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Abstract
Robotics faces a long-standing obstacle in which the speed of the vision system’s scene understanding is insufficient, impeding
the robot’s ability to perform agile tasks. Consequently, robots must often rely on interpolation and extrapolation of the vision
data to accomplish tasks in a timely and effective manner. One of the primary reasons for these delays is the analog-to-digital
conversion that occurs on a per-pixel basis across the image sensor, along with the transfer of pixel-intensity information to
the host device. This results in significant delays and power consumption in modern visual processing pipelines. The SCAMP-
5—a general-purpose Focal-plane Sensor-processor array (FPSP)—used in this research performs computations in the analog
domain prior to analog-to-digital conversion. By extracting features from the image on the focal plane, the amount of data
that needs to be digitised and transferred is reduced. This allows for a high frame rate and low energy consumption for the
SCAMP-5. The focus of our work is on localising the camera within the scene, which is crucial for scene understanding and
for any downstream robotics tasks.We present a localisation system that utilise the FPSP in two parts. First, a 6-DoF odometry
system is introduced, which efficiently estimates its position against a known marker at over 400 FPS. Second, our work is
extended to implement BIT-VO—6-DoF visual odometry system which operates under an unknown natural environment at
300 FPS.

Keywords Visual odometry · Focal-plane sensor-processor arrays

1 Introduction

Applications that require real-time scene understanding of
the environment are often power-constrained. This includes
mobile robotics and virtual/artificial reality goggles, for
instance. In thiswork,weexplore anunconventional approach
to the problem of low-power, high frame rate vision: we
compute directly within the light sensor, performing early-
stage computation before converting signals to digital form.

A shorter version of the paper has been presented in IROS 2020.

B Paul H. J. Kelly
p.kelly@imperial.ac.uk

Riku Murai
riku.murai15@imperial.ac.uk

Sajad Saeedi
s.saeedi@torontomu.ca

1 Department of Computing, Imperial College London,
London, UK

2 Toronto Metropolitan University, Toronto , Canada

We demonstrate the power of this approach by comput-
ing sparse features efficiently on a representative hardware
device. By transferring only the valuable data to later stages
of the pipeline, our approach enables a wide range of
applications—such as recognition and tracking—to operate
with exceptionally high frame rates, low latency, and low
power consumption.

The most widespread image formation on an imaging
sensor (also referred to as the focal plane) has two phases:
exposure and readout. During the exposure, photons are cap-
tured by the pixels and then the pixels are read out by the
readout system. The readout system is composed of one
or several signal amplifiers and analog-to-digital convert-
ers (ADC). The digital output of the readout system is then
transferred to a host processor via a bus system for further
processing. The frame rate and latency of a real-time image
processing pipeline is governed by the maximum speed of
image formation, and the processing speed. The maximum
frame rate of an imaging system depends on four factors: (1)
the exposure time, (2) the sensor readout speed, (3) the data
transfer rate of the interface, and (4) the number of pixels.
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The bottleneck for a fast and low-power image processing
pipeline is created by the need to read input data from the
sensor and transfer it to a processing unit. A major slow-
down in the frame rate occurs at the readout system when
the electric charges, generated by the photons, are converted
to digital values since all pixels should go through the read-
out system (El-Desouki et al., 2009). The readout system
also consumes 50-70% of the overall energy of the sensor
(Likamwa et al., 2016). To avoid this bottleneck, two mea-
sures are required: (1) processing data in analog form to avoid
ADC readout delay and energy cost such that the data size
is reduced post-processing, and (2) minimizing the amount
of data going through the readout system. In other words,
data needs to be processed in analog form, on the vision sen-
sor chip, immediately after the data is captured—and, as a
result, the volume of data transferred to the host needs to be
reduced.

Our focus is on vision-based algorithms for estimating
camera pose, such as visual odometry (VO) and Visual
Simultaneous Localisation and Mapping (VSLAM). Accu-
rately estimating pose is crucial for scene understanding and
these algorithms benefit from operating at high frame rates.
Firstly, by capturing images with a shorter exposure time
than normal, motion blur is significantly reduced. Secondly,
with smaller inter-frame motion, the optimisation problem
becomes easier, leading to faster convergence (Handa et al.,
2012).

Despite the benefits of high frame rates, most state-of-the-
art algorithms operate at a frame rate of 30-60 frames per
second (FPS), as naively increasing the frame rate increases
the volume of the data required to be processed. Even for
fast VO pipeline such as SVO (Forster et al., 2014, 2016),
the authors recommend a camera that operates at an effective
rate of 40–80 FPS.

In contrast, this paper seeks a way to utilise the advan-
tages of the high frame rate in visual odometry tasks. By
efficiently compressing the data from the image sensor to the
host device, we can reduce the amount of data transferred
and, as a result, the necessary processing power. We focus
primarily on feature extractionwhich occurs at the early stage
of the visual odometry/SLAM pipeline. For instance, ORB-
SLAM2 (Mur-Artal and Tardós, 2017) requires ∼11ms for
feature extraction for 640 × 480 RGB images. The ineffi-
ciency arises from the fact that the images are first transferred,
and then the features are extracted. Instead, is there a way to
stream just the relevant features from the image sensor?

Focal-planeSensor-processor (FPSP) is a general-purpose
vision chip technology which allows user-defined computa-
tion in a highly parallel manner on the focal plane of the
sensor at high frame rates (Zarándy, 2011). The low energy,
high frame rate nature of the FPSP, consuming only 1.23W
even when operating at its maximum effective frame rate
of 100,000 FPS (Carey et al., 2013b), makes the device

appealing for high-speedoperations. The key to the efficiency
of FPSPs—in terms of both power consumption and frame
rate—is the ability to reduce the amount of data transferred.
As opposed to traditional camera sensors, FPSPs can perform
image processing early in the pipeline to deliver a reduced
volume of data to later stages—in this paper, just binarised
corners and edges. This reduces both bandwidth and energy
consumption.

Similar to FPSPs, event cameras are another low power,
low latency camera technology, which output an asyn-
chronous stream of intensity changes (Lichtsteiner et al.,
2008). Many VO/VSLAM algorithms have been imple-
mented using event cameras (Gallego et al., 2020); however,
the bandwidth of data transferred is proportional to the
manoeuvre speed—fastmotion requiresmore processing.On
the other hand, an FPSP can be programmed to output data at
a consistent data rate, thus there is no significant fluctuation
in the amount of data transferred under any sort of motion.

The objective of this work is to investigate this approach
in estimating the pose of the FPSP in 3D space. The contri-
butions of our work are:

• A high frame rate camera pose estimation system given
some prior knowledge about the scene. Using AprilTags,
homography is computed using just the features extracted
by SCAMP-5.

• An efficient BInary feaTure Visual Odometry, BIT-VO,
the first 6-DoF visual odometry which utilises the FPSP.
Given no prior information about the scene, and using
no intensity information, our proposed method is able to
accurately track the pose at 300 FPS, even under difficult
situations where the state of the art monocular SLAM
fails.

• A novel binary-edge based descriptor, which is small and
is only 44-bit long. Using noisy features computed on the
focal plane of the SCAMP-5 image sensor, our system
can track keypoints using this binary descriptor.

• Extensive evaluation of our systemagainstmeasurements
from a motion capture system, including difficult sce-
narios such as violently shaking the device 4-5 times a
second. Additionally, a comparison was made between
the system andORB-SLAM2while varying the exposure
time to demonstrate the advantage of a fast frame rate.

The remainder of the paper is organised as follows.
Section2 describes the background and SCAMP-5 FPSP.
Section3 presents a studywith a tag trackingwith SCAMP-5.
Section4 describes the VO algorithm in unknown environ-
ments. Section5 details our experimental results. Section6
presents the relatedwork. Finally, Sect. 7 concludes our work
and discusses directions for the future.
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Conventional Camera

SCAMP-5 FPSP

Fig. 1 Comparison of data utilisation in conventional VO algorithms
vs the algorithm proposed in this paper; (top row) in conventional VO
algorithms, intensity images captured by a conventional camera are used
for processing. (bottom row) Unlike the conventional algorithms, the
proposed VO algorithm utilises the computing power of the SCMAP-5

focal-plane sensor-processor arrays to extract binary edge and corner
features, at 300 FPS, and use them for VO. At such a high frame rate,
the edges are sharp and do not suffer from motion blur, even when the
camera moves fast. On a conventional camera, running at 20 FPS, such
motion results in blurry images (Color figure online)

2 Background

This section provides a background and literature review
on these topics: analog computation, vision sensors, and
SCAMP-5 FPSP.

2.1 Analog computation

In digital computing, multiple distinct binary signals (bits)
are used to represent a state or a number. In contrast, in
current-mode analog computing, the stored electrical poten-
tial is used to express a value, which can be read as electrical
current. The hardware needed to do arithmetic computation
on analog signals is considerably less than digital systems.
For instance, to add two analog values, currents are joined
from two sources representing the original values, while
in digital for two 8-bit numbers, an adder needs many
transistors—depending on circuit design, between 6 and 28
transistors are required per bit. However, analog computation
presents several challenges, including limited-range value
representation, limited numerical precision in computation,
circuit inaccuracies, noise leakage, and thermoelectric effect
(Amant et al., 2014). In the SCAMP-5 design used in this
work, values are represented as the charge stored on capac-
itors, which degrades over time. The algorithms must be
aware of the analog nature of the computation and should
be resilient to such noises.

2.2 Vision sensors

CCD (charge-coupled device) and CMOS (complementary
metal-oxide-semiconductor) are the two mainstream imag-
ing sensor technologies. In both sensors, the main building
blocks are: pixel array, readout system, and digital logic. The
pixel array converts photons to electric charges. The readout

system includes analog to digital conversion. Finally, the dig-
ital logic controls the system operation, such as timing and
driver. Of these three blocks, on most modern CMOS sen-
sors, the readout system consumes more than 50% of the
total sensor power (Likamwa et al., 2016), while the pixel
array accounts for a small fraction of the power consump-
tion (Kitamura et al., 2012). The ADC also creates a latency
bottleneck. These limitations motivate a new design where
analog processing is collocated with the pixel array, reducing
and/or eliminating the work to be done by the ADC. Focal-
plane sensor-processor Arrays (FPSPs) add a processor per
pixel, where it is possible to do some level of processing
before going through the ADC. Example FPSPs include
ACE400 (Dominguez-Castro et al., 1997), ACE16k (Linan
et al., 2002), MIPA4K (Poikonen et al., 2009), and SCAMP
(SIMD current-mode analog matrix processor) chips (Dudek
and Hicks, 2005), (Carey et al., 2013b). More details about
SCAMP-5 FPSP is presented in the next section.

2.3 SCAMP-5 FPSP

A conventional camera is a 2D array of light-sensitive ele-
ments, known as pixels. Focal-plane Sensor ProcessorArrays
(FPSP), also known as processor-per-pixel arrays (PPA) and
cellular-processor arrays (CPA), add a small processor per
pixel on the same die (Zarándy, 2011). SCAMP-5 (Dudek
and Hicks, 2005) is a 256×256 FPSP totaling 65,536 pixels.
Each pixel combines a photodiodewith a ProcessingElement
(PE). These PEs can execute an instruction simultaneously
on their local data, resulting in Single Instruction, Multiple
Data (SIMD) parallel processing.

Each PE has the ability to store local data using 7 analog
and131-bit registers, aswell as performsimple computations
such as logical and arithmetic operations. The arithmetic
operations are carried out in the analog domain directly on the

123



Autonomous Robots

analog registers, eliminating the need for digitisation (Carey
et al., 2013b). Processing in analog, with no digitisation,
accelerates the computation; however, this in turn introduces
limitations (Carey et al., 2013a). For instance, arithmetic
operations become noisy. Moreover, analog values, stored
on the registers, degrade gradually. After computation, data
can be read out in different forms such as coordinates,
binary frames, analog frames, or global data (e.g. regional
summation) (Dudek and Hicks, 2005). The device supports
event-readout for coordinate readout, where the cost – in time
and energy – is proportional to the number of events rather
than the image dimension. These features make it possible
to perform data reduction and implement coordinate-based
algorithms on the focal plane at frame rates much higher than
conventional cameras (Carey et al., 2013b).

Due to the small size of the sensor-processor chip, there
are limited resources available for each PE. One way to
deal with the limited number of registers is to have registers
shared among the pixel, but this will reduce the resolution
of the sensor (Martel et al., 2015). Further, the instruction
set is also constrained; only operations such as addition and
subtraction are available, and for example, there is no mul-
tiplication. Additionally, there is no central memory, and
the PEs can communicate data with their immediate adja-
cent pixels only. Though using this method, pixels far apart
from each other can communicate with each other, but this
is at the cost of losing the quality of data because every time
that data is copied from one pixel to another, the noise will
affect the data.Despite all these constraints, several computer
vision algorithms have been implemented on SCAMP-5
FPSP. Examples include FAST keypoint detection (Chen
et al., 2017a), 4 DoF visual odometry (McConville et al.
2020; Bose et al. 2017), (Debrunner et al., 2019), localisation
(Castillo-Elizalde et al., 2021), target tracking (Greatwood
et al. 2017; Liu et al. 2021), and depth estimation (Mar-
tel et al., 2017). However, the design and implementation
of complex algorithm for FPSP, such as 6 DoF VO/SLAM,
remains as challenging and open problems. There exist a few
algorithms aiming at running neural networks on SCAMP-5,
paving the way for visual odometry and SLAM algorithms
that utilise deep neural network. Examples include convo-
lutional neural networks (CNN) with approximated weights
(Wong et al. 2020; Debrunner et al. 2018; Stow et al. 2022b),
ternary weight CNNs (Bose et al., 2019), and binary weight
CNNs (Liu et al. 2020; Bose et al. 2020). Accelerating such
networks for on/near sensor implementations will benefit
not only odometry and SLAM applications, but also other
vision-based AI and robotic applications such as navigation
(Stow et al., 2022a). Therefore, developing fast and efficient
hardware, compiler, and software (Watanabe et al., 2014)
is becoming an active field for on/near sensor applications.
Recent trends for such accelerations are based on hardware
acceleration, e.g. processing-in-memory (Lin et al., 2018),

Feature Extraction

Data Transmission

Homography

Fig. 2 AprilTag localisation: Feature extraction are performed on FPSP
after applyingGaussian kernel to the image. The features are transmitted
to a digital processor. Features marked with green squares are used to
determine a perspective transformation (Color figure online)

ISSAC (Shafiee et al., 2016), Eyeriss (Chen et al., 2017b),
or limited-precision computations, e.g. MobileNet (Howard
et al., 2017), Minerva (Reagen et al., 2016).

3 Visual odometry against a knownmarker

With the potential of SCAMP-5 FPSP in fast and low-
power processing in robotics and other applications that
require tracking of objects or determining the pose of a cam-
era, this simple pipeline is a demonstration of how one can
easily perform tracking given prior knowledge of the scene.
The experiment is based on tag detection and tracking, i.e.
calculating a homography between consecutive frames. Here
we use AprilTags (Olson, 2011), visual fiducials designed
to be recognised easily, with applications in camera pose
estimation and multi-robot systems. Our goal is to design
a high-speed camera localisation system using AprilTags
that can be used for applications that require accurate and
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fast pose estimation. Our tag-based tracking is an alternative
approach which is much faster than conventional systems
and consumes very low energy, enabling other applications
in wearable devices with low power budget. The tag tracking
has the following main steps (Fig. 2):

• Feature Extraction: This block extracts all FAST fea-
tures (Rosten and Drummond, 2006) in a SIMD fashion
(Chen et al., 2017a). FAST features are used in many
computer vision application such as pose estimation and
image stitching. Prior to feature detection, the image is
convolved with Gaussian and Laplacian kernels in the
focal plane.

• DataTransmission: Only sparse FASTcorners are trans-
mitted to a digital microcontroller, next to the camera, for
further processing. Transmitting sparse data reduces the
latency of the pipeline.

• Homography: On the microcontroller, a simple feature-
density based algorithm was used to identify the tags in
the image. Given the features from two consecutive tags,
a homography is computed to recover the perspective
transformation between the two frames (Olson, 2011),
(Hartley and Zisserman, 2004). The pose of the cam-
era can then be calculated easily using the homography
(Malis and Vargas, 2007).

The tag detection runs at 402 Hz on SCAMP-5. This
includes the combined computation in the focal plane and
the accompanying microcontoller. The computation in the
focal plane runs at 1848 fps (including the Gaussian ker-
nel convolution and readout time for 300 features), and the
microcontroller here creates a bottleneck to compute the
homography. In fact, using a faster digital processor, would
enable a faster frame rate. The average energy used for a pair
of frames to compute the homography is 3.64 mJ.

A sequence of tracking data fromSCAMP-5was recorded
to compare the error of the homography computation
between a CPU based system (Intel Core i7-4712) and
SCAMP-5. The average reprojection error of the homog-
raphy implemented on SCAMP-5 is 0.381 pixels for 277
frames. The same metric for the complete digital system is
0.353 pixels, using the same feature selection threshold. This
indicates that by using the new architecture, faster computa-
tion at low power consumption is achieved, but at a cost of
minor accuracy loss due to the computations in analogue.

4 Visual odometry under unknown
environment

Ourmain contribution is a 6-DoFmonocular visual odom-
etry which operates in real-time at 300 FPS. An overview of
our system flow is summarised in Fig. 3. The initialisation

New Corner / Edge
Features

Last Corner / Edge
Features

Frame-to-Frame
Feature Tracking

Map-to-Frame
Feature Tracking

Map

Pose Estimation

Is Keyframe?

Triangulate Tracked
Points

Keyframe Insertion

Map Refinement

Get Next Frame

No Yes

SCAMP-5 FPSP

HOST DEVICE

Fig. 3 Tracking and Mapping pipeline. The pipeline runs on an FPSP
and a host device, minimising data flow from the sensor to host device
(Color figure online)

is omitted for simplicity. Feature extractions are performed
on SCAMP-5, while feature tracking and VO operates on
the host device which is, for example, a consumer-grade
laptop. The system exclusively operates on the binary edge
image and corner coordinates, without transferring any pixel
intensity information (as shown in Fig. 1). Despite using lim-
ited information, we demonstrate the feasibility of creating
a robust VO system against rapid motion.

4.1 Feature detection andmatching

This section outlines how features are detected on the FPSP
device, and how these features are matched against previous
ones on the host device.

4.1.1 Feature detection

The feature detection on the FPSP device involves using
the FAST keypoint detector and binary edge detector, which
are computed at a high frame rate of 330 FPS. An existing
implementation of FAST Keypoint Detector for SCAMP-5
(Chen et al., 2017a) is used, with the suppression of fea-
tures disabled due to the noisy analog computation. For edge
detection, the magnitude of the image gradient is thresh-
olded to find edges (Bose et al., 2017). For each frame, at
most 1000 corner features are detected and are read-out as
pixel coordinate using an event-readout. On contrary, the
whole 256 × 256 bit binary image is transferred for edge
features. In SCAMP-5, coordinates are expressed as an 8-bit
pair, hence, event-readouts are only efficient if the number of

123



Autonomous Robots

Fig. 4 Illustration of the effect of noisy analog computation. Between
two consecutive frames, many corners appear and disappear. The device
wasmounted on a tripod to ensure stability of the device across multiple
frames (Color figure online)
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Fig. 5 Descriptor sampling pattern. Different colours denote a different
ring, and indices correspond to the bit index (Color figure online)

events Nevents < 4096. This is only 6.25% of all the avail-
able pixels, and we found that in majority of the cases, edge
image exceeds this threshold.

4.1.2 Feature matching

Matching the corner features extracted from SCAMP-5
across multiple frames is challenging for two reasons: (a)
feature extraction suffers from noise in analog computation,
and (b) multiple features are extracted per visual corner. Due
to the noisy nature of analog computation, corners are not
repeatably extracted at every frame as shown in Fig. 4, result-
ing in incorrect data association if a naive method such as the
nearest neighbour is used for the feature matching. This is
problematic as incorrect data association degrades the accu-
racy and reliability of a visual odometry system. To address
this issue, we devise a novel binary descriptor which can be
used for feature matching.

4.1.3 Local binary descriptors from edges

We propose a feature descriptor that solely utilises local
binary edge information to establish reliable correspon-

dences across multiple feature frame. Our descriptor is
tiny—only 44-bit in length thus is space-efficient and is fast to
compute. Unlike other binary descriptors such as LBP (Ojala
et al., 2002), BRIEF (Calonder et al., 2010), and BRISK
(Leutenegger et al., 2011), we do not have access to the
image intensity information. Our approach involves form-
ing three independent rings {r1, r2, r3} around a corner of
interest, as depicted in Fig. 5, each containing a bit from the
corresponding pixel of the binary edge image. We use a 7x7
patch that can be stored in a single 64-bit unsigned integer,
making it possible to efficiently convert patch data to rings
using bitwise manipulation. To add a rotation invariance to
our descriptor, the orientation of each of the features are com-
puted. Assuming a coordinate frame with the origin set to the
corner feature of interest, the intensity gradient magnitude
G(x, y) (Rosin, 1999) is used to compute the orientation:

θ = tan−1

∑
x,y yG(x, y)

∑
x,y xG(x, y)

, (1)

where x, y are the coordinates of the 7 × 7 patch. Since the
gradient image is binarised, Eq. 1 is approximated by:

θ = tan−1

∑
x,y yB(x, y)

∑
x,y x B(x, y)

, (2)

where B(x, y) is 1 if image point (x, y) is classified as an
edge, and 0 otherwise. The rotation invariance is achieved by
bit-rotations of the rings independently (Ojala et al., 2002),
based on the orientation θ . At each ring, the number of bits
to rotate is determined by:

rotate_by(θ, r) = �θ · #r/360� (3)

where r ∈ {r1, r2, r3} and #r is length of the ring. The
descriptor d is computed by:

d = (r1 << (#r2 + #r3)) | (r2 << #r3) | r3 (4)

where<< operator is bit-wise shift, and | operator is bit-wise
or. The descriptors are compared against each other using the
Hamming distance, which is performed efficiently using SSE
instructions.Although our descriptors are not scale-invariant,
they are sufficient for small indoor environments.

4.1.4 Frame-to-framematching

The high frame rate of our system enables efficient frame-to-
frame feature matching. Given frames, {F1, . . . , Fn}, a local
neighbourhood around a feature in Fi is matched against fea-
tures in Fi+1. Similarly, features in Fi+1 are matched against
features in Fi+2. By following these matches, features in Fi
can be matched with features in any other frames, as long as

123



Autonomous Robots

they remain visible. As the frame rate of the camera is high,
inter-frame motion is small. By searching a small radius of
3 − 5 pixels, a feature which minimises the Hamming dis-
tance is selected as a candidate. If the descriptor distance
to the candidate exceeds a threshold, the candidate does not
form a match. In our implementation, we have empirically
chosen the threshold is to be 10.

4.1.5 Map-to-framematching

All of the visible map points are projected onto the image
plane to find correspondences. Again, only a small radius
is searched. Each map points stores multiple descriptors
as they are observed across multiple keypoints. Similar to
ORB-SLAM2 (Mur-Artal and Tardós, 2017), we select the
most descriptive descriptor for each map point by finding
the descriptor that minimises the median distance to all other
descriptors.

4.2 Visual odometry

This section summarises the implementation details of our
VO system; however, it is kept brief as it is very similar
to the standard VO systems like PTAM (Klein and Murray,
2007). Set of 3D map points of the scene is used to esti-
mate the pose of SCAMP-5 by minimising the reprojection
error. After every keyframe insertion, structure-only bundle
adjustment (Strasdat et al., 2012) is carried out to refine the
3D map. Both of these nonlinear problems are solved using
the Levenberg-Marquardt algorithm, which is implemented
using Ceres Solver (Agarwal et al., 2010). As the inter-frame
motion is small due to the high frame rate, the non-linear
optimisation converges quickly, usually requiring no more
than 10 iterations.

4.2.1 Bootstrapping

The bootstrapping process employs the 5-point algorithm
(Nistér, 2004) with RANSAC (Fischler and Bolles, 1981) to
obtain a relative pose estimate and triangulate the initial 3D
map. The reference frame features are tracked using frame-
to-frame tracking until sufficient disparities are obtained,
with disparities computed by taking the median of the fea-
tures’ pixel displacements. If the disparity is greater than
20 pixels, relative pose estimation and triangulation are
attempted. Triangulated 3D map points with a parallax of
fewer than 5 degrees or behind either of the two cameras are
removed from the map. The system is initialised once more
than 100 map points are successfully triangulated.

Fig. 6 Top:Estimatedx, y, z translations for “Long" sequence.Bottom:
Estimated x, y, z rotations for “Long" sequence. Solid lines show our
estimate and dotted line are the ground truth (Color figure online)

4.2.2 Keyframe selection

To determine which frames are suitable as keyframes, we
adopt a selection process similar to PTAM (Klein and Mur-
ray, 2007) and SVO (Forster et al., 2014), (Forster et al.,
2016). This process is based on the camera displacement rel-
ative to the depth of the scene. A frame is designated as a
keyframe if it meets the following criteria:

(a) at least 200 frames have elapsed since the previous
keyframe insertion,

(b) at least 50 features are tracked, and
(c) Euclidean distances between the current frame and all

the other keyframes are greater than 12% of the median
scene depth.

When a frame is selected as a keyframe, first, 2D-3D cor-
respondences are established through the projection of the
mappoints into the image plane, linking eachmappoint to the
keyframes that observed it. If some features have not yet been
triangulated, the Frame-to-Frame tracker is checked to see if
any matches satisfies the epipolar constraint. If fewer than 30
matches are found, brute-force matching of all the features
is performed between the current and the last keyframe. This
ensures that an adequate number of map points are generated
with every keyframe insertion.
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Table 1 Absolute Trajectory Error of different sequences, computed
using evo (Grupp, 2017). The total length of the trajectory, Root Mean
Square Error and Median Error is reported

Sequence Length[m] RMSE [m] Median [m]

Long 68.5 0.108 0.078

Rapid Shake 5.6 0.015 0.011

Jumping 32.9 0.056 0.040

Circle 38.3 0.128 0.084

Fig. 7 Top: Estimated x, y, z rotations for “Rapid Shake" sequence.
Bottom: Close-up view of rotation estimates for “Rapid Shake"
sequence. Solid lines show our estimate and dotted line are the ground
truth.Ourmethod is able to track rapid rotations accurately (Color figure
online)

5 Experiments

We have evaluated our proposed system against ground-
truth data from the Vicon motion capture system. The Vicon
motion capture system is a high quality motion tracking
system that is able to track the 6DoF motion of object,
via tracking markers attached to them, at very high rates
with submilimiter accuracy (Vicon, 1984). As our method
is a monocular VO, the estimated trajectory is scaled and
aligned to the ground truth data. Experiments have been
conducted with SCAMP-5 (Dudek and Hicks, 2005). Raw
intensity images are not recorded by SCAMP-5, because in
this case, SCAMP-5 would act as a conventional camera,
with a reduced frame rate. Thus, a direct comparison against
other VO/VSLAM using a monocular camera or SCAMP-5
is not possible. Instead, a webcamwas attached to SCAMP-5
to demonstrate that systems using a typical camera such as

Fig. 8 Top: Estimated x, y, z rotations for “Jumping" sequence. Bot-
tom: Estimated x, y, z rotations for “Jumping" sequence. Solid lines
show our estimate and dotted line are the ground truth. The pink region
indicates that the ORB-SLAM2 lost track due to rapid motion (Color
figure online)

ORB-SLAM2 (Mur-Artal and Tardós, 2017) lose track when
subject to dynamic motions. Field of view between the two
devices are different, hence, for fairness, best efforts were
made to ensure both devices observe the same scene. All
host computations were made on a laptop, with 4-core Intel
i7-6700HQ CPU at 2.60GHz. Mapping and tracking used
a single core, with visualisation, and communication with
SCAMP-5 using an extra core each.

Due to the nature of SCAMP-5, we cannot use existing
frame-by-frame video datasets for comparison. Thus, we
evaluate our system against 4 different recordings: Long,
Rapid Shake, Jumping, and Circle sequences. The test scene
consisted of typical tabletop objects such as desktop monitor
and books. Videos of the live running system is available on
the project page.1

5.1 Accuracy and robustness

The“Long” test sequence involves repeatedly traversing a
68.5m test area, with numerous features appearing and dis-

1 https://rmurai.co.uk/projects/BIT-VO/
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Fig. 9 Top:Estimated x, y, z translation for “Circle" sequence.Middle:
Estimated x, y, z rotations for “Circle" sequence. Solid lines show results
from using our proposed descriptor, while dotted lines used rotated
BRIEF. The estimated data x, y, z is plotted using red, green, blue
and the ground truth data x, y, z is plotted using purple, orange, cyan
respectively. Note rotations along z-axis wraps as full 360 degrees loops
are made. Bottom: Estimated 3D trajectory of “Circle" sequence using
our proposed method: our pipeline (in red), rotated BRIEF descriptors
(in green), and ground truth (in black) (Color figure online)

appearing from the view of SCAMP-5. The translation and
rotation of our system over time are depicted in Fig. 6.

We notice a small rotational drift along the z-axis; how-
ever, there is no other significant drift, with small RMSE
of 0.108m for the Absolute Trajectory Error (Sturm et al.,
2012) as summarised in Table 1. Similar to a 4-DoF VO for
SCAMP-5 (Bose et al., 2017), our system is able to track
violent rotations, as shown in Fig. 7. The system was sub-

Table 2 Absolute Trajectory Error comparison of using our proposed
descriptor and using rotatedBRIEF, computed using evo (Grupp, 2017).
The total length of the trajectory, Root Mean Square Error and Median
Error is reported

Descriptor Length[m] RMSE [m] Median [m]

Ours 38.3 0.128 0.084

Rotated BRIEF 38.3 0.123 0.107

ject to 4-5 shakes per second but was able to accurately track
rotations along all three axes.

5.2 Comparison against a 4-DoF algorithm

To the best of the authors’ knowledge, other than BIT-VO,
there is no other 6-DoF odometry algorithm using FPSPs.
However, we have designed an experiment to perform a com-
parison between BIT-VO and a 4 DoF algorithm described
in (Debrunner et al., 2019). To have a fair comparison, we
have constrained the motion of the BIT-VO. SCAMP-5 was
mounted on a Turtlebot Waffle Pi mobile robot. The robot
was exhibited yaw motions only. Because recording camera
frames is not possible, we repeated the motion and per-
formed live yaw estimation for both algorithms. The 4DoF
algorithm is based on tracking intensity values. BIT-VO is
based on tracking features. Feature-based odometry algo-
rithms in general are more robust than intensity tracking
based algorithms. The comparisons verify this hypothesis.
Figure 10-(top) shows the ground-truth and yaw angles esti-
mated via BIT-VO after the initialisation of the algorithm.
Figure 10-(bottom) shows the same using the 4-DoF algo-
rithm. From the graphs, it is evident the BIT-VO is able to
track better. The RMS tracking error for BIT-VO is 0.0063
radians (0.3621 deg), and the tracking error for the 4-DoF
algorithm is 0.1351 radians (7.7446 deg). To account for
variations in the motion of the robot, this experiment was
repeated five times. On average, the RMS for BIT-VO is
13.78× less than that of the 4 DoF algorithm.

5.3 Comparison against visual SLAM

In this section, we present the advantage of our high
frame rate VO, running at 300 FPS, compared with ORB-
SLAM2 (Mur-Artal and Tardós, 2017) running on images
coming from a webcam at 20 FPS, as well as an Intel
RealSense D445. For a fair comparison, in all runs, the
images were cropped to 256 × 256 pixels, to match the
resolution of SCAMP-5. One limitation when comparing
with SCAMP-5 is that it is not possible to record images
off SCAMP-5, as the processing is done on the chip. Any
attempt to save images will defy the purpose of the focal-
plane sensing/processing. Therefore, the images are saved
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Fig. 10 Comparison between BIT-VO and a 4-DoF tracking algorithm
on a constrained motion.Top:Ground-truth and estimates of yaw angle
using BIT-VO.Bottom:Ground-truth and estimates of yaw angle using
a 4-DoF tracking algorithm (Color figure online)

using the conventional camera that is the subject of the com-
parison. Figure 8 demonstrates that the camera undergoes
an aggressive translation in the z-direction, with a maximum
translation of 80cm, see seconds 42 to 48, solid blue line. This
“Jumping" motion, causes the ORB-SLAM2 to lose tracking
features when experimenting on the webcam. Figure 8 high-
lights this in pink. The corresponding images demonstrate
the motion blur caused by the jumping motion. SCAMP-5
survives the aggressive jumping motion.

Several experimentswere performed runningORB-SLAM2
on images captured with an Intel RealSense D455 camera –
state-of-the-art camera used in robotics and computer vision
application. D445 is a global shutter camera, hence, does not
suffer from rolling shutter affect. To have a fair compari-
son by accounting for the differences in the field of view and
lenses of D445 and SCAMP-5, the field of view of D445 was
reduced to the field of view of SCAMP-5. Then both cam-
eraswere taped together, such that they are both observing the
same scene. The exposure times of both cameraswere config-
ured to be the same, i.e. 4ms. At this low exposure, with rapid
motion, ORB-SLAM2 fails to track multiple times, despite
having sharp edge images. This is due to having less intensity
information. Figure 12 shows an intensity image and its edge
image captured via D445 at 4ms exposure. ORB-SLAM2 is
a complete SLAM algorithm with localisation and loop clo-
sure components, but BIT-VO is only an odomtery algorithm.

Fig. 11 Runtime breakdown of the system. Top: Comparison of the
processing time of our descriptor against rotated BRIEF. Middle:
Breakdown of the processing time required by our motion-estimation.
Bottom: Processing time per frame while running the system online
on different sequences. Note that the bottleneck is SCAMP-5, which
outputs features at 300 FPS (Color figure online)

Fig. 12 An intensity image (Left) and its edges Right captured via
D445 at 4ms exposure (Color figure online)

The qualitative experiment2 demonstrates thatORB-SLAM2
fails to track multiple time, while BIT-VO is able to provide
stable estimates.

5.4 Rotation invariance

The rotation invariance, presented in Sec. 4.1.3, helps to pro-
duce stable results. To verify this, we simply enabled and
disabled the rotation invariance and compared the results,
while doing pure role motion after initialisation of BIT-VO.
The video of the experiments demonstrates the qualitative
results3

2 https://youtu.be/P6DgSxd61iY
3 https://youtu.be/qPtt2LYzkQw
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5.5 Comparison against other descriptors

Another possible choice of descriptor would have been to
employ other binary descriptors like BRIEF (Calonder et al.,
2010) or BRISK (Leutenegger et al., 2011). However, these
methods construct the descriptor by comparing pixel inten-
sities. As a comparison to our approach, BRIEF descriptor
was modified by using XOR operation instead of pixel inten-
sity comparison. To achieve rotation invariance, we adopt the
same methodology as ORB (Rublee et al., 2011), where the
feature’s orientation is calculated using Eq. 2.

To compare our descriptor against BRIEF, we have
recorded the output features from SCAMP-5. The Vicon
room was explored in a circular motion while pointing the
camera towards the centre of the room. Amodified version of
256-bit long rotated BRIEF from OpenCV (Bradski, 2000)
was used for the experiments. Figure 9 shows that there are
no major differences in the two approaches, apart from 60s
onward where VO using rotated BRIEF fails. Bottom Fig. 9
depict the 3D trajectories of our approaches together with the
ground truth. We notice that there are high-frequency noises
present in our trajectories. The low resolution of SCAMP-5
camera means there is large round-off error in the pixel posi-
tion of the features. Futhermore, due to the noise present
in the analog computation of each frame, a different set
of corners is extracted for the same visual scene, which
leads to incorrect correspondences of the feature. This results
in a shaky trajectory. When the correct features are again
extracted, through descriptor matching, incorrect matches
are removed. Table 2 presents a comparison of the absolute
trajectory error using two different descriptors. To ensure a
fair comparison, measurements after 58 s were excluded for
rotated BRIEF, when it failed to track the trajectory. The
results show no significant difference in the tracking accu-
racy when using either descriptor. However, our descriptor
has a significant advantage in terms of computational effi-
ciency, as shown in Fig. 11. The runtime for computing the
descriptors per framewasmeasured offline over 10 iterations
for the “Circle” sequence for both our descriptor and rotated
BRIEF. The median runtime for our approach was more than
five times faster than rotated BRIEF.

5.6 Runtime evaluation

Breakdown of the runtime of the motion-estimation which
occurs on the host-device is provided in Fig. 11. The tim-
ing is measured offline over 10 iterations of the “Circle"
sequence. Our motion estimation is highly efficient, and
the median time required to estimate the pose is 1.10ms
when executed offline, which translates to a frame rate
of over 900 FPS. Currently, our system does not sepa-
rate map-refinement onto different thread during keyframe

insertion. The median of processing time for keyframe inser-
tion is 3.17ms, with 2.22ms, 3.98ms at 0.25, 0.75 quantile
respectively. The keyframe insertion combined with motion
estimation exceeds the time budget of 3.33ms when operat-
ing at 300 FPS. However the excess is resolved within one
or two frames. For latency-critical applications, it is possible
to offload the keyframe insertion onto a different thread. The
runtime of the different sequenceswhen operating the system
live is reported as well. We execute SCAMP-5 at 300 FPS,
not at full capacity of 330 FPS for stable frame rates. Execu-
tion of the feature extraction on SCAMP-5 is our bottleneck
which limits the overall frame rate of BIT-VO. The rest of the
pipeline is capable of running at a much higher frame rate,
thus, our approach is applicable to the next-generation FPSP
devices which may have much faster computation.

Finally, “Circle" sequence has the largest inter-quantile-
range, as it required more keyframe insertions when com-
pared to other sequences.

6 Related works: visual odometry using
unconventional vision sensors

While there are a few works utilizing FPSP for visual odom-
etry, there is none performing 6-DoF. Bose et al. proposed
a feature-based VO algorithm, estimating yaw, pitch, and
roll rotations, as well as the translation along the z-axis
(Bose et al., 2017). They first extract edge features and then
align them with a keyframe. The alignment is done via shift,
scale, and rotation operations, all performed on the sensor-
processor chip. The 4-DoF algorithm can run up to 1000 FPS,
under sufficient lighting. The algorithm later was extended
and deployed on a UAV (Greatwood et al., 2018). A similar
approach was used inMcConville et al. (2020). Debrunner et
al. proposed a VO algorithm, running at 400-500 FPS, capa-
ble of estimating yaw, pitch, and roll rotations in addition to
the translation along z-axis Debrunner et al. (2019). Their
method is a direct approach, using image intensity directly.
They divide the focal plane into tiles and estimate the optic
flow for each tile. The optic flow vectors are used to estimate
the 4-DoF motion using ordinary least squares. In summary,
the high-speed odometry in these 4-DoF algorithms has been
made possible by sensing and computing on the same chip.

Event cameras are also closely related to FPSPs, albeit
with the distinction that FPSPs can perform computation
on the chip. There has been a lot of research conducted on
odometry and tracking on event cameras. Kim et al. (2014),
Kim et al. (2016). Using just an event-stream, the algorithm
proposed in Rebecq et al. (2016) is capable of creating a
semi-dense 3Dmap and operating on aCPU in real-time. The
method works under challenging scenarios such as aggres-
sive motions and illumination changes. It is also possible to
augment the events with intensity values, by combining the

123



Autonomous Robots

hardware of event and conventional cameras (Brandli et al.,
2014b). The dynamic and active pixelVisionSensor (DAVIS)
(Brandli et al., 2014a) transfers not only the asynchronous
stream of events but the synchronously captured frames too.
Using DAVIS, Kueng et al. (2016) performs visual odome-
try by extracting features from the frames, and tracking the
features using the events through a variation of the Itera-
tive Closest Point. For a comprehensive review of the recent
developments regarding the algorithms on event cameras,
please refer to Gallego et al. (2020).

7 Conclusion

In this work, we demonstratedna novel visual odometry
algorithm for FPSPs used in robotics and computer vision
applications, that are constrained by power budget and
require very low latency. Examples of such applications
include self-driving cars, wearable devices, pervasive com-
puting, and IoT. We presented BIT-VO, which is capable
of performing VO at 300 FPS by using binary edges and
corners computed on the focal plane. Our system is simplis-
tic and minimal, yet it is sufficient to work in challenging
conditions, highlighting the advantage of operating at high
effective frame rates. In the proposed pipeline, a robust fea-
ture matching scheme using small 44-bit descriptors was
implemented. FPSP’s analog computation introduces noise
to the values, but the proposed method is able to distinguish
the noisy features. We demonstrated that by processing data
in the focal plane and limiting data movement only to impor-
tant features, we can increase the frame rate and reduce the
overall power consumption significantly while maintaining
an equivalent accuracy.

In future, we plan to incorporate a noise model for the
computation of the FPSP, to improve the accuracy of the algo-
rithms. One of the key challenges in working with FPSPs is
benchmarkingVO/VSLAMagainst conventionalmethods. If
full intensity images are recorded from an FPSP for bench-
marking purposes, the FPSP would not be able to operate at
its high frame rate. A possible solution is to create an auto-
mated system to repeat the exact same trajectory multiple
times.

This work will inform the design of future FPSP devices
with higher computational capability, light sensitivity and
pixel count. The programmable nature of the FPSP device,
in contrast to, for example, event cameras, offers the prospect
of higher accuracy and enhanced robustness through greater
adaptivity.
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