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The construction of general derivative self-interactions for a massive Proca field relies on the well-
known condition for constrained systems of having a degenerate Hessian. The nature of the existing
constraints algebra will distinguish among different classes of interactions. Proca-Nuevo interactions enjoy
a nontrivial constraint by mixing terms of various order whereas generalized Proca interactions satisfy the
degeneracy condition order by order for each individual Lagrangian. In both cases the vector field
propagates at most 3 degrees of freedom. It has been shown that the scattering amplitudes of Proca-Nuevo
arising at the tree level always differ from those of the generalized Proca, implying their genuinely different
nature and a lack of relation by local field redefinitions. In this work, we show the quantum stability of the
Proca-Nuevo theory below a specific UV cutoff. Although Proca-Nuevo and generalized Proca are different
inherently in their classical structure, both have the same high energy behavior when quantum corrections
are taken into account. The arising counterterms have the exact same structure and scaling. This might
indicate that whatever UV completion they may come from, we expect it to be of similar nature.
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I. INTRODUCTION

Making sense of the fundamental quantum nature of
matter within the context of general relativity (GR) [1] is
the holy grail of modern theoretical physics. Intriguingly,
discrepancies do not restrict to the UV where ignorance is
easily acknowledged, but are already strikingly present in
the IR picture of gravity, where according to a Wilsonian
effective field theory (EFT) point of view everything should
be well understood. The most prominent example is the
cosmological constant problem [2] which has gained a new
twist with the evidence for an accelerating expansion of the
Universe [3,4], providing the main motivation for a
multitude of proposals of low energy modifications of
Einstein gravity [5].
A major novelty was put forward by the Dvali-

Gabadadze-Porrati (DGP) braneworld model [6], a five-
dimensional model with effectively massive gravitons in
4d, which incorporates a self-accelerating branch as a

cosmological solution as an alternative to a finite cosmo-
logical constant [7]. Despite the fact that the self-
accelerating branch suffers from a ghost instability [8–10]
the idea inspired a wide range of research. In particular, the
decoupling limit on the brane of DGP is governed by a
cubic higher derivative self-interaction of the helicity-0
mode which naturally incorporates a Vainshtein screening
mechanism [11–16] while evading an Ostrogradsky insta-
bility [17,18]. Soon it was realized that there exists a finite
set of higher order scalar interactions with the same
properties, the Galileons [19], leading to a rediscovery
of the covariant Horndeski theory [20] as well as a
formulation of a vector counterpart known as generalized
Proca (GP) [21–23] with various cosmological applications
on their own right. A crucial aspect of effective field
theories (EFTs) of this type is their radiative stability in
regimes where the classical irrelevant interactions dominate
such that the theory remains viable on scales relevant for
the Vainshtein screening, in other words that there exists a
regime for which classical nonlinearities dominate, while
quantum effects are still under control [8,9,24–34].
Recently, a new class of Proca interactions was intro-

duced [35] dubbed “Proca-Nuevo” (PN). As opposed to
generalized Proca (GP) theories, its decoupling limit (DL)
is not restricted to second order equations of motion while
still only propagating 3 healthy degrees of freedom and
coincides with the DL of ghost-free massive gravity in the
scalar-vector sector [36–39]. This connection with the
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decoupling limit of massive gravity naturally raises the
question of whether one would expect the UV completion
of PN to differ significantly from GP. The investigation of
quantum stability of PN and its quantum comparison to GP
is subject of the present work.
Section II is a quick review of the construction of the new

effective Proca interactions. By means of a decoupling limit
analysis in Sec. III we conclude that the EFT is stable under
quantum corrections but find a similar scaling as for the
counterterms arising in GP, suggesting a similar type of UV
implementation. The explicit one-loop effective action in
unitary gauge is presented in Sec. IVup to quartic order in the
fields andconfirmourdecoupling limit analysis.Both theories
have the same quantum implications and the arising counter-
terms have the same operator structure and the mass scaling.

II. PROCA-NUEVO

The construction of the PN interactions is heavily
inspired by massive gravity and starts by considering the
tensorial combination,

fμν½A� ¼ ημν þ 2
∂ðμAνÞ
Λ2
2

þ ∂μAα∂νAβη
αβ

Λ4
2

; ð2:1Þ

where ημν are the components of the background
Minkowski metric.1 This tensor arises in massive gravity
[36] as the result of the covariantization of the spin-2 field
through the introduction of four Stückelberg fields ϕi ¼
xi þ Ai

Λ2
2

in the background metric fμν ¼ ηij∂iϕμ∂jϕν which

is where the vector field enters in the formulation.
The combination

Kμν½A� ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η−1f½A�
q �

μν
− ημν;

where
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η−1f½A�
q �

μα

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η−1f½A�

q �
α

ν
¼ fμν; ð2:2Þ

which arises in massive gravity in the formulation of the
mass term, serves then as a building block for a usual
Galileon-like construction [35],

LK½A� ¼ Λ4
2

X4
n¼0

αnðA2ÞLn½K½A��; ð2:3Þ

where

L0½K½A�� ¼ ϵμναβϵ
μναβ

L1½K½A�� ¼ ϵμναβϵ
μνα

γKβγ

L2½K½A�� ¼ ϵμναβϵ
μν

γδKβδKαγ

L3½K½A�� ¼ ϵμναβϵ
μ
σγδKβδKαγKνσ

L4½K½A�� ¼ ϵμναβϵρσγδKβδKαγKνσKμρ; ð2:4Þ

where αnðA2Þ are arbitrary polynomial functions. Note that
the n ¼ 0 contribution includes a hard mass term 1

2
m2A2.

In the strict sense we may think of this as a standard EFT
with cutoff Λ, but the implementation of the Vainshtein
mechanism typically requires trusting the theory for some
background above that scale and these types of EFT can be
seen to enjoy a reorganization of operator whereby a class
of operators may be considered to be large. In this sense Λ
can be considered here as the strong coupling scale and not
necessarily the cutoff, which is why it is meaningful to ask
ourselves at what scale do quantum corrections typically
enter and that scale will serve as setting up the real cutoff of
this EFT.
Concerning the analysis of quantum stability, it is

instructive to perturbatively expand the Lagrangian (2.3)
in terms of irrelevant operators in the standard EFT sense.
Writing αnðA2Þ ¼ α̃n þ m2

Λ4
2

γ̃nA2 þ m4

Λ8
2

λ̃nA4 þ � � � the

Lagrangian up to fourth order takes the following form2:

Lð2Þ
κ ¼ −

1

4
FμνFμν þ

1

2
m2A2 ð2:5Þ

Lð3Þ
κ ¼ 1

Λ2
2

�
−
1

4
ð2α̃2 − 3α̃3Þ½F2�½∂A� − 1

4
ð1 − 4α̃2 þ 6α̃3ÞðF2Þμν∂μAν þ 6γ̃1m2A2½∂A�

�
ð2:6Þ

Lð4Þ
κ ¼ 1

Λ4
2

�
1

32
ðα̃2 − 3α̃3 þ 6α̃4Þ½F2�2 þ 1

64
ð5 − 20α̃2 − 12α̃3 þ 168α̃4ÞF2

μνF2μν þ 3

8
ðα̃3 − 4α̃4Þ½F2�ð½∂A�2 − ∂αAβ∂βAαÞ

−
1

8
F2
μν∂βAμ∂βAνþ

�
1

2
α̃2 þ

3

4
α̃3 − 6α̃4

�
F2μνð∂βAμ∂βAν − ½∂A�∂μAνÞþ

�
−
1

8
þ 1

2
α̃2 − 3α̃4

�
FμνFαβ∂μAα∂νAβ

−m2A2

	
2γ̃2½∂A�2 −

�
3

2
γ̃1 þ γ̃2

�
∂μAν∂νAμ þ

�
3

2
γ̃1 − γ̃2

�
∂μAν∂μAν



þ 24λ̃0m4A4

�
: ð2:7Þ

1As opposed to [35] we are working with a mostly minus signature ημν ¼ diagðþ1;−1;−1;−1Þ.
2Note the sign differences as compared to [35] due to the opposite signature convention.
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The decoupling limit is in this case defined via the
introduction of a scalar Stückelberg field ϕ through the
replacement

Aμ → Aμ þ
1

m
∂μϕ; ð2:8Þ

where canonical normalization fixes the mass scale.
This formulation restores gauge invariance. The decoupling

limit is then defined as the smooth massless
limit,

m→0 and Λ2→∞; whileΛ3≡ðΛ2
2mÞ13¼ const; ð2:9Þ

where Λ3 is the lowest strong coupling scale. For con-
creteness, (2.6) and (2.7) the DL read

Lð3Þ
DL ¼ 1

Λ3
3

�
−
1

4
ð2α̃2 − 3α̃3Þ½F2�□ϕ −

1

4
ð1 − 4α̃2 þ 6α̃3ÞF2

μν∂μ∂νϕþ 6γ̃1∂μϕ∂μϕ□ϕ

�
ð2:10Þ

Lð4Þ
DL ¼ 1

Λ6
3

�
3

8
ðα̃3 − 4α̃4Þ½F2�ðð□ϕÞ2 − ð∂μ∂νϕÞ2Þ −

1

8
F2
μν∂α∂μϕ∂α∂νϕ

þ
�
1

2
α̃2 þ

3

4
α̃3 − 6α̃4

�
F2μνð∂α∂μϕ∂α∂νϕ − ð□ϕÞ∂μ∂νϕÞ

þ
�
−
1

8
þ 1

2
α̃2 − 3α̃4

�
FμνFαβ∂μ∂αϕ∂ν∂βϕ − 2γ̃2ð∂μϕÞ2ðð□ϕÞ2 − ð∂μ∂νϕÞ2Þ

�
: ð2:11Þ

It was proven in [35] that this theory is genuinely distinct
from generalized Proca theories, with a constraint structure
allowing for higher order equations of motion in the scalar-
vector sector while still only propagating 3 healthy degrees
of freedom. However, the pure scalar sector is restricted to a
Galileon form.

III. QUANTUM STABILITY AND ITS
DECOUPLING LIMIT ANALYSIS

The decoupling limit is a powerful tool acting as a high
energy limit3 focusing on operators which dominate at the
lowest strong coupling scale Λ3. Quantum stability trans-
lates into the existence of a regime below Λ3 for which
classical higher order interactions become large while
radiative corrections remain negligible. In this limit, the
helicity-0 Goldstone mode ϕ decouples in a symmetry
sense and the theory is approximately described by a
massless scalar-vector sector.
Throughout this section we will only be interested in

power-counting and will thus consider only the schematic
form of terms. In this language, the Lagrangian of PN is
built out of three building blocks dictated by dimensional
analysis and Lorentz invariance,

L ∼ Λ4
2

�
mA
Λ2
2

�
2a1

�
F
Λ2
2

�
a2
�∂A
Λ2
2

�
a3
; 0 ≤ a1;2;3; ð3:1Þ

where the first term represents the expansion of αnðA2Þ
while the others cover the contributions from Kμν½A�. Note
that the Lagrangians (2.6) and (2.7) explicitly rule out the
cases for which a1 ¼ 0 and a2 ≤ 1 simultaneously such
that we always have either a1 ≥ 1 or a2 ≥ 2. However, this
is completely general and applies to all orders: Terms with
a2 ¼ 0 which do not reduce to pure scalar Galileons in the
DL are total derivatives, while the mixed sector requires an
even number of field strength factors. This specific struc-
ture is reminiscent of ghost-free massive gravity.
More precisely, the schematic form of the Lagrangian is

therefore

L ∼m2A2

�
mA
Λ2
2

�
2a1

�
F
Λ2
2

�
a2
�∂A
Λ2
2

�
a3

þ F2

�
mA
Λ2
2

�
2b1

�
F
Λ2
2

�
b2
�∂A
Λ2
2

�
b3
: ð3:2Þ

This is crucial, as otherwise the decoupling limit would
diverge and cease to be well defined. The general structure
of the Lagrangian (3.2) exactly matches the one found in
the case of generalized Proca theories [34] such that the
same analysis of quantum stability essentially goes
through. It is worthwhile to emphasize that if one had a
more generic Proca theory where the DL took a different
form, the nature of the quantum corrections would differ
and the cutoff of the theory would be significantly lower.
This property is at the heart of why we may be bothered
into these kinds of EFTs in the first place as opposed to
something more generic where all operators are thrown in
at the same scale.

3One considers energies much larger than the vector mass
which in the DL translates into m ≪ 1. A clear separation
between scales m ≪ Λ3 ≪ Λ2 is therefore crucial and has to
be preserved by quantum corrections.
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In brief,4 the Stückelberg trick allows to take the
decoupling limit (2.9) on each individual operator. We
obtain that indeed the limit is well defined and the classical
Lagrangian reduces to

LDL ∼ ð∂ϕÞ2
�∂2ϕ

Λ3
3

�
a3 þ F2

�∂2ϕ

Λ3
3

�
b3
; ð3:3Þ

where now 0 ≤ a3 ≤ 3 as all the a3 ≥ 4 terms are total
derivatives and have vanishing equations of motion
[5,21,23,40]. This nicely reflects the fact that for the terms
involving only the scalar field ϕ the individual classical
operators only remain ghost-free in the specific scalar
Galileon form.
At one loop, the specific form of (3.3) implies that each

vertex in the decoupling limit comes at least with a factor of
1=Λ3

3. This means that in dimensional regularization and
only considering 1PI diagrams at one loop, where each
vertex at least includes one external leg while two legs are
contributing to the loop, there are only two distinct
schematic building blocks for quantum induced operators
∂F
Λ3
3

and ∂2ϕ
Λ3
3

. Therefore, a general one-loop counterterm in the

decoupling limit has the generic form5

Lc
DL ∼ ∂4

�∂F
Λ3
3

�
2c2

�∂2ϕ

Λ3
3

�
c3

∼

8<
:

F2
�
∂2
Λ2
3

�
2þc2

�
F2

Λ4
3

�
c2−1

�∂2ϕ
Λ3
3

�
c3 ; c2 ≥ 1

ð∂ϕÞ2
�
∂2
Λ2
3

�
3þc2

�
F2

Λ4
3

�
c2
�∂2ϕ

Λ3
3

�
c3−2; c3 ≥ 2;

ð3:4Þ

where 2c2 þ c3 ¼ N ≥ 2 with N the number of
external fields and c2;3 ≥ 0 positive integers.6 We can
therefore identify one classical and two quantum expansion
parameters:

αcl ¼
∂2ϕ

Λ3
3

; αq ¼
∂2

Λ2
3

; αq̃ ¼
F2

Λ4
3

; ð3:5Þ

and write the total EFT Lagrangian as an expansion in these
parameters.
One can even generalize this analysis to higher loops.

Each additional loop comes with an increase in factors of
1=Λ3

3 compared to the same diagram without the additional
loop. This is because in order to add a loop to a diagram

while keeping the number of external legs fixed necessarily
requires the inclusion of an additional vertex or the addition
of legs to existing vertices. Now since the number of
external legs remains the same in this comparison, to
match dimensions these factors can only be compensated
with additional powers of derivatives. Thus, higher
loops will merely introduce additional factors of αq.

7

From here on, the analysis exactly parallels the one
employed for the consolidation of radiative stability of
various derivative self-interacting theories such as scalar
Galileons [8,9,24–26,33,34,41,42]: The complete EFT
Lagrangian can be written as an expansion in the three
parameters αcl, αq and αq̃:

LDL ∼ ðF2 þ ð∂ϕÞ2Þαb3cl þ ðF2 þ ð∂ϕÞ2Þα2þn
q αlq̃α

m
cl ;

0 ≤ b3; l; n;m; ð3:6Þ

whereonly the quantum inducedoperators carry thequantum
parameters αq;q̃. More precisely, quantum corrections always
involve at least two powers of αq compared to the initial PN
Lagrangianwhichmarks a clear separation between classical
and quantum terms and implies nonrenormalization of
classical terms within the DL.8 In specific applications,
we therefore expect the existence of a regime below the
energy scale Λ3 where quantum contributions are heavily
suppressed αq;q̃ ≪ 1, while classical nonlinear terms,
although equally nonrenormalizable, are important com-
pared to the kinetic term αcl ∼Oð1Þ.
One could be worried about the regime αcl ≫ 1 in the

expansion in external legs. Naively we would need to
conclude that the EFT breaks down as terms with higher
derivatives and higher numbers of background fields
are considered, regardless of whether αq;q̃ ≪ 1 or not.
However, from previous analysis [9,43] one would expect
that the tree level kinetic term of quantum fluctuations gets
enhanced by large classical nonlinearities, hence, precisely
in the regime αcl;c̃l ≫ 1. As long as the classical contribu-
tions do not lead to ghost instabilities as is the case by
construction, the quantum fluctuations are rather further
suppressed on such scales in contrast to what one could
have expected.
Of course, the clear separation between classical and

quantum terms (3.6) is only valid in the decoupling limit
where crucially propagators behave as ∼ 1

p2 and in the
initial, unitary gauge formulation quantum corrections will
generate operators with the same form as classical oper-
ators, leading to a potential detuning and introduction of
ghost instabilities. The beauty of the DL analysis is
however, that since it focuses on the relevant scale Λ3

4We refer to [34] for details.
5This schematic form is fixed through Lorentz invariance,

power-counting and the well behaved propagators in the decou-
pling limit.

6The two possible reformulations in (3.4) result from compar-
ing the operator to the two kinetic terms F2 and ð∂ϕÞ2 of the
theory. For most ci values either one can be employed. Only for
c2 ¼ 0 the upper one loses its sense, while the lower one is not
valid whenever c3 < 2.

7Actually, Lorentz invariance requires the additional factor to
be ∂6=Λ6

3.8It implies nonrenormalization in the weak sense tied to
dimensional regularization (see [26]).
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we know that all operators which did not survive the
decoupling limit are further suppressed by factors of m=Λ3

in comparison to operators present in the DL such that they
have no impact on the viability of the EFT. For example we
expect that loop corrections will introduce a counterterm of
the form

∼
m4

Λ4
2

ð∂μAμÞ2; ð3:7Þ

which explicitly detunes the classical gauge invariant kinetic
term and thus introduces a dynamical ghostly temporal
component At. This term is however heavily suppressed,
which can alternatively be understood as the statement that
after canonically normalizing, the mass of the associated
ghost m2

t ∼ Λ6
3=m

4 lies way above the cutoff of the theory.
Moreover, the commutativity of decoupling limit and

quantum correction calculations allows one to infer the
form of counterterms in the unitary gauge from the
expansion (3.4). Concretely, the least suppressed quantum
corrections in the original formulation need to scale like

Lc ∼ ∂4

� ∂F
Λ2
2m

�
2c2

�∂A
Λ2
2

�
c3
: ð3:8Þ

Hence, in the limiting case c3 ¼ 0, quantum corrections
need to preserve gauge invariance in order not to spoil the
stability properties in the DL discussed in this section. This
will be beautifully confirmed by our explicit calculations in
the next section.
Since the DL analysis of quantum corrections exactly

parallels the GP case, only explicit calculation will be able
to tell whether PN has any improved UV behavior, hence
cancellations between terms.

IV. ONE-LOOP CALCULATIONS

In this section we offer explicit calculations of one-loop
corrections in the unitary gauge up to four-point at the one-
loop level using standard Feynman diagram techniques.
Following a MS scheme, the one-loop counterterms can

be inferred from the UV divergence of the 1PI diagrams
which we will compute using dimensional regularization.
We are thus after the log-divergent part of the one-loop 1PI
diagrams with N external legs Mdiv

N which will be a
function of the external momenta pi, i ¼ 1;…; N − 1.
Throughout this work we will treat all momenta as
incoming.

A. Two-point

The perturbative renormalization procedure of the two-
point function only requires the calculation of two distinct
1PI one-loop diagrams depicted in Fig. 1. Hence, it is
enough to explicitly know the two lowest order interaction
terms (2.6) and (2.7). Explicit Feynman rules can be found
in the Appendix.
Using a dimensional regularization procedure9 with

d ¼ 4þ 2ϵ, the divergent part of the reduced matrix
element up to two powers of momenta reads10

Mdiv
2 ¼ ϵμ1ϵ

ν
2

3072ϵΛ4
2π

2

	
576m6gμνð−3γ̃1 þ 36γ̃21 þ 2ðγ̃2 þ 72λ̃0ÞÞ

− 6m4ð½176α̃22 − 48α̃2ð−2þ 11α̃3 þ 64γ̃1Þ þ 3ð11 − 52α̃3 þ 132α̃23 þ 16α̃4

− 160γ̃1 þ 1536α̃3γ̃1 þ 4608γ̃21 þ 64γ̃2Þ�pμpν þ 2½32α̃22 − 12α̃2ð3þ 8α̃3 − 32γ̃1Þ
þ 3ð−1þ 20α̃3 þ 24α̃23 − 8α̃4 − 16γ̃1 − 192α̃3γ̃1 − 576γ̃21 − 32γ̃2Þ�p2gμνÞ
þ 2m2p2ð−4½7þ 16α̃22 þ 84α̃3 þ 36α̃23 − 8α̃2ð7þ 6α̃3 − 36γ̃1Þ þ 144γ̃1 − 432α̃3γ̃1 − 2592γ̃21�pμpν

þ ½31þ 304α̃22 þ 228α̃3 þ 684α̃23 − 152α̃2ð1þ 6α̃3Þ�p2gμνÞ
− p4ð½−13 − 208α̃23 − 228α̃3 − 468α̃23 þ 8α̃2ð19þ 78α̃3Þ þ 3456γ̃21�pμpν þ 16ð1 − 4α̃2 þ 6α̃3Þ2p2gμνÞ

−
2ð1 − 4α̃2 þ 6α̃3Þ2p6

m2
ðpμpν − p2gμνÞ



: ð4:1Þ

FIG. 1. The two possible 1PI two-point diagrams, each having a
symmetry factor of 2.

9Note that at one loop the divergent part is blind to the extra factors of d in the Levi-Civita contractions, such that we will disregard
them.

10As a cross-check, we computed the lower order contributions with a complementary effective action based generalized Schwinger-
DeWitt method and found perfect agreement. See [34] for details regarding this method.

QUANTUM STABILITY OF A NEW PROCA THEORY PHYS. REV. D 105, 024033 (2022)

024033-5



This result confirms the one-loop quantum stability of the
theory at two point as all the contributions remain sup-
pressed enough in order to preserve the classical structure
below the cutoffΛ3. In particular noOð 1

Λ4
2
m4Þ contribution is

present which could not have been excluded through naive
power-counting in the unitary gauge. Moreover, as pre-
dicted by the decoupling limit analysis in Sec. III in the
limiting case Oð 1

Λ4
2
m2Þ corresponding to c3 ¼ 0, c2 ¼ 1 in

(3.8) the induced counterterms precisely acquire a gauge
invariant structure such that, now taking the decoupling
limit after renormalizing, the counterterms fit into the
expansion (3.4)

∂6

Λ4
2m

2
F2 ⟶

DL ∂6

Λ6
3

F2: ð4:2Þ

However, at this level we do not find any improved
behavior as compared to generalized Proca theories.

B. Three-point

At three-point, three 1PI one-loop diagrams contribute
(see Fig. 2). Note that the third one is a contribution from
L5 with associated Feynman rule which we do not show
explicitly in the main text, but can be found in the
Supplementary material [44].
We are mainly interested in the scaling of terms present,

which is why we will present the rather lengthy results in a
schematic sum of contributions MðiÞ

3 where i denotes the
power of external momenta involved:

Mdiv
3 ¼ 1

Λ6
2

	
m6Mð1Þ

ð34Þ þm4Mð3Þ
ð34Þ þm2Mð5Þ

ð34Þ

þMð7Þ
ð34Þ þ

1

m2
Mð9Þ

ð34Þ



: ð4:3Þ

Again, as expected from the decoupling limit analysis,
there is no ∼k11 present which could destabilize the EFT.
However, at three-point as well we do not observe any
cancellation between terms which would signal an
improved UV behavior of PN compared with generalized
Proca. Since neither at two-point nor at three-point we
found any particular improved behavior of one-loop

corrections, we conclude that PN as an EFT is stable under
quantum corrections and behaves exactly like GP in that
respect.

V. CONCLUSION

GR generalizations to incorporate various cosmological
issues requires inclusion of additional degrees of freedom.
As has been pointed out in several literature that no linear
terms addition would satisfy both theoretical consistency
and observational equivalence with GR at large length
scales, one naturally moves towards nonlinear terms
additions. We saw that the procedure to include these extra
nonlinear terms does not necessarily force us to look at
interaction terms which result in at most second order
equations of motion (like in GP), rather one can also have
higher order terms present in the theory which can still
propagate the required degrees (as shown in PN). In PN all
the nonlinear terms only appear relevant above a certain
energy scale (below a certain distance scale, which hap-
pened to be much smaller than the Planck scale) and were
highly suppressed below energy Λ3. This would mean that
all the large distance scale phenomenon can be safely
reduced to GR (as observed).
Although ghostly degrees can be removed from the

classical picture, they reappear after quantum corrections. It
was not their presence which was bothering, but rather the
scale at which they become relevant (Λ3, in our case). Now,
whereas scalar mode additions did produce some interest-
ing results in the past, vector field generalizations seem to
be producing much more varied and interesting physics
(such as higher cutoff). As massless vector fields gener-
alization suffered the no-go obstacle, we resorted to the
study of the massive ones (especially with the higher order
derivative interactions). Although early studies indicated a
generalization of Proca action to a theory (GP) with five
uniquely identified higher order derivative interactions, a
recent study which benefited from an inherent nonlinear
mechanism in massive gravity derivation produced the
Proca-Nuevo action with exact resemblance with the
massive gravity decoupling limit (owing to its derivation
of course). In this work, we proved the quantum stability of
the Proca-Neuvo theory below a specific UV cutoff (Λ3).
Moreover, although PN and GP are different inherently in

FIG. 2. Three distinct one-loop 1PI diagrams giving rise to corrections of the three-point function. The first one arising from three L3

vertex contribution has a symmetry factor of 1, while the other two come with a symmetry factor of 2. The second diagram combining
L3 and L4 has multiplicity 3.
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their classical structure (no resemblance either in field
redefinition or even at the tree level), both have similar high
energy behavior when quantum corrections are taken into
account. This can be directly checked by visual inspection
and comparison with [34]. A possible conclusion would be
that they both have their origin at a single higher UV
complete theory which we leave for future studies. An
important part which is still left in this work is the complete
covariantization of the PN action on a perturbed
Minkowski background (beyond its massive gravity
covariantization).
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APPENDIX: FEYNMAN RULES

In our signature convention, the Feynman propagator is

iΔμνðpÞ ¼ i
p2 −m2 þ iϵ

�
−gμν þ pμpν

m2

�
ðA1Þ

while the three- and four-leg vertices for all incoming
momenta read
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