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Summary

We derive analytical solutions based on singular Green’s functions, which enable efficient com-
putations of scattering simulations or Floquet–Bloch dispersion relations for waves propagating
through an elastic plate, whose surface is patterned by periodic arrays of elastic beams. Our
methodology is versatile and allows us to solve a range of problems regarding arrangements
of multiple beams per primitive cell, over Bragg to deep-subwavelength scales; we cross-verify
against finite element numerical simulations to gain further confidence in our approach, which
relies upon the hypothesis of Euler–Bernoulli beam theory considerably simplifying continuity
conditions such that each beam can be replaced by point forces and moments applied to the neutral
plane of the plate. The representations of Green’s functions by Fourier series or Fourier transforms
readily follows, yielding rapid and accurate analytical schemes. The accuracy and flexibility of
our solutions are demonstrated by engineering topologically non-trivial states, from primitive
cells with broken spatial symmetries, following the phononic analogue of the Quantum Valley
Hall Effect. Topologically protected states are produced and coexist along: interfaces between
adjoining chiral-mirrored bulk media, and edges between one such chiral bulk and the surrounding
bare elastic plate, allowing topological circuits to be designed with robust waveguiding. Our
topologically protected interfacial states correspond to zero-line modes, and our topological
edgestates are produced in accordance with the bulk-edge correspondence. These topologically
non-trivial states exist within near flexural resonances of the constituent beams of the phononic
crystal and hence can be tuned into a deep-subwavelength regime.

1. Introduction

Identifying degeneracies, such as locally dispersionless band structures meeting at a point, allows
periodic structured media to be constructed with remarkable propagation properties, for example,
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164 R. WILTSHAW ET AL.

extraordinary transmission (1–3), cloaking (4, 5), interfacial states (6–23, 67), edge states (24–26),
one-way propagation (24, 27–31) or a near-zero refractive index (4)—all of which can be engineered
in a variety of physical settings. This has led to extremely active communities, predominantly in
photonics (32, 33) and phononics (34, 35), extensively researching designs and devices that take
advantage of this power to manipulate waves.

The characteristic length scale of fundamental units forming a crystalline media can have a variety
of scales depending on the frequencies of propagating waves to be controlled. Optical properties of
nanomaterials/nanocomposites, for example, the lustre attained by potteries and glasses (36) can be
explained through a modern photonic crystal framework. Nature provides examples ranging from
microphotonic crystals forming the iridescent colours of opals and certain butterfly species (37), to
geophysical scales where forests have been shown to act as phononic crystals capable of controlling
seismic waves (38, 39) by manipulating surface Rayleigh waves via subwavelength band gaps. The
focus of (38) was on compressional resonances of trees of O(10) Hz, providing strong attenuation
of waves with wavelengths 5–10 times that of the lattice spacing of the forest.

Herein, we design phononic crystals formed from periodic arrays of Euler–Bernoulli beams atop
a thin elastic plate. We consider topological arrangements of beams within the cell that repeats,
and demonstrate the existence of symmetry protected Dirac cones which coincide with the flexural
resonances of the beams; these degeneracies, once gapped, produce very low O(0.1) Hz frequency
band gaps allowing the manipulation of waves whose wavelengths are 35–40 times that of the lattice
spacing. Our designs produce topologically non-trivial states which are capable of confining modes
along various interfaces and edges, following the phononic analogue of the QVHE. The topological
protection produced by our designs show a variety of conventional and new properties at the deep-
subwavelength scale.

The valleytronics community (6–23, 67) often use the terms interfacial and edge states
interchangeably. For clarity, we will refer to states existing along the interface between two chiral-
mirrored bulk media as interfacial states. The states which live on the edge of the crystal, between
the bulk derived from one such chiral pair and the free space, will be referred to as edge states.
We demonstrate how these topologically protected interfacial and edge states co-exist within the
subwavelength band gap of the underlying bulk media, and how modal conversion or preservation
allows modes to efficiently navigate corners or split energy between the interfaces and edges of
our phononic crystal designs—as shown later in Figs 9, 13 and 14. The near-resonant behaviour of
our topologically distinct valleys allows us to tune our topologically protected states into a deep-
subwavelength regime, where we demonstrate the interfacial and edge modes are sufficiently robust
to navigate gentle and sharp (40) corners, with minimal backscatter, due to the combination of low-
frequency resonances (25, 41) and topological protection (24, 42); our edgemodes either propagate
around the entire perimeter of the crystal, or hybridise into corner states (43–45) which readily shed
energy into the surrounding free space.

Recent years have witnessed an increasing popularity of metamaterial concepts, based on local
resonance phenomenon, to control the propagation of electromagnetic (46), acoustic (35, 47) and
elastic waves (48) in artificially engineered media. In elasticity, resonant structures formed from
arrays of beams yield superior characteristics for broadband wave focusing (49), mode conversion
(50–52) and energy harvesting (53–55). Novel works combining resonance and topological
protection (41, 56–63) achieve confinement of modes at the subwavelength scale—for instance,
(41, 56–63) consider zero-line modes, the robustness of which is demonstrated by introducing bends
(8, 9, 13, 15, 17, 22, 42, 64–66) or splitting energy (68–70).
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ANALYTICAL SOLUTIONS FOR BLOCH WAVES IN RESONANT PHONONIC CRYSTALS 165

In a phononic setting, long waves can have negative impacts; for example, those who live in
flats or in close proximity to large scale transport infrastructure will often complain of long-
wave disturbances, generated from low-frequency changes to pressure (for example, music with
deep bass) or vibrations from passing vehicles. Long-wave disturbances also have the potential
to be highly damaging. Naturally occurring seismic events are well known to cause large scale,
irreparable damage to sensitive infrastructure; for example, earthquakes whose epicentre could be
considered far field (50, 71) are of particular concern to densely populated urban environments.
There is considerable research around mechanisms and devices for low-frequency long waves to be
manipulated and steered, with resonant phononic crystals showing great promise in areas of seismic
and phononic passive protection.

The extraordinary properties exhibited by our phononic crystal designs require symmetry-based
arguments following the approach of valleytronics (6, 72–75). We design our media through
Floquet–Bloch (76, 77) analysis, allowing the dispersion relation of doubly periodic structured
medium to be deduced from eigensolutions through primitive cells with Floquet–Bloch boundary
conditions. Once the underlying structure has been suitably engineered, we test the localisation of our
topologically non-trivial states by considering: eigenproblems formed from supercells (8) of these
fundamental units, or scattering simulations of large finite collections of these cells. These problems
can be solved by general finite element method (FEM) analysis; however, when considering arrays
of beams attached to plates, the number of nodes required to discretise the problem leads to
computationally expensive results with long computation times. Nevertheless, FEM analysis leads to
accurate results and is by far the most popular method considered by the meta-material community.

We aim to develop much faster and efficient methods based on singular Green’s functions.
Our solutions are cross-verified against FEM computations and are shown to be highly accurate,
efficient and flexible enough to consider a variety of Floquet–Bloch eigensolutions and scattering
simulations. Codes based on these analytical solutions are fast to run, thereby expediting the process
of modifying the underlying media to produce the required dispersion. Moreover, once the crystal
has been designed, we need to test its effectiveness in achieving the desired effect through direct
scattering simulations of finite arrangements of scatterers under incidence. Analytically considering
scatterers placed in fields with infinite domains allows for efficient computations. For instance,
the scattering simulations in Figs 9, 13 and 14 are merely plots of our analytical solutions; not
only do they contain O(104) beams judiciously placed atop the elastic plate, each beam scatters
the field such that the Sommerfeld radiation condition is satisfied at infinity. Moreover, each
computation took O(10) minutes for a single frequency, even near resonance. Perfectly matched
layers can be used within FEM computations to replicate these infinite domains and perform similar
scattering simulations; however, the computational time and power required for such results would
be considerably larger than our analysis.

The aims of this study are to outline all necessary analytical nuances to deal with singular
Green’s functions, allowing simple codes to be constructed such that Floquet–Bloch eigensolutions
or scattering simulations can be computed for phononic crystals built from arrangements of objects
that can resonate. In section 2, we derive the singular Green’s functions for one beam atop an elastic
plate of infinite expanse; we extend this solution to consider dispersion relations and eigenmodes
for Floquet–Bloch wave propagation through periodic infinite arrays of beams atop a plate in
section 3, and scattering simulations for finite collections of beams atop an elastic plate under
incident forcing in section 4. The solutions of these problems are determined either by solving
an algebraic eigenvalue problem, or by computing the inverse of a matrix. We test our analytical
solutions against FEM computations in section 5. Finally in section 6, we demonstrate the simplicity,
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166 R. WILTSHAW ET AL.

accuracy and efficiency of our analytically constructed codes by designing a variety of topologically
protected states, existing within deep-subwavelength topological band gaps of the underlying bulk
medium. We also test these designs by performing large scale scattering simulations in which our
phononic crystals, formed by finite arrays of these primitive cells, are subject to scattering from
some incident source of energy.

2. Singular Green’s functions in elasticity

Consider a thin elastic plate of infinite extent, whose surface is patterned by some doubly periodic
arrangement of beams as shown in Fig. 1. The beams considered are of circular cross-section, centred
in the x − y plane on x = X and of radius r = ε, where we define the radial position r = |x − X|.

The Green’s functions, whilst providing flexible, efficient and accurate results are not simple
to utilise—they contain trigonometric and hyperbolic functions (78) of frequency and singularities
(42, 79–82) as one approaches the centre of a scatterer. Through careful consideration, the sin-
gularities present within Green’s functions can be removed allowing semi-analytical computations
to follow; direct scattering simulations utilising generalised Foldy’s method (42, 83–85) remove
such singularities by examining inner limits of the external field for every scatterer. Moreover,
conditionally convergent Fourier series can be rearranged in a novel way such that singularities
present in the field naturally cancel from the problem (85).

(a) (b) (c)

Fig. 1 A doubly periodic arrangement of beams patterning the surface of an elastic plate. Here, (a) shows the
media in physical space, where the coordinate system is chosen such that the neutral plane of the elastic plate
is spanned by ex and ey Cartesian basis vectors with ez out of the page. The media is formed by a tessellation
of a primitive cell, defined by the primitive lattice vectors α1 and α2. In (b), the simplest arrangement of one
beam per primitive cell is shown. (c) The point forces and moments arising from the compressional (F) and
shear (V) forces, and moments (M) within a beam interacting with the plate are shown.
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ANALYTICAL SOLUTIONS FOR BLOCH WAVES IN RESONANT PHONONIC CRYSTALS 167

Our Green’s functions are related to those studied in (79, 80), where gyro-topped massless
beams were analytically considered atop massless plates. Their Green’s functions introduce similar
logarithmic singularities to ours; however, their analysis was not leveraged to consider scattering
simulations nor does it satisfy the Sommerfeld radiation condition in the far field. Similar to
Colquitt et al. (78), we consider beams with mass, whose resonances manipulate waves at the
subwavelength scale. In (78), only 1D arrays of beams were considered for quasi-two-dimensional
(2D) media, whereas we consider 2D arrays of beams for quasi-three-dimensional (3D) media. The
Green’s functions of (78) were constructed from the Poisson summation formula (86) of the Fourier
transformed medium; the infinite sums were analytically evaluated and the problem was shown to
simplify to finding the zeros of a 3 × 3 determinant. The solutions to the quasi-2D problem remain
well behaved even near resonance and elegantly determine the dispersive properties of the media.

Unfortunately, the quasi-3D problem is not so well behaved. To analytically model the problem,
we decompose the displacement fields following Euler–Bernoulli beam theory and classical thin
plate theories (87, 88), in which respective solutions vary only about the neutral axis or planes of the
beams and plates. The Green’s functions satisfying the time-harmonic problem contain logarithmic
(79, 80, 85) and algebraic (42) singularities in the field as one approaches the centre of a beam along
the neutral plane.

The singular Green’s functions in Carta et al. (79, 80) are regularised in a manner as proposed
by (82, 89) (and later in a periodic setting by (90, 91)), where one may assume sections of the
plate beneath the beam are rigid and hence described by some unknown (finite) translation and
rotation. The lattice sums present in (79, 80) ignore the singular behaviour of the Green’s functions
by regularising the solutions on the boundary of the scatterer at r = ε. We consider the same
regularisation but include in-plane motion and derive schemes in which the Green’s functions behave
as the singular expressions they are in the near field, and scatter energy such that the Sommerfeld
radiation condition is satisfied in the far field.

We apply the approach developed by Schnitzer and Craster (85) to solve the Floquet–Bloch
dispersion problem or direct scattering problems, for arrangements of scatterers which singularly
perturb a wavefield. The point forcing approximations for the isotropic case in (85) was extended to
consider anisotropic forcing in (42). We replace the singular asymptotic matching framework, which
considered Dirichlet (85) or Neumann (42) inclusions within a Helmholtz wavefield, by assuming the
displacement field at the junction (79, 80) between a beam and plate follows the hypothesis of Euler–
Bernoulli beam theory (87), and hence acts like a rigid disk. We opt to simplify the analysis using
the aforementioned regularisation procedure instead of considering a formal matching procedure,
since a variety of asymptotic regimes exist (92).

The static problem considered in (82) is appropriate when considering the simplified junction
conditions for compressional and flexural beam motion coupling into flexural plate motion.1

Examining the singular asymptotics of our dynamic Green’s function (see (2.8)), we find agreement
with (82) where our dipole term wdipole arising from the moment behaves like

wdipole = eθ · M(�)

8D

[
2

π

(
log

r
√

�

2
+ γE − 1

2

)
− i

2

]
r + O(r3), as r → 0, (2.1)

1 Refer to §63 and w = w0 + w1 in (82) for assumptions and conditions on the boundary of rigid scatterers under forcing, and
§75 for derivation of the asymptotics of the Green’s functions for point forces (w0) and moments (w1) applied to the surface
of an elastic plate.
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168 R. WILTSHAW ET AL.

where γE is the Euler–Mascheroni constant. Therefore, the moment term produces a logarithmic
singularity in the gradient of the flexural displacement field of the plate as r → 0, the components
of which are required for continuity of rotation. The related works of Mead (93) and Mace (94) also
consider the quasi-3D analogue of (78) by employing integral transform techniques and applying the
Poisson summation formula to derive the solution. The treatment of the summations within (93) and
(94) simply truncate the conditionally convergent series and hence ignore the singular asymptotics
of ∇wdipole; as a result, their solutions are only appropriate away from flexural dominated regimes
of motion within the beams.

2.1 Doubly periodic arrangements of beams atop an elastic plate

We model the beams using Euler–Bernoulli beam theory—see appendix section A (A.7) and (A.8)
satisfying the boundary conditions (A.9) and (A.11) for details. The forces and moments arising
from the beams, applied to the surface of the plate, may be analytically expressed in terms of
unknown plate quantities; henceforth, we approximate each beam by point monopole and dipole
source terms, whose coefficients are carefully determined to satisfy conservation of displacements,
rotations, forces and moments where each beam meets the plate. For any arbitrary doubly periodic
arrangement of beams, we consider N primitive cells, each of which containing P beams. We
introduce I = 1, . . . , N and J = 1, . . . , P to enumerate quantities belonging to the IJth beam by
subscript IJ, and follow (79, 80, 95) for the convention of moments arising from the beams.

The displacement field of the plate is modelled using classical thin plate theories for plate bending
and extension, and is regarded as a superposition of: Kirchhoff–Love plate theory for flexural motion
arising from pure bending deformations (87, 88), and a 2D elastic field in plane stress arising from
purely longitudinal deformations in the plane of the plate (88, 96). Refer to the appendix A (A.2) for
the assumed form of the displacement field, and (A.5) and (A.6) for the expressions governing the
displacement field of the plate. The plate is assumed to be sufficiently thin such that the Kirchhoff–
Love plate theory is valid and that the purely longitudinal deformations are uniform across the
plate thickness. Hence, the longitudinal deformations result in a plane stress field which does not
contribute to plate bending. We consider the problem in the time-harmonic regime. Using the point
force and moment approximations of the beams, the following dimensionless system governs the
displacement field of the plate

[
∇4 − �2

]
w = 1

D

N∑
I=1

P∑
J=1

LFIJδ(x − XIJ) − MIJ ∧ ∇δ(x − XIJ), (2.2)

[
∇2 + �2h2

12L2

]
φ = 12L

ρ�2h3

1

α2

N∑
I=1

P∑
J=1

∇ · VIJδ(x − XIJ), (2.3)

[
∇2 + �2h2

12L2

α2

β2

]
ψ = − 12L

ρ�2h3

1

α2

N∑
I=1

P∑
J=1

∇ ∧ VIJδ(x − XIJ). (2.4)

Here, we respectively denote w = wez, φ and ψ = ψez as the dimensionless out-of-plane
displacement, and the dilational and shear potentials in the x–y plane. The dilational and shear
components of VIJ coupling into φ and ψ have been determined by inspection of equation (A.6) as

in (97). Additionally, in (2.2)–(2.4), we denote L as some characteristic length scale, �2 = ω2 ρhL4

D
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the dimensionless frequency parameter, α2 = 4μ(λ+μ)
ρ(λ+2μ) = E

ρ(1−ν2)
and β2 = μ

ρ = 1
2

E
ρ(1+ν) denote

the dilational (P) and shear (S) wave speeds (squared) for elastic waves propagating in the plane
of a thin elastic plate in plane stress (88, 96). We define dimensionless quantities α̂2 = ρ̂

Ê
D

ρhL2 and

β̂4 = ρ̂Ŝ
ÊÎ

D
ρh within the beams. λ and μ denote the Lamè constants of the plate of thickness h, flexural

rigidity D = Eh3

12(1−ν2)
and Poisson’s ratio ν. Further, we denote ρ as the density, E Young’s Modulus,

S cross-sectional area and I the second moment of area of either the plate (regular quantities) or the
beams (hatted quantities). We denote εIJ as the dimensionless cross-sectional radius of the beams.
Throughout, ∇ = ex

∂
∂x + ey

∂
∂y denotes the in-plane 2D gradient and x = xex + yey denotes the

in-plane position. Lastly, δ(x) denotes the Dirac delta function.
We work in a regime where εIJ � min(|α1|, |α2|) and εIJ� � 1. The asymptotic limit we consider

is εIJ → 0, and we assume frequencies are not too high, and hence wavelengths not too small, such
that the asymptotics in Appendix C holds and any expansions of Bessel or Hankel functions remain
accurate. The thickness of the plate h is considered small such that the classical thin plate theories
used are valid, however h is not of importance within our asymptotics (compare the parameters and
analytical solutions of Figs 2 and 3 for instance).

The source terms FIJ , MIJ and VIJ are given by the forces and moments at the base of the beams.
They are deduced by solving the equations governing displacement in the beams, satisfying free-
end conditions at the free end and continuity of displacements and rotations at the other. Hence, by
solving (A.7) and (A.8) subject to the boundary conditions (A.9) and (A.11), and by utilising these
solutions within the following definitions of forces and moments within the beams (87, 88) we find

F(�) = −ŜÊ
∂ŵ
∂z

∣∣∣
z= h

2L

= ŜÊα̂� tan(α̂��̂)w(X), (2.5)

M(�) = Ê Î

L

∂

∂z

[
∇ ∧ û

]∣∣∣
z= h

2L

=

= Ê Î

L

β̂
√

�
[
∇ ∧ w

]∣∣∣
x=X

⎧⎪⎨⎪⎩
h

2L
β̂
√

� sin β̂
√

��̂ tanh β̂
√

��̂

+2
(

sin β̂
√

��̂ − cos β̂
√

��̂ tanh β̂
√

��̂
)
⎫⎪⎬⎪⎭

cos β̂
√

��̂ + sech β̂
√

��̂
,

(2.6)

V(�) = − Ê Î

L2

∂3û
∂z3

∣∣∣
z= h

2L

=

= − Ê Î

L2

β̂2�
[
∇w

]∣∣∣
x=X

⎧⎪⎨⎪⎩
2 sin β̂

√
��̂ tanh β̂

√
��̂

+ h

2L
β̂
√

�
(

cos β̂
√

��̂ tanh β̂
√

��̂ + sin β̂
√

��̂
)
⎫⎪⎬⎪⎭

cos β̂
√

��̂ + sech β̂
√

��̂
.

(2.7)

In the above, for brevity, we shall assume P = 1 knowing that generalisations to consider arbitrary
P are trivial for the techniques we use; subsequently, it is sufficient to consider the contribution
from the x = Xth beam and drop any subscript IJ and any summations over IJ. These subscripts
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170 R. WILTSHAW ET AL.

Fig. 2 Comparisons of the dispersion curves computed from the eigenvalue problem (D.2) (blue dots) and
FEM computations (black crosses) for the primitive cell given in panels (g) (top view) and (h) (side view). Here,
h = 0.1 m and the dimensionless parameters (scaled with L) are: α1 = ex, α2 = ey, ε = 0.05, �̂ = 15. (a), (b)
and (c) Consider cases 1, 2 and 3 respectively, (d) shows a zoomed in section of the flexural resonances from
(b) were grey dashed lines in (a)–(d) represents the flexural (lowest), shear (middle) and dilational (highest)
free space ‘light’ lines. Here, ω = ω(κ) is plotted throughout the irreducible Brillouin zone (f). The green and
red lines correspond to the resonances from (5.1) and (5.2), respectively. (e) The relative error found when
comparing the frequencies highlighted in (b), comparing red circles with green squares on the lower and higher
branches, and how this error evolves changing only ε for analogous eigenmodes.
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ANALYTICAL SOLUTIONS FOR BLOCH WAVES IN RESONANT PHONONIC CRYSTALS 171

Fig. 3 Same as Fig. 2, but with h = 0.01 m and the red lines corresponding to resonances from (5.3). Here,
(d) and (e) show zoomed in sections of the resonances from (b).

and sums will be reinstated as required to consider the contributions of more beams. In (2.6), we
require u(X) = 0 to satisfy continuity of moments, otherwise the bending moment coupling into the
plate cannot be attributed to pure plate bending. If u(X) is assumed arbitrary then the moment M
conserved within the plate is given by (A.13), which has contributions from the purely longitudinal
plate motion and hence contradicts the assumptions within the applied thin plate theory. The system
(2.2)–(2.4) can be solved for N finite or infinite, depending on how one treats the unknowns. In
section 3, we treat N as infinite and, through the use of Floquet–Bloch analysis, express the solution
through the fundamental cell (where I = 1) as a polynomial eigenvalue problem. In section 4, we
treat N as finite and express the solution for direct scattering simulations in the unbounded x space,
utilising generalised Foldy’s method.
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172 R. WILTSHAW ET AL.

The Green’s functions satisfying (2.2)–(2.4) may be determined using the Fourier transform (42,
87, 98), where we find

w = L

D
F(�)

[
H0(r

√
�) − H0(ir

√
�)
] i

8�
− eθ · M(�)

D

[
iH1(r

√
�) + H1(ir

√
�)
] 1

8
√

�
, (2.8)

φ = i
√

3

2

er · V(�)

ρ�h2α2
H1(

�h

2L
√

3
r), (2.9)

ψ =
√

3

2i

eθ · V(�)

ρ�h2αβ
H1(

α

β

�h

2L
√

3
r). (2.10)

Here, we denote Hn(x) = H(1)
n (x) to be Hankel functions of the first kind and nth order—we suppress

the superscript (1) since we only consider Hankel functions of the first kind, those which correspond
to scattered waves outgoing at infinity and satisfy the Sommerfeld radiation condition. Note (2.8)
contains logarithmically singular terms within its gradient, as in (2.1). Since the components of
∇w are required in the forcing terms (2.6) and (2.7), we must examine ∇w in the limit as r → 0.
Information about the gradients of the field are often required when determining eigensolutions
or direct scattering from small anisotropic scatterers (42, 83). In (42), the method of matched
asymptotic expansions (85, 99, 100) was applied to construct ‘inner’ and ‘outer’ expansions, each
expansion of which has an associated region of validity and these solutions were matched where
such regions overlap.

When considering a thin beam attached to a thin elastic plate, many parameters could be small
(ε, h, �) or large (source terms (2.6)–(2.7) approaching resonance), meaning many different
asymptotic regimes could exist and complicate a formal asymptotic matching procedure. However,
the behaviour of the scatterer for r ≤ ε can be approximated by using simplified junction conditions
(79, 80). Subsequently, we no longer require an inner solution, and can simply equate the Fourier
series and transform representations of the Green’s functions as r → 0; similarly to (42), the singular
asymptotics of both of these representations are identical and hence cancel, allowing an eigenvalue
problem to be constructed to determine dispersion. This approach is also naturally applicable within
Foldy’s method to determine scattering from finite collections of scatterers.

When deriving (A.7) and (A.8), two main assumptions have been made about beam motion.
Firstly, the analytical solution completely ignores rotary inertia and hence neglects torsion about
the axis of the beam—in the low frequency regime, torsional deformations are expected to be
negligible. To test this assumption, both rotary inertia and torsional beam deformations are included
within the FEM model that we compare our analytical solutions to (see section 5). Secondly, shear
deformations within beams are also neglected; that is, cross-sections perpendicular to the neutral
axis of the undeformed problem will always remain plane and perpendicular to the neutral axis
during deformation (87). Under these assumptions, an asymptotically formal inner solution may be
replaced by considering the beam-plate intersection as rigid (82, 89–91). We subsequently alter our
matching procedure in (42) to regularise the problem in a similar fashion to (79, 80), by introducing

a rigid disk characterised by a finite, but unknown, displacement w(X) and rotation
[
∇ ∧ w

]∣∣∣
x=X

w = w(X) − reθ ·
([

∇ ∧ w
]∣∣∣

x=X

)
for r ≤ ε, (2.11)

u = 0 for r ≤ ε. (2.12)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/76/2/163/7110965 by Im

perial C
ollege London Library user on 23 August 2023



ANALYTICAL SOLUTIONS FOR BLOCH WAVES IN RESONANT PHONONIC CRYSTALS 173

Condition (2.12) arises from assuming both u(X) = 0 and (A.12), as required for consistency from
(2.5)–(2.7) and the continuity condition (A.12).

2.2 Green’s functions incorporating boundary conditions

The Green’s functions (2.8)–(2.10) satisfy the forced equations (2.2)–(2.4); their current form
ignores the physical behaviour of the actual scatterer about r = ε. Hence, we require from (2.11)

w
∣∣∣
r=ε

= w(X) − εeθ ·
([

∇ ∧ w
]∣∣∣

x=X

)
, (2.13)

∂w

∂r

∣∣∣
r=ε

= −eθ ·
([

∇ ∧ w
]∣∣∣

x=X

)
. (2.14)

Furthermore, our potentials need to be consistent with (2.12), and hence we set

φ

∣∣∣
r=ε

= �(X), ψ

∣∣∣
r=ε

= �(X). (2.15)

Currently, (2.8)–(2.10) solve the inhomogeneous equations (2.2)–(2.4). We consider the complemen-
tary solutions to the homogeneous part of these equations where, for a certain choice of constants,
the above conditions are satisfied and a solution with the correct behaviour as r → ∞ constructed.
We make the assumption that the complementary solution quickly decays to zero, therefore in the far
field only (2.8)–(2.10) remain and hence the Sommerfeld radiation condition is satisfied. Consider

w = wP + wC, φ = φP + φC, ψ = ψP + ψC, (2.16)

where subscript P and C terms respectively denote the particular and complementary solutions of
(2.2)–(2.4). We assume the complementary solutions are finite and will behave as follows, provided
r is small

wC = A0J0(
√

�r) + B0J0(i
√

�r) + eθ · AJ1(
√

�r) + eθ · BJ1(i
√

�r), (2.17)

φC = CJ0

(
�h

2L
√

3
r

)
+ er · CJ1

(
�h

2L
√

3
r

)
, (2.18)

ψC = DJ0

(
α

β

�h

2L
√

3
r

)
+ eθ · DJ1

(
α

β

�h

2L
√

3
r

)
. (2.19)

The coefficients of the above are chosen such that (2.13)–(2.15) are satisfied and are given in
Appendix B. For r > ε these complementary solutions are ignored–they should be thought of as
standing waves existing only in the vicinity of the scatterer, in order to apply conditions (2.13)–(2.15)
and not invalidate the Sommerfeld radiation condition at infinity (42).

3. An eigenvalue problem for periodic infinite arrays

In this section, we assume N from equations (2.2)–(2.4) is infinite and that the centroid of each
primitive cell, in Fig. 1, coincides with the vertices of the following 2D Bravais lattice

R = nα1 + mα2, (3.1)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/76/2/163/7110965 by Im

perial C
ollege London Library user on 23 August 2023



174 R. WILTSHAW ET AL.

for arbitrary integers n and m. We also define β1 and β2 as a basis in reciprocal space, satisfying the
following orthogonality condition

αi · β j = 2πδij for i, j = 1, 2. (3.2)

Here, δij denotes the Kronecker delta function. Similarly, we can define the reciprocal lattice vector

G = nβ1 + mβ2, (3.3)

again for arbitrary integers n and m. By Bloch’s theorem (76, 77), waves propagating through the
periodic medium satisfy the Floquet–Bloch conditions

w = W(x) exp(iκ · x), φ = �(x) exp(iκ · x), ψ = �(x) exp(iκ · x), (3.4)

where W(x) = W(x + R), �(x) = �(x + R), �(x) = �(x + R). (3.5)

Here, κ is the Bloch-wavevector and W, � and � are periodic functions whose fundamental period
coincides with that of the lattice (3.1). The solutions of W, � and � are, therefore, naturally
expressed by a Fourier series

W(x) =
∑
G

WG exp(iG · x), �(x) =
∑
G

�G exp(iG · x), �(x) =
∑
G

�G exp(iG · x),

(3.6)
where WG, �G and �G denote Fourier coefficients of the expanded variables. We seek solutions to
w, φ and ψ in the form of (3.4). The forces and moments in (2.5)–(2.7) can also be expressed using
equation (3.4), as follows

F(�, κ) = Fp(�) exp(iκ ·X), M(�, κ) = Mp(�, κ) exp(iκ ·X), V(�, κ) = Vp(�, κ) exp(iκ ·X).
(3.7)

Also, A0, B0, A, B, C and D (see Appendix B) can be expressed in terms of equation (3.4) as

A0 = A0p exp(iκ · X), (3.8)

similarly for the other coefficients in (2.17)–(2.19). Utilising (3.7) and (3.6) within (2.2)–(2.4),
multiplying by exp(−iKG′ · x) and integrating over the fundamental cell one finds, by orthogonality[

(KG · KG)2 − �2
]
WG = 1

A D

[
LFp − iMp ∧ KG

]
exp(−iG · X), (3.9)

iA α2 ρ�2h3

12L

[
KG · KG − �2h2

12L2

]
�G = KG · Vp exp(−iG · X), (3.10)

iA α2 ρ�2h3

12L

[
KG · KG − �2h2

12L2

α2

β2

]
�G = −KG ∧ Vp exp(−iG · X). (3.11)

Here, A is the physical area of the fundamental cell and KG = κ + G. Notably, the exp(iκ · X) terms
cancel from these equations governing the Fourier coefficients. Say we wish to include M modes
within (3.6), we have expressed our linear system of differential equations as a system of equations
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and unknowns. The unknowns in our system (3.9)–(3.11) from w are W(X), ∂xW(X), ∂yW(X) and
WGi for i = 1, . . . M; similar unknowns exist for φ and ψ (without gradient terms), and we currently
have a total of 3M equations for 3M + 5P unknowns. The other 5P equations come from inserting
(3.9)–(3.11) into the Fourier expanded versions of (3.4) and examining w, ∇w, φ and ψ all in the
limit as x → X, or equivalently r → 0, for each beam in the fundamental cell.

3.1 The limit of Green’s functions as r → 0

The Green’s functions (2.8)–(2.10) and (3.4) are two different representations of our solution. The
singular asymptotics of expressions (2.9)–(2.10) and ∇(2.8) have at best log(r), and at worst 1

r
behaviour as r → 0. Similarly, the series representations (inserting (3.6) in (3.4)) are conditionally
convergent, where at x = X the exponential terms stop oscillating and the series diverge. However,
as r → 0, both the Fourier series and Hankel function representations of our solutions will diverge
to the same value, and singularities in r can be carefully arranged such that they cancel.

We introduce some R 
 1 denoting a truncation radius in Fourier space containing M modes, and
split the Fourier series expansions as follows:

w = wtr + wres, φ = φtr + φres, ψ = ψtr + ψres, (3.12)

here wtr =
∑

|G|<R

WG exp(iKG · x), wres =
∑

|G|>R

WG exp(iKG · x). (3.13)

The series for φ and ψ are split up in an identical fashion to expression (3.13), where subscript tr
and res terms respectively denote the truncated and residual portion of the series before and after the
truncation position R. Examining limr→0 exp(−iκ · x)·(3.12) we find

lim
r→0

∑
|G|<R

WG exp(iG · x) = W(X), (3.14)

indeed since the limr→0 wres = 0. Additionally, we consider the following, all in the limit as r → 0

exp(−iκ · x)∇
[
w − wres

]
= exp(−iκ · x)∇wtr, (3.15)

exp(−iκ · x)
[
φ − φres

]
= exp(−iκ · x)φtr, (3.16)

exp(−iκ · x)
[
ψ − ψres

]
= exp(−iκ · x)ψtr. (3.17)

By substituting the required expressions from (3.12), (2.16) and appendix section C into the above,
expanding the Bessel (and integral Bessel (C.1)) functions and Hankel functions as r → 0, and
assuming rR � 1, the following expressions can be found

lim
r→0

ex ·
∑

|G|<R

iKGWG exp(iG · x) = −ey · Mp

4πD

[
log

εR

2
+ γE − 1

]
+ Wx(X) + iκ1W(X), (3.18)

lim
r→0

ey ·
∑

|G|<R

iKGWG exp(iG · x) = ex · Mp

4πD

[
log

εR

2
+ γE − 1

]
+ Wy(X) + iκ2W(X), (3.19)
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lim
r→0

ρ�2h3

12L

∑
|G|<R

�G exp(iG · x) = 1

α2

[Vp · κ

4iπ

]
+ ρ�2h3

12L
�(X), (3.20)

lim
r→0

ρ�2h3

12L

∑
|G|<R

�G exp(iG · x) = 1

α2

[ i(κ ∧ Vp) · ez

4π

]
+ ρ�2h3

12L
�(X). (3.21)

Both components of κ = κ(�) are required, hence we introduce the following change of variables

κ = η
[

cos θηex + sin θηey

]
+ ζ . (3.22)

Here, ζ can be set to shift the origin of the wavevector to any convenient (high-symmetry) point
within the Brillouin zone, θη set to consider any direction along said point, and η subsequently
determined as the eigenvalue of such a problem for any frequency considered. Rewriting equations
(3.9)–(3.11), (3.14), (3.18)–(3.21) in terms of η, one finds the following polynomial eigenvalue
problem whose solution yields all unknowns in the system[

η4A(�) + η3B(�) + η2C(�) + ηD(�) + E(�)
]
� = 0. (3.23)

Here, A, B, . . ., E denote matrices of dimension (3M + 5P) × (3M + 5P) containing various
trigonometric and hyperbolic functions of �. The eigenvalue η is inserted into (3.22) and hence
one finds κ = κ(�) by looping through all required frequencies. The eigenvector � contains the
(3M + 5P) unknowns WG’s, �G’s, �G’s, W(X)’s, Wx(X)’s, Wy(X)’s, �(X)’s, �(X)’s.

For the asymptotic analysis within Appendix C to remain accurate, one needs to ensure R and
hence M is sufficiently large. Appropriate magnitudes of M depend on the problem one wishes
to consider. Practically speaking, M being in the tens or hundreds gives sufficiently small errors
when considering Floquet–Bloch dispersion through the fundamental cell; however, for ribbon or
interfacial problems containing many cells (as in Figs 8 (e) or 12 (e)), O(M) = 103 is required.
In such cases, the polynomial eigenvalue problem of dimension (3M + 5P) × (3M + 5P) will be
computationally expensive to solve. However, utilising (101), the polynomial eigenvalue problem
(3.23) can be expressed as an algebraic eigenvalue problem whose eigenvalues and eigenvectors can
be computed quickly and cheaply, as shown in the Appendix section D.

4. The generalised Foldy problem: a finite arrangement of scatterers under incident
forcing

Consider a phononic crystal formed from a finite portion of the infinitely repeating periodic media
examined in section 3. Provided this finite section is large enough, the Floquet–Bloch waves, whose
dispersion relation is a priori known by the analysis of section 3, still persist throughout the medium
and hence we know how energy propagates within the crystal. Propagation about the edge of such
media can also be determined (33) by considering conserved quantities of κ .

In this section, we assume N from equations (2.2)–(2.4) is finite. We now consider the crystal
under incidence, and derive the solutions describing the displacement fields over the entire space.
In this section, we re-write the summations present in (2.2)–(2.4) as follows[

∇4 − �2
]

w = w̃inc(x) + 1

D

m∑
j=1

LFjδ(x − Xj) − Mj ∧ ∇δ(x − Xj), (4.1)
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∇2 + �2h2

12L2

]
φ = φ̃inc(x) + 12L

ρ�2h3

1

α2

m∑
j=1

∇ · Vjδ(x − Xj), (4.2)

[
∇2 + �2h2

12L2

α2

β2

]
ψ = ψ̃ inc(x) − 12L

ρ�2h3

1

α2

m∑
j=1

∇ ∧ Vjδ(x − Xj), (4.3)

Here, index j enumerates the m = NP total number of beams forming the phononic crystal.
Additionally, w̃inc, φ̃inc and ψ̃ inc denotes some forcing incident upon the overall structure, the
Green’s functions of which we respectively denote winc, φinc and ψ inc. Herein, we consider a purely
out-of-plane monopole point source of strength �inc, centred on x = Xinc, by setting

w̃inc = �incδ(x − Xinc)ez, and φ̃inc(x) = ψ̃inc(x) = 0. (4.4)

The Green’s functions for the above source are given by

winc(x) = i

8�
�inc

[
H0(|x − Xinc|

√
�) − H0(i|x − Xinc|

√
�)
]
, φinc = ψinc = 0. (4.5)

We proceed by re-writing the forcing terms from (2.5) to (2.7), as follows

Fj(�) = Fj�w(Xj)ez, Mj = Mj
√

�(∇ ∧ w)
∣∣∣
x=Xj

, Vj = Vj�∇w
∣∣∣
x=Xj

, (4.6)

where

Fj = ŜjÊjα̂j tan(α̂j��̂j), (4.7)

Mj = Êj Îj

L

β̂j

{
h

2L β̂j
√

� sin β̂j
√

��̂j tanh β̂j
√

��̂j + 2
(

sin β̂j
√

��̂j − cos β̂j
√

��̂j tanh β̂j
√

��̂j

)}
cos β̂j

√
��̂j + sech β̂j

√
��̂j

,

(4.8)

Vj = − Êj Îj

L2

β̂2
j

{
2 sin β̂j

√
��̂j tanh β̂j

√
��̂j + h

2L β̂j
√

�
(

cos β̂j
√

��̂j tanh β̂j
√

��̂j + sin β̂j
√

��̂j

)}
cos β̂j

√
��̂j + sech β̂j

√
��̂j

.

(4.9)

The Green’s functions governing the total displacement fields throughout the structure are as follows

w(x) = winc(x)

+
m∑

j=1

{
iL

8D
Fjw(Xj)

[
H0(rj

√
�) − H0(irj

√
�)
]

−eθ j · (∇ ∧ w)
∣∣∣
x=Xj

Mj

8D

[
iH1(rj

√
�) + H1(irj

√
�)
]}

, (4.10)
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φ(x) = φinc(x) +
m∑

j=1

iVj
√

3

2ρh2α2
er j · ∇w

∣∣∣
x=Xj

H1

(
�h

2L
√

3
rj

)
, (4.11)

ψ(x) = ψinc(x) −
m∑

j=1

iVj
√

3

2ρh2αβ
eθ j · ∇w

∣∣∣
x=Xj

H1

(
α

β

�h

2L
√

3
rj

)
. (4.12)

Here, er j and eθ j are the local radial polar coordinate basis vectors centred on x = Xj and rj =
|x − Xj|. We apply Foldy’s method (102) in which singularities, as rj → 0, are naturally removed
by examining the external field. Foldy’s hypothesis (102) states that the ‘strength’ of the scattered
field is proportional to the external field; the constant of proportionality, known as the scattering
coefficient, is typically leveraged to determine all unknowns in the system—as in (42, 84). The
approach taken by Schnitzer and Craster (85) is much more straightforward and requires examination
of the external field via matched asymptotic analysis, revealing a system of linear equations readily
solved by inverting a matrix.

Similarly to (85), we opt not to consider scattering coefficients but the external field, as defined
in Appendix E (E.5)–(E.7), in the limit as xn → 0. On one hand, inserting (4.10)–(4.12) into
(E.5)–(E.7) we find the contribution of the nth scatter removed and the summations, as xn → 0,
are now finite everywhere. On the other hand, we note the singular asymptotics of the field as
rn → 0 will be dominated by the nth scatterer, whose presence causes the singularities to occur—in
this limit, we make use of equation (2.16) where, as rn → 0, the various finite Bessel function
terms are retained in order to satisfy the conditions (2.13)–(2.15). Equating these two ways of
examining the external fields, as rn → 0, one finds from (E.5), (E.6), (E.7), ex · ∇ (E.5) and
ey · ∇ (E.5):

[
1 − iL

8D
Fn

]
w(Xn) −

m∑
j=1
j�=n

iL

8D
Fjw(Xj)

[
H0(rnj

√
�) − H0(irnj

√
�)
]

−
m∑

j=1
j�=n

Mj

8D

{
cos θnjwx(Xj) + sin θnjwy(Xj)

}[
iH1(rnj

√
�) + H1(irnj

√
�)
]

= winc(Xn), (4.13)

φ(Xn) −
m∑

j=1
j�=n

iVj
√

3

2ρh2α2

{
cos θnjwx(Xj) + sin θnjwy(Xj)

}
H1

(
�h

2L
√

3
rnj

)
= φinc(Xn), (4.14)

ψ(Xn) −
m∑

j=1
j�=n

Vj
√

3

2iρh2αβ

{
cos θnjwy(Xj) − sin θnjwx(Xj)

}
H1

(
α

β

�h

2L
√

3
rnj

)
= ψinc(Xn).

(4.15)
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wx(Xn) + Mn
√

�

8D

[
2

π

(
log

εn
√

�

2
+ γE − 1

)
− i

2

]
wx(Xn)

−
m∑

j=1
j�=n

cos θnj
iL

8D
Fjw(Xj)i

√
�
[
H1(irnj

√
�) + iH1(rnj

√
�)
]

−
m∑

j=1
j�=n

i cos θnjMj
√

�

8D

{
cos θnjwx(Xj)

+ sin θnjwy(Xj)

}
⎡⎣H0(irnj

√
�) + H0(rnj

√
�)

−H2(irnj
√

�) − H2(rnj
√

�)

⎤⎦
2

+
m∑

j=1
j�=n

sin θnj

rnj
Mj

{
cos θnjwy(Xj) − sin θnjwx(Xj)

} 1

8D

[
H1(irnj

√
�) + iH1(rnj

√
�)
]

=

= (ex · ∇winc)|x=Xn ,

(4.16)

wy(Xn) + Mn
√

�

8D

[
2

π

(
log

εn
√

�

2
+ γE − 1

)
− i

2

]
wy(Xn)

−
m∑

j=1
j�=n

sin θnj
iL

8D
Fjw(Xj)i

√
�
[
H1(irnj

√
�) + iH1(rnj

√
�)
]

−
m∑

j=1
j�=n

i sin θnjMj
√

�

8D

{
cos θnjwx(Xj)

+ sin θnjwy(Xj)

}
⎡⎣H0(irnj

√
�) + H0(rnj

√
�)

−H2(irnj
√

�) − H2(rnj
√

�)

⎤⎦
2

−
m∑

j=1
j�=n

cos θnj

rnj
Mj

{
cos θnjwy(Xj) − sin θnjwx(Xj)

} 1

8D

[
H1(irnj

√
�) + iH1(rnj

√
�)
]

=

= (ey · ∇winc)|x=Xn ,

(4.17)

Here, θnj denotes the angle between the nth and jth scatterer, centred on Xj and rnj = |Xn − Xj|.
To find the above, Bessel functions of the first kind were asymptotically expanded as rnn → 0.
Similarly, complementary coefficients (B.1)–(B.2) are expanded assuming εn is a small parameter.
Successively considering n to take the values from 1 to m, (4.13)–(4.17) represent a system of 5m
equations for 5m unknowns and are factorised as follows

G	 = 	inc. (4.18)
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Table 1 The material parameters (51, 104) used within Figs 2–13 modelling aluminium. We set
ρ̂, Ê and ν̂ to equal their unhatted counterparts within the proceeding computations. Any other

required parameters will be given in the appropriate captions.

Parameter Value

L 1 m
ρ 2710 kg m−3

E 69 × 109 Pa
ν 0.33

Here, G represents the 5m × 5m matrix formed from (4.13)–(4.17), 	 a vector containing our
unknowns w(Xn), ∂xw(Xn), ∂yw(Xn), φ(Xn) and ψ(Xn) and finally 	inc a vector containing
our known incident source winc(Xn), ∂xwinc(Xn), ∂ywinc(Xn), φinc(Xn) and ψinc(Xn). Once 	 is
determined, the total displacement field is calculated everywhere in the phononic crystal by use of
(4.10)–(4.12). The inversion of G is simple and accurate unless near resonance, where matrices have
poor condition numbers. As in Appendix D, we opt to use the minimum norm least-squares solution
to compute 	 near resonance.

5. FEM verification of the analytical solutions

In this section, we demonstrate the reliability of our analytical solutions by comparing our
eigenvalues from (D.2) to FEM simulations using ABAQUS® software. The FEM simulations
consider beams of finite radius, as in Fig. 1(b), to test: the accuracy of the assumed point force
and moment approximation of the beams in (2.2)–(2.4), and the simplified junction conditions
for r = ε on the plate (2.11)–(2.12). The FEM simulations model: the plate using 4-node doubly
curved general-purpose shell elements and the beam using 2-node cubic beam elements. At the
beam-plate interface, kinematic continuity conditions are applied which consider all components of
displacement and rotation within the FEM models. Notably, the FEM analysis includes rotary inertia
and torsional deformations within the beams.

Provided the dispersion relation computed from the eigenvalue problem (D.2) is accurate, our
generalised Foldy solution (4.18) must also be accurate, as these two solutions are nothing more
than the same Green’s function written in a slightly different fashion. Additionally, one can observe
whether the direct scattering solution has the same dispersive properties as predicted by the
eigenvalue problem, further demonstrating the relationship of the two solutions.

Moreover, we test the model by removing various terms from the system (2.2)–(2.4), and hence
various rows and columns from the matrices forming (4.18) or (D.2), to consider the following cases:

• Case 1—purely compressional forcing from the beam coupling into purely flexural motion from
the plate, only (2.2) with the moment term MIJ removed governs this case.

• Case 2—compressional and flexural forcing from the beam coupling into purely flexural motion
from the plate, hence only (2.2) is included.

• Case 3—the full system (2.2)–(2.4).
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Here, cases 1, 2 and 3 contain compressional resonances, arising through F and given by

α̂��̂ =
(

q − 1

2

)
π for q ∈ Z. (5.1)

Cases 2 and 3 also contain flexural resonances arising from M and V. Figures 2 and 3 reveal two
different regimes exist for the flexural resonances within the system, depending on the ratio of ε to
h. As in Colquitt et al. (78), when the plate is thicker than the beam, the resonances coincide with
the natural frequencies of the beam satisfying clamped-free boundary conditions applied at either
end—the clamped-free natural frequencies satisfy (78, 87)

cos β̂
√

��̂ + sech β̂
√

��̂ = 0. (5.2)

When the plate is thinner than the beam, we observe that the resonances shift to coincide with the
natural frequencies of the pinned-free beam, where � satisfies (87)

sin β̂
√

��̂ − cos β̂
√

��̂ tanh β̂
√

��̂ = 0. (5.3)

The roots arising from equation (5.2) coincide with the denominator terms of M and V, hence
when approaching a resonance from (5.2), terms within (D.2) or (4.18) will become large and
cause poorly conditioned matrices. However, any matrix manipulations either involve computing
the minimum norm least-squares solution or the solution to an algebraic eigenvalue problem; we
find these methods to be sufficiently numerically stable for our needs even when the matrices are
poorly conditioned—as corroborated by the observed shift in flexural resonances from (5.2) to (5.3),
as in Figs 2–3, where our analytical solutions indeed match the FEM computations.

The boundary conditions applied on the beams (A.9) and (A.11) are the same regardless of relative
thickness of the beam to the plate, and in both cases the source terms (2.2)–(2.4) are given by the
same expressions with dependencies on both ε and h. The behaviour of the resonances produced
by the system naturally shifts depending on the relative size of ε to h, to the cases (5.2) or (5.3); in
any case, all components of displacements, rotations, forces and moments are conserved between
the plate and the beams (at x = X and z = h

2L ). The behaviour of the beam is dependent upon the
ratio of ε

h as to whether, at the base of the beams, displacements and rotations are dominant (as
in the case of (5.2)) or displacements and moments are dominant (as in the case of (5.3)). This is
consistent with (103, 105), who considered the effect of the assumed continuity conditions on the
resonances induced by beams atop an elastic half-space. Therein (103, 105), unimodal solutions
were compared with the asymptotic framework developed by (103, 106) to consider the interaction
between Rayleigh waves and resonant arrays atop the elastic media.

5.1 Verification for one beam per primitive cell

Referring to Figs 2 and 3, we observe that the branches from our eigensolutions match those
provided by the 3D FEM computations, but slightly differ from case to case. From Fig. 2(a), we see
the eigenmodes from Case 1 correspond to strongly perturbed flexural Kirchhoff–Love free-space
modes, where the compressional resonances introduce large band gaps within the band structure.
Comparing Case 1 to 2, we see M weakly perturbs the Case 1 eigenmodes and introduces narrow
band gaps at resonance (5.2). Comparing Case 2 to 3, we see the addition of weakly perturbed ‘light
lines’ corresponding to presence of dilational and shear waves now included in the system.
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The effect observed by the flexural beam motion is regime dependent. For instance, clamped-
free resonances (5.2) introduce very flat resonant bands which cut through any case 1 modes and
create narrow bandgaps—as in Fig. 2(d) and Colquitt et al. (78). In such clamped-free regimes,
the dispersive nature of the system is dominated by compressional beam motion and hence Case 1
provides sufficient accuracy provided one operates away from flexural resonances. As for pinned-
free resonances (5.3), their presence introduces nearly flat bands which are not associated with the
generation of bandgaps—as in Fig. 3(d) and (e). When the beams motion is in the pinned-free regime
we observe only the first Case 1 branch is dominated by compressional beam motion, and for higher
frequencies the flexural beam motion cannot be ignored. Moreover, in the pinned-free regime shown
in Fig. 3, the FEM computations show that for frequencies higher than the Kirchhoff–Love ‘light’
lines torsional deformations within the beams become important, and our analytical solutions no
longer match the FEM computations.

The error plot in Fig. 2(e) shows that, when torsional deformations within the beams can
be neglected, the error of our analytical solution scales with ε2—as expected since these terms
are disregarded from our complementary coefficients (see Appendix B); the higher frequency
eigenmode happens to be more accurate than the lower one due to the proximity of the flexural
resonance affecting the condition numbers of our matrices. Lastly, as ε� approaches unity, the
asymptotics of the solution breakdown and are no longer valid.

Figure 4 compares the isofrequency contours (Case 2) to scattering simulations from the
generalised Foldy solution (Case 3). We see that solutions from the closely related Green’s functions
(D.2) and (4.18) show one and the same solution—one over physical space and the other in reciprocal
space. Additionally, when considering low frequency flexural modes propagating in the plate, Case
2 provides sufficient accuracy. In the following sections, we consider purely out-of-plane incident
sources and operate at low frequencies such that Case 2 eigensolutions (D.2) or scattering solutions
(4.18) provide sufficient accuracy.

5.2 Multiple beams per primitive cell

Extending the eigenvalue problem (D.2) to consider any P beams per primitive cell is straight-
forward, by modifying (3.9)–(3.11) to sum over the contribution from each beam in the cell.
Additionally, one considers (3.14), (3.18)–(3.21) in the limit as r1J → 0 for every J = 1, . . . , P;
these asymptotic expressions remain unchanged, other than reinstating indices, since the Jth object
is assumed dominant as r1J → 0. Figure 5 shows that our scheme, from (D.2) Case 2, is capable of
determining the dispersion relations for systems containing multiple beams per cell—the comparison
to the FEM dispersion curves is excellent beneath 50 Hz. Above this frequency, observe the branches
from (D.2) start to deviate from the correct values due to the asymptotics breaking down.

6. Deep-subwavelength topologically protected states

Broken degeneracies produce states either classed as topologically trivial or non-trivial, depending
on whether the initial degeneracy was induced trivially, solely because of the underlying lattice, or
induced from non-trivial spacial symmetries within primitive cells. For instance, the topologically
trivial edge states considered by Torrent et al. (25) are induced from breaking a trivial degeneracy
through the introduction of resonance.

In this section, we design topologically non-trivial states arising from deliberate broken
symmetries within primitive cells. Our precise approach follows that of valleytronics, where we
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ANALYTICAL SOLUTIONS FOR BLOCH WAVES IN RESONANT PHONONIC CRYSTALS 183

Fig. 4 Comparisons between isofrequency contours computed from (D.2) Case 2 and our generalised Foldy
solution (4.18) Case 3. (a) and (b) take the parameters from Fig. 2, the isofrequency contours and scattering
simulations were calculated at � = 9 (ω = 221.0287 Hz) for a purely out-of-plane monopole incident source,
setting �inc = 1 within (4.4). (c) and (d) are identical to (a) and (b), other than setting α1 = cos( π

6 )ex +sin( π
6 )ey

and � = 7.5 (ω = 184.1906 Hz). The colour bar refers to the normalised real parts of the total out-of-plane
displacement field of the plate within (a) and (c), where the location of beams is shown by the small black dots.
The first and irreducible Brillouin zone are plotted in grey in (b) and (d).

purposefully break symmetry induced Dirac cones leaving behind pairs of time-reversal-symmetry
related valleys. These valleys, or band-structures with locally quadratic curvature surrounding
a topologically non-trivial bandgap, produce topological vortex states (107) which undergo a
topological phase transition from beneath to above such a bandgap. This transition provides the
valley states with a corresponding pseudospin of opposite chirality, which produces efficient
‘conduction’, or energy propagation, along the interfaces or edges thus generating the topologically
protected interfacial or edge states (108). The generation of these topologically protected states
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184 R. WILTSHAW ET AL.

Fig. 5 Comparisons of the dispersion curves, in (a), computed from the eigenvalue problem (D.2) Case 2
(blue dots) and FEM computations (black crosses); here, the fundamental cell is shown in (c) (top view) and
(d) (side view) where h = 0.05 m and the dimensionless parameters (again scaled with L) are α1 = ex, α2 = ey,

X1J = 0.125
[
cos( 2π (J−1)

3 + π
2 )ex + sin( 2π (J−1)

3 + π
2 )ey

]
, �̂11 = 4.50, �̂12 = �̂13 = 11.25, ε1J = 0.035, for

J = 1, 2, 3. Here, we plot ω = ω(κ) throughout the irreducible Brillouin zone (b). The green and red lines
correspond to the resonances from (5.1) (higher frequency) and (5.2), respectively.

within the topological bulk bandgaps is related to the QVHE, and is demonstrated pictorially in
Fig. 2 of (6). These topologically non-trivial modes correspond to interfacial (8, 42, 79, 109) and
edge (24, 110–112) states with strong localisation and robustness due to the topological protection.

Topological quantities such as the Chern number or Berry curvature (44, 68) characterise the
direction of such vortex states, and can be used to identify the topological phase transition which
occurs between the lower and upper valleys of a symmetry broken degeneracy (44). Suitably
engineered chiral-mirrored pairs, as shown in Fig. 6(a) and (c), also undergo a topological phase
transition and have chiral-mirrored Berry curvatures and hence chiral-mirrored vortex states. Placing
two such media together, as in Fig. 6(b) and (d) results in interfaces in which Berry curvatures of
opposite sign overlap. Consequently, topologically protected interfacial states emerge (72, 113).
These valley Hall edge states are known as Zero Line Modes (ZLMs).

Chiral induced interfacial states can be created without the use of topology, by breaking time-
reversal-symmetry. However, active methods are required in a phononic setting. For instance, Carta
et al. (79, 80) consider gyro-topped beams affixed to elastic plates and demonstrate robust one-way
interfacial states between media with counter-rotating chiral flux. Wang et al. (24) melds the ideas
surrounding topology and actively inducing chirality to consider a symmetry induced degeneracy
actively broken, by gyricity, generating robust one-way edgestates. Within photonics, externally
applied magnetic fields allow time-reversal-symmetry to be passively broken to generate states with
a single chirality, as in (26, 27, 114, 115).

Our topologically non-trivial states exist passively and are not restricted to one-way propagation.
Our symmetry protected Dirac cones coalesce with the flexural resonances of the constituent
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(a) (b) (c) (d)

Fig. 6 The associated Berry curvature from σv symmetry breaking for chiral-mirrored pairs of primitive
cells (68, 70). Here, grey and yellow cells represent any chiral-mirrored primitive cell pairs, derived from
perturbations which break the σv symmetries contained within the unperturbed cells; the vertical σv symmetries
are plotted by the purple dashed lines for square and hexagonal lattices in (a) and (c), respectively. Exemplar
sign Berry curvatures, for the bands bounding any symmetry-protected gapped degeneracy (by σv breaking),
are denoted and referring to locations with opposite (non-zero) sign in Berry curvature. (b) and (d) show
how the Berry curvature interacts when two such chiral-mirrored pairs are joined at an interface, where and

denote locations at which and overlap, creating the topologically protected interfacial states known as
zero line modes.

beams, and hence can be tuned to a required frequency by simply changing the parameters of the
beams; moreover, they can be tuned into a deep-subwavelength regime, to frequencies far lower
than traditional Bragg scattering (63). However, the near-resonant degeneracies lie on flat bands
corresponding to slow sound within the wave spectrum; once these degeneracies are broken, they
result in narrow-band energy gaps which still generate topologically non-trivial states. Additional
graded rainbow (116) effects could be applied to increase the effective band gap of the media.

The polynomial eigenvalue problem (3.23) is formed from Hermitian matrices; subsequently
(117), we expect bands to vary continuously unless approaching a degeneracy. Our focus is on
vertical σv symmetries for triangular arrangements of beams in both square and hexagonal primitive
cells, which induce symmetry protected degeneracies along the XM path in square lattices (70) and
are guaranteed at the KK′ high symmetry points in hexagonal lattices (6, 40)—provided the structure
in physical space has the σv symmetries shown in Fig. 6. Breaking the σv symmetries gaps such
degeneracies and leads to the QVHE.

These chiral states exist because of the topological properties derived from the bulk (118, 119).
One could consider the bulk-boundary (or bulk-edge) correspondence (120, 121) applicable to
interfaces or edges, between two distinct bulk media, provided (68) opposite sign topological
quantities are not projected onto the same point (and hence the bulk-boundary correspondence
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186 R. WILTSHAW ET AL.

cannot account for the creation of ZLMs as given in Fig. 6). In such cases, the bulk-boundary
correspondence correlates non-zero Chern numbers (and hence Berry curvature) to the existence
of topologically protected interfacial and edge states.

The works of Ochiai (118, 122, 123), Ochiai et al. (110) and Yao et al. (124) remark that
edges, between a media with topologically induced chiral states and the free space, will inherit
the non-trivial topological properties of the bulk media. Provided modes cannot propagate into
the surrounding free-space, they can be localised by one-sided chiral flux (118) and give rise to
topologically non-trivial edgestates. Our edgestates only occur when non-zero Berry curvature meets
the free space and hence are produced in accordance with the bulk-edge correspondence. These
edgestates are shown to be sufficiently robust to navigate corners, unless corner states exist which
readily shed energy into the free space.

Within a photonic setting (110, 118), physical intuition of the surrounding free space is important
regarding the creation of edgemodes. For instance in (118), the case of photons in air was considered
and operating above the light line to induce leaky waves was necessary to confine energy propagation
along edges, since energy of the photon propagating in the crystal was higher than the ‘vacuum level’
in the free space (air). Otherwise, only the conservation (33) of κ‖, denoting the component of the
wavevector parallel to the surface of the crystal, is crucial to determine the group velocity of waves
conserved at such an edge, and whether propagation is allowed within the free space—as in Fig. 4
(or in a photonic setting (62, 110)). Here, we operate at the subwavelength scale far beneath the
analogous light lines and expect the near-resonant behaviour responsible for these subwavelength
states to confine energy to the edge of the crystal, as in (41). We investigate these edgemodes in a
similar fashion to Torrent et al. (25), where we consider ribbon strips containing edges of interest
but confirm the confinement of states along the � = �(κ‖) branches by visualising the edgemodes.

The creation of these topologically nontrivial states requires simple arguments based upon group
theory (125, 126) in a periodic setting (127, 128), in which we can infer which bands are symmetry
induced and hence which degeneracies have non-trivial symmetry protection. We denote Gκ to be
the point group symmetry2 of a cell in reciprocal space at κ , and remark that any eigenfunction can
be used for an irreducible representation of Gκ (128). A fitting choice of eigenfunction would be the
eigenmode corresponding to κ , that is, the eigenstate (70) corresponding to fixed Bloch momentum
vector κ .

As with dispersion, we expect our eigenmodes to continuously vary unless we approach
dispersionless crossings; classifying eigenmodes by symmetry allows one to infer which bands are
symmetry induced and which bands are allowed to cross, and hence form degeneracies. Typically
this is done at the high symmetry points. However, one can apply compatibility relations (see Fig. 3.7
and Table 3.10 in (128) for hexagonal lattices, and Fig. 34 and Table 26 in (127) for square lattices)
to relate irreducible relations for κ along XM or �K, for instance, to those at the high symmetry
points in κ space and vice versa. Note, only G� has the full point group symmetry of the lattice and
Gκ �=0 ≤ G�—that is to say Gκ �=0 is a subgroup of G� .

Therefore, symmetry induced degeneracies can be identified by analysing the parity of
eigenmodes immediately surrounding such a crossing along the irreducible Brillouin zone; since
eigenvalues are not degenerate away from any crossing, one obtains information about the parity of
branches and whether the dispersionless crossings are indeed symmetry protected and hence simple
to gap. A telling sign that bands are symmetry induced is that the irreducible representations match

2 For a formal definition of Gκ within hexagonal or square lattices refer to (40) or (117), respectively.
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Fig. 7 The Dirac point, in (a), observed by zooming in about the first flexural resonance from Fig. 5(a).
Here, we plot the dimensionless dispersion curves � = �(κ) from our eigenvalue problem (D.2), the red line
corresponds to the lowest flexural resonance satisfying (5.2). The dimensional frequency of the Dirac point in
(a) is ω = 0.38516 Hz, the FEM computed result is ω = 0.38127 Hz, hence our results agree with a relative
error of 1.02% . (b), (c), (d) and (e) show the eigenmodes at the respective points ©, �, � and © from the
bands in (a), where the real part of the out-of-plane displacement fields are plotted in (b)–(e).

the basis functions of the irreducible representations within the appropriate character tables. We
proceed by designing structured media in which we expect symmetry protected degeneracies to
occur and confirm this behaviour by comparing the eigenmodes in the vicinity of such a degeneracy
to the character tables. Subsequently, by simply breaking the symmetries within the cell, we gap
such degeneracies and create topologically non-trivial states; these subwavelength states will be
topologically protected, the robustness of which will be demonstrated in a number of scattering
simulations.

6.1 Robust deep-subwavelength topological waveguides within square arrays

Consider the square primitive cell in Fig. 5(c) which has one vertical σv reflectional symmetry and
hence the required symmetries within Fig. 6(a). We denote κXM to be any κ along XM, and note
σv allows accidental degeneracies to occur for some κXM (68). Zooming in on the first resonance
of Fig. 5(a), as shown in Fig. 7(a), we see such a dispersionless crossing. In (70), it was shown
that the irreducible representations along κXM are compatible with those at GX and hence (128) the
assignment of symmetry for GX is deduced by looking at any GκXM , and vice versa.

Consider the eigenmodes in Fig. 7(b), (c), (d) and (e) corresponding to Fig. 7(a) points ©, �, �
and ©. The states here match the linear basis functions of the irreducible representations in table 2;
the eigenmodes © and © match the y or linear B2 basis. Additionally, � and � match the x or
linear B1 basis. Therefore, applying the above compatibility condition, we do indeed deduce GX =
C2v. Moreover, since GX ≤ G� , then G� = C2v is immediately confirmed. Further application of
the compatibility relations along κXM ensures the band following � and � will have irreducible
representations corresponding to the B1 basis and hence is odd about the direction following the
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Table 2 Excerpt of the C2v character table—we require only the linear basis functions spanning
the irreducible representations (IRs).

Classes

IRs E C2 σv σh Basis

B1 +1 −1 +1 −1 x
B2 +1 −1 −1 +1 y

Bloch momentum vector κXM in which the states exists. Similarly, the band following © and ©
will have irreducible representations corresponding to the B2 basis, and be even about the κXM
direction. Such a well ordered and opposite parity of branches, with irreducible representations of
correct symmetry basis, allows the κXM crossing to exist and confirms its symmetry protected nature.

We perturb the primitive cell in Fig. 5(c) by positively and negatively rotating the arrangement
of beams to create the cells in Fig. 8(b) and (c). The σv symmetry breaking reduces the symmetry
set from {G�, GX} = {C2v, C2v} in cell Fig. 5(c), to {G�, GX} = {C2, C2} in cells Fig. 8(b) and (c);
the perturbation affects the well ordered states along branches in Fig. 5(a) by mixing the parity of
states along the branches. Subsequently, the first and second bands find themselves repulsed and
the symmetry induced degeneracy is broken to form the subwavelength topologically non-trivial
band gap in Fig. 8. By stacking chiral-mirrored pairs of such structured media, as in Fig. 8, we
observe the QVHE, in which we are guaranteed the creation of ZLMs by the mechanism presented
in Fig. 6(b). Indeed, Fig. 8(d) and (f) show the familiar even and odd parity ZLMs localised to two
distinct interfaces, generated by the sole σv symmetry breaking within the square cell—as in (68, 70).

Consider Fig. 9 in which we test the designs of two phononic crystals (a) and (c) with different
edges, formed from tessellating the ribbon media in Fig. 8(d). Note, from Fig. 6(a), the edges of
Fig. 9(a) have sections of non-zero Berry curvature meeting the surrounding free-space and hence,
by the bulk-edge correspondence, we expect the existence of topologically protected edgestates.
However, the edges of Fig. 9(c) have negligible Berry curvature and hence cannot support chiral
states. We consider a monopole point source, whose frequency lives within the bulk bandgap. Placing
this source as shown in Fig. 9(a) and (c), the scattering computations of Fig. 9 (b) and (d) indeed
show the excited ZLM which resembles the eigenstates within Fig. 8(d) and (e); moreover, these
scattering computations confirm our predictions regarding the existence of protected edgestates by
the bulk-edge correspondence.

The ribbon eigenmodal analysis in Fig. 9(e)–(h) clearly shows the existence of edgemodes living
within the topologically non-trivial band gap of Fig. 8(a). Those in Fig. 9(e) and (f) satisfy the
bulk-edge correspondence and hence inherit topological protection from the structured bulk media
and show similar decay as the ZLMs in Fig. 8 (d)—these modes are sufficiently robust to efficiently
propagate around the edges of Fig. 9(a); they exist far beneath the analogous light line and are heavily
localised to the edge. The preferential direction observed in Fig. 9(b) is due to the anisotropic dipole
nature of the scatterers, as expected at the near flexural resonances of the constituent beams.

Figure 9(b) clearly show efficient mode conversion between the interfacial Fig. 8(d) states and
edge Fig. 9(e) states, where the absence of backscatter of energy at the corners of the designs is
attributed to topological protection. The only energy losses observed here are due to the presence
of sharp corners, in Fig. 9(a), which readily produce corner states (43–45) and shed energy into the
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Fig. 8 (a) shows the Floquet-Bloch dispersion branches of the primitive cell in (b). Cells (b) and
(c) are obtained by perturbing the arrangement in Fig. 5(c) via rotations of θ ′. By setting X1J =
0.125

[
cos( 2π (J−1)

3 + π
2 + θ ′)ex + sin( 2π (J−1)

3 + π
2 + θ ′)ey

]
, the grey (b) and yellow (c) cells, respectively

correspond to positive and negative rotations in which θ ′ = ± π
20 . The topological band gap is shaded in grey in

(a). (d) and (f) show ribbon media, formed by stacking the chiral pairs in (b) and (c) as shown. The dispersion
curves of these ribbon media, obtained from our Floquet–Bloch analysis (D.2), are plotted in (e) where the bulk
band gap from (a) is also highlighted in (e). The interfacial modes of interest are plotted in red in (e), the even
(d) and odd (f) interfacial states are plotted next to the ribbon media in which they persist; the eigenstates in (d)
and (f) correspond to the points + and × in (e), respectively.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/76/2/163/7110965 by Im

perial C
ollege London Library user on 23 August 2023



190 R. WILTSHAW ET AL.

Fig. 9 Generalised Foldy simulations (b) and (d) for the phononic crystal designs respectively shown in the
schematics of (a) and (c); both (a) and (c) are formed from 2450 cells, half grey and half yellow cells from
Fig. 8(b) and (c), for a total of 7350 beams atop an elastic plate of infinite expanse. The incident sources,
in (b) and (d), both consider monopoles with �inc = 1 from (4.4) and Xinc is marked by × in (a) and (c).
The frequencies of the point-sources both lie within the topological band gap of Fig. 8 (a), and are set to
� = 0.0313695 for (b) and � = 0.0313698 for (d). The red rectangular strips in schematics (a) and (c) represent
ribbon strips, half over the bare plate and half over the grey medium—(f) and (g) show the dispersion curves
taken by considering Floquet–Bloch boundary conditions (from (D.2)) on the edges of these strips, the edge
modes of interest are plotted in red and the bulk band gap is again highlighted in grey from Fig. 8(a). Here,
κ‖ denotes the component of the wavevector parallel to the surface of the crystal. (e) and (h) correspond to
eigenmodes from + within panels (f) and (g), respectively, where the locations of the beams are shown by
white crosses. The colour bar refers to the normalised displacement fields of (b), (d), (e) and (h), where the real
part of the out-of-plane displacement field has been plotted.
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Fig. 10 Comparisons of the incident field (a) and scattered field (b), the addition of which yields the total
field of Fig. 9(b). The incident source was set to �inc = 1 from (4.4) and Xinc is marked by × in Fig. 9(a). The
colour bar shows the real part for the normalised wavefields.

free space. We suspect the superior topological protection arising from the non-zero Berry curvature
in the hexagonal case, Fig. 6(c), will ensure a greater efficiency of the propagation between ZLMs
and edgestates by forbidding corner states. The eigenmodes in Fig. 9(g) and (h) do not benefit from
topological protection. The lack of chiral-flux means they slowly decay within the non-trivial bulk
and are only weakly excited in the scattering simulations of Fig. 9(d), where again we observe the
presence of corner states.

The low-frequency, long-wavelength regime within which our designs manipulate the propagation
of waves should not be understated. Refer to Fig. 10 comparing the incident (4.5) and scattered field;
here, the incident source is of wavelength 30–40 times that of the lattice spacing. Observe how the
respective peaks and troughs from the incident field align with the troughs and peaks in the scattered
field, the addition of which yields the total field from Fig. 9(b).

6.2 Superior topological protection: subwavelength states in hexagonal arrays

The symmetry arguments in section 6.1, underpinning the creation of topologically protected states
in square lattices also apply to hexagonal lattices, where the degeneracies now occur at the KK′
high symmetry points. In the hexagonal case, larger band gaps can be produced as larger rotations,
through θ ′, allow valleys to retain their locally quadratic behaviour in the vicinity of KK′. The pros
and cons of different geometrically designed interfacial states for square and hexagonal lattices are
summarised in Fig. 12 of (68).

The hexagonal primitive cell in Fig. 11(c) has 3σv spatial symmetries which induce protected
degeneracies at the KK′ locations of the first Brillouin zone, provided {G�, GK,K′ } = {C3v, C3v}
(6, 40). Here C3v = C3 + 3σV and GK,K′ represents Gκ at the K and K′ high symmetry points.
Figure 11(e) and (f) respectively correspond to the eigenstates at points © and � in Fig. 11(a),
observe the eigenmodes � and © respectively match the E basis functions x and y from the C3v
character Table 3. The states at Fig. 11(a) � and © exist on the dispersionless sections approaching
the crossing at K and hence are compatible with GK , and by time-reversal-symmetry GK′—therefore
GK,K′ = C3v. It follows G� = C3v, indeed since GK ≤ G� .

Furthermore, applying the compatibility relations within Sakoda (128), we confirm the band
following Fig. 11(a) points © & © also has irreducible representations corresponding to the E
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Fig. 11 The same as Fig. 7, but with α1 = cos( π
6 )ex + sin( π

6 )ey and �̂11 = �̂12 = �̂13 = 11.25. Here, (a)
we plot the dimensionless dispersion curves � = �(κ) from our eigenvalue problem (D.2) throughout the
irreducible Brillouin zone (b), appropriate for the fundamental cell given in (c) (top view) and (d) (side view).
(e), (f), (g) and (h) show the eigenmodes from ©, �, � and © in (a) respectively, where the real part of the
out-of-plane displacement is plotted in (e)–(h). Here the dimensional frequency of the Dirac point is 0.38398
Hz, and we expect a similar relative error as in Fig. 7.

Table 3 Excerpt of the C3v character table; only the linear basis functions spanning the
irreducible representations (IRs) are required

Classes

IRs E 2C3 3σv Basis

E +2 −1 0 {x, y}

basis and is even with respect to the symmetry line following the Bloch momentum wave vector, κ ,
defining each state. Similarly, the states along the band following � & � are odd and match the E
basis. Therefore, the well ordered and opposite parity eigenmodes, with the correct symmetry along
branches, allows the crossing to exist at K and confirms its symmetry protected nature.

Similarly to section 6.1, we rotate the arrangement of beams in Fig. 11(c) to reduce the symmetry
set: from {G�, GK,K′ } = {C3v, C3v} to {G�, GK,K′ } = {C3, C3} in Fig. 12(b) and (c) by σv symmetry
breaking. Again, the perturbation affects the well ordered parities of eigenstates along the branches
near the crossing, causing band repulsion and gapping the KK′ Dirac points, as seen in Fig. 12(a).
Observe the creation of ZLMs within Fig. 12(d) and (f), as described in Fig. 6(d). Furthermore, when
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Fig. 12 The Floquet–Bloch dispersion curves (a) from the primitive cell (b). Cells (b) and (c) are
obtained by perturbing the arrangement shown in Fig. 11(c) via rotations of θ ′. By setting X1J =
0.125

[
cos( 2π (J−1)

3 + π
2 + θ ′)ex + sin( 2π (J−1)

3 + π
2 + θ ′)ey

]
, the grey (b) and yellow (c) cells, respectively

correspond to positive and negative rotations by setting θ ′ = ±π
7 . The topological band gap is shaded in grey in

(a). (d) and (f) show ribbon media, formed by stacking the cells in (b) and (c) as shown. The dispersion relations
of these ribbon media, from our Floquet–Bloch analysis (D.2), are plotted in (e) where the band gap from (a) is
similarly shaded in (e). The interfacial modes of interest are plotted in red in (e), the even (d) and odd (f) ZLMs
are plotted next to the ribbon media in which they persist; the eigenstates in (d) and (f) correspond to the points
+ and × in (e), respectively.
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Fig. 13 Generalised Foldy simulations (b) and (d) for the phononic crystal designs, respectively shown in the
schematics of (a) and (c); here (a) and (c) are respectively formed from 2611 and 2653 cells, with (nearly) half
grey and half yellow cells from Fig. 12(b) and (c)—for a total of 7833 and 7959 beams atop an elastic plate
of infinite expanse. The incident sources, in (b) and (d), consider monopoles with �inc = 1 from (4.4) and
Xinc is marked by × in (a) and (c). The frequencies of the point-sources both lie within the band gaps from
Fig. 12(a), and are set to � = 0.0312587 for (b) and � = 0.0312852 for (d). The red rectangular strips in
schematics (a) and (c) represent ribbon strips, half over the bare plate and half over the grey medium; (f) and
(h) show the dispersion curves taken by considering Floquet-Bloch boundary conditions (from (D.2)) on the
edges of these strips. The edge modes of interest are plotted in red and the bulk band gap for the constituent
cells is again highlighted in grey from Fig. 12(a). (e) corresponds to the eigenmode at + within (f). Similarly
(g) and (i), respectively correspond to eigenmodes from points © (on left-most branch) and � (on right-most
branch) in (h). The locations of the beams are shown by white circles in (e), (g) and (i). The colour bars refer to
the normalised displacement fields of the computations they are next to, where the real part of the out-of-plane
displacement field has been plotted. (b), (d) share the same colour bar. Also (g) and (i) share the same colour
bar.
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breaking 3σv symmetries within a hexagonal lattice we expect (6, 68) even and odd ZLMs existing
over two distinct interfaces, as observed in Fig. 12(d) and (f)—now following the �K direction
of κ .

There are two types of interfaces which can be constructed by tessellations of hexagonal cells,
that is, zigzag or armchair interfaces. The zigzag interfaces are preferred for the construction of
ZLMs since they offer greater topological protection (8). Figure 13(a) and (c) show two phononic
crystals, both with zigzag interfaces supporting ZLMs, with zigzag (a) or armchair (c) edges. In
contrast to square lattice, Fig. 9, the topologically non-trivial bulk derived from hexagonal primitive
cells meeting the free-space always produces edges with non-zero berry curvature—as in Fig. 6(c).
Therefore, by the bulk-edge correspondence we expect topologically protected edgestates to exist
for both of the designs within Fig. 13(a) and (c).

The eigenmodal analysis in Fig. 13(e)–(i) confirms the existence of these topologically non-trivial
edgestates, where we see modes which decay rapidly into the topological bulk—localised by the
existence of chiral flux by the QVHE. Again we operate far beneath the free-space ‘light’ lines and
observe modes confined to the edges of the crystal. In contrast to the ZLMs, the armchair edgestates
(in Fig. 13(g)–(i)) offer a greater topological protection than the zigzag edgestates (Fig. 13(e) and
(f)); the armchair edge produces two modes existing along two distinct edges within the ribbon, with
much flatter bands and eigenmodes with superior localisation of energy than the sole mode existing
for the zigzag edge.

The topological protection of the ZLMs and edgestates is confirmed by the scattering simulations
in Fig. 13(b) and (d). Both of which show the ZLMs corresponding to the interfacial states of
Fig. 12(d), which efficiently allow navigation of energy at the junction between the interface and
edges via modal conversion of states; the topological protection of which accounts for the efficiency
of the conversion, around sharp corners, with negligible backscatter and strong localisation along
the topological interfaces and edges within the phononic crystal. The two distinct edgemodes for
a sole chirality in Fig. 13(g) and (i) readily couple into one another—as a consequence of their
minimal Fourier separation (8) in Fig. 13(h)—therefore, these modes are expected to efficiently
navigate around the corners of the perimeter of the phononic crystal in Fig. 13(c). In Fig. 13(d),
we observe conversion between the ZLMs and edgestates, which efficiently propagate around the
entire perimeter; hence, Fig. 13(c) is truly a sub-wavelength phononic circuit whose efficiency and
robustness is guaranteed by topological protection.

The same cannot be said of the design in Fig. 13(a). The ZLMs and edgestates within the design are
topologically protected, and energy similarly navigates the corners by converting between interfacial
and edgestates, where backscatter is still protected against. However, since only one topological
edgestate exists, the energy cannot propagate around the entire perimeter of the phononic crystal
and must be shed at its vertices. This is observed in Fig. 13(b) where corner states shed energy into
the free space.

When joining any edges of grey and yellow hexagonal cells together, it is always the case that
locations of opposite Berry curvature are projected onto one another and ZLMs are generated—
refer to Fig. 6(c). Therefore, we may modify the design of Fig. 13(c) to introduce a variety of
acute and obtuse bends along the interfaces, to demonstrate the robustness of ZLMs by achieving
topological mode steering (Fig. 14(a)) or energy splitting (Fig. 14(d)). Acute (π

3 ) and obtuse ( 2π
3 )

bends are respectively associated with model preservation and conversion. We now excite modes by
placing our source at the edge of the phononic crystals. Consider Fig. 14(b), observe the ZLM of
Fig. 12(d) is conserved and able to navigate the acute bends within Fig. 14(a). Within Fig. 14(e),
observe the ZLM of Fig. 12(d) is excited, at × in Fig. 14(d), and is readily split three-ways; model
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Fig. 14 Phononic crystal designs demonstrating ZLM steering and energy splitting in (a) and (d). Here, we
modify the design of Fig. 13(c) to test the robustness of the ZLMs. (a) and (d) are both formed from 2653
cells with 1320 grey in (a) and 1826 grey in (d), for designs with a total of 7959 beams. The generalised Foldy
simulations all consider monopole incident sources with �inc = 1 from (4.4) and Xinc is marked by × in (a) and
(d); the frequencies of the sources all lie within the deep-subwavelength topological band gaps from Fig. 12(a),
and are set to � = 0.0312816 for (b), � = 0.0312692 for (c), � = 0.0312826 for (e) and � = 0.0312760 for
(f). The colour bar refers to the real part of the normalised displacement fields in all simulations.
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conversion to the ZLM of Fig. 12(f) occurs at the 2π
3 and π bends, and the ZLM of Fig. 12(d) is

preserved at the π
3 bend. Note ZLMs are not always excited when operating within the topological

band gap, the cases of Fig. 14(c) and (f) show this. Observe how the edgemodes in Fig. 13 (g)–(i)
are excited in Fig. 14(a) and (d) at ×, and propagate around the entire perimeter of the phononic
crystals. The topological mode steering and energy splitting occurs at the deep-subwavelength scale
and in absence of backscatter, therefore demonstrating the robustness of modes.

7. Conclusion

Herein, we present our analytical solutions approximating dispersion and scattering from structured
media built from arrays of elastic beams atop an elastic plate, appropriate for designing phononic
crystals. The solutions are expressed through singular Green’s functions, via evaluating Fourier
series (for Floquet–Bloch bands) or Fourier transforms (for scattering from finite arrays) in the limits
where they diverge. The problem is considerably simplified by the hypothesis of Euler–Bernoulli
beam theory (87), which allows us to determine the forces and moments which couple into the
plate from the constituent beams, and allows us to approximate the junction between the beams
and plate as rigid disks. In sections 2.1 and 2.2, we show how to replace each beam with point
monopoles and dipoles, whose coefficients determine forces and moments in terms of quantities
defining arbitrary (finite) displacements and rotations, which encapsulate the assumed rigid portion
of the plates motion.

In section 3, we show how to relate the singular Green’s functions for the Fourier series and
Fourier transform representations of solutions in the limit as they diverge, and how this allows one
to cancel singularities from either side of the relation; allowing the construction of an eigenvalue
problem determining the Floquet–Bloch dispersion branches from eigenvalues and eigenmodes from
eigenvectors. In section 4, we apply Foldy’s method to simulate scattering by a finite collection of
beams under incidence. These solutions are tested against FEM computations in section 5, where
they are found to be accurate, and reveal two regimes of motion for the beams—either flexing like
clamped-free or pinned-free beams, depending on the ratio of the radius of beams to the thickness
of the plate.

Finally in section 6, we apply our analytical solutions to consider topological arrangements
of beams, again in good agreement with FEM computations, to form degeneracies with non-
trivial symmetry protection. These degeneracies coincide with the first flexural resonance of the
arrangements of the beams and hence can be tuned into a deep-subwavelength regime; additionally,
they are simple to gap and produce the phononic analogue of the QVHE, where we demonstrate
the existence of protected interfacial and edge states. These topologically protected interfacial and
edge states coexist within the band gap of the bulk media. The interfacial states exist between
two adjoining topological chiral-mirrored bulk media and correspond to ZLMs. The topological
edgestates are formed in accordance with the bulk-edge correspondence, when one such topological
chiral-mirrored bulk media meets the free-space. We build on this knowledge to design robust
phononic circuits, where interfacial and edge states efficiently convert between one another and
navigate corners, all in the presence of deep-subwavelength topological protection. This is further
demonstrated by designing crystals which permit topological ZLM steering and energy splitting,
again where topological protection prevents backscatter.

These demonstrations elucidate the creation of topological waveguides and energy splitters, at
very low frequencies in a phononic setting, which could aid the creation of future seismic protection
or energy harvesting devices to collect/mitigate vibrational energy. Similar examples have been
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discussed in the context of phononics and photonics, where the idea of melding topology and
resonance is quite general and promising in controlling waves in many physical settings, from Bragg
to deep-subwavelength scales.
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Appendix A

A. Modelling and continuity conditions for elastic beams attached to the surface of thin plates

Consider Fig. 1, showing a thin plate whose displacement field we denote U . We consider a global Cartesian
system such that the x–y plane coincides with the neutral plane of the undeformed plate and consider beams
attached to the surface of the plate, the neutral axis of the undeformed beam is aligned with the z axis.
Throughout, ∇ = ex

∂
∂x + ey

∂
∂y denotes the in-plane two dimensional gradient. We assume a time-harmonic

displacement field of the form

U (x, z, t) = U (x, z) exp(−iωt), (A.1)

where x denotes some in-plane position vector x = xex + yey and z characterises some out-of-plane position
vector zez. We define regular and hatted quantities to denote the displacement fields of the plate or beams
respectively. We make the classic assumptions of thin plates and beams—see for example Landau and Lifshitz
(88) or Graff (87), where we consider the displacement field of the plate to be of the following form

U (x, z) =
(

u(x) − z
∂w

∂x

)
ex +

(
v(x) − z

∂w

∂y

)
ey + w(x)ez. (A.2)
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Here, the total displacement field is a superposition of the Kirchhoff–Love thin plate displacement field
wez − z∇w due to pure bending deformations, and u(x) = u(x)ex + v(x)ey corresponds to purely longitudinal
deformations in the plane of the plate. We assume that the plate is sufficiently thin such that the Kirchhoff–Love
theory is valid; additionally, deformations in u(x) are assumed to be uniform in z, and hence result in a plane
stress field which does not contribute to plate bending (88, 96). For the beams, we need only consider the time
harmonic displacement field along the neutral axis, hence

Û (z) = û(z) + ŵ(z), (A.3)

where û(z) = û(z)ex + v̂(z)ey and ŵ(z) = ŵ(z)ez. We non-dimensionalise quantities by introducing some length
scale L as follows

x = L̃x, z = L̃z, U = LŨ , (A.4)

similarly for hatted quantities. Dropping tildes, the dimensionless system of equations governing longitudinal
and flexural deformations within the beams and plate are given by (87, 88)

[
∇4 − �2

]
w = L3

D
P3(x)ez, (A.5)

∇(∇ · u) − β2

α2
∇ ∧ ∇ ∧ u + �2h2

12L2
u + L

ρhα2
P(x) = 0, (A.6){

d2

dz2
+ α̂2�2

}
ŵ = 0, (A.7)

{
d4

dz4
− β̂4�2

}
û = 0. (A.8)

P and P3(x) respectively denote all in-plane and out-of-plane external source terms with dimension force per
unit area which act on the plate, and we define w = wez. In (A.6), the 2D elastic field is assumed to act under
plane stress and hence α2 = 4μ(λ+μ)

ρ(λ+2μ) = E
ρ(1−ν2)

and β2 = μ
ρ = 1

2
E

ρ(1+ν) . Both rotary inertia (for rotations

about ez) and torsional beam deformations are assumed to be negligible and hence ignored. It is convenient to
express u by means of the following dilational and shear potentials

u = (∇ + ez
∂

∂z
)φ + (∇ + ez

∂

∂z
) ∧ ψ,

where φ = φ(x), ψ = ψ(x), and we denote ψ = ψez.
Consider a beam, of length �̂, whose base is centred and attached to the surface of the plate at z = h

2L and

x = X (as in Fig. 1). At z = �̂ + h
2L , we apply free end conditions

∂ŵ
∂z

∣∣∣
z=�̂+ h

2L

= 0,
∂2û

∂z2

∣∣∣
z=�̂+ h

2L

= ∂3û

∂z3

∣∣∣
z=�̂+ h

2L

= 0. (A.9)

To apply continuity of displacement and rotation conditions, where the beam and plate intersect, we introduce
unknown plate displacements U (x = X, z = h

2L ) at the centre of the beam. We require

Û
∣∣∣
z= h

2L

= U (x = X, z = h

2L
), and

[
(∇ + ez

∂

∂z
) ∧ Û

]∣∣∣
z= h

2L

=
[
(∇ + ez

∂

∂z
) ∧ U

]∣∣∣ x=X
z= h

2L

, (A.10)
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hence the following conditions must be satisfied

ŵ
∣∣∣
z= h

2L

= w(X), û
∣∣∣
z= h

2L

= u(X) − h

2L

[
∇w
]∣∣∣

x=X
,

∂û
∂z

∣∣∣
z= h

2L

= −2
[
∇w
]∣∣∣

x=X
. (A.11)

[
∇ ∧ u

]∣∣∣
x=X

= 0. (A.12)

Equations (A.7) and (A.8), subject to the boundary conditions (A.9) and (A.11), may be solved in terms of

the unknowns w(X), u(X) and
[
∇w
]∣∣∣

x=X
. From these solutions and the definitions given in (2.5)–(2.7), the

forces and moments at the base of the beam can be determined. For example, from (2.6), we can determine
the moment arising from the beam due to the most general continuity conditions considered, that is from (A.8)
satisfying (A.9) and (A.11)

M(�) = Ê Î

L

∂

∂z

[
∇ ∧ û

]∣∣∣
z= h

2L

= Ê Î

L

{ β̂2�
[
u(X)ey − v(X)ex

]
sin β̂

√
��̂ tanh β̂

√
��̂

cos β̂
√

��̂ + sech β̂
√

��̂

+
β̂
√

�
[
∇ ∧ w

]∣∣∣
x=X

{
h

2L β̂
√

� sin β̂
√

��̂ tanh β̂
√

��̂ + 2
(

sin β̂
√

��̂ − cos β̂
√

��̂ tanh β̂
√

��̂
)}

cos β̂
√

��̂ + sech β̂
√

��̂

}
.

(A.13)

For continuity of moments, we require u(X) = 0. Indeed since (A.13) will be conserved within the plate, in
(2.2), and assuming u(X) �= 0 (A.13) contradicts both the assumptions of Kirchhoff–Love thin plate theory
(bending moments and transverse shear forces are due to pure bending (87)) and that u(x) arises from purely
longitudinal deformations which do not result in bending (88).

Appendix B

B. Complementary coefficients

The coefficients in (2.17)–(2.19) are simple to determine, since (2.17)–(2.19) must satisfy equations (2.13)–
(2.15) we find (

A0
B0

)
= 1

W[J0(r
√

�), J0(ir
√

�)]
{

w(X)

(
W[1, J0(ir

√
�)]

W[J0(r
√

�), 1]

)

− iLF · ez

D8�

(
W[H0(r

√
�) − H0(ir

√
�), J0(ir

√
�)]

W[J0(r
√

�), H0(r
√

�) − H0(ir
√

�)]

)}∣∣∣∣
r=ε

,

(B.1)

(
Ai
Bi

)
= − 1

W[J1(r
√

�), J1(ir
√

�)]
{

Mi

D8
√

�

(
W[H1(r

√
�)

i − H1(ir
√

�), J1(ir
√

�)]
W[J1(r

√
�), H1(r

√
�)

i − H1(ir
√

�)]

)

+[∇ ∧ w]
∣∣∣
x=X

· ei

(
W[r, J1(ir

√
�)]

W[J1(r
√

�), r]

)}∣∣∣∣
r=ε

for subscript i = 1, 2.

(B.2)

C = φ(X), (B.3)

D = ψ(X). (B.4)

The coefficients for A0, B0, Ai, Bi are found in a similar fashion to O’Neill et al. (129), by utilising the
Wronskian operator W[ ]. Note C and D within (2.18) and (2.19) are found in a similar way to (B.1) and
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(B.2); however, the contribution arising from the J1 terms within the potentials can be disregarded at leading

order—such a statement would not be true if ∇φ

∣∣∣
x=X

or ∇ ∧ψ

∣∣∣
x=X

were required. All of the Wronskian terms

in (B.1)–(B.2) are evaluated at r = ε and asymptotically expanded treating ε as a small parameter, and hence
assuming functions have small arguments—within these expansions we have disregarded O(ε2) terms.

Appendix C

C. Singular asymptotics of conditionally convergent series

We require the singular asymptotics of several series which diverge in the limit as r → 0. These terms are
calculated analytically and expressed through Van der Pol’s Bessel-integral function of zero order, Ji0(x), as
defined in Humbert (130) where the following behaviour is of importance

Ji0(x) = Ci(x) − log(2) = log(
x

2
) + γE − x2

4
+ O(x4) as x → 0. (C.1)

Here, γE is the Euler–Mascheroni constant. Utilising the Euler–Maclaurin formula (131) it is shown, using the
notation as in Fig. C.1

lim
r→0

R→∞
∇wres = Mp exp(iκ · x)

4π2D

∫ ∞
R

∫ 2π

0

cos θGex + sin θGey

G
sin(θG −θM) exp(iG · r) dθG dG+o(1). (C.2)

Refer to the appendices of (42, 85) for more details. The integral over θG is performed by means of the
integral representations of the Bessel functions of integer order (132). Integrating over θG and then G, it can be
shown (C.2) becomes (neglecting o(1) terms)

lim
r→0

R→∞
ex · ∇wres = − Mp

4πD

{
sin(2θr − θMp )

J1(Rr)

Rr
− sin θmJi0(Rr)

}
exp(iκ · x), (C.3)

lim
r→0

R→∞
ey · ∇wres = − Mp

4πD

{
cos θmJi0(Rr) − cos(2θr − θMp )

J1(Rr)

Rr

}
exp(iκ · x). (C.4)

Additionally, setting a and b as appropriate from Appendix A of (42), we find

lim
r→0

R→∞
iα2φres exp(−iκ · X) = 3iL

πρ�2h3
exp(iκ · r)

{2er · Vp

r
J0(Rr) − er · Vp

�2h2

12L2
rJi0(Rr)

− J1(Rr)

Rr
[2iVpκ cos(2θr − θκ − θVp ) − r

�2h2

12L2
er · Vp] − 2Vpκ2 cos(θVp + 2θκ − 3θr)

J2(Rr)

R2r

}
,

(C.5)

lim
r→0

R→∞

α2

i
ψres exp(−iκ · X) = 3iL

πρ�2h3
exp(iκ · r)

{2eθ · Vp

r
J0(Rr) − eθ · Vp

�2h2

12L2

α2

β2
rJi0(Rr)

+ J1(Rr)

Rr
[2iVpκ sin(2θr − θκ − θVp ) + r

�2h2

12L2

α2

β2
eθ · Vp] − 2Vpκ2 sin(θVp + 2θκ − 3θr)

J2(Rr)

R2r

}
.

(C.6)
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Fig. C.1 The required vector quantities in Fourier space to derive the double sum asymptotics of our Fourier
series solutions beyond truncation. Here, N refers to either M or V as appropriate, to be regarded as a constant
for some κ = κ(�) wave of fixed phase.

Expressions (C.5) and (C.6) are differentiated if the associated gradients of potentials are required.

Appendix D

D. The computationally least expensive eigenvalue problem determining dispersion

The polynomial eigenvalue problem in (3.23) can be expressed as a generalised eigenvalue problem by use of
the linear companion matrix method (101), which further increases the dimension of the system but considers
a computationally less expensive eigenvalue problem. The linear companion matrix method can be made even
more efficient, provided the matrix multiplying the highest degree term in the polynomial eigenvalue problem
is non-singular (101). However, our system only contains η4 terms from (3.9), hence most rows of this matrix
will be zero. The inverse of A is not available and (3.23) cannot be simplified further without another change
of variables. By denoting γ = 1

η , one can consider[
γ 4E(�) + γ 3D(�) + γ 2C(�) + γB(�) + A(�)

]
� = 0. (D.1)

Since (3.9)–(3.11), (3.14), (3.18)–(3.21) all have κ0 terms, E(�) is naturally readily invertible and the
generalised eigenvalue problem is further simplified to(

Ã − γI
)

Y = 0, (D.2)

where

Ã = −

⎡⎢⎢⎢⎣
E−1D E−1C E−1B E−1A
−I Z Z Z
Z −I Z Z
Z Z −I Z

⎤⎥⎥⎥⎦ , Y =

⎡⎢⎢⎢⎣
γ 3�

γ 2�

γ 1�

�

⎤⎥⎥⎥⎦ . (D.3)

Here, I and Z respectively denote the identity matrix and a matrix of zeros, both of dimension (3M + 5P) ×
(3M + 5P). Finally, one should note E contains terms from Fp, Mp and Vp which will be singular at resonance.
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Therefore, approaching resonance E will be poorly conditioned and hence E−1D should be computed with care
(similarly for other terms within Ã). These products were computed using the minimum norm least-squares
solution (MATLAB’s lsqminnorm function), which was found to be sufficiently numerically stable for our
needs.

Appendix E

E. The external fields

In order to evaluate the unknowns within (4.10)–(4.12), one needs to consider the following approaching the
nth scatterer

lim
x→Xn

w(x) = w(Xn) = winc(Xn) + lim
x→Xn

m∑
j=1

{ iL

8D
Fjw(Xj)

[
H0(rj

√
�) − H0(irj

√
�)
]

−eθ j · (∇ ∧ w)
∣∣∣
x=Xj

Mj

8D

[
iH1(rj

√
�) + H1(irj

√
�)
]}

,

(E.1)

lim
x→Xn

∇w(x) = ∇w|x=Xn = ∇winc(Xn) + lim
x→Xn

∇
m∑

j=1

{ iL

8D
Fjw(Xj)

[
H0(rj

√
�) − H0(irj

√
�)
]

−eθ j · (∇ ∧ w)
∣∣∣
x=Xj

Mj

8D

[
iH1(rj

√
�) + H1(irj

√
�)
]}

,

(E.2)

lim
x→Xn

φ(x) = φ(Xn) = φinc(Xn) + lim
x→Xn

m∑
j=1

iVj
√

3

2ρh2α2
er j · ∇w

∣∣∣
x=Xj

H1(
�h

2L
√

3
rj), (E.3)

lim
x→Xn

ψ(x) = ψ(Xn) = ψinc(Xn) + lim
x→Xn

m∑
j=1

Vj
√

3

2iρh2αβ
eθ j · ∇w

∣∣∣
x=Xj

H1(
α

β

�h

2L
√

3
rj), (E.4)

where we denote the limx→Xn rj = |Xn − Xj| = rnj. The j = nth contribution from the above sums, as rnn → 0

for arbitrary angle, introduces logarithmic singularities within (E.2) and 1
rnn

singularities occurring in (E.3)
and (E.4). These singularities are removed by considering the generalised Foldy method, as outlined by Martin
(83, 84), by defining the external displacement and potential fields about the nth scatterer as follows

wn(x) = w(x) −
{ iL

8D
Fnw(Xn)

[
H0(rn

√
�) − H0(irn

√
�)
]

−eθ n · (∇ ∧ w)
∣∣∣
x=Xn

Mn

8D

[
iH1(rn

√
�) + H1(irn

√
�)
]}

,

(E.5)

φn(x) = φ(x) −
{ iVn

√
3

2ρh2α2
er n · ∇w

∣∣∣
x=Xn

H1(
�h

2L
√

3
rn)
}
, (E.6)

ψn(x) = ψ(x) −
{ Vn

√
3

2iρh2αβ
eθ n · ∇w

∣∣∣
x=Xn

H1(
α

β

�h

2L
√

3
rn)
}
. (E.7)
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