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A B S T R A C T   

Background: The serial interval is a key epidemiological measure that quantifies the time between the onset of 
symptoms in an infector-infectee pair. It indicates how quickly new generations of cases appear, thus informing 
on the speed of an epidemic. Estimating the serial interval requires to identify pairs of infectors and infectees. 
Yet, most studies fail to assess the direction of transmission between cases and assume that the order of infections 
- and thus transmissions - strictly follows the order of symptom onsets, thereby imposing serial intervals to be 
positive. Because of the long and highly variable incubation period of SARS-CoV-2, this may not always be true 
(i.e an infectee may show symptoms before their infector) and negative serial intervals may occur. This study 
aims to estimate the serial interval of different SARS-CoV-2 variants whilst accounting for negative serial 
intervals. 
Methods: This analysis included 5 842 symptomatic individuals with confirmed SARS-CoV-2 infection amongst 2 
579 households from September 2020 to August 2022 across England & Wales. We used a Bayesian framework to 
infer who infected whom by exploring all transmission trees compatible with the observed dates of symptoms, 
based on a wide range of incubation period and generation time distributions compatible with estimates reported 
in the literature. Serial intervals were derived from the reconstructed transmission pairs, stratified by variants. 
Results: We estimated that 22% (95% credible interval (CrI) 8–32%) of serial interval values are negative across 
all VOC. The mean serial interval was shortest for Omicron BA5 (2.02 days, 1.26–2.84) and longest for Alpha 
(3.37 days, 2.52–4.04). 
Conclusions: This study highlights the large proportion of negative serial intervals across SARS-CoV-2 variants. 
Because the serial interval is widely used to estimate transmissibility and forecast cases, these results may have 
critical implications for epidemic control.   

1. Introduction 

The serial interval is a key epidemiological measure, defined as the 
time between an infectee’s onset of symptoms and its infector’s onset of 
symptoms. Characterising its distribution helps investigate epidemio
logical links between cases and is usually needed for estimating 

transmissibility (Vink et al., 2014; Cori et al., 2013; Wallinga and Teu
nis, 2004). The serial interval is informative of how fast an epidemic is 
spreading and a key component to link the reproduction number and the 
epidemic growth rate (Cori et al., 2013; Wallinga and Teunis, 2004). The 
emergence and rapid spread of SARS-CoV-2 variants of concern (VOC) 
throughout the COVID-19 pandemic highlighted how small genetic 
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changes can have a strong impact on transmission dynamics (Davies 
et al., 2021). While changes in growth rates among VOC are often 
believed to reflect changes in the reproduction number, it remains un
clear whether such changes might be the result of different serial in
terval distributions. 

Throughout the pandemic, commonly used models aimed at infer
ring the SARS-CoV-2 reproduction number did not account for the dif
ferences in the serial intervals of variants nor for negative values of the 
serial interval, leading to potential biases in their results (Bhatia et al., 
2021; Anderson et al., 2020). Since the generation time (the time be
tween the infection of a primary case and its secondary cases) is seldom 
observable, only a few estimates have been published (Anderson et al., 
2020; Griffin et al., 2020). In practice, the serial interval is used as a 
proxy for the generation time as they typically have similar means 
although they have different variances (Svensson, 2007). Most of the 
published serial interval estimates were reported early in the pandemic 
from studies conducted in Asia, predominantly in China, based on a 
relatively small number of infector-infectee pairs, often well below 100 
pairs (Anderson et al., 2020; Griffin et al., 2020; Alene et al., 2021). 
Several studies remained unclear how the infector-infectee pairs were 
identified (Kwok et al., 2020; Bao et al., 2021; Nishiura et al., 2020; 
Zhang et al., 2021; Du et al., 2020). Although negative serial intervals 
are possible, in practice many studies fail to assess the direction of 
transmission between pairs of related cases and assume a minimum 
serial interval value of zero days (Griffin et al., 2020; Nishiura et al., 
2020; UKHSA, 2022a; Lavezzo et al., 2020). 

By accounting for the uncertainty in who infected whom using a 
Bayesian approach, this study is able to infer negative serial intervals. 
We estimated and compared the serial intervals of all major SARS-CoV-2 
VOC using data from thousands of confirmed cases reported in house
holds across England and Wales between September 2020 and August 
2022. 

2. Methods 

2.1. Data 

Virus Watch is a household community cohort study following up 
entire households in England and Wales since mid-June 2020 (Hayward 
et al., 2021). Eligible households were 1–6 persons in size, with internet 
access and at least one household member able to complete surveys in 
English. By February 2022, 58 566 individuals in 28 495 households had 
registered to take part in the study. Participants completed a weekly 
online survey reporting the date of any respiratory, constitutional, 
gastrointestinal, ocular, or skin symptoms experienced and, the date and 
result of any testing for SARS-CoV-2 by Lateral Flow Test (LFT) or Po
lymerase Chain Reaction (PCR). 

2.2. Data processing 

Symptom data were extracted and grouped into illness episodes. The 
start date of an illness episode was defined as the first day any symptoms 
were reported, and the end date was the final day of reported symptoms. 
A seven-day washout period where no symptoms were reported was 
used to identify separate illness episodes. Swab results were matched to 
illnesses that were within seven days of the illness start date. In addition 
to SARS-CoV-2 self-reported test results, test results from the UK Second- 
Generation Surveillance System (SGSS) dataset were linked to the Virus 
Watch dataset (appendix A1). 

Households with a single case were not included in the analysis. We 
removed all households where the index case’s symptom onset date was 
within two weeks of our most recent survey date to allow for a minimum 
fourteen-day follow-up. Testing (by LFT or PCR) detects the presence of 
SARS-CoV-2 but does not identify the variant. Therefore, using national 
surveillance data (UKHSA, 2022b), we designated a variant to a 
household if that variant was making up at least 75% of all regional 

sequenced genomes at the time of the index case’s symptom onset. Ill
nesses in regions and weeks that did not have a dominant variant 
reaching at least 75% of all sequenced genomes were excluded. Variants 
are defined as per the UK Health Secretary Agency (UKHSA) definition 
and wild-type refers to all SARS-CoV-2 variants circulating before the 
Alpha variant (UKHSA, 2022b). 

2.3. Model 

We used the R package outbreaker2 to reconstruct, independently for 
each household, plausible within-household transmission chains from 
the members’ symptom onset dates. Outbreaker2 can integrate various 
data sources - epidemiological (e.g. symptom onset dates, collection 
dates), contact and genetic data - in a Bayesian framework to reconstruct 
transmission trees (Campbell et al., 2018). Swab tests from positive 
cases in the Virus Watch cohort were not sequenced at the time of the 
analysis. Transmission pairs were therefore inferred based on the 
epidemiological likelihood: 
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Where:  

• i is the index of cases (i = 1, …, n),  
• n is the number of SARS-CoV-2 positive symptomatic cases in the 

household,  
• ti is the observed date of symptom onset of case i,  
• Tinf

i is the unobserved date of infection of case i,  
• αi is the unobserved infector of case i. 

This likelihood describes the probability that individual i has 
symptoms at time ti conditional on being infected at time Tinf

i by indi
vidual αi, where αi was infected at time Tinf

αi
. It is calculated as the 

probability of the implied incubation period distribution f and genera
tion time distribution w. Although, outbreaker2 can infer unobserved 
intermediate cases in a transmission chain, in our context of household 
outbreaks, we assumed that all cases were observed. Outbreaker2 uses a 
Markov Chain Monte Carlo (MCMC) algorithm to derive samples from 
the posterior distributions (Campbell et al., 2018). The MCMC explored 
the parameter space of the dates of infection and who infected whom, 
conditional on an incubation period and a generation time distribution 
which enabled us to quantify the uncertainty in the serial interval 
distribution. 

To address the uncertainty in the generation times and incubation 
periods reported in the literature, we employed the Latin Hypercube 
Sampling (LHS) method outlined in Fig. 1 and appendix A2. Our 
approach involved constructing 100 pairs of incubation period and 
generation time distributions by sampling from a 2-dimensional 
parameter space of mean and coefficient of variation. Values for the 
mean and coefficient of variation were respectively sampled from the 
quantile function of the normal and truncated normal distribution, 
parameterised with values reported in the literature. Truncation was 
implemented to restrict the minimum mean incubation period and 
generation time to 1 day. The LHS approach thereby allowed us to 
explore 100 pairs of incubation period and generation time distributions 
(“natural histories”) compatible with findings from the literature on 
SARS-CoV-2. For every household, the MCMC ran for 10 000 iterations, 
including a burnin of 500 iterations, and one in 50 iterations being 
recorded thereafter totalling to 190 

(10 000−500
50

)
samples. This process 

was repeated 100 times with all natural histories, and results were 
aggregated to obtain a single sample from the joint posterior distribution 
across all natural histories (Fig. 1). Altogether, for every household, we 
obtained a posterior sample size of 19 000 i.e. 190 (posterior sample size 
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for each natural history) × 100 (number of natural histories). We 
assessed the convergence of our model by manual inspection of the 
MCMC traces. To obtain the serial intervals, we computed, for each 
transmission tree in the posterior sample, the time difference (in days) 
between each infectee’s and their infector’s symptom onset date. A 
household with n cases will have n−1 transmission pairs, resulting in a 
posterior sample of the serial interval of size (n-1)× 19 000. 

There was a large proportion of households where all cases reported 
the same symptom onset date, leading to an unusual peak at 0 in the 
serial interval histograms (appendix A3, A4). The frequency of obser
vations at 0 days was at least 2.5 times higher than any other day, 
suggesting 0 to be an outlier. A discretised shifted gamma distribution 
was thus fitted to non-zero observations, using a maximum likelihood 
method. The shift was used to account for potential negative serial in
tervals. Log densities were rescaled to account for the fact that we only 
fitted non-zero data points (Eq. (2)). 

P(si = x) =
FΓ(x + s + 0.5) − FΓ(x + s − 0.5)

1 − (FΓ(0.5) − FΓ( − 0.5) )
where

P(si = 0) = 0

(2) 

In the following, adjusted mean refers to the mean of the shifted 
discretised gamma distribution fitted to the posterior sample (Eq. (2)). 
This fitting procedure was performed at every step of the MCMC and for 
every natural history to explore the range of valid parameters (Fig. 1). 
We also considered alternative shifted Normal and Log-normal distri
butions that were also fitted to our data (appendix A5). Mean estimates 
and 95% credible intervals were obtained by computing the mean, the 
2.5th and 97.5th percentiles from the posterior densities (Fig. 1). 

We set bounds of −10 to +20 days for the serial interval values as 
most studies report extremum values well within these bounds (Griffin 
et al., 2020; Nishiura et al., 2020). Any infector-infectee pair with values 
outside these bounds were discarded and considered re-introduction 
from infections contracted outside the household (appendix A6). 

2.4. Comparisons with alternative approaches 

To assess the added value of the outbreaker2 model, we performed 
two comparisons with alternative approaches. First, we compared our 

results to a “pairwise” model, in which all pairs of individuals in a 
household were considered as equally likely transmission pairs. Thus, 
the pairwise model derives the serial interval distribution strictly from 
our data. Second, we compared our results to a “theoretical” model, 
where the serial interval distribution is strictly inferred from the input 
incubation period and generation time distributions. The serial interval 
could theoretically be derived from the two aforementioned parameters. 
Following the equation (2.1c) of the generation time described by 
Lehtinen et al (Lehtinen et al., 2021)., the serial interval can be derived 
as Eq. (3) below: 

Sij = Gij + Ij − Ii (3) 

S represents the serial interval of the pair and is equal to the gen
eration time of the pair, plus the incubation of the infectee j (Ij) minus 
the incubation of the infector i (Ii), assuming independence between the 
generation time and incubation period distributions. 

For every pair of natural histories considered, 10 000 independent 
random numerical draws from the generation time distribution G and 
the incubation period distribution I were computed and assigned to Gij, Ij 
and Ii respectively. The theoretical serial interval distribution was then 
derived from Eq. (3) above. 

Outbreaker2 R package and description of the model is available 
online (Campbell et al., 2018; Jombart et al., 2014). 

2.5. Simulation study & estimates reliability 

We conducted a simulation study to evaluate the reliability of the 
outbreaker2 estimates when the natural histories’ moments are mis
specified. To simulate the “true” outbreaks, we used the simulacr R 
package (https://github.com/CyGei/simulacr) which utilises the gen
eration time and incubation period distributions within branching pro
cesses. In conjunction with our LHS method, we used outbreaker2 to 
reconstruct transmission chains and estimate the mean serial interval 
(Fig. 1). Subsequently, we compared the reconstructed (outbreaker2) 
serial interval with the true (simulacr) serial interval (Appendix B). 
Additionally, to investigate how different assumptions about the incu
bation period and generation time may affect our estimates, we con
ducted a multivariate linear regression to explore the relationship 
between the natural histories’ moments and the adjusted mean serial 
interval (Appendix B). 

Fig. 1. Diagram describing the method to compute the mean serial interval posterior distribution, mean estimate and its 95% credible interval. A) Latin Hypercube 
Sampling (LHS). We generated 100 pairs of incubation period and generation time distributions compatible with findings from the literature on SARS-CoV-2. Dashed 
lines refer to the generation time distribution, solid lines refer to the incubation period distribution. Colours refer to a unique LHS sample. B) The outbreaker2 model 
inferred transmission chains using an MCMC algorithm. For each posterior sample, the mean serial interval was calculated from the inferred transmission pairs. 
Finally, we calculated the kernel density of the mean serial interval, the overall mean estimate and its 95% credible interval from the 2.5 and 97.5 percentiles. C) We 
repeated the process described in B) considering the 100 pairs of natural histories drawn in A) as input for the outbreaker2 model. D) The mean serial interval 
estimates were aggregated across the 100 natural histories considered. 
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3. Results 

There were 81 892 illness episodes reported by 29 766 individuals 
from 17 794 households between 22 June 2020 and 14 August 2022, 
which were evenly distributed across sex. 49 367 (60%) of illness epi
sodes were tested for SARS-CoV-2, with weekly proportions ranging 
from 13.00% to 90.50% (appendix A7). The proportion of test results 
that were positive was 22% (10,663/49,367), with weekly proportions 
ranging from 0% to 54.20% (appendix A8). Table 1 displays the sum
mary characteristics of 5 842 symptomatic SARS-CoV-2 positive ill
nesses reported by 5 799 cases from 2 579 households included in the 
analysis. Over half of households were composed of only 2 members. 
Households with 3 or less cases constituted 89.5% of our data. Amongst 
the 10 regions represented in our data, the most common were the East 
of England, the South-East and London in that order. 

About 64% of illnesses occurred during the Omicron BA1 and BA2 
wave (Fig. 2, appendix A9). About 86% of illnesses were occurring 
amongst individuals above the age of 15 years. 

Fig. 3 displays the kernel posterior densities of the adjusted serial 
interval mean and standard deviation by VOC. The adjusted mean serial 
interval was shortest for Omicron BA5 (2.02 days, 95%CrI:1.26–2.84) 
and longest for Alpha (3.37, 2.52–4.04). The adjusted mean serial in
terval was 2.29 days (1.39–2.94) for wild-type, 3.11 (2.28–3.90) for 
Delta, 2.72 (2.01–3.47) for Omicron BA1 and 2.67 (1.90–3.46) for 
Omicron BA2. The estimated gamma parameters are reported in ap
pendix A10. When running our model with only a single pair of natural 
histories (selected to be closest to the median estimate from our Latin 
Hypercube sample, appendix A2), our estimates remained consistent 
with our findings, but the credible intervals significantly narrowed by an 

average factor of 2.34 (appendix A11, A12). Without accounting for the 
uncertainty in the natural histories, we find that there is a statistically 
significant difference between the adjusted mean serial interval of 
Omicron BA5 and Alpha, Delta, Omicron BA1, Omicron BA2 (appendix 
A11, A12). 

Despite the overlapping credible intervals, we note a consistent trend 
where the adjusted mean serial interval shortened since the appearance 
of the Delta variant late 2020. We aggregated the adjusted mean serial 
interval across the entire posterior sample for each natural histories and 
computed the pairwise differences by VOC (Fig. 4). Across all 100 pairs 
of natural histories, the adjusted mean serial interval of Omicron BA5 
was consistently shorter than any other variant except for wild type. In 
comparison with Omicron BA1 & BA2, the adjusted mean serial interval 
of Omicron BA5 was, on average, shorter by 0.75 day, for all natural 
histories. Compared to Delta and Alpha, the Omicron BA5 adjusted 
mean serial interval was respectively 1 and 1.25 day shorter. 

Fig. 5 displays the posterior cumulative distribution function of the 
adjusted serial interval by VOC. On average, 22% (95% CrI: 8–32%) of 
serial interval values were negative across all VOC, with proportion 
varying from 19.8 (6.68 – 29.9) for Delta to 24.4 (7.48 – 36.7) for wild 
type (appendix A13). Most negative values lied between −4 and −1 day. 
The median serial interval was either 2 or 3 days depending on the VOC 
(appendix A13). 

Appendix A4 displays the distribution of the serial interval by VOC 
for outbreaker2 and the pairwise model. The pairwise model, solely driven 
by data, highlights how the observed peaks at 0 are the result of our data 
and is explained by the large proportion (14%) of households reporting 
the same symptom onset date. Fig. 6 illustrates the distribution of the 
SARS-CoV-2 serial interval of outbreaker2, the pairwise and the theoretical 

Table 1 
Summary characteristics of individual SARS-CoV-2 positive symptomatic illnesses included in the analysis.  

Characteristic Overall, 
N = 5842a 

Wild Type, 
N = 139a 

Alpha, N = 242a Delta, N = 1052a Omicron BA1, 
N = 1357a 

Omicron BA2, 
N = 2380a 

Omicron BA5, 
N = 672a 

Age 
0–15 821 (14%) 14 (10%) 28 (12%) 300 (29%) 290 (21%) 151 (6.3%) 38 (5.7%) 
16–44 1186 (20%) 47 (34%) 94 (39%) 284 (27%) 333 (25%) 352 (15%) 76 (11%) 
45–64 2143 (37%) 46 (33%) 88 (36%) 342 (33%) 438 (32%) 954 (40%) 275 (41%) 

65+ 1692 (29%) 32 (23%) 32 (13%) 126 (12%) 296 (22%) 923 (39%) 283 (42%) 
Sex 

Female 2972 (52%) 68 (51%) 127 (55%) 568 (55%) 674 (52%) 1208 (52%) 327 (50%) 
Male 2725 (48%) 65 (49%) 105 (45%) 470 (45%) 633 (48%) 1127 (48%) 325 (50%) 
(Missing) 145 6 10 14 50 45 20 

Number of household members 
2 3210 (55%) 74 (53%) 95 (39%) 344 (33%) 596 (44%) 1634 (69%) 467 (69%) 
3 933 (16%) 26 (19%) 74 (31%) 210 (20%) 234 (17%) 295 (12%) 94 (14%) 
4 1226 (21%) 21 (15%) 51 (21%) 363 (35%) 362 (27%) 349 (15%) 80 (12%) 
5 370 (6.3%) 12 (8.6%) 16 (6.6%) 109 (10%) 128 (9.4%) 78 (3.3%) 27 (4.0%) 
6 103 (1.8%) 6 (4.3%) 6 (2.5%) 26 (2.5%) 37 (2.7%) 24 (1.0%) 4 (0.6%) 

Number of cases per household 
2 4243 (73%) 100 (72%) 162 (67%) 626 (60%) 878 (65%) 1939 (81%) 538 (80%) 
3 985 (17%) 22 (16%) 64 (26%) 263 (25%) 264 (19%) 289 (12%) 83 (12%) 
4 527 (9.0%) 11 (7.9%) 15 (6.2%) 150 (14%) 160 (12%) 142 (6.0%) 49 (7.3%) 
5 75 (1.3%) 6 (4.3%) 1 (0.4%) 13 (1.2%) 43 (3.2%) 10 (0.4%) 2 (0.3%) 
6 12 (0.2%) 0 (0%) 0 (0%) 0 (0%) 12 (0.9%) 0 (0%) 0 (0%) 

Region 
East Midlands 608 (10%) 25 (18%) 12 (5.0%) 118 (11%) 146 (11%) 252 (11%) 55 (8.2%) 
East of England 1116 (19%) 10 (7.2%) 58 (24%) 189 (18%) 265 (20%) 467 (20%) 127 (19%) 
London 721 (12%) 17 (12%) 69 (29%) 113 (11%) 203 (15%) 246 (10%) 73 (11%) 
North East 303 (5.2%) 8 (5.8%) 7 (2.9%) 62 (5.9%) 59 (4.4%) 130 (5.5%) 37 (5.5%) 
North West 628 (11%) 31 (22%) 14 (5.8%) 103 (9.8%) 159 (12%) 245 (10%) 76 (11%) 
South East 1146 (20%) 6 (4.3%) 59 (24%) 228 (22%) 247 (18%) 480 (20%) 126 (19%) 
South West 459 (7.9%) 10 (7.2%) 6 (2.5%) 100 (9.5%) 91 (6.8%) 189 (8.0%) 63 (9.4%) 
Wales 115 (2.0%) 0 (0%) 0 (0%) 0 (0%) 29 (2.2%) 71 (3.0%) 15 (2.2%) 
West Midlands 374 (6.4%) 8 (5.8%) 13 (5.4%) 71 (6.7%) 79 (5.9%) 159 (6.7%) 44 (6.5%) 
Yorkshire and The 
Humber 

337 (5.8%) 24 (17%) 4 (1.7%) 68 (6.5%) 60 (4.5%) 125 (5.3%) 56 (8.3%) 

(Missing) 35 0 0 0 19 16 0 
DATE OF ONSET 2020–09–01 to 

2022–08–10 
2020–09–01 to 
2020–12–08 

2020–12–10 to 
2021–04–26 

2021–06–03 to 
2021–12–11 

2021–12–14 to 
2022–02–06 

2022–02–27 to 
2022–05–27 

2022–07–04 to 
2022–08–10  

a n (%); Range 
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models across all VOC. In contrast to the theoretical model, the out
breaker2 serial interval exhibits a higher proportion of negative serial 
intervals, driven by the data. However, the occurrence of negative serial 
intervals in the outbreaker2 distribution remains lower than that of the 
pairwise model, which can be attributed to the input generation time and 
incubation period distributions. The discrepancy between the theoretical 
and observed (outbreaker2) serial interval is primarily attributable to the 
fact that the theoretical distribution fails to account for the correlation 

between the generation time and incubation period (Lehtinen et al., 
2021). However, this correlation would be reflected in the actual 
transmission pairs, and therefore in the outbreaker2 serial interval. 
Additionally, the theoretical serial interval does not account for the 
rapid decline of susceptibles in a household (i.e. saturation) which leads 
to shortened serial intervals (Svensson, 2007; Kenah et al., 2008). 

Fig. 2. Daily incidence of SARS-CoV-2 positive symptomatic illnesses amongst the participants selected for the analysis. Grey bars represent daily confirmed ill
nesses, the black line represents the 7-day rolling average. Periods with no variant designation were not recorded for this analysis. 

Fig. 3. Posterior distributions of the adjusted serial interval mean and standard deviation. Posterior densities have been computed from the posterior sample for all 
natural histories. Point represents the overall mean estimate. Error bar represents the 95% credible interval. 
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4. Discussion 

This study characterised the household serial interval by SARS-CoV- 
2 VOC using a Bayesian framework to reconstruct plausible transmission 
chains. The adjusted mean serial interval differed by variant with Om
icron BA5 (2.02 days, 95%CrI: 1.26–2.84) being the shortest and Alpha 

(3.37 days, 95%CrI: 2.52–4.04) the longest. 
Several factors could explain the observed changes in the serial in

terval over time. A change in the virus biology, through increased viral 
shedding or improved receptor binding, are likely to lead to quicker 
transmissions and shorter incubation periods (Kidd et al., 2021; Wu 
et al., 2022). Non-pharmaceutical interventions (NPIs) may also modify 

Fig. 4. Pairwise difference of the adjusted mean serial interval by VOC. The adjusted mean serial interval has been computed from the posterior sample for every pair 
of natural history, resulting in 100 estimates for every variant. Pairwise differences between each variant can be read from x to y (i.e. x - y) or y to x (i.e. y - x). The 
colour informs on the mean serial interval difference (in days), the text displays the frequency of that difference (e.g. Compared to Alpha, the adjusted mean serial 
interval of Delta was shorter by 0.5 day for 90 out of the 100 pairs of natural histories considered). 

Fig. 5. Cumulative distribution function of the SARS-CoV-2 adjusted serial interval derived from the posterior sample by VOC.  
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the contact patterns within the household. Periods of lockdowns and 
movement restrictions are likely to increase the duration and frequency 
of household contacts, increasing the exposure amongst susceptible 
household members (Liu et al., 2021). Changing levels of immunity in 
the population during the pandemic through natural infections (Fig. 2), 
vaccination (appendix A14) and natural and vaccine-induced immunity 
waning may also affect the generation time and the serial interval by 
affecting the proportion of susceptible. Svensson’s analytical demon
strations suggest that the generation time will significantly shorten as 
the proportion of susceptible decreases (Svensson, 2007). This “gener
ation interval contraction” effect is particularly relevant for small 
household outbreaks (Kenah et al., 2008). Vaccinated individuals 
generally have milder symptoms (Bergwerk et al., 2021; Chen et al., 
2022) and may take longer to report illness. Further research is required 
to find out the underlying factors related to the observed changes in the 
mean serial interval across the differing VOC periods. 

Studies on the SARS-CoV-2 serial interval often rely on a small 
number of cases (generally in the hundreds) and do not clearly explain 
the approach used to determine the direction of the transmission (Kwok 
et al., 2020; Bao et al., 2021; Nishiura et al., 2020; Lavezzo et al., 2020; 
Wang and Teunis, 2020). Several studies, including our previous work 
(Geismar et al., 2021), were not able to infer negative serial interval 
values (Griffin et al., 2020; Nishiura et al., 2020; UKHSA, 2022a), thus 
reporting serial interval distributions with positive values only. Yet this 
study estimates that 22% of serial interval values are negative across all 
VOC (Fig. 5). This means that in one in five transmission events, the first 
person to present symptoms is not the first infected with SARS-CoV-2. 
This highlights the value of making SARS-CoV-2 tests available for the 
whole household as soon as a symptomatic case is declared as it might 
not be the first infected case. 

Most methods and studies estimating the SARS-CoV-2 reproduction 
number (R) from incidence time series assume that the serial interval is 
strictly positive (Cori et al., 2013; Anderson et al., 2020; You et al., 
2020). Our results suggest that this assumption may misrepresent how 
infectiousness evolves over time, which may cause biases in the 

estimates of R, and may also invalidate short-term forecasts derived 
from branching process models. Further research is needed to assess the 
potential impact of negative serial intervals on these methods. 

Given that most studies have only examined positive serial intervals 
derived from contact tracing data, our findings exhibit lower values 
compared to previously published reports. Our results are lower 
compared to the UKHSA report on the serial interval of Omicron BA1 
and Delta (UKHSA, 2022a) and compared to pooled estimates from 
meta-analyses of data from international studies published early in the 
pandemic prior to the emergence of VOC (mean range = 3.03 – 7.6 days) 
(mean = 5.2 days, 95% Confidence Interval (CI): 4.9–5.5) (Griffin et al., 
2020; Alene et al., 2021). However, our estimates were similar to those 
of Ganyani et.al for wild-type circulating in Tianjin (China) up to March 
2020, when the authors considered all possible negative serial intervals 
(Ganyani et al., 2020). Our study produced estimates for Delta and 
Omicron BA.1 that align with those reported by Kremer et al., who also 
adjusted for negative serial intervals (Kremer et al., 2022). Our estimates 
for Omicron BA.1 and BA.2 align with those of Manica et al. who used a 
Bayesian inference model to reconstruct household transmission pairs in 
Italy during January 2022 (Manica et al., 2022). The close and frequent 
nature of contacts amongst household cases and rapid saturation might 
explain shorter serial intervals in contrast with studies estimating the 
serial interval from contact tracing data (Svensson, 2007; Alene et al., 
2021). Additionally, differences in populations, social contact, time
frames, NPI, immunity levels and variants may explain the range of 
estimates reported (UKHSA, 2022a; Ali et al., 2020). 

Strengths of the study include the large number of transmission pairs, 
the weekly reporting of symptoms and swab test results in a large 
household cohort over 24 months, allowing to compare all major VOC in 
the UK. Our method accounts for the uncertainty in the direction of 
transmissions and the uncertainty of the underlying generation time and 
incubation period distributions. The code for this analysis is available 
online (https://github.com/CyGei/serial_interval). This should allow 
the rapid assessment of the serial interval in different contexts in future 
epidemics. 

Fig. 6. SARS-CoV-2 serial interval distributions derived from the theoretical (yellow), pairwise (blue) & outbreaker2 (red) models. Error bars display de 95% credible 
interval. The theoretical serial interval is solely derived from the 100 natural histories’ probability mass functions (pmf) used as input for the outbreaker2 model. The 
pairwise model is solely derived from the data and considers all infector infectee pairs with the same probability. The outbreaker2 model considers both the natural 
histories pmf and the data to derive the serial interval. 
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Limitations of our analysis include the reliance on self-reported 
samples meaning that we would miss cases that did not test. However, 
most reported illness episodes (60%) were tested for SARS-CoV-2 across 
the study period (appendix A7). Removing our 20-day serial interval 
limit would lead to longer serial intervals, however most studies report 
values below this threshold (Griffin et al., 2020; Alene et al., 2021). In 
the absence of pathogen genetic sequence data, our model uses solely 
information on the symptom onset dates to infer who infected whom, 
with the assumption of within household transmission being supported 
by previous studies suggesting that households have the highest trans
mission rates among indoor settings (Jombart et al., 2014). Sequence 
data would have been beneficial to inform on transmissions and to 
determine whether positive cases are the result of within-household 
transmissions or are imported cases. In fourteen percent of house
holds, all cases reported the same symptom onset date. This observation 
could potentially be attributed to a mixture of “co-primaries” i.e., cases 
that were exposed and infected outside the household at the same event 
and reported symptoms at the same time, and secondary transmissions. 
Although participants reported weekly, dates of symptom onset may be 
subject to inaccurate recall where some households might have recorded 
a single symptom onset date for cases that occurred close together but on 
different days. We are not aware of other studies that reported serial 
interval distributions with substantial density at zero. Thus, we report 
the SARS-CoV-2 serial interval estimates from gamma distributions 
fitted to non-zero observations to account for the aforementioned limi
tation. This approach had negligible impact on the serial interval esti
mate (appendix A15). 

Our results show that uncertainty in the incubation period and 
generation time can have a significant impact on the estimation of the 
serial interval distribution (appendix B). Further improvements of this 
work could focus on using variant-specific natural histories, which may 
impact further estimations of the serial interval. Nonetheless, our 
simulation study in Appendix B suggests that unless the mean generation 
time or the standard deviation of the incubation period vary greatly 
between variants (over a factor of 2) - which seems unlikely based on the 
current literature -, using the same natural histories for all variants 
should not significantly bias our estimates. 

In conclusion, our analysis highlights some difference in the mean 
serial interval between variants and the large proportion of negative 
serial intervals. Further research is needed to explain those differences 
and assess the extent to which negative serial intervals impact estimates 
of R and short-term forecasts of case incidence. 
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