the
model for evolving the topology and weights in the SNNs we use here does not
in principle limit the number of neurons, we limited this number to either three
or four interneurons and one output neuron.

It has been observed before that the same computational task can be accom-
plished by networks with different structures [16,19]. Our long-term goal is
to understand how various solutions—obtained by evolving networks numer-
ous times, independently—can accomplish simple, but not trivial computational
tasks.

2 The Model

The networks in this work consist of adaptive exponential integrate and fire
neurons [17] with the default values of the parameters that result in tonic spiking
for constant input. The four state variables of each neuron, membrane potential
V , adaptation w, excitatory and inhibitory conductance gE and gI , are governed
by the equations

dV

dt
=

1

C
(gE(EE − V) + gI(EI − V) − w)

+
1

τm
(EL − V + ΔT e

(
V −VT

ΔT
)
) (1)

τw
dw

dt
= a(V − EL) − w (2)

dgE

dt
=

−gE

τE
(3)

dgI

dt
=

−gI

τI
(4)

with 13 parameters in total; the default values of parameters are presented in
Table 1 [23,24]. We used Euler integration with 1 ms time step, and added a
random value drawn from the normal distribution centered at 0 with standard
deviation 2 mV to V at each step; this level of noise is similar to that observed
in biological neurons [2,8,10,18].

When V of a neuron is above 0 mV, V is reduced to Vr, while w changes
to w + b, and each neuron to which this neuron connects receives a spike. If

324 M. Yaqoob and B. Wróbel

Table 1. The ranges of robustness for champions with 3 and 4 interneurons that
were most robust (3/3 and 1/4, respectively) overall and for the most robust from the
champions maintaining state (8/3 and 7/4).

Parameter Default value 3/3 8/3 1/4 7/4

EL −70 mV [−72, −67] [−72, −66] [−72, −67] [−74, −68]

Vr −58 mV [−59, −55] [−60, −54] [−60, −55] [−59, −55]

VT −50 mV [−51, −48] [−51, −48] [−52, −49] [−51, −48]

ΔT 2mV [1.6, 2.4] [1.8, 2.3] [1.8, 2.1] [1.9, 2.2]

C 0.2 nF [0.19, 0.22] [0.17, 0.23] [0.17, 0.21] [0.17, 0.22]

a 2 nS [−2, 4] [1, 6] [0, 3] [1, 4]

b 0 pA [0, 3] [0, 4] [0, 3] [0, 2]

τm 20ms [19, 22] [18, 23] [17, 21] [17, 23]

τw 30ms [29, 32] [29, 33] [27, 31] [27, 31]

τE 5ms [4.8, 5.2] [4.9, 5.3] [4.7, 5.1] [4.9, 5.3]

τI 5ms [4.9, 5.2] [4.9, 5.3] [4.6, 5.1] [4.9, 5.3]

EE 0mV [−2, 2] [−2, 4] [−3, 1] [−1, 2]

EI −70 mV [−71, −67] [−73, −68] [−72, −67] [−71, 68]

gainE 7 nS [6.9, 7.3] [6.9, 7.3] [6.8, 7.3] [6.7, 7.2]

gainI 7 nS [6.8, 7.3] [6.8, 7.4] [6.8, 7.3] [6.7, 7.2]

the connection is excitatory (inhibitory), gE (gI) in such a postsynaptic neuron
is increased by the weight of the connection multiplied by the synaptic gain.
Encoding of SNNs in our model has been described previously [22–24]. In order
to recognise a subsequence of three signals in a random input stream, the network
has three input nodes (one for each signal), either three or four interneurons, and
a single output neuron. Dale rule [4] is not kept—a neuron can be both excitatory
and inhibitory at the same time. Furthermore, input nodes cannot connect to the
output neuron directly. Only interneurons can have self-loops. The settings for
the artificial evolution in this work are as in our previous work [23], with three
modifications: (i) the size of duplication of genetic elements was drawn from
a geometric distribution with mean 6 (it was 11 previously), (ii) the elements
coding for input and output were excluded both from duplications/deletions
and crossover (they were allowed to undergo crossover in [23]), (iii) finally and
most importantly, we modified slightly the way the fitness function is calculated,
resulting in the procedure as follows.

During evolution, each individual was evaluated on six input streams with
500 signals, each signal 6 ms in duration and followed by 16 ms silence (each
input stream thus lasted for 11 s). In four input streams, all signals (A, B and
C) occurred with equal probability; two input streams were constructed by con-
catenating four triplets (with equal probability of occurrence): ABC and ABA,
ABB, BBC (three triplets that our preliminary work showed the most problem-
atic to distinguish from the pattern to be recognised, ABC). To calculate the

Robust Small SNNs for Temporal Pattern Recognition 325

fitness function, we calculated R (for reward), the number of 22 ms intervals
(signal plus silence) of the last C of each ABC in the input sequence during
which the output neuron actually spiked, correctly, at least once, divided by the
total number of intervals in the input stream for which it should spike. In other
words, R is the true positive rate (TPR) of the network. We also calculated
P (for penalty), the number of other 22 ms intervals (signal plus silence) with
spikes on output (wrongly), divided by the total number of 22 ms intervals in
the input stream in which spikes should not occur. In contrast, false discovery
rate (FDR) of the network has the same numerator as P , but the denominator
is all the 22 ms intervals in which the spikes of the output neuron were observed.
The fitness function we used,

ffitness = 1 − R + 4P (5)

penalises strongly spikes that do not follow the target pattern. The constant 4 in
the penalty term was chosen by the preliminary exploration of values with the
objective to find a value that gave the highest yield of successful evolutionary
runs. We define a successful run as one that ends with a champion that is a
perfect recogniser. A perfect recogniser evolved without noise is a network that
spikes only after the correct pattern. For networks evolved with noise, we consider
an SNN a perfect recogniser if it has TPR> 0.99 and FDR< 0.01).

The slight modifications of the settings of the artificial evolution (from the
ones used in [23]) had a quite pronounced effect on the yield of perfect recognisers
when no noise was present (for three interneurons, 81% of runs versus 33% for
the settings in [23]). However, the effect on the evolvability in the presence of
noise was less pronounced.

For each champion, we obtained the ranges of parameters for which it was
robust using the following algorithm. We repeatedly extended the ranges of all
parameters around their default values, by a small value (specific for each param-
eter), at first in both directions. We then drew 100 random sets of parameters
using such extended ranges, gave the same parameters to all neurons in the net-
work, and checked if at least 90 among these 100 SNNs had TPR> 0.90 and
FDR< 0.10 (each network was tested for one random, and thus different, input
stream with 50000 signals, with equal probability of occurrence for A, B, and C).
If so, the extended ranges were kept. If not, the ranges were shrunk back to the
previous sizes and the problematic parameter was identified (by excluding one
by one the parameters from extension, in one of the two directions, in the set of
parameters for which the ranges can be extended, and checking if this allowed to
extend the range keeping TPR> 0.90 and FDF< 0.10). The algorithm stopped
when the set of parameters for which the range could be extended became empty.

The size of the ranges (maximum minus the minimum value) were compared
for the networks evolved with the limit of three versus four interneurons using
the James test implemented in the package Rfast of the R project (https://cran.
r-project.org/). Proportions were compared using function prop.test in R.

326 M. Yaqoob and B. Wróbel

3 Results and Discussion

In 100 independent runs for 3000 generations each, when we allowed for three
interneurons, 13 runs ended with perfect recognisers. When we allowed for four
interneurons, 19 runs out of 100 resulted in perfect recognisers. Our previous
work [23] suggested that at least three interneurons are needed to obtain perfect
recognisers in the presence of noise; here also we were unable to evolve with
noise when less than three interneurons were allowed, and none of the runs
when the limit was set to three resulted in a champion with less. In contrast,
two champions out of 19 obtained when the limit was set to four interneurons
ended up having three interneurons.

The size of the ranges of robustness for 13 networks evolved with the limit of
three versus 17 networks with four interneurons was not significantly different.
We then tested how robust were the networks when each neuron in the network
was given a different set of parameters drawn from the obtained range (dur-
ing the range expansion algorithm, all neurons always had the same parameters
drawn from the range; in this test, as during expansion, we made 100 evalu-
ations, each on a different random input stream with 50000 signals). None of
the networks remained perfect recognisers, but some—noticeably champion 3
evolved with three interneurons (champion 3/3)—were quite robust to such a
disruption (Table 2), and so were champions 8/3 and 5/3; and for the networks
with 4 interneurons, champions 1/4 and 12/4.

We have previously proposed a way to map the network activity to the states
of finite state transducers (FST) [23,24]. Before we did such a mapping for the
networks obtained here, we first analysed which networks could maintain their
state for a very long time (in practice, noise may prevent a given network from
maintaining the states infinitely). Nine out of 13 networks evolved with three
interneurons sustained elongation of intervals between signals from 16 ms to at
least 100 ms (Table 2; we assume that if the silence can be extended to 100 ms,
the network maintains its state). Only four out of 17 with four interneurons did
so (Table 2). Thus the fraction of perfect recognisers maintaining their state is

Table 2. Robustness of 13 networks evolved limiting the number of interneurons to
three (top) and 19 networks evolved limiting the number of interneurons to four (bot-
tom; champions with labels in bold evolved to have 3 interneurons), when sampling
the neuronal parameters from the ranges of robustness specific for each champion, and
their robustness to increased interval of silence between signals.

0/3 1/3 2/3 3/3 4/3 5/3 6/3 7/3 8/3 9/3 10/3 11/3 12/3
TPR>0.99 & FDR<0.01 37 37 27 80 19 53 47 52 67 14 24 16 8
TPR>0.95 & FDR<0.05 71 79 75 97 68 99 93 98 93 80 50 51 79
TPR>0.90 & FDR<0.10 84 86 86 100 85 99 97 99 99 91 71 65 93

Maximum interval of silence �100 35 �100 28 �100 �100 48 �100 �100 �100 �100 �100 19

0/4 1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4 9/4 10/4 11/4 12/4 13/4 14/4 15/4 16/4 17/4 18/4
TPR>0.99 & FDR<0.01 5 66 1 39 39 18 58 39 11 34 17 38 64 17 5 24 29 7 48
TPR>0.95 & FDR<0.05 64 88 70 69 75 75 90 86 58 89 67 74 92 76 47 65 70 72 96
TPR>0.90 & FDR<0.10 90 94 92 85 86 91 93 98 83 95 86 83 98 93 73 81 82 90 98

Maximum interval of silence 17 20 24 21 36 �100 �100 �100 19 27 18 18 29 �100 23 50 18 �100 28

Robust Small SNNs for Temporal Pattern Recognition 327

S hA hAB hABC

B/0, C/0 A/0

A/0

C/0

B/0

A/0

C/1

A/0B/0

B/0, C/0

Fig. 1. Minimal FST for recognizing ABC. The nodes represent the states and edges
represent the transitions from one state to another state on receiving an input symbol
{A, B, C} and producing an output {0: no spike(s), 1: spike(s) of the output neuron}.

significantly larger for networks with three interneurons (p = 0.017; one-sided
test). The reason for this might be that in networks with four interneurons
the additional neuron acts as one more source of noise disrupting the memory
maintained as self-sustained high-frequency spiking (see below).

We considered the network most robust if it had the highest number of sets
of parameter values among 100 sets independently sampled from the robust-
ness ranges (such as shown in Table 1) that gave TPR > 0.99 and FDR< 0.01.
Interestingly, the most robust networks (3/3 and 1/4) failed to maintain their
state. For mapping the network states on to the states of an FST, we have cho-
sen therefore networks 8/3 and 7/4—the most robust of networks maintaining
memory (Figs. 2 and 3).

There are four states in a minimal-size FST that recognises a pattern that
consists of three different signals in a specific order in a stream of three signals
(Fig. 1). In both networks (8/3 and 7/4) the state of the network after they
receive ABC (state hABC, for had ABC) is reached after a transition from a
state in which all interneurons have zero or zero/low activity (neural states Z or
L, respectively; Tables 3 and 4). The same was the case for all the other perfect
recognisers obtained in this work (not shown). This means that the output in
each network will spike if the input stream consists of a single signal, C. Since
we are interested here in recognition in a continuous stream of signals, we do not
consider it a serious issue. Perhaps, however, introducing a strong penalty for
output spikes after the initial C would allow us to obtain networks with different
structure and activity; we plan to investigate this in our future work.

The interneurons of 8/3 are fully connected (Fig. 2), and all the interneurons
have excitatory self-loops. However, it is not the case that full connectivity with
self-loops for interneurons in networks evolved for three interneurons is a suffi-
cient and necessary condition for state maintenance (for example, 6/3 and 12/3
have such a topology, but do not maintain the state, while 11/3 does so without
full connectivity).

Going back to 8/3; both interneurons N1 and N2 self-excite themselves
strongly—high-frequency spiking (H state) of N1 and N2 is observed in all states
but hAB (which is maintained trivially—all neurons are inactive). When signal

328 M. Yaqoob and B. Wróbel

Fig. 2. The topology and activity of network 8/3.

Table 3. States of the neurons in network 8/3 in network states mapped on the states
of the minimal FST. Z: zero, L: (zero or) low, H: high-spiking activity. See text for
further details.

S hA hAB hABC

Neuron 0 L: 0, 2, 3 spikes Z Z L: 3 spikes

Neuron 1 H: 332 ± 1Hz L: 0, 1, 2 spikes Z H: 331 ± 1Hz

Neuron 2 H: 333 Hz H: 334 ± 1 Hz L: 1, 2 spikes H: 329 Hz

Output Z Z Z L: 1, 2 spikes

A is received, strong connection of input A to N2 puts N2 in the H state, and
because of a strongly inhibitory connection both from input A and N2 to N1, N1
is in an L state in the network state hA. The activity of input B strongly inhibits
N2; this is why the transition from network state hA to hAB corresponds to L
or Z states of all interneurons. When a network in such a state receives a C, the
excitatory connection from input C to N0 and N0’s weak self-excitation combine
to make N0 spike exactly three times, which is necessary for the output to spike
once or twice (output can be excited only by N0); connections from N0 to N1
and from N1 to N2 are mainly responsible for putting both N1 and N2 in an
H state. When, however, C is received in any other state, either N2 (state hA)
or both N1 and N2 (states S and hABC) are in state H; their strong inhibitory
connections to output prevent output from spiking (Fig. 2).

Limitations of space prohibit us from providing a similar analysis for 7/4.
We do, however, provide the data (Fig. 3, Table 4) sufficient for making it.

Our preliminary analysis of the variability of the ways in which computation
in this task is accomplished in networks that show state maintenance indicates
that networks evolved with three interneurons belong to four distinct classes

Robust Small SNNs for Temporal Pattern Recognition 329

Fig. 3. The topology and activity of network 7/4.

Table 4. States of the neurons in network 7/4 in network states mapped on the states
of the minimal FST. Z: zero, L: (zero or) low, H: high-spiking activity. See text for
further details.

S hA hAB hABC

Neuron 0 Z L: 2, 3 spikes Z Z

Neuron 1 H: 330 ± 3 Hz H: 280 ± 3 Hz L: 1 spike H: 330 Hz

Neuron 2 H: 332 ± 2 Hz L: 0, 1, 3 spikes Z H: 333 Hz

Neuron 3 L: 0, 4 spikes Z Z L: 4 spikes

Output Z Z Z L: 1, 2 spikes

based on the assignment of neural states to network states. For network 8/3
we can encode this assignment as (S, hA, hAB, hABC) = (LHH, ZLH, ZZL,
LHH), where Z means zero activity, L means zero or low activity (a few spikes at
most), and H means high-frequency spiking. The order of symbols in each triplet
assigned to a state follows the order of interneurons’ labels (Table 3). Three other
networks belong to this class, 0/3, 9/3, and 11/3 (such matching requires, of
course, appropriate ordering of interneurons in each network). The other three
possible classes are: (i) 4/3 and 7/3 have (ZHH, ZHL, ZLZ, LHH), (ii) 2/3 and
5/3 have (HHH, HLZ, LZZ, HHH), and (iii) 10/3 has (HHH, LHH, ZLL, HHH).
The four networks that show state maintenance with four interneurons all belong
to different classes based on such an assignment: whereas (i) 7/4 has (ZHHL,
LHLZ, ZLZZ, ZHHL) (Table 4), (ii) 5/4 has (HZHH, HZHZ, LZHZ, HLHH),
(iii) 13/4 has (HHHH, HLLH, LZZL, HHHH), and (iv) 17/4 has (HLLH, LZZH,
ZZZL, HLLH). In our future work, we plan to further analyse the relationship
between these classes and the network topologies, considering the signs and
weights of the connections.

330 M. Yaqoob and B. Wróbel

4 Conclusions and Future Work

We show that SNNs evolved to perform a simple but not trivial computational
task in the presence of noise on neuronal membrane potential are robust to sam-
pling all neuronal parameters from a certain range, and provide a procedure
to approximate this range. Not surprisingly, we show that the range for vary-
ing all parameters is narrower than for varying a single parameter each time
(as we did previously [23]). In future work, we plan to further fine tune this
methodology—for example, by giving all neurons different parameters during
this procedure, and considering the dependence relationships between parame-
ters (we have observed, for example, that increasing the value of one parameter
may allow increasing the value of another).

Setting a limit for the number of interneurons one higher than necessary to
accomplish the tasks increased the yield of successful evolutionary runs (i.e., the
evolvability), but resulted in a smaller fraction of networks that could maintain
their state in the successful runs. Furthermore, there was no significant impact
on the range of robustness to changes of parameters between slightly smaller
and larger networks. In future work, we plan to investigate if larger networks
will allow obtaining solutions in the presence of higher levels of noise. We would
also like to see if other models of noise (such as an Ornstein-Uhlenbeck process,
commonly used in computational neuroscience) impact evolvability and robust-
ness. Another possible direction for future work is to investigate the evolution
of recognition of longer patterns in the presence of noise.

In this work, we performed a preliminary analysis of how the networks accom-
plish the temporal pattern recognition with state maintenance by assigning neu-
ral states in network states corresponding to the state of an FST. We show that
the solutions belong to different classes, and thus different topologies can allow
solving this task. In future work, we will analyse in more detail the variety of
solutions obtained in independent runs. We would also like to see if changing
the spiking behavior of neurons during evolution (e.g., to bursting) or the model
itself (e.g., to leaky integrate and fire) leads to other classes of solutions.

Acknowledgements. This work was supported by the Polish National Science Center
(project EvoSN, UMO-2013/08/M/ST6/00922). MY acknowledges the support of the
KNOW RNA Research Center in Poznan (No. 01/KNOW2/2014). We are grateful to
Volker Steuber and Neil Davey for discussions and suggestions.

References

1. Ahissar, E., Arieli, A.: Figuring space by time. Neuron 32, 185–201 (2001)
2. Anderson, J.S., Lampl, I., Gillespie, D.C., Ferster, D.: The contribution of noise to

contrast invariance of orientation tuning in cat visual cortex. Science 290, 1968–
1972 (2000)

3. Bialek, W., Rieke, F., de Ruyter van Steveninck, R.R., Warland, D., et al.: Reading
a neural code. In: Neural Information Processing Systems, pp. 36–43 (1989)

4. Burnstock, G.: Autonomic neurotransmission: 60 years since sir henry dale. Ann.
Rev. Pharmacol. Toxicol. 49, 1–30 (2009)

Robust Small SNNs for Temporal Pattern Recognition 331

5. Buzsáki, G., Chrobak, J.J.: Temporal structure in spatially organized neuronal
ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5, 504–510
(1995)

6. Decharms, R.C., Zador, A.: Neural representation and the cortical code. Ann. Rev.
Neurosci. 23, 613–647 (2000)

7. Destexhe, A., Rudolph, M., Fellous, J.M., Sejnowski, T.: Fluctuating synaptic con-
ductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107,
13–24 (2001)

8. Destexhe, A., Paré, D.: Impact of network activity on the integrative properties of
neocortical pyramidal neurons in vivo. J. Neurophysiol. 81, 1531–1547 (1999)

9. Faisal, A.A., Selen, L.P., Wolpert, D.M.: Noise in the nervous system. Nat. Rev.
Neurosci. 9, 292–303 (2008)

10. Finn, I.M., Priebe, N.J., Ferster, D.: The emergence of contrast-invariant orienta-
tion tuning in simple cells of cat visual cortex. Neuron 54, 137–152 (2007)

11. Florian, R.V.: Biologically inspired neural networks for the control of embodied
agents. Center for Cognitive and Neural Studies (Cluj-Napoca, Romania), Techni-
cal report Coneural-03-03 (2003)

12. Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H.: A neuronal learning
rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996)

13. Huxter, J., Burgess, N., O’keefe, J.: Independent rate and temporal coding in
hippocampal pyramidal cells. Nature 425, 828–832 (2003)

14. Jacobson, G., et al.: Subthreshold voltage noise of rat neocortical pyramidal neu-
rones. J. Physiol. 564, 145–160 (2005)

15. Laurent, G.: Dynamical representation of odors by oscillating and evolving neural
assemblies. Trends Neurosci. 19, 489–496 (1996)

16. Marder, E.: Variability, compensation, and modulation in neurons and circuits.
Proc. Natl. Acad. Sci. USA 108(Suppl. 3), 15542–15548 (2011)

17. Naud, R., Marcille, N., Clopath, C., Gerstner, W.: Firing patterns in the adaptive
exponential integrate-and-fire model. Biol. Cybern. 99, 335–347 (2008)

18. Paré, D., Shink, E., Gaudreau, H., Destexhe, A., Lang, E.J.: Impact of spontaneous
synaptic activity on the resting properties of cat neocortical pyramidal neurons in
vivo. J. Neurophysiol. 79, 1450–1460 (1998)

19. Prinz, A.A., Bucher, D., Marder, E.: Similar network activity from disparate circuit
parameters. Nat. Neurosci. 7, 1345–1352 (2004)

20. Stacey, W., Durand, D.: Stochastic resonance improves signal detection in hip-
pocampal neurons. J. Neurophysiol. 83, 1394–402 (2000)

21. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice
ages to crayfish and squids. Nature 373, 33–36 (1995)

22. Wróbel, B., Abdelmotaleb, A., Joachimczak, M.: Evolving networks processing
signals with a mixed paradigm, inspired by gene regulatory networks and spiking
neurons. In: Di Caro, G.A., Theraulaz, G. (eds.) BIONETICS 2012. LNICST,
vol. 134, pp. 135–149. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06944-9 10

23. Yaqoob, M., Wróbel, B.: Robust very small spiking neural networks evolved with
noise to recognize temporal patterns. In: ALIFE 2018: Proceedings of the 2018
Conference on Artificial Life, pp. 665–672. MIT Press (2018)

24. Yaqoob, M., Wróbel, B.: Very small spiking neural networks evolved to recognize
a pattern in a continuous input stream. In: 2017 IEEE Symposium Series on Com-
putational Intelligence (SSCI), pp. 3496–3503. IEEE (2017)

B.4. ICANN 2019 M. Yaqoob and B. Wróbel 185

B.4 M. Yaqoob, V. Steuber and B. Wróbel (2019)

The Importance of Self-excitation in Spik-

ing Neural Networks Evolved to Recognize

Temporal Patterns, International Conference

on Artificial Neural Networks, ICANN 2019,

Munich, Germany, September 17-19, 2019.

The Importance of Self-excitation
in Spiking Neural Networks Evolved

to Recognize Temporal Patterns

Muhammad Yaqoob1 , Volker Steuber2 , and Borys Wróbel1(B)

1 Evolving Systems Laboratory, Adam Mickiewicz University in Poznan,
Poznan, Poland

{yaqoob,wrobel}@evosys.org
2 University of Hertfordshire, Hatfield, UK

v.steuber@herts.ac.uk

Abstract. Biological and artificial spiking neural networks process
information by changing their states in response to the temporal pat-
terns of input and of the activity of the network itself. Here we analyse
very small networks, evolved to recognize three signals in a specific pat-
tern (ABC) in a continuous temporal stream of signals (...CABCACB...).
This task can be accomplished by networks with just four neurons (three
interneurons and one output). We show that evolving the networks in the
presence of noise and variation of the intervals of silence between signals
biases the solutions towards networks that can maintain their states (a
form of memory), while the majority of networks evolved without vari-
able intervals between signals cannot do so. We demonstrate that in
most networks, the evolutionary process leads to the presence of super-
fluous connections that can be pruned without affecting the ability of the
networks to perform the task and, if the unpruned network can main-
tain memory, so does the pruned network. We then analyse how these
small networks can perform their tasks, using a paradigm of finite state
transducers. This analysis shows that self-excitatory loops (autapses) in
these networks are crucial for both the recognition of the pattern and for
memory maintenance.

Keywords: Temporal pattern recognition · Spiking neural networks ·
Ex-loops · Self-loops · Artificial evolution · Minimal cognition ·
Complex networks · Genetic algorithm · Finite state transducer

1 Introduction

The current understanding of information processing in biological brains pos-
tulates that this processing is accomplished thanks to constant transitions of
biological networks from one pattern of spiking activity to another [1,3,5,11,12,
15,23]. Temporal input patterns in all sensory modalities, including smell [25],
sight [34], and hearing [14], influence these patterns of activity; and the patterns

c© Springer Nature Switzerland AG 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11727, pp. 758–771, 2019.
https://doi.org/10.1007/978-3-030-30487-4_59

Self-excitation in SNNs Evolved to Recognize Temporal Patterns 759

of neural activity determine the animal behaviour. One of the central problems
in neuroscience is how biological neural circuits can accomplish such temporal
processing. Answering this question may help in designing bio-inspired artificial
cognitive systems. Of special interest is how this processing, which also involves
the maintenance of the spiking activity (a form of memory), while depending on
the precise timing of spikes, can be accomplished in the presence of noise [8,10];
and indeed may necessitate noise [6,13,29,37].

In this work, we analyse very small spiking neural networks (SNNs) evolved
to perform a simple temporal pattern recognition task. We have shown previ-
ously that without noise, two interneurons are sufficient for this task, but such
networks are fragile to even the slightest variation of the timing of inputs [39].
In contrast, networks with three interneurons can be evolved to recognize pat-
terns consisting of three stimuli in the presence of noise, and they are robust to
a change of neuronal parameters or duration of intervals of silence between the
stimuli [38,40]. In this work, we use the same model of noise (on the membrane
voltage) as previously; while its level is biologically realistic, and so including
it adds to the biological plausibility of our model, our primary concern is to
aid in the evolution of networks that can maintain their states (a form of mem-
ory) even as the intervals between stimuli are hugely increased when testing the
evolved network. One of the original contributions of this paper is that evolving
the networks both in the presence of noise and the variation of intervals between
stimuli biases the networks towards those that can maintain their states.

We observe that a variety of network topologies resulting from an artificial
evolutionary process can perform the same computational task [38–40]. This is
also the case for biological networks [18,22]. By using artificial evolution, we
are able to find the commonalities between the networks that can accomplish
simple, but not trivial, computational tasks.

The recognition of temporal pattern requires temporal storage of the stim-
ulus or delays [16,30–33]. Since our networks are very small, delays caused by
synaptic delays are minimal. The main contribution of this paper is that the cru-
cial connections that maintain the network state and memory in the presence
of variable silent intervals are self-excitatory loops (autapses), which sheds new
light on the importance of these connections that are commonly found in biolog-
ical neural systems [26,36]. Furthermore, persistent spiking activity in response
to short sensory input is common in all areas of brain [17] which perhaps is
responsible for keeping short-term memory in accumulating tasks [27].

2 Methods

Each network in our model is encoded in a linear genome, and consists of
three inputs, three interneurons, and one output neuron [38–40]. Inputs are not
allowed to connect to the output neuron directly and only interneurons can
have self-loops. A fully connected network with this structure can have up to
21 connections (up to nine connections from inputs to interneurons, six connec-
tions between the interneurons, three self-loops, and three connections from the
interneurons to the output neuron).

760 M. Yaqoob et al.

Each input is dedicated to one signal (stimulus type), denoted as A, B and
C. The interneurons and output neuron are modelled using Euler integration
with 1 ms steps of the differential equations for adaptive exponential integrate
and fire neurons [20]; we use the same parameter values as in [38–40]; these
values result in tonic spiking in response to constant input current. Since this
study focuses on the effect of network connectivity, the neuronal parameters are
kept constant (allowing them to evolve would hugely increase the search space
of the artificial evolutionary process). To simulate noisy synaptic background
at a biologically realistic level [2,7,9,21], we add a random value taken from a
normal distribution with standard deviation 2 mV and mean 0 to the membrane
potential of each neuron at every 1 ms simulation step. When a neuron receives a
spike the excitatory gE or inhibitory gI conductance is updated by the connection
weight multiplied by the respective conductance gain. The value of the excitatory
and inhibitory gain is 7 nS.

The task of the networks is to recognize three signals in a particular order
(ABC) in a continuous random sequence (...BCACACCABCACBAC...), in
which all signals appear with equal probability, and thus the correct patterns
take up about 10% of time. To generate a variety of solutions, we use a genetic
algorithm with a population of 300 individuals, with 100 independent runs for
each of the two settings: in the first setting signals are followed by a constant
interval of silence (16 ms), in the second setting the intervals vary, with a uni-
form distribution between 16 and 32 ms (in previous work, [38,40], we used noise
on the membrane potential, but did not vary the interval of silences). In both
settings the length of a each signal is 6 ms. We use the same genetic operators
as in [40]; they can result in changes of weights, deletion and addition of edges
(synapses) and the nodes (neurons) in the network (through deletion and dupli-
cation, respectively, of consecutive elements in the linear genomes; however, the
maximum size of the network was limited as described above).

Each individual in the population in each generation is evaluated on six
sequences. Four out of these six sequences are generated randomly with equiprob-
able occurrence of three signals A, B and C; the remaining two sequences con-
sist of four concatenated patterns in random order: ABC and three patterns
that are hard to distinguish from this target (ABA, ABB, and BBC). The fit-
ness function [38,40] rewards networks in which the output neuron spiked (at
least once) in the correct intervals, and did not spike in the incorrect intervals:
ffitness = 1 − R + 4P , where R, reward (P , penalty) is the fraction of correct
(incorrect) intervals in which output spiked. P is multiplied by 4 in this formula-
tion because its denominator is much larger than the numerator for the networks
that have correct performance or are close to it (when the input sequence is ran-
dom, 90% of intervals are incorrect). The correct intervals are those that start
at the onset of the last signal (C) of the correct pattern (ABC) and end with the
end of the silence that follows. Similarly, incorrect intervals start at the onset of
each signal that is not C in ABC. Both correct and incorrect intervals last either
22 ms or, in the setting with variable silence intervals, 22–38 ms.

Self-excitation in SNNs Evolved to Recognize Temporal Patterns 761

The false discovery rate (FDR) of the network is defined as the number of
incorrect intervals in which output spiked divided by the sum of both incorrect
and correct intervals in which the output spiked. The true positive rate (TPR)
of the network is the same as R. We define a champion in a run as a perfect
recognizer if its TPR is above 0.99 and FDR below 0.01 for the settings (constant
or variable interval of silence between the signals) under which a champion was
evolved.

In order to simplify the network analysis, we use pruning of superfluous edges
in the network. Our pruning algorithm removes excessive connections in two
steps in a loop: (i) a random connection is removed for testing; (ii) if TPR< 0.95
or FDR> 0.05, the connection is reinstated and labelled as vital; the loop is
terminated when all the connections are labelled as vital.

3 Results and Discussion

Out of 100 independent runs in the presence of noise on membrane potential but
with constant interval of silence between the signals, 15 ended with champions
that were perfect recognizers; when in addition to noise the intervals of silence
varied during evolution, the yield was 12%.

Even though our artificial evolutionary process allows for deletion of nodes
(neurons) in the network, none of the perfect recognizers had less than three
interneurons. In addition, even though pruning can result in a disconnection of
a node, no network ended up with less than three interneurons after pruning.
Perfect recognizers evolved only with noise had slightly more (19.20 on aver-
age; Table 1) edges than the perfect recognizers evolved also with variation of
silences (18.83). This difference persisted after pruning (14.26 and 13.08 edges,
respectively). None of these differences were statistically significant.

We tested both the evolved and pruned networks on a random sequence
with 100,000 signals and 100 ms intervals of silence between signals. Our results
(Table 1) show, firstly, that evolving the networks with both noise and varia-
tion of silences resulted in more perfect recognizers that can keep memory (11
out of 12) than for evolving only with noise (4 out of 15). Secondly, all these
11 + 4 =15 perfect recognizers kept memory also after pruning, demonstrating
that the removed connections are unnecessary not only for recognizing the pat-
tern but also for keeping memory.

Interestingly, while the perfect recognizers that kept memory had fewer self-
excitatory loops after pruning (all had 2; Table 1) than the champions which did
not keep memory (which on average had 2.42), the sum of weights of the self-
excitatory loops was significantly higher in recognizers that kept memory (mean
sum 14.6 vs. 12.3; p =0.002, one-sided Wilcoxon test). This suggests that the
memory is maintained in these networks through self-excitation; we will explore
this issue further below by analysing the mechanisms by which some networks
keep memory while other fail to do so.

Based on the TPR and FDR with 100 ms intervals of silence (Table 1), we
can divide the 27 perfect recognizers into four groups: (i) 15 memory-keepers

762 M. Yaqoob et al.

Table 1. The number of edges and self-excitatory loops in perfect recognizers evolved
with noise and constant (top, 15 champions) or variable (bottom, 12 champions)
silences, and their robustness to the increase of silences to 100 ms

Champions evolved in the presence of constant (16 ms) silence intervals
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

evolved edges 19 21 20 19 18 19 19 18 21 16 20 20 19 20 19
edges after pruning 10 14 15 13 11 14 16 15 16 16 17 16 15 13 13

self ex-loops 1 3 2 3 2 2 2 2 3 3 3 2 2 2 2
100 ms TPR 0.02 0.98 0.98 0.97 0.96 0.95 0.99 0.55 0.99 0.00 0.00 0.00 0.96 0.99 0.96
100 ms FDR 0.99 0.37 0.01 0.12 0.56 0.01 0.03 0.90 0.20 1.00 1.00 0.99 0.58 0.01 0.56

Champions evolved in the presence of noise and variable (16-32 ms) intervals of silence
0 1 2 3 4 5 6 7 8 9 10 11

evolved edges 19 21 20 19 20 18 16 20 18 19 18 18
edges after pruning 13 12 14 14 14 13 11 13 15 12 13 13

self ex-loops 2 2 2 2 3 2 2 2 2 2 2 2
100ms TPR 0.99 0.99 0.99 0.98 0.90 0.98 0.99 0.98 0.99 0.97 0.98 0.99
100ms FDR 0.04 0.01 0.01 0.01 0.40 0.04 0.01 0.01 0.04 0.01 0.02 0.01

Fig. 1. Finite state transducer for recognizing ABC. The symbols above each arrow
correspond to the input (A, B, C) and output (0: no spiking, 1: spiking of the output
neuron).

(TPR remains high, and FDR low; evolved only with noise: number 2, 5, 6,
13; evolved with both noise and variation of silences: all except number 4), (ii)
over-recognizers (TPR stays high, but FDR increases; evolved only with noise:
1, 3, 4, 8, 12, 14; evolved with both: number 4), (iii) wrong-recognizers (low
TPR, high FDR; evolved only with noise: number 0, 7, 10, 11), (iv) mute net-
works (champion 9 evolved only with noise), for which long intervals of silence
between signals result in only noise driven activity (negligible) of the output neu-
ron. To illustrate what allows for both recognition and memory, we first analyse
one memory-keeper evolved with both noise and variation of silences (cham-
pion 6; Fig. 2), one over-recognizer (champion 4; Fig. 3), one wrong-recognizer
(champion 7; Fig. 4), and the mute network (champion 9; Fig. 5). The champions
4, 7 and 9 fail when silences are 50 ms long for the same reasons they fail with
100 ms silences; we use 50 ms in the figures to keep them compact. While the
activities of the pruned networks that fail are slightly different from the activi-
ties of the evolved networks, they fail for the same reasons; we will present only
the analysis of the pruned networks for simplicity.

Self-excitation in SNNs Evolved to Recognize Temporal Patterns 763

Fig. 2. Champion 6 evolved with both noise and variation of silences. The activity of
the pruned network (a) is shown for short (16 ms; b), and long (50 ms; c) silences,
which indicates that this champion is a memory-keeper.

In order to analyse the transitions of the network, we will use the paradigm
we proposed previously, based on mapping the network states onto the states of
a finite state transducer (FST) [38–40]. A FST, a formal computational model
[28], is frequently used for analysing computations on time series performed in an
online manner (that is, constantly producing an output for a continuous input).
The minimal FST for recognizing a pattern with three symbols has four states
(Fig. 1).

In the case of our memory-keeper (Fig. 2), the activity of input A, because of
its excitatory connection to N1, makes N1 spike; this spiking continues thanks
to the excitatory self-loop, while N0, N2, and output remain silent. Thus, we

764 M. Yaqoob et al.

can denote the state hA (for ‘had A’, Fig. 1) as LHL, where L (H) means low
(high) activity for interneurons in the order (N0, N1, N2). The state hAB (when
the network receives B after A, for ‘had AB’) can be denoted as LLL, and
the state hABC (‘had ABC’) as LHH. The only difference between the start
state (S) and hABC is the intermittent activity of the output. Thus, the state
of the network while waiting for the last signal in the pattern (state hAB) is
maintained passively (all interneurons are silent), while the other states, hA and
hABC/S, are maintained by the self-excitatory loops on N1 and N2. In hA,
only N1 is continuously active; in hABC/S, both N0 and N1 are. The inhibitory
connection from N1 to the output ensures that receiving a signal C will cause
the output to spike (after N0 spikes) only when N1—and N2, which activates
N1—are silent. The inhibitory connection from input B to N1 is necessary for N1
to cease its activity in hAB, but this does not happen when N2 is active (so when
network is in the state hABC or S, it goes to S after receiving B). The inhibitory
connection from N1 to N2 is necessary for the transition from hABC/S to hA
(higher frequency of N1 shuts down N2). Finally, the weak excitatory connection
from B to N2 is necessary to ensure that when N2 is silent (hAB), receiving a
B would not silence both N1 and N2; indeed, when this connection is removed,
the output wrongly spikes after receiving ABBC, ABBBC, etc. (the network
recognizes the regular expression AB+C, not just ABC).

While we only describe one memory-keeper here, in all such networks anal-
ysed so far, the state hAB is represented by LLL (and thus the networks will
spike when they are initiated with no activity and receive just a C), and the
networks maintain two states stably: hA and hABC/S (which differ only by
the short-term activity of the output, triggered by the transition from hAB to
hABC). Since the over-recognizer we have chosen for analysis (Fig. 3) shares its
topology with the memory-keeper (Fig. 2), both recognize ABC correctly in the
same fashion when the silence intervals are short—when the network receives A,
it goes to the state LHL, when B follows, to LLL, and when C follows, to LHH.
However, when the silences are long, the activity of N2 in LHH dies out (because
the N2 self-excitatory loop is weak), and the network goes to LHL—the same as
hA. When B is received in this state, all activity ceases (state LLL). If the next
signal is C, the output neuron spikes, wrongly. This leads to a high FDR—the
network recognizes the pattern BC when the intervals are long.

The analysis of the network activity of the wrong-recognizer (Fig. 4) reveals
that the recognition when the intervals of silence are short depends on transitions
from one unstable state to another. We can see that when the intervals are long,
the S state (HHH) is stable, and maintained by the strong self-excitatory loop
on N1. When A is received, N0 speeds up, and inhibits N1 (the networks goes
to the state HLH). If the silence continues, the network goes to the state LLH
(N0 does not have any self-loop), and then LLL (the self-loop of N2 is too weak
to maintain its activity for long). If C is received at this point, N1 spikes, and
without inhibition from N2, the output spikes, leading to the recognition of AC.
When the intervals are short, the network transitions along the same trajectory
when it recognizes ABC, but much quicker—when it is still in the state HLH
after receiving A, the arrival of a B pushes it to LLH, which can relax to LLL

Self-excitation in SNNs Evolved to Recognize Temporal Patterns 765

Fig. 3. Champion 4 evolved with noise and constant silences. The activity of the pruned
network (a) is shown for short (16 ms; b), and long (50 ms; c) silences, for which this
champion behaves as an over-recognizer.

in time to release the output from the inhibition from N2 when the spike of N1,
induced by receiving a C, arrives. Any Bs that do not follow an A after a short
interval of silence, and any Cs, cause the network to go the stable state HHH.

Finally, in champion 9 evolved with constant short intervals of silence, the
recognition of ABC crucially depends on the network being in a particular unsta-
ble state when the network receives a C after having received the pattern AB—to
activate the output, N2 (active after C is received) needs to spike fast; and for
N2 to spike fast, N2 needs to receive also the activation of N1. However, N1 can-
not spike too frequently because it inhibits the output. In addition, N0 (which
also inhibits the output) needs to be inactive. This particular state can only be

766 M. Yaqoob et al.

Fig. 4. Champion 7 evolved with noise and constant silences. The activity of the pruned
network (a) is shown for short (16 ms; b), and long (50 ms; c) silences, for which this
champion behaves as a wrong-recognizer.

achieved if the network first reaches the state HLL (which is stable thanks to
the self-excitatory loop on N0). With short silences, this state is reached after
receiving an A. When the silence is long, the right conditions for the output
to spike never occur—even though there are times when N1 spikes slowly with
N0 inactive, N2 never spikes frequently enough at that time to drive the output
to spike. Moreover, even though N1 also has a self-excitatory loop, its activity
cannot be sustained for long when N0 (which inhibits N1) is active, and because
N1 activates N2, which in turn activates N0, N1 can only spike slowly.

Our experimental setup did not impose the Dale’s rule [4] on the evolved
networks. This is because our preliminary experiments showed that imposing
the rule would require permitting more (roughly double) interneurons during

Self-excitation in SNNs Evolved to Recognize Temporal Patterns 767

Fig. 5. Champion 9 evolved with noise and constant silences. The activity of the pruned
network (a) is shown for short (16 ms; b), and long (50 ms; c) silences, for which this
champion behaves as a mute network.

evolution, increasing the search space. All of the networks we analysed had at
least one interneuron which had both excitatory and inhibitory connections to
other neurons in the network, even after pruning the superfluous connections.
However, once a network is evolved, it is straightforward to transform it to a
network that conforms to the Dale’s rule. This can be done by splitting a neuron
that violates the rule into two new neurons, one excitatory and one inhibitory
(Fig. 6). Pruning superfluous connections from the network leads to fewer neu-
rons for which such splitting is necessary. Both new neurons receive the same
inputs (with the same weights) as the original neuron. The weights of the out-
going connections are also maintained. If an excitatory self-loop is present, it is

768 M. Yaqoob et al.

maintained with the same weight for the new excitatory neuron, and a new exci-
tatory connection with the same weight is created from the new excitatory to the
new inhibitory neuron (an analogous operation can be made for an inhibitory
self-loop, should one exist). The formation of this new connection could, in prin-
ciple, affect the functionality of the network, as it creates an additional synaptic
delay. However, the networks evolved with noise can be expected to be robust
to such a perturbation. On the other hand, creating two noisy neurons instead
of one creates, in principle, a more noisy network. The performance of the net-
works analysed in this paper was not affected by the transformation detailed
here. This applies, in particular, to champion 6, the memory-keeper, who has
only one neuron (N1) that violates the rule (Figs. 2 and 6).

Fig. 6. Splitting a neuron that violates the Dale’s rule in order to create the network
that conforms to the rule. The single interneuron, N1, that violates the rule in champion
6 (Fig. 2), with two inhibitory outputs and one excitatory self-loop (a), can be split
into two new neurons, one excitatory and one inhibitory (b).

4 Conclusions and Future Work

Our analysis of very small networks evolved to recognize simple temporal pat-
ters reveals that many connections in these networks can be removed without
impairing the performance of the network. Such pruning allows for a much easier
understanding of the mechanisms in which the networks accomplish this mini-
mally cognitive task.

For the networks analysed in this paper, these mechanisms depend crucially
on the presence of strong self-excitatory loops, necessary for both the pattern
recognition and maintenance of network state—a form of memory. Our results
indicate that to recognize a pattern consisting of three symbols with state main-
tenance, the networks need to consist of at least three interneurons (with one
output), and need to have two self-excitatory loops with the weights sufficient
to maintain the network states. Our analysis of the activity of the networks that
keep memory, by mapping the network states on the states of an FST, shows
that all the perfect recognizers that maintain the states of the network represent

Self-excitation in SNNs Evolved to Recognize Temporal Patterns 769

the state before the arrival of the final symbol by inactivity of the network (a
state that does not need to be maintained actively). In all these networks, the
accepting state differs from the start state only by the intermittent activity of
the output (triggered on the transition to this state from the state of inactivity).
This state is maintained actively, and so is the state reached after receiving the
first symbol in the pattern.

Our analysis of the networks that fail to maintain the memory correctly
reveals the following preliminary insights. With long intervals of silence between
the signals, over-recognition happens when the network does not maintain the
start state or the state after the correct pattern is recognized (which may be the
same), but instead over the long interval of silence transitions to the same state
as the one reached after receiving the first symbol in the pattern. With long
silences, such networks continue to recognize the correct pattern but start to
recognize wrong patterns. On the other hand, the networks that cannot maintain
the other states with long silences can either stop recognizing the correct pattern
while recognizing wrong ones, or become completely mute.

We show that the perfect recognizers that keep memory function essentially
follow the paradigm of an FST. Previous work on creating finite state machines
based on recurrent spiking neural networks [19,24,35] considered large multilayer
networks. Here we show, essentially, a method to obtain very small networks
that work a finite automata using artificial evolution. In future work, we plan
to investigate the limits of the length of the temporal patterns for which prefect
recognizers that keep memory can be evolved, and how many self-excitatory
loops are necessary in such recognizers, for both shorter and longer patterns.

In the work reported here and previously [38–40], we have allowed only for
the topology to change. In principle, the neuronal parameters could also be
evolved, but this would hugely increase the search space. However, other spiking
behaviours (for example, bursting) of the neurons in the network could perhaps
lead to different classes of solutions. We plan to explore this issue in our future
work using two approaches: (i) allowing a discrete change of the behaviour of
each neuron in the network during evolution (for example, from tonic spiking
to bursting, a change of the values of several parameters in one step), (ii) by
exploring if the solutions change when all the neurons in the network have the
same behaviour (different than used here). We could also modify our model of
artificial evolution to allow for a more efficient search for the solutions; a different
evolutionary model might possibly also lead to different classes of solutions.

Furthermore, we plan to revisit the question of robustness of the evolved
networks to changes of parameters and synaptic weights. We also plan to inves-
tigate if other models of noise (such as an Ornstein-Uhlenbeck process, commonly
used in computational neuroscience), variation of silences or neuronal parame-
ters during evolution will influence the types of solutions, their evolvability and
robustness.

Acknowledgements. This work was supported by the Polish National Science Center
(project EvoSN, UMO-2013/08/M/ST6/00922). MY acknowledges the support of the
KNOW RNA Research Center in Poznan (No. 01/KNOW2/2014) and POWR.03.02.00-
00-I006/17.

770 M. Yaqoob et al.

References

1. Ahissar, E., Arieli, A.: Figuring space by time. Neuron 32, 185–201 (2001)
2. Anderson, J.S., Lampl, I., Gillespie, D.C., Ferster, D.: The contribution of noise to

contrast invariance of orientation tuning in cat visual cortex. Science 290, 1968–
1972 (2000)

3. Bialek, W., Rieke, F., van Steveninck, R.R.d.R., Warland, D., et al.: Reading a
neural code. In: Neural Information Processing Systems, pp. 36–43 (1989)

4. Burnstock, G.: Autonomic neurotransmission: 60 years since sir Henry Dale. Annu.
Rev. Pharmacol. Toxicol. 49, 1–30 (2009)

5. Decharms, R.C., Zador, A.: Neural representation and the cortical code. Annu.
Rev. Neurosci. 23, 613–647 (2000)

6. Destexhe, A., Rudolph, M., Fellous, J.M., Sejnowski, T.: Fluctuating synaptic con-
ductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107,
13–24 (2001)

7. Destexhe, A., Paré, D.: Impact of network activity on the integrative properties of
neocortical pyramidal neurons in vivo. J. Neurophysiol. 81, 1531–1547 (1999)

8. Faisal, A.A., Selen, L.P., Wolpert, D.M.: Noise in the nervous system. Nat. Rev.
Neurosci. 9, 292–303 (2008)

9. Finn, I.M., Priebe, N.J., Ferster, D.: The emergence of contrast-invariant orienta-
tion tuning in simple cells of cat visual cortex. Neuron 54, 137–152 (2007)

10. Florian, R.V.: Biologically inspired neural networks for the control of embodied
agents. Center for Cognitive and Neural Studies (Cluj-Napoca, Romania), Tech.
rep. Coneural-03-03 (2003)

11. Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H.: A neuronal learning
rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996)

12. Huxter, J., Burgess, N., Okeefe, J.: Independent rate and temporal coding in hip-
pocampal pyramidal cells. Nature 425, 828–832 (2003)

13. Jacobson, G., et al.: Subthreshold voltage noise of rat neocortical pyramidal neu-
rones. J. Physiol. 564, 145–60 (2005)

14. Joris, P., Yin, T.: A matter of time: internal delays in binaural processing. Trends
Neurosci. 30, 70–78 (2007)

15. Laurent, G.: Dynamical representation of odors by oscillating and evolving neural
assemblies. Trends Neurosci. 19, 489–496 (1996)

16. Maex, R., Steuber, V.: The first second: models of short-term memory traces in
the brain. Neural Netw. 22, 1105–1112 (2009)

17. Major, G., Tank, D.: Persistent neural activity: prevalence and mechanisms. Curr.
Opin. Neurobiol. 14, 675–684 (2004)

18. Marder, E.: Variability, compensation, and modulation in neurons and circuits.
Proc. Nat. Acad. Sci. U.S.A. 108, 15542–15548 (2011)

19. Natschläger, T., Maass, W.: Spiking neurons and the induction of finite state
machines. Theoret. Comput. Sci. 287, 251–265 (2002)

20. Naud, R., Marcille, N., Clopath, C., Gerstner, W.: Firing patterns in the adaptive
exponential integrate-and-fire model. Biol. Cybern. 99, 335–347 (2008)

21. Paré, D., Shink, E., Gaudreau, H., Destexhe, A., Lang, E.J.: Impact of spontaneous
synaptic activity on the resting properties of cat neocortical pyramidal neurons in
vivo. J. Neurophysiol. 79, 1450–1460 (1998)

22. Prinz, A.A., Bucher, D., Marder, E.: Similar network activity from disparate circuit
parameters. Nat. Neurosci. 7, 1345–1352 (2004)

Self-excitation in SNNs Evolved to Recognize Temporal Patterns 771

23. Rieke, F., Warland, D., de Ruyter van Steveninck, R., Bialek, W.: Spikes: Exploring
the Neural Code. MIT Press, Cambridge (1999)

24. Rutishauser, U., Douglas, R.J.: State-dependent computation using coupled recur-
rent networks. Neural Comput. 21, 478–509 (2009)

25. Isaacson, J.S.: Odor representations in mammalian cortical circuits. Curr. Opin.
Neurobiol. 20, 328–31 (2010)

26. Saada, R., Miller, N., Hurwitz, I., Susswein, A.J.: Autaptic excitation elicits per-
sistent activity and a plateau potential in a neuron of known behavioral function.
Curr. Biol. 19, 479–84 (2009)

27. Seung, H.S., Lee, D.D., Reis, B.Y., Tank, D.W.: The autapse: a simple illustration
of short-term analog memory storage by tuned synaptic feedback. J. Comput.
Neurosci. 9, 171–185 (2000)

28. Sipser, M.: Introduction to the Theory of Computation. International Thomson
Publishing, Stamford (1996)

29. Stacey, W., Durand, D.: Stochastic resonance improves signal detection in hip-
pocampal neurons. J. Neurophysiol. 83, 1394–1402 (2000)

30. Steuber, V., De Schutter, E.: Rank order decoding of temporal parallel fibre input
patterns in a complex Purkinje cell model. Neurocomputing 44–46, 183–188 (2002)

31. Steuber, V., Willshaw, D.J.: Adaptive leaky integrator models of cerebellar Purk-
inje cells can learn the clustering of temporal patterns. Neurocomputing 26–27,
271–276 (1999)

32. Steuber, V., Willshaw, D.: A biophysical model of synaptic delay learning and
temporal pattern recognition in a cerebellar Purkinje cell. J. Comput. Neurosci.
17, 149–164 (2004)

33. Steuber, V., Willshaw, D., Ooyen, A.V.: Generation of time delays: simplified mod-
els of intracellular signalling in cerebellar Purkinje cells. Netw. Comput. Neural
Syst. 17, 173–191 (2006)

34. Thorpe, S., Fize, D., Marlot, C.: Speed of processing in the human visual system.
Nature 381, 520–522 (1996)

35. Tino, P., Mills, A.J.S.: Learning beyond finite memory in recurrent networks of
spiking neurons. Neural Comput. 18, 591–613 (2005)

36. Wang, C., et al.: Formation of autapse connected to neuron and its biological
function. Complexity 2017, 1–9 (2017)

37. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice
ages to crayfish and squids. Nature 373, 33–36 (1995)

38. Yaqoob, M., Wróbel, B.: Robust very small spiking neural networks evolved with
noise to recognize temporal patterns. In: ALIFE 2018: Proceedings of the 2018
Conference on Artificial Life - MIT Press, pp. 665–672 (2018)

39. Yaqoob, M., Wróbel, B.: Very small spiking neural networks evolved to recognize
a pattern in a continuous input stream. In: 2017 IEEE Symposium Series on Com-
putational Intelligence (SSCI) - IEEE, pp. 3496–3503 (2017)

40. Yaqoob, M., Wróbel, B.: Very small spiking neural networks evolved for temporal
pattern recognition and robust to perturbed neuronal parameters. In: Artificial
Neural Networks and Machine Learning - ICANN, pp. 322–331 (2018)

Bibliography

[1] Ahmed Abdelmotaleb, Neil Davey, Maria Schilstra, Volker Steuber, and Borys

Wróbel. Evolving spiking neural networks for temporal pattern recognition in

the presence of noise. Artificial Life 2014, 2014.

[2] EC Adrian. The basis of sensation, new york, w. w, 1928.

[3] Ehud Ahissar and Amos Arieli. Figuring space by time. Neuron, 32:185–201,

2001.

[4] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John

Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon

Nam, et al. Truenorth: Design and tool flow of a 65 mw 1 million neuron pro-

grammable neurosynaptic chip. IEEE transactions on computer-aided design

of integrated circuits and systems, 34(10):1537–1557, 2015.

[5] Jeffrey S. Anderson, Ilan Lampl, Deda C. Gillespie, and David Ferster. The

contribution of noise to contrast invariance of orientation tuning in cat visual

cortex. Science, 290:1968–1972, 2000.

[6] A. Bacci and J. Huguenard. Enhancement of spike-timing precision by autaptic

transmission in neocortical inhibitory interneurons. Neuron, 49:119–130, 2006.

200

BIBLIOGRAPHY 201

[7] Karim Benchenane, Adrien Peyrache, Mehdi Khamassi, Patrick L Tierney,

Yves Gioanni, Francesco P Battaglia, and Sidney I Wiener. Coherent theta

oscillations and reorganization of spike timing in the hippocampal-prefrontal

network upon learning. Neuron, 66(6):921–936, 2010.

[8] Nils Bertschinger and Thomas Natschlger. Real-time computation at the edge

of chaos in recurrent neural networks. Neural computation, 16:1413–36, 08

2004.

[9] Guo-qiang Bi and Mu-ming Poo. Synaptic modifications in cultured hip-

pocampal neurons: dependence on spike timing, synaptic strength, and post-

synaptic cell type. Journal of neuroscience, 18(24):10464–10472, 1998.

[10] William Bialek, Fred Rieke, Robert R de Ruyter van Steveninck, David War-

land, et al. Reading a neural code. In NIPS, pages 36–43, 1989.

[11] Sander M Bohte, Joost N Kok, and Johannes A La Poutré. Spikeprop: back-

propagation for networks of spiking neurons. In ESANN, volume 48, pages

419–424. Bruges, 2000.

[12] Romain Brette and Wulfram Gerstner. Adaptive exponential integrate-and-

fire model as an effective description of neuronal activity. Journal of Neuro-

physiology, 94:3637–3642, 2005.

[13] Nicolas Brunel and Mark CW Van Rossum. Lapicques 1907 paper: from frogs

to integrate-and-fire. Biological cybernetics, 97(5):337–339, 2007.

[14] Daniel Bullock, John C. Fiala, and Stephen Grossberg. A neural model of

timed response learning in the cerebellum. Neural Networks, 7(6):1101–1114,

1994. Models of Neurodynamics and Behavior.

202 BIBLIOGRAPHY

[15] Geoffrey Burnstock. Autonomic neurotransmission: 60 years since sir Henry

Dale. Annual Review of Pharmacology and Toxicology, 49:1–30, 2009.

[16] Gemma A Calvert. Crossmodal processing in the human brain: insights from

functional neuroimaging studies. Cerebral cortex, 11(12):1110–1123, 2001.

[17] Peter Cariani. Temporal coding of periodicity pitch in the auditory system:

an overview. Neural plasticity, 6(4):147–172, 1999.

[18] Tung-Bo Chen and Von-Wun Soo. A comparative study of recurrent neu-

ral network architectures on learning temporal sequences. In Proceedings of

International Conference on Neural Networks (ICNN’96), volume 4, pages

1945–1950. IEEE, 1996.

[19] D. Chialvo. Emergent complex neural dynamics. Nature Physics, 6:744–750,

2010.

[20] Sayeed Shafayet Chowdhury, Chankyu Lee, and Kaushik Roy. Towards un-

derstanding the effect of leak in spiking neural networks. Neurocomputing,

464:83–94, 2021.

[21] Gourav Datta, Haoqin Deng, Robert Aviles, and Peter A Beerel. To-

wards energy-efficient, low-latency and accurate spiking lstms. arXiv preprint

arXiv:2210.12613, 2022.

[22] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang

Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta

Jain, et al. Loihi: A neuromorphic manycore processor with on-chip learning.

Ieee Micro, 38(1):82–99, 2018.

[23] Gilberto de Paiva. Pattern recognition theory of mind. arXiv preprint

arXiv:0907.4509, 2009.

BIBLIOGRAPHY 203

[24] Rob R de Ruyter van Steveninck, Geoffrey D Lewen, Steven P Strong, Roland

Koberle, and William Bialek. Reproducibility and variability in neural spike

trains. Science, 275(5307):1805–1808, 1997.

[25] R Christopher Decharms and Anthony Zador. Neural representation and the

cortical code. Annual Review of Neuroscience, 23:613–647, 2000.

[26] Lei Deng, Yujie Wu, Xing Hu, Ling Liang, Yufei Ding, Guoqi Li, Guang-

she Zhao, Peng Li, and Yuan Xie. Rethinking the performance comparison

between snns and anns. Neural networks, 121:294–307, 2020.

[27] Alain Destexhe and Denis Paré. Impact of network activity on the integrative

properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiol-

ogy, 81:1531–1547, 1999.

[28] Alain Destexhe, Michael Rudolph, and Denis Paré. The high-conductance

state of neocortical neurons in vivo. Nature reviews neuroscience, 4(9):739–

751, 2003.

[29] Kshitij Dhoble. Spatio-/spectro-temporal pattern recognition using evolving

probabilistic spiking neural networks. PhD thesis, Auckland University of Tech-

nology, 2013.

[30] Bertrand du Castel. Pattern activation/recognition theory of mind. Frontiers

in computational neuroscience, 9:90, 2015.

[31] Hadyn D Ellis, Dylan M Jones, and Nick Mosdell. Intra-and inter-modal

repetition priming of familiar faces and voices. British Journal of Psychology,

88(1):143–156, 1997.

[32] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211,

1990.

204 BIBLIOGRAPHY

[33] A Aldo Faisal, Luc PJ Selen, and Daniel M Wolpert. Noise in the nervous

system. Nature Reviews Neuroscience, 9:292–303, 2008.

[34] David Ferster and Nelson Spruston. Cracking the neuronal code. Science,

270(5237):756–757, 1995.

[35] Ian M. Finn, Nicholas J. Priebe, and David Ferster. The emergence of contrast-

invariant orientation tuning in simple cells of cat visual cortex. Neuron,

54:137–152, 2007.

[36] Răzvan V Florian. The chronotron: A neuron that learns to fire temporally

precise spike patterns. PLoS ONE, 2012.

[37] Nicolas Fourcaud-Trocmé, David Hansel, Carl Van Vreeswijk, and Nicolas

Brunel. How spike generation mechanisms determine the neuronal response

to fluctuating inputs. Journal of neuroscience, 23(37):11628–11640, 2003.

[38] Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. The

spinnaker project. Proceedings of the IEEE, 102(5):652–665, 2014.

[39] Wulfram Gerstner, Richard Kempter, J Leo van Hemmen, and Hermann Wag-

ner. A neuronal learning rule for sub-millisecond temporal coding. Nature,

383:76–78, 1996.

[40] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neu-

ronal dynamics: From single neurons to networks and models of cognition.

Cambridge University Press, 2014.

[41] Asif A Ghazanfar, Joost X Maier, Kari L Hoffman, and Nikos K Logothetis.

Multisensory integration of dynamic faces and voices in rhesus monkey audi-

tory cortex. Journal of Neuroscience, 25(20):5004–5012, 2005.

BIBLIOGRAPHY 205

[42] Tim Gollisch and Markus Meister. Rapid neural coding in the retina with

relative spike latencies. science, 319(5866):1108–1111, 2008.

[43] Peiliang Gong, Pengpai Wang, Yueying Zhou, and Daoqiang Zhang. A spiking

neural network with adaptive graph convolution and lstm for eeg-based brain-

computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation

Engineering, 2023.

[44] Klaus Greff, Rupesh K Srivastava, Jan Koutńık, Bas R Steunebrink, and

Jürgen Schmidhuber. Lstm: A search space odyssey. IEEE transactions on

neural networks and learning systems, 28(10):2222–2232, 2016.

[45] Robert Gütig and Haim Sompolinsky. The tempotron: a neuron that learns

spike timing–based decisions. Nature neuroscience, 9(3):420–428, 2006.

[46] Robert Gütig and Haim Sompolinsky. The tempotron: a neuron that learns

spike timing–based decisions. Nature neuroscience, 9(3):420–428, 2006.

[47] P. Heil. Auditory cortical onset responses revisited. i. first-spike timing. Jour-

nal of neurophysiology, 77 5:2616–41, 1997.

[48] Walter Heiligenberg. Neural Nets in Electric Fish (Computational Neuro-

science). MIT press, 1991.

[49] Geoffrey E Hinton, Terrence J Sejnowski, et al. Learning and relearning in

boltzmann machines. Parallel distributed processing: Explorations in the mi-

crostructure of cognition, 1(282-317):2, 1986.

[50] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

206 BIBLIOGRAPHY

[51] Alan L Hodgkin and Andrew F Huxley. A quantitative description of mem-

brane current and its application to conduction and excitation in nerve. The

Journal of physiology, 117(4):500, 1952.

[52] John J Hopfield. Neural networks and physical systems with emergent collec-

tive computational abilities. Proceedings of the national academy of sciences,

79(8):2554–2558, 1982.

[53] John J Hopfield. Pattern recognition computation using action potential tim-

ing for stimulus representation. Nature, 376(6535):33–36, 1995.

[54] John J Hopfield and David W Tank. neural computation of decisions in opti-

mization problems. Biological cybernetics, 52(3):141–152, 1985.

[55] John Huxter, Neil Burgess, and John O’keefe. Independent rate and temporal

coding in hippocampal pyramidal cells. Nature, 425:828–832, 2003.

[56] Jeffry S Isaacson. Odor representations in mammalian cortical circuits. Cur-

rent Opinion in Neurobiology, 20(3):328–331, 2010.

[57] Masao Ito. Long-term depression. Annual review of neuroscience, 12(1):85–

102, 1989.

[58] E. M. Izhikevich. Simple model of spiking neurons. Trans. Neur. Netw.,

14:1569–1572, 2003.

[59] Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions

on neural networks, 14(6):1569–1572, 2003.

[60] Michal Joachimczak and Borys Wróbel. Evolving gene regulatory networks

for real time control of foraging behaviours. In ALIFE, 2010.

BIBLIOGRAPHY 207

[61] Michal Joachimczak and Borys Wróbel. Processing signals with evolving ar-

tificial gene regulatory networks. In ALIFE, 2010.

[62] Micha l Joachimczak and Borys Wróbel. Open ended evolution of 3d multicel-

lular development controlled by gene regulatory networks. In Artificial Life

XIII: Proceedings of the Thirteenth International Conference on the Simula-

tion and Synthesis of Living Systems, pages 67–74, Cambridge, MA, 2012.

MIT Press.

[63] Roland Johansson and Ingvars Birznieks. First spikes in ensembles of human

tactile afferents code complex spatial fingertip events. Nature neuroscience,

7:170–7, 03 2004.

[64] Roland Johansson and Ingvars Birznieks. First spikes in ensembles of human

tactile afferents code complex spatial fingertip events. Nature neuroscience,

7:170–7, 03 2004.

[65] Michael I Jordan. Serial order: A parallel distributed processing approach. In

Advances in psychology, volume 121, pages 471–495. Elsevier, 1997.

[66] Philip Joris and Tom Yin. A matter of time: internal delays in binaural

processing. Trends in Neuroscience, 30:70–78, 2007.

[67] Philip Joris and Tom CT Yin. A matter of time: internal delays in binaural

processing. Trends in Neurosciences, 30(2):70–78, 2007.

[68] N Kasabov, K Dhoble, N Nuntalid, and G Indiveri. On-line spatio-and spectro-

temporal pattern recognition with evolving spiking neural networks utilising

integrated rank oder-and spiketime learning. Neural Networks, 2011.

[69] Nikola K Kasabov. Evolving connectionist systems: the knowledge engineering

approach. Springer Science & Business Media, 2007.

208 BIBLIOGRAPHY

[70] Christoph Kayser, Marcelo A Montemurro, Nikos K Logothetis, and Stefano

Panzeri. Spike-phase coding boosts and stabilizes information carried by spa-

tial and temporal spike patterns. Neuron, 61(4):597–608, 2009.

[71] Steven W Keele and Richard Ivry. Does the cerebellum provide a common

computation for diverse tasks? a timing hypothesis a. Annals of the New York

Academy of Sciences, 608(1):179–211, 1990.

[72] Richard Kempter, Wulfram Gerstner, J Van Hemmen, and Hermann Wagner.

Temporal coding in the sub-millisecond range: Model of barn owl auditory

pathway. Advances in neural information processing systems, 8, 1995.

[73] Muhammad Aamir Khan, Volker Steuber, Neil Davey, and Borys Wróbel.

Spiking neural networks evolved to perform multiplicative operations. In Věra

Kůrková, Yannis Manolopoulos, Barbara Hammer, Lazaros Iliadis, and Il-

ias Maglogiannis, editors, Artificial Neural Networks and Machine Learning –

ICANN 2018, pages 314–321, Cham, 2018. Springer International Publishing.

[74] Robert Kim and Terrence Sejnowski. Strong inhibitory signaling underlies

stable temporal dynamics and working memory in spiking neural networks.

Nature Neuroscience, 24:1–11, 01 2021.

[75] Bruce W Knight. Dynamics of encoding in a population of neurons. The

Journal of general physiology, 59(6):734–766, 1972.

[76] Alexander Kugele, Thomas Pfeil, Michael Pfeiffer, and Elisabetta Chicca. Effi-

cient processing of spatio-temporal data streams with spiking neural networks.

Frontiers in neuroscience, 14:439, 2020.

[77] Louis Lapicque. Tableau général des poids somatique et encéphalique dans

les espèces animales. Bulletins et Mémoires de la Société d’Anthropologie de

Paris, 8(1):248–270, 1907.

BIBLIOGRAPHY 209

[78] Gilles Laurent. Dynamical representation of odors by oscillating and evolving

neural assemblies. Trends in Neurosciences, 19:489–496, 1996.

[79] Qian Liu, Lifan Long, Qian Yang, Hong Peng, Jun Wang, and Xiaohui Luo.

Lstm-snp: A long short-term memory model inspired from spiking neural p

systems. Knowledge-Based Systems, 235:107656, 2022.

[80] Ali Lotfi Rezaabad and Sriram Vishwanath. Long short-term memory spiking

networks and their applications. In International Conference on Neuromorphic

Systems 2020, pages 1–9, 2020.

[81] Brian Nils Lundstrom and Adrienne L Fairhall. Decoding stimulus variance

from a distributional neural code of interspike intervals. Journal of Neuro-

science, 26(35):9030–9037, 2006.

[82] Wolfgang Maass. Networks of spiking neurons: The third generation of neural

network models. Neural Networks, 10(9):1659–1671, 1997.

[83] Mark D McDonnell and Lawrence M Ward. The benefits of noise in neu-

ral systems: bridging theory and experiment. Nature Reviews Neuroscience,

12(7):415–425, 2011.

[84] MR Mehta, AK Lee, and MA Wilson. Role of experience and oscillations in

transforming a rate code into a temporal code. Nature, 417(6890):741–746,

2002.

[85] Markus Meister and Michael J. Berry. The neural code of the retina. Neuron,

22(3):435–450, 1999.

[86] Raoul-Martin Memmesheimer, Ran Rubin, Bence P Ölveczky, and Haim Som-

polinsky. Learning precisely timed spikes. Neuron, 82(4):925–938, 2014.

210 BIBLIOGRAPHY

[87] Ammar Mohemmed, Stefan Schliebs, Satoshi Matsuda, and Nikola Kasbov.

Span: Spike pattern association neuron for learning spatio-temporal spike

patterns. International Journal of Neural Systems, 22(04):1250012, 2012.

[88] Richard Naud, Nicolas Marcille, Claudia Clopath, and Wulfram Gerstner.

Firing patterns in the adaptive exponential integrate-and-fire model. Biological

Cybernetics, 99:335–347, 2008.

[89] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient

learning in spiking neural networks: Bringing the power of gradient-based

optimization to spiking neural networks. IEEE Signal Processing Magazine,

36(6):51–63, 2019.

[90] Andrzej Nski and Filip Ponulak. F.: Comparison of supervised learning meth-

ods for spike time coding in spiking neural networks. Int. J. Appl. Math.

Comput. Sci, 16:101–113, 01 2006.

[91] John O’Keefe and Michael L Recce. Phase relationship between hippocampal

place units and the eeg theta rhythm. Hippocampus, 3(3):317–330, 1993.

[92] Thomas S Otis and WF Gilly. Jet-propelled escape in the squid loligo

opalescens: concerted control by giant and non-giant motor axon pathways.

Proceedings of the National Academy of Sciences, 87(8):2911–2915, 1990.

[93] Denis Paré, Eric Shink, Hlne Gaudreau, Alain Destexhe, and Eric J. Lang.

Impact of spontaneous synaptic activity on the resting properties of cat neo-

cortical pyramidal neurons in vivo. Journal of Neurophysiology, 79:1450–1460,

1998.

[94] J. Perez-Orive, Ofer Mazor, Glenn C Turner, S. Cassenaer, Rachel I. Wilson,

and G. Laurent. Oscillations and sparsening of odor representations in the

mushroom body. Science, 297:359 – 365, 2002.

BIBLIOGRAPHY 211

[95] Stephen P Perrett, Blenda P Ruiz, and Michael D Mauk. Cerebellar cor-

tex lesions disrupt learning-dependent timing of conditioned eyelid responses.

Journal of Neuroscience, 13(4):1708–1718, 1993.

[96] Gualtiero Piccinini and Andrea Scarantino. Information processing, compu-

tation, and cognition. Journal of biological physics, 37(1):1–38, 2011.

[97] Filip Ponulak and Andrzej Kasiński. Supervised learning in spiking neural

networks with resume: sequence learning, classification, and spike shifting.

Neural computation, 22(2):467–510, 2010.

[98] Filip Ponulak and Andrzej Kasiski. Introduction to spiking neural networks:

Information processing, learning and applications. Acta neurobiologiae exper-

imentalis, 71:409–33, 01 2011.

[99] Pasko Rakić, J. P. le Bourgeois, Maryellen Fazen Eckenhoff, Nada Zećević, and

Patricia S. Goldman-Rakic. Concurrent overproduction of synapses in diverse

regions of the primate cerebral cortex. Science, 232 4747:232–235, 1986.

[100] Werner Reichardt. Autokorrelations-auswertung als funktionsprinzip des zen-

tralnervensystems. Zeitschrift für Naturforschung B, 12(7):448–457, 1957.

[101] Fred Rieke. Spikes: exploring the neural code. MIT press, 1999.

[102] AJ Robinson and Frank Fallside. The utility driven dynamic error propaga-

tion network, volume 1. University of Cambridge Department of Engineering

Cambridge, 1987.

[103] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton

Project Para. Cornell Aeronautical Laboratory, 1957.

[104] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and

Shih-Chii Liu. Conversion of continuous-valued deep networks to efficient

212 BIBLIOGRAPHY

event-driven networks for image classification. Frontiers in neuroscience,

11:682, 2017.

[105] Rufin Van Rullen and Simon J. Thorpe. Rate coding versus temporal order

coding: What the retinal ganglion cells tell the visual cortex. Neural Compu-

tation, 13(6):1255–1283, 2001.

[106] Jeffry S Isaacson. Odor representations in mammalian cortical circuits. Cur-

rent Opinion in Neurobiology, 20:328–31, 2010.

[107] Hannes P. Saal, Sethu Vijayakumar, and Roland S. Johansson. Information

about complex fingertip parameters in individual human tactile afferent neu-

rons. Journal of Neuroscience, 29(25):8022–8031, 2009.

[108] Stefan Schliebs and Nikola Kasabov. Evolving spiking neural networka survey.

Evolving Systems, 4(2):87–98, 2013.

[109] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy.

Going deeper in spiking neural networks: Vgg and residual architectures. Fron-

tiers in neuroscience, 13:95, 2019.

[110] Yoonsik Shim, Andrew Philippides, Kevin Staras, and Phil Husbands. Unsu-

pervised learning in an ensemble of spiking neural networks mediated by itdp.

PLoS computational biology, 12(10):e1005137, 2016.

[111] Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment

in time. Advances in neural information processing systems, 31, 2018.

[112] Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance

of lstm and bilstm in forecasting time series. In 2019 IEEE International

Conference on Big Data (Big Data), pages 3285–3292. IEEE, 2019.

BIBLIOGRAPHY 213

[113] Michael Sipser. Introduction to the Theory of Computation. International

Thomson Publishing, 1996.

[114] William R Softky and Christof Koch. The highly irregular firing of cortical

cells is inconsistent with temporal integration of random epsps. Journal of

neuroscience, 13(1):334–350, 1993.

[115] Jeong-Woo Sohn, Byoung-Tak Zhang, and Bong-Kiun Kaang. Temporal pat-

tern recognition using a spiking neural network with delays. In IJCNN’99.

International Joint Conference on Neural Networks. Proceedings (Cat. No.

99CH36339), volume 4, pages 2590–2593. IEEE, 1999.

[116] Barry E Stein and M Alex Meredith. The merging of the senses. The MIT

press, 1993.

[117] RB Stein and Alan Lloyd Hodgkin. The frequency of nerve action potentials

generated by applied currents. Proceedings of the Royal Society of London.

Series B. Biological Sciences, 167(1006):64–86, 1967.

[118] Branko Šter. Selective recurrent neural network. Neural processing letters,

38:1–15, 2013.

[119] Volker Steuber and David Willshaw. A biophysical model of synaptic delay

learning and temporal pattern recognition in a cerebellar Purkinje cell. Journal

of Computational Neuroscience, 17:149–164, 2004.

[120] R Steveninck, Geoffrey Lewen, S Strong, Roland Koberle, and William Bialek.

Reproducibility and variability in neural spike trains. Science (New York,

N.Y.), 275:1805–8, 04 1997.

[121] Charles F Stevens and Yanyan Wang. Facilitation and depression at single

central synapses. Neuron, 14(4):795–802, 1995.

214 BIBLIOGRAPHY

[122] H. Swadlow and A. G. Gusev. Receptive-field construction in cortical in-

hibitory interneurons. Nature Neuroscience, 5:403–404, 2002.

[123] David W Tank and JJ Hopfield. Neural computation by concentrating infor-

mation in time. Proceedings of the National Academy of Sciences, 84(7):1896–

1900, 1987.

[124] Timothy J Teyler and P DiScenna. Long-term potentiation. Annual review of

neuroscience, 10(1):131–161, 1987.

[125] Simon Thorpe, Arnaud Delorme, and Rufin Van Rullen. Spike-based strategies

for rapid processing. Neural networks, 14(6-7):715–725, 2001.

[126] Simon Thorpe, Denis Fize, and Catherine Marlot. Speed of processing in the

human visual system. Nature, 381:520–522, 1996.

[127] Simon Thorpe, Denise Fize, and Catherine Marlot. Speed of processing in the

human visual system. Nature, 381(6582):520, 1996.

[128] Simon J. Thorpe, Arnaud Delorme, and Rufin van Rullen. Spike-based strate-

gies for rapid processing. Neural networks : the official journal of the Inter-

national Neural Network Society, 14 6-7:715–25, 2001.

[129] KP Unnikrishnan, John J Hopfield, and David W Tank. Connected-digit

speaker-dependent speech recognition using a neural network. IEEE Transac-

tions on Signal Processing, 39(3), 1991.

[130] Hendrik Van Der Loos and Edmund M. Glaser. Autapses in neocortex cere-

bri: synapses between a pyramidal cell’s axon and its own dendrites. Brain

Research, 48:355 – 360, 1972.

[131] Rufin VanRullen, Rudy Guyonneau, and Simon J. Thorpe. Spike times make

sense. Trends in Neurosciences, 28(1):1–4, 2005.

BIBLIOGRAPHY 215

[132] Craig M Vineyard, Sam Green, William M Severa, and Çetin Kaya Koç.

Benchmarking event-driven neuromorphic architectures. In Proceedings of the

International Conference on Neuromorphic Systems, pages 1–5, 2019.

[133] Katharina Von Kriegstein and Anne-Lise Giraud. Implicit multisensory asso-

ciations influence voice recognition. PLoS biology, 4(10):e326, 2006.

[134] Jilles Vreeken. Spiking neural networks, an introduction, 2003.

[135] Jilles Vreeken et al. Spiking neural networks, an introduction. Utrecht Uni-

versity: Information and Computing Sciences, 2003.

[136] PD Wall. Pain: A spike-interval coded message in the brain. Journal of

Neurology, Neurosurgery, and Psychiatry, 45(6):573, 1982.

[137] Xiaoqin Wang, T. Lu, and L. Liang. Temporal and Rate Representations of

Time-Varying Signals in Auditory Cortex. Nature Neuroscience, 2005.

[138] Udo Wehmeier, Dawei Dong, Christof Koch, and David Van Essen. Model-

ing the mammalian visual system. In Methods in neuronal modeling: From

synapses to networks, pages 335–359. MIT Press, 1989.

[139] Hua wei Fan, Yafeng Wang, Hengtong Wang, Ying-Cheng Lai, and X. Wang.

Autapses promote synchronization in neuronal networks. Scientific Reports,

8, 2017.

[140] Laura Wiles, Shi Gu, Fabio Pasqualetti, Danielle Bassett, and David Meaney.

Autaptic connections shift network excitability and bursting. Scientific Re-

ports, 7, 08 2016.

[141] Ronald J Williams and David Zipser. Gradient-based learning algorithms for

recurrent. Backpropagation: Theory, architectures, and applications, 433:17,

1995.

216 BIBLIOGRAPHY

[142] Borys Wróbel. Evolution of spiking neural networks robust to noise and dam-

age for control of simple animats. In Parallel Problem Solving from Nature –

PPSN XIV, pages 686–696, 2016.

[143] Borys Wróbel, Ahmed Abdelmotaleb, and Micha l Joachimczak. Evolving net-

works processing signals with a mixed paradigm, inspired by gene regulatory

networks and spiking neurons. In International Conference on Bio-Inspired

Models of Network, Information, and Computing Systems, pages 135–149.

Springer, 2012.

[144] Borys Wróbel, Ahmed Abdelmotaleb, Micha l Joachimczak, et al. Evolving

spiking neural networks in the greans (gene regulatory evolving artificial net-

works) platform. In EvoNet2012: Evolving Networks, from Systems/Synthetic

Biology to Computational Neuroscience Workshop at Artificial Life XIII, pages

19–22, 2012.

[145] Borys Wróbel and Micha l Joachimczak. Using the genetic regulatory evolving

artificial networks (greans) platform for signal processing, animat control, and

artificial multicellular development. In Growing Adaptive Machines, pages

187–200. Springer, 2014.

[146] Simei Gomes Wysoski, Lubica Benuskova, and Nikola Kasabov. Evolving spik-

ing neural networks for audiovisual information processing. Neural Networks,

23(7):819–835, 2010.

[147] Muhammad Yaqoob, Volker Steuber, and Borys Wróbel. The importance

of self-excitation in spiking neural networks evolved to recognize temporal

patterns. In Artificial Neural Networks and Machine Learning – ICANN 2019:

Theoretical Neural Computation, pages 758–771, 2019.

BIBLIOGRAPHY 217

[148] Muhammad Yaqoob and Borys Wróbel. Very small spiking neural networks

evolved to recognize a pattern in a continuous input stream. In 2017 IEEE

Symposium Series on Computational Intelligence (SSCI) – IEEE, pages 3496–

3503, 2017.

[149] Muhammad Yaqoob and Borys Wróbel. Robust very small spiking neural

networks evolved with noise to recognize temporal patterns. In ALIFE 2018:

Proceedings of the 2018 Conference on Artificial Life – MIT Press, pages 665–

672, 2018.

[150] Muhammad Yaqoob and Borys Wróbel. Very small spiking neural networks

evolved for temporal pattern recognition and robust to perturbed neuronal

parameters. In Artificial Neural Networks and Machine Learning – ICANN,

pages 322–331, 2018.

[151] Ergin Yilmaz, M. Ozer, Veli Baysal, and M. Perc. Autapse-induced multi-

ple coherence resonance in single neurons and neuronal networks. Scientific

Reports, 6, 2016.

[152] John Zachary Young. Fused neurons and synaptic contacts in the giant nerve

fibres of cephalopods. Philosophical Transactions of the Royal Society of Lon-

don. Series B, Biological sciences, 229(564):465–503, 1939.

[153] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of

recurrent neural networks: Lstm cells and network architectures. Neural com-

putation, 31(7):1235–1270, 2019.

