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Abstract. Proca-Nuevo is a non-linear theory of a massive spin-1 field which enjoys a non-
linearly realized constraint that distinguishes it among other generalized vector models. We
show that the theory may be extended by the addition of operators of the Generalized Proca
class without spoiling the primary constraint that is necessary for consistency, allowing to
interpolate between Generalized Proca operators and Proca-Nuevo ones. The constraint is
maintained on flat spacetime and on any fixed curved background. Upon mixing extended
Proca-Nuevo dynamically with gravity, we show that the constraint gets broken in a Planck
scale suppressed way. We further prove that the theory may be covariantized in models
that allow for consistent and ghost-free cosmological solutions. We study the models in the
presence of perfect fluid matter, and show that they describe the correct number of dynamical
variables and derive their dispersion relations and stability criteria. We also exhibit, in a
specific set-up, explicit hot Big Bang solutions featuring a late-time self-accelerating epoch,
and which are such that all the stability and subluminality conditions are satisfied and where
gravitational waves behave precisely as in General Relativity.
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1 Introduction

Within the realm of charting consistent interacting effective field theories involving fields
of different spins, the search for the most general theory of a self-interacting massive spin-
1 is an interesting question that has enjoyed much progress over the past decade. With
astrophysical and cosmological applications in mind, the embedding of these effective field
theories in a fully gravitational framework is an exciting problem connecting with the ongoing
program of classifying viable extensions of general relativity (GR). Similarly to their scalar-
tensor counterparts, generalized vector-tensor theories have been shown to exhibit intriguing
phenomenological properties in astrophysical systems [1–13] and cosmology [14–25]. In the
latter case, of particular interest is the fact that a time-dependent vector condensate could
behave as a dark energy fluid, driving the observed accelerated cosmic expansion in the
present-day universe, with a technically natural vector mass and dark energy scale [26, 27].

An important milestone in this program was the discovery of the so-called Generalized
Proca (GP) theory [28, 29] (see [30–35] for related works). GP is an extension of the standard
Proca theory of a spin-1 particle that includes self-interactions, with the virtue of maintaining
the same constraint that renders the component A0 of the field (in some frame) non-dynamical,
thus ensuring the correct number of degrees of freedom at the non-linear level and, as a
consequence, the absence of Ostrogradsky-type ghosts. It is worth emphasizing that the
interactions of GP theory are non-trivial in that they are not simply constructed out of the
field strength and the undifferentiated field, but includes derivative interactions that give rise
to some unique properties, e.g. in relation to the screening mechanisms and the coupling to
alternative theories of gravity [36–38].

While GP encompasses a broad class of models, there is no reason to expect it to be the
unique non-linear completion of the free Proca theory. Indeed, vector-tensor theories that do
not fall into the GP class have been found in [39, 40]. There are two ways to see why GP is not
necessarily the end of the story. The first is that the condition of having the desired number
of degrees of freedom (i.e. three in four dimensions and ignoring gravity for the moment) only
requires the existence of a constraint, which need not simply translate into the fact that a
particular component of the field—A0 in the case of GP — be non-dynamical. For instance,
this constraint may be a non-linear functional of the vector field. The second insight into the
question is provided by the decoupling limit of GP theory, in which the massive vector boson
decomposes into massless spin-0 and spin-1 particles. A virtue of GP is that, in this limit,
the equations of motion are second order, making the absence of extra unwanted degrees
of freedom manifest. However, this feature of the equations of motion is sufficient but not
necessary, since it is known that multi-field systems may in principle evade the Ostrogradsky
theorem if the equations happen to be degenerate [41, 42].

Recently, an alternative extension of Proca theory, dubbed “Proca-Nuevo” (PN), was
proposed in [43]. PN theory successfully exploits the above loopholes through a non-trivial
realization of the primary constraint, motivated by the decoupling limit of massive gravity [44,
45]. More in detail, if we denote by V µ the vector spanning the null space of the Hessian
matrix of time derivatives, then GP theory is characterized by having V µ = δµ0 , just like the
linear theory, while in PN this vector is a non-linear function of the field itself. Crucially, this
Hessian null eigenvector cannot be trivialized by performing a field redefinition and the two
theories, GP and PN, are indeed dynamically inequivalent.

Given this inequivalence, it is natural to ask whether a still more general theory exists
from which both GP and PN could arise as particular “corners” in the space of models, i.e.
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Figure 1. Charting the space of massive spin-1 self-interacting theories that exhibit a constraint.

through particular choices (possibly in a limiting sense) of coupling constants. Exploring this
question is the first aim of this paper. We shall show that such extension does exist, in a
model that we imaginatively call “Extended Proca-Nuevo”. While this proposal succeeds in
furnishing a link between GP and PN, we should warn the reader of two caveats. First, in the
“GP limit” of extended PN not all of the operators belonging to the GP class are obtained,
although the whole PN class is included; this is represented artistically in figure 1. Second, as
it stands, extended PN is only complete when considered on a fixed background. While a
full covariantization of the theory that maintains its constrained structure is still currently
missing, as we shall see, since the breaking of the constraint is connected to the non-linear
mixing between the gravitational degrees of freedom and the vector field, the ghost it implies
always enters at a Planck-suppressed scale.

This last point regarding the coupling to gravity takes us to our second objective, namely
to explore the cosmological implications of extended PN theory. Although not consistent in full
generality, we will exhibit two alternative, partial covariantization schemes that successfully
describe a massive spin-1 field coupled to Einstein gravity, with no additional degrees of
freedom, for cosmological solutions at the levels of both the homogeneous and isotropic
background and of general linear perturbations. Our main result is that, in each set-up, there
exists a window of parameter values for which cosmological perturbations are free of ghost-
and gradient-like instabilities and of superluminal propagation speeds. In particular, each
scenario accommodates exactly luminal gravitational waves.

The first covariantization is particularly neat in that the coupling with gravity is minimal,
unlike what occurs in GP theory. On the other hand, this model requires a technically-natural
tuning of coefficients which has the advantage of providing a simple and tractable model with
relatively few arbitrary functions. A particularly interesting property of this set-up is that,
without any further tuning or special choices of coefficients, tensor fluctuations propagate
exactly as in GR. As a consequence, observational bounds on the production and propagation
of gravitational waves do not impose any extra constraints on the theory. After deriving the
stability conditions for all types of perturbations — tensor, vector and scalar — for the model
coupled to perfect fluid matter, we then analyze the resulting cosmological solutions. We
will see that the model exhibits hot Big Bang solutions with epochs of radiation, matter and
dark energy domination, with the latter corresponding to a “self-accelerating” phase, being
driven by the vector field condensate and not a cosmological constant. We further show that
perturbations within this model are fully under control, stable and causal.

– 2 –
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The second covariantization is more general but requires non-minimal couplings between
the vector field and the curvature. These non-minimal terms are precisely those of GP, so this
model has the virtue of accommodating the covariant GP theory as a particular case, which
is known to be free of pathologies for various choices of parameters. We will show however
that this general set-up extends the cosmology of GP in interesting ways. For instance, we
will prove that the dispersion relation of the Proca vector mode is non-linear, both in vacuum
and when coupled to a perfect fluid. Similarly, the mixing of the perfect fluid with the
extended PN sector results in a modification of the speed of propagation of the longitudinal
fluctuation of the fluid, i.e. the phonon. As this effect is absent both in GR and in GP, it gives
in principle a clean signature to test the theory and distinguish it from other vector-tensor
models, although providing precise set-ups in which this signature would be detectable is
beyond the scope of this work.

The rest of this paper is organized as follows, we begin in section 2 with a brief review
of the previously proposed PN theory before proceeding with its extension in flat spacetime,
which includes most GP interactions as a subclass. The coupling to gravity is considered in
section 3, where specific examples of covariantization are proposed, followed by the analysis
of its constraint structure in the cases where the background spacetime is curved but non-
dynamical and then when the metric is fully dynamical. We then present our analysis of
cosmological solutions and perturbations for each of the covariantization schemes mentioned
previously, first for the special case without non-minimal couplings in section 4 followed by
the general case in section 5. We summarize our main results in section 6 and provide some
final remarks. In order to ease the reading of the paper, we have omitted in the main text
some technical derivations, which may be found in the appendices.

2 Extended Proca-Nuevo

2.1 Review of Proca-Nuevo theory

We start with a vector field Aµ living on flat spacetime with Minkowski metric ηµν . The
construction of PN theory follows the intuition drawn from the helicity decomposition of
massive gravity [46] (see also [44, 45]), beginning with the definition

fµν [A] = ηµν + 2
∂(µAν)

Λ2 + ∂µA
ρ∂νAρ
Λ4 , (2.1)

where Λ is an energy scale that will ultimately control the strength of the vector self-
interactions. Although reminiscent of the Stückelberg metric of massive gravity, we emphasize
that we are ignoring gravity for the moment and therefore fµν here is simply a Lorentz tensor.

For later convenience we introduce

φa = xa + 1
Λ2A

a , (2.2)

so that fµν may be written as
fµν = ∂µφ

a∂νφ
bηab . (2.3)

The dependence of φa on the coordinates xa might naively suggest a breaking of Poincaré
invariance. However, the quantity we shall use as a building block in the Lagrangian is fµν ,
and this is manifestly a Poincaré-covariant object as is clear from (2.1).
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Next we introduce the tensor Kµν defined as [44, 47]

Kµν = X µν − δµν (2.4)

with X µν [A] =
(√

η−1f [A]
)µ

ν
i.e. X µαXαν = ηµαfαν . (2.5)

In four dimensions, the PN theory for the vector field Aµ is then expressed as [43]

LPN[A] = Λ4
4∑

n=0
αn(X)Ln[K] , (2.6)

where the nth order PN term is defined by

Ln[K] = − 1
(4− n)!ε

µ1···µnµn+1···µ4εν1···νnµn+1···µnKν1
µ1 · · · K

νn
µn , (2.7)

or more explicitly
L0[K] = 1 , (2.8)
L1[K] = [K] , (2.9)
L2[K] = [K]2 − [K2] , (2.10)
L3[K] = [K]3 − 3[K][K2] + 2[K3] , (2.11)
L4[K] = [K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3]− 6[K4] , (2.12)

and we use the notation [K] = tr(K) for the trace. In (2.6) the PN terms are multiplied by a
set of coefficients αn(X) which are arbitrary functions of

X = − 1
2Λ2 A

µAµ . (2.13)

In our conventions, X, αn and Ln are all dimensionless quantities. Note that L0 is just a
constant, so that the product α0(X)L0 ≡ V (AµAµ) contains the standard potential of the
vector field. In order for the trivial vacuum 〈Aµ〉 = 0 to be a consistent state one should
demand that α0 have a non-zero quadratic contribution, i.e. α0 ⊇ −1

2(m2/Λ4)AµAµ.

Null eigenvector. PN and GP are two inequivalent theories of a ghost-free massive vector
field. It is natural to ask whether an extension of PN could be implemented in such a way
that it would encompass both PN and GP. The two models realize the Proca constraint
in very different ways, as can be seen at the level of the null eigenvector (NEV) of their
respective Hessian matrices. As reviewed in the introduction, in GP theory the interactions
are constructed in such a way that their NEV corresponds to the direction (1,~0), meaning that
(in some frame) the component A0 of the vector field is non-dynamical, just like in the linear
theory. On the other hand, in PN theory the constraint is realized through a field-dependent
NEV. Indeed, it was shown in [43] that the vector

V PN
a (Λ) = (X−1)0µ∂µφa = (X−1)0µ

(
ηµν + 1

Λ2∂νAµ

)
, (2.14)

is the non-perturbative normalized time-like NEV of the PN Lagrangian (2.7), i.e. V PN
a satisfies

HabV PN
a = 0 , (2.15)

and ηabV PN
a V PN

b = −1, with Hab denoting the Hessian matrix of time derivatives,

Hab = ∂2LPN

∂Ȧa∂Ȧb
. (2.16)
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2.2 Extended Proca-Nuevo theory

The PN model defined previously is special due to its link to massive gravity, but it is actually
straightforward to include additional interactions within the same class. The main observation
is that any operator that leaves the Hessian (2.16) fully invariant can be added to the theory
without affecting the form of the NEV. In 4D there exist precisely five operators built out
of the tensor ∂µAν that respect that condition, namely the operators dn(X)Ln[∂A], defined
according to the rule in eq. (2.7).

Although the Ln[∂A] operators are total derivatives and thus trivial in isolation, when
added to the Lagrangian with a field-dependent coefficient, they produce non-trivial phe-
nomenological effects, while being trivial at the level of the Hessian. These operators are
precisely those that define the novel derivative interactions of GP theory (with the exception
of L4, on which we will comment later). What we have uncovered here is that they may be
added to the complete PN Lagrangian without thwarting the constraint structure. It is worth
pointing out that the other members of the GP class, namely those that are not constructed
solely in terms of elementary symmetric polynomials of ∂µAν , do in general contribute to the
Hessian matrix and can therefore not trivially be added within this set-up.

We note that some redundancies are introduced through the construction we have just
outlined: (i) L0[∂A] is a constant, therefore its coefficient will contribute to the non-derivative
potential and hence can be absorbed into α0; (ii) because of the identity

4∑
n=1

Ln[K]
n! =

4∑
n=1

Ln[∂A]
Λ2nn! , (2.17)

it follows that only three among the four remaining terms are linearly independent from the
PN operators; (iii) moreover, it has been proved [42] that f(X)L4[∂A] is a total derivative
for any function f , therefore this term is always redundant. However, properties (ii) and
(iii) hold only in flat spacetime, and are no longer true in a generic curved background upon
replacing ∂A → ∇A. Since our aim is to use this set-up as a starting point for building a
covariant theory, we are thus led to consider all four GP terms L1[∂A] through L4[∂A].

With these considerations in mind, we now introduce the following Lagrangian,

LEPN = Λ̃4
4∑

n=0
αn(X̃)Ln[K̃[A]] + Λ4

4∑
n=1

dn(X)Ln[∂A]
Λ2n , (2.18)

which we refer to as “Extended Proca-Nuevo” (EPN) theory. In four dimensions, it includes
four additional arbitrary functions, dn(X), besides the original αn. Note that we have allowed
for the possibility for the two families of operators to enter at different scales, namely at
the scale Λ and Λ̃, and denote as K̃ and X̃ the same quantities as defined previously but
suppressed with the scale Λ̃.

Obviously, the difference in scaling could be absorbed into the functions αn (and we
will do so later), but for now, we keep treating both scales independently as the relation
between them can be used as a “dialing” parameter to interpolate between the respective PN
and GP Lagrangians. In this sense, PN provides a perhaps unexpected link between the two
previously known models.

This interpolation between PN and GP is seen most explicitly at the level of the NEV.
Given that the additional dnLn[∂A] operators do not affect the Hessian matrix, the NEV of
EPN coincides with that of PN defined above in (2.14). Denoting as V EPN

a (Λ̃,Λ) the NEV of

– 5 –
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EPN, it is straightforward to check that

V EPN
a (Λ̃,Λ) = V PN

a (Λ̃) , (2.19)

where the NEV for PN is defined in (2.14). In the limit where Λ̃→∞, keeping the vector
mass and the scale Λ fixed, we have χµν(Λ̃)→ δµν , so it is clear that we recover the respective
GP and PN null eigenvectors by taking the following limits for Λ̃


V EPN
a (Λ̃,Λ) −−−−→

Λ̃→∞
(1,~0) , (GP case)

V EPN
a (Λ̃,Λ) −−−→

Λ̃→Λ
V PN
a (Λ) , (PN case)

(2.20)

that is, the NEVs of GP and PN are obtained from the NEV of EPN in particular limits.
Let us emphasize that the GP limit is however non-trivial. Even though the limit Λ̃→∞

is well-defined and unambiguous at the level of the NEV, taking that limit at the level of the
Lagrangian is on the other less trivial. Nevertheless, it is straightforward to see that one can
indeed isolate all the Ln(∂A) GP operators via this procedure so long as the scale Λ and the
vector mass are both kept fixed in that limit. See appendix A for details.

Having understood the relation with GP, we will focus on the full EPN theory for the
remainder of the paper and without further loss of generality, we may set Λ̃ = Λ.

3 Coupling Extended Proca-Nuevo with gravity

As the theory of a Lorentz massive spin-1 field, the previous section naturally constructed
the EPN theory on Minkowski, where the symmetries of the Lorentz and Poincaré groups
make sense. However, in order to make contact with astrophysics and cosmology, we can also
attempt to first extend the theory on arbitrary curved spacetime-dependent backgrounds and
then further include the coupling with the gravitational dynamical degrees of freedom in the
constraint analysis. We will address this by studying the existence of an NEV associated with
the Hessian matrix of the covariantized version of the theory.

We will first prove that the suggested covariantized version of EPN does possess an NEV
on any arbitrary curved background metric no matter its spacetime dependence. However,
this vector fails to be an eigenvector as soon as the metric is taken as a dynamical variable.
By itself this simply indicates that the vector ought to be modified to include the non-trivial
mixing with gravity, however, any modification of this vector would necessarily result in a
non-vanishing eigenvalue and hence a breaking of the constraint. The presence of an additional
degree of freedom is then inexorably linked to this loss of constraint, and standard analysis
shows that when such additional degrees of freedom enter, they are always of ghostly nature.
However since this loss of constraint is related to the mixing between the gravitational degrees
of freedom and the Proca field, the resulting effects are Planck scale-suppressed. Moreover, we
will see that the case of FLRW (Friedmann-Lemaître-Robertson-Walker) spacetime is special
in that the additional degree of freedom is absent due to the isometries of the background so
that the issue can be evaded at that level. This statement is strengthened by the fact that
linear perturbations on cosmological backgrounds are free from any additional ghost degrees
of freedom as will be shown explicitly.

– 6 –
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3.1 Covariant EPN theory

We define the covariant EPN theory by the action

S =
∫

d4x
√
−g

(
M2

Pl
2 R+ LEPN + LM

)
, (3.1)

where R is the curvature scalar, LM is the matter Lagrangian and

LEPN = −1
4 F

µνFµν + Λ4 (L0 + L1 + L2 + L3) , (3.2)

with the definitions

L0 = α0(X) , (3.3)

L1 = α1(X)L1[K] + d1(X)L1[∇A]
Λ2 , (3.4)

L2 = (α2(X) + d2(X)) RΛ2 + α2,X(X)L2[K] + d2,X(X)L2[∇A]
Λ4 , (3.5)

L3 =
(
α3(X)Kµν + d3(X)∇

µAν

Λ2

)
Gµν
Λ2 −

1
6α3,X(X)L3[K]− 1

6d3,X(X)L3[∇A]
Λ6 . (3.6)

Here the subscript X on the coefficient functions denotes differentiation w.r.t. X. While the
Einstein-Hilbert term could be absorbed into the definition of α2 or d2, we have chosen to
write it independently in order to distinguish the Planck scale from the scale controlling the
EPN interactions.

Some comments are in order regarding our definition of LEPN. First, the Lagrangian
includes non-minimal coupling terms, proportional to R in L2 and to the Einstein tensor Gµν
in L3. These are motivated by the known non-minimal couplings of GP theory [29]. Second,
and also related to the question regarding non-minimal couplings, our Lagrangian omits the
L4 term that was present in flat spacetime. As remarked before, this term does not belong
to the GP class and neglecting this term has the advantage of simplifying the analysis of
cosmological perturbations, which is our main scope.

3.2 EPN on an arbitrary background

Before proceeding with the constraint analysis of the covariant EPN action defined in (3.1),
we make a brief digression here to point out that EPN admits a simpler covariantization in the
case when the metric is non-dynamical (in the sense that we do not include the gravitational
degrees of freedom in the counting of degrees of freedom), yet with a background spacetime
that is arbitrarily curved. Indeed, in this situation, the minimal coupling prescription applied
to the full flat-space Lagrangian, eq. (2.18), is already enough to furnish a fully consistent
theory. The proof is similar to that used in [43] to establish the consistency of PN theory
in flat spacetime, i.e. through the explicit construction of the NEV of the Hessian matrix
associated to the Lagrangian.

Unsurprisingly, this NEV is nothing but the minimal covariantization of the flat-space
NEV. Starting with the vector field we define the auxiliary metric

fµν = gµν + 2
∇(µAν)

Λ2 + gαβ∇µAα∇νAβ
Λ4 , (3.7)

– 7 –
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where the covariant derivatives are taken with respect to the arbitrary metric gµν and
the tensor

X µν =
(√

g−1f

)µ
ν
. (3.8)

The claim is that the vector

Vµ = (X−1)0
α

(
δαµ + gαβ

Λ2 ∇βAµ

)
, (3.9)

is the desired NEV. We will prove this here for the EPN term L1; the proof for the other
terms can be found in appendix B.1.

As explained previously, the “extended” terms Ln[∇A] do not contribute to the Hessian
matrix (again, in the absence of dynamical gravity), so it suffices to focus on L1[K]. Actually,
it is more convenient for the proof to consider instead L1[X ], which entails no loss of generality
given that the set Ln[K] is linearly related to the set Ln[X ]. Note that this statement is only
true for the complete sets of operators Ln, with n going from 1 to 4. However, we prove in
appendix B.1 that the vector V µ is the common NEV to each Ln[X ], including L4[X ], and
hence it is also the desired NEV for each Ln[K].

We then define, for each Ln[X ], the associated canonical momentum conjugate to the
vector field as

p(n)
α = Λ4∂Ln[X ]

∂Ȧα
, (3.10)

and the corresponding Hessian matrix

H(n)
αβ = ∂p

(n)
α

∂Ȧβ
. (3.11)

For L1[X ] we find p(1)
α = Λ2Vα, and therefore

H(1)
αβV

α = Λ2 ∂Vα

∂Ȧβ
V α = Λ2

2
∂(VαV α)
∂Ȧβ

= 0 , (3.12)

which follows because VαV α = g00 is independent of the vector field velocity. A similar proof
applies to the other Ln[X ] terms, see appendix B.1 for details.

3.3 Coupling with gravitational degrees of freedom

We now extend the previous analysis to accommodate a dynamical metric, in the sense where
the dynamical degrees of freedom of the metric are included in the constraint analysis. While
the degeneracy of the full Hessian matrix is preserved by the L1 EPN term upon minimal
coupling to gravity, this property will be shown to fail for the other covariant EPN terms,
L2 and L3, with or without the GP-inspired non-minimal couplings. Once again, because
the GP-like contributions Ln[∇A] (with the appropriate non-minimal coupling terms) are
known to be ghost-free, it suffices to focus on the PN terms, and without loss of generality we
consider the set Ln[X ] instead of the set Ln[K].

To proceed, we start by decomposing the metric in ADM variables,

g00 = −N2 +N iNi , gi0 = Ni , gij = γij , (3.13)
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where N is the lapse, N i is the shift (defined with an upper index) and γij is the three-
dimensional spatial metric, used to raise and lower indices on any spatial tensor. The vector
field is parametrized by the time and spatial components of A∗µ, related to the original field via

Aµ = M ν
µ A∗ν , (3.14)

with
M ν
µ ≡

(
N N i

0 δij

)
. (3.15)

Even though Ȧµ and Ȧ∗µ are not linearly related (because M ν
µ is time-dependent), the

corresponding conjugate momenta do satisfy a linear relation,

p∗(n)
µ ≡ Λ4∂Ln[X ]

∂Ȧ∗µ
= Mν

µp
(n)
ν , (3.16)

and similarly for the Hessian submatrix

H∗(n)
µν ≡

∂p
∗(n)
µ

∂Ȧ∗ν
= Mρ

µM
σ
νH(n)

ρσ . (3.17)

The full Hessian matrix of field velocities is now a 10 × 10 matrix spanning the four
components of the vector field A∗µ and the six components of the spatial metric. In this
analysis, we ignore the lapse and shift since it can be shown that no instance of Ṅ and Ṅ i

appears in the Lagrangian after performing the redefinition Aµ 7→ A∗µ [48].
We claim that a natural candidate for the Hessian NEV of the covariant EPN theory is

V ≡
(
V ∗µ , 0

)
, (3.18)

where the null entry runs over the metric components and

V ∗µ ≡
(
M−1

) ν

µ
Vν . (3.19)

The vector V indeed annihilates both the pure vector and pure metric subsectors. The latter
property is trivial, while the former holds because

H∗(n)
µν V ∗ν = Mρ

µH(n)
ρσ V

σ = 0 , (3.20)

where the last equality follows from the results of the previous subsection. Thus the outstanding
question is whether V annihilates the mixed vector-metric components of the Hessian.

It is easy to verify this for the L1[X ] term. Defining

H∗(n)
µ,ij ≡

∂p
∗(n)
µ

∂γ̇ij
, (3.21)

we have

H∗(n)
µ,ij V

∗µ = ∂p
(n)
µ

∂γ̇ij
V µ , (3.22)

and in particular for n = 1

H∗(1)
µ,ijV

∗µ = Λ2 ∂Vα
∂γ̇ij

V α = Λ2

2
∂(VαV α)
∂γ̇ij

= 0 . (3.23)
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Therefore L1[X ] defines a consistent ghost-free theory when coupled to dynamical gravity.
Since V is proven to be the null eigenvector for L1[X ], we can directly infer that if V fails to
also be a null eigenvector for any other Ln[X ], then irrespectively of what the appropriate
eigenvectors would then be, it cannot be a null eigenvector for all Ln[K] and thus the constraint
will always be necessarily lost for generic theories given by (3.2). And indeed, as it turns
out, when considering L2[X ] and L3[X ], we can show that in the absence of any non-minimal
couplings then H∗(n)

µ,ij V
∗µ 6= 0 for n = 2, 3 (see appendix B.2 for the explicit expressions).

At this stage, this means that the covariant theory must necessarily include non-minimal
couplings between the vector field and the curvature, unsurprisingly since we know this to be
the case in the simpler GP theory. Our proposed covariant version of EPN theory, eq. (3.1),
contains the non-minimally coupled term

L(non−min)
2 = α2,X L2[X ] + α2

Λ2 R . (3.24)

As is shown in appendix B.2, while the vector V fails to be a precise null eigenvector for
the resulting Hessian matrix, our claim is that the addition of the curvature scalar operator
allows us to consistently apply our model to cosmology.

The first virtue of the above choice (3.24) of non-minimal coupling is that L(non−min)
2 is

indeed degenerate whenever the tensor ∇µAν is symmetric. For instance, this is the case for
the cosmological backgrounds that we are interested in, namely the FLRW metric

gµνdxµdxν = −dt2 + a2(t)δijdxidxj , (3.25)

and the vector field profile
Aµdxµ = −φ(t)dt . (3.26)

In fact, for this background, the absence of additional degrees of freedom can be seen very
directly by noting that1

Kµν = 1
Λ2 ∇

µAν , on FLRW . (3.27)

It follows that Ln[K] = Ln[∇A]/Λ2n for this background, implying that the EPN theory
actually reduces to a subclass of GP theory when restricted to FLRW, however the per-
turbations themselves differ quite significantly. Yet, we will confirm in section 5 that the
Lagrangian (3.24) propagates the correct number of degrees of freedom also at the level of
general linear perturbations about this background, where the equivalence between EPN and
GP no longer holds. Although reassuring as an explicit check, let us emphasize that the
presence of a constraint and absence of additional Ostrogradsky ghost was indeed expected
given our proof that the NEV V indeed annihilates the Hessian on the FLRW background.

We can also extend the derivations beyond cosmological backgrounds, and another virtue
of the above choice of non-minimal coupling is that when expanded perturbatively in higher-
dimensional operators, the matrix product H(2)

(non−min)V correctly vanishes at leading order,
but does not vanish when the two operators in (3.24) are taken separately (see appendix B.2).
Since the constraint is present at leading order in an operator expansion and only gets broken
at higher order, it is in principle possible that the addition of new higher-order curvature terms
could cancel the leftover, and so on in a perturbative fashion. Such precise constructions are
however beyond the scope of this work and are kept for a future work. Note however that the

1With some abuse of terminology, we will refer to the background defined by eqs. (3.25) and (3.26)
as “FLRW”.
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scale at which the vector V ceases to be a null eigenvector is crucial. The loss of constraints
is related to the presence of operators that mix between the gravitational and vector degrees
of freedom. Following the result presented in eq. (B.25), and using the fact that at leading
order the momentum is given by p∗µ = Ȧ∗0δ

0
µ, we can infer that at the level of the Lagrangian,

the loss of constraints is associated with an operator which behaves symbolically as

Lghost ∼
1

Λ2 γ̇
ijȦ∗0F0iAj + higher-dimensional operators . (3.28)

This term would be irrelevant if the gravitational degrees of freedom were not considered as
dynamical, so including the gravitational tensor modes hT and the vector fluctuation δA∗0,
this corresponds to a ghostly operator of the form

Lghost ∼
1

Λ2MPl
ḣT δȦ

∗
0F̄0iĀj + higher-dimensional operators . (3.29)

Remaining on the conservative side, this implies that a background configuration with vector
vev Ā and field strength vev F̄ would excite an additional ghost degree of freedom χ, entering
as Ȧ∗0 ∼ χ̈/m̄ at the symbolic cutoff scale

mghost ∼
Λ2MPlm̄

Ā⊥F̄
, (3.30)

where m̄ is the mass of the vector field on the background in question, and Ā⊥ is the dynamical
part of the vector field. In particular on any background where the field strength tensor
vanishes (i.e. where ∂µĀν is symmetric), we recover the absence of ghosts, as is the case
on the cosmological background we shall have in mind. Note that these considerations are
meaningless on backgrounds where the vector field mass happens to vanish, m̄ = 0, since
the helicity-0 mode is then infinitely strongly coupled. On a background where Ā⊥ ∼ Λ
and F̄ ∼ ∂Ā⊥ ∼ m̄Λ, the mass of the would-be ghost would be of order MPl. We refer
the reader to [49] for further details on the question of ghosts and matter couplings in
gravitational theories.

All the previous considerations also apply to the EPN term L3 and its associated non-
minimal curvature coupling as given in (3.1); details can be found in appendix B.2. The
upshot of this analysis is that our proposal for a covariantization of EPN theory, while not
successful in complete generality, does indeed define a consistent cosmological model insofar
as the number of degrees of freedom is concerned and as long as one is interested in linear
perturbations about cosmological solutions defined by eqs. (3.25) and (3.26).

4 Special model without non-minimal couplings

We introduced in eq. (3.1) what we have argued to be a natural first step in the covariantization
of the flat-space EPN theory derived in section 2. We will refer to this Lagrangian as the
“general” model, because it reproduces all the operators in (2.18) in the flat space limit (with
the exception of L4[K], which we omit as previously explained). We will study this general
model in the next section.

In the present section we focus instead on an alternative covariantization in which
all non-minimal coupling terms are omitted. We recall that in our analysis of the Hessian
matrix we found that the non-minimal couplings were in fact necessary for the NEV ansatz
to succeed at leading order in a standard EFT operator expansion. While this statement is
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true generically, there remains the possibility that other covariantization schemes may exist
when the theory is restricted by a specific choice of the coefficient functions αn and dn. In
this section we show that this is indeed the case.

The “special” model we consider is defined by the action

Ŝ =
∫

d4x
√
−g

(
M2

Pl
2 R+ L̂EPN + LM

)
, (4.1)

where we use a hat to distinguish it from the general model in eq. (3.1). Here again R is the
curvature scalar, LM is the matter Lagrangian, and the special EPN Lagrangian reads

L̂ = −1
4 F

µνFµν + Λ4
(
L̂0 + L̂1 + L̂2 + L̂3

)
, (4.2)

where

L̂0 = α0(X) , (4.3)

L̂1 = α1(X)L1[K] + d1(X)L1[∇A]
Λ2 , (4.4)

L̂2 = α2,X(X)
(
L2[K]− L2[∇A]

Λ4

)
, (4.5)

L̂3 = −1
6α3,X(X)

(
L3[K]− L3[∇A]

Λ6

)
. (4.6)

We remark that this Lagrangian can be formally obtained from that of the general model
by setting d2 = −α2, d2,X = −α2,X , d3,X = −α3,X and α3 = 0 = d3. But we emphasize that
this is only a formal procedure, since the latter two conditions are obviously inconsistent
as functional relations (except in the trivial case α3(X) = 0 = d3(X)). With this choice of
coefficients, the model has the advantage of being particularly simple, having no non-minimal
couplings between the vector field and the metric and with comparatively few free coefficient
functions. The precise constraint analysis for this special model is performed in details in
appendix B.3. It follows the precise same pattern as that discussed previously in the more
general case in section 3, and in particular the exact same conclusions as those of subsection 3.3
hold here upon accounting for the dynamical mixing between the gravitational and vector
degrees of freedom in this special example. Note in particular that this special model is free
of ghost on cosmological backgrounds.

In the following subsections we derive the equations governing the dynamics of the
FLRW background (defined by eqs. (3.25) and (3.26)) and of its linear perturbations. The
matter sector is assumed to be a perfect fluid, although at this stage we do not specify its
equation of state. As expected, our analysis recovers the correct number of propagating
degrees of freedom on this cosmological background. In the last subsection we consider an
admixture of pressureless matter and radiation, and then solve the background equations
for a particular choice of the EPN coefficients. We further show that, for this particular
choice, all the stability and subluminality conditions for the perturbations are satisfied. The
proposed example thus provides a proof of principle that a heathy candidate for the Big Bang
history of our Universe can be accommodated within EPN. This model does not rely on the
presence of any cosmological constant, but rather with the presence of non-trivial Proca field
self-interactions that enter at a technically natural scale [27].
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4.1 Background

We proceed by deriving the background cosmological equations of motion. We focus on the
FLRW metric

ds2 = −N2(t)dt2 + a2(t)δijdxidxj , (4.7)

with the vector field profile
Aµdxµ = −φ(t)dt . (4.8)

The equation obtained from varying the action with respect to the lapse yields the modified
Friedmann equation

H2 = 1
3M2

Pl
(ρM + ρ̂EPN) , (4.9)

where from now on we may set N = 1 and where

ρ̂EPN ≡ Λ4
[
−α0 + α0,X

φ2

Λ2 + 3 (α1,X + d1,X) Hφ
3

Λ4

]
, (4.10)

is the effective energy density of the vector field. The Friedmann equation may be combined
with the equation that follows from varying the action with respect to the scale factor a(t) to
produce the modified Raychaudhuri equation

ä

a
= Ḣ +H2 = − 1

6M2
Pl

(
ρM + ρ̂EPN + 3PM + 3P̂EPN

)
, (4.11)

where

P̂EPN ≡ Λ4
[
α0 − (α1,X + d1,X) φ

2φ̇

Λ4

]
, (4.12)

is interpreted as the effective pressure of the vector condensate. Finally, variation with respect
to φ(t) gives

α0,X + 3 (α1,X + d1,X) HφΛ2 = 0 , (4.13)

which is however not independent of the other two as a consequence of the Bianchi identity.
The fact that eq. (4.13) is a constraint, enforcing an algebraic relation between H and φ, is
no accident but follows from the precise form of the Lagrangian of the special model.

4.2 Perturbations

4.2.1 Definitions
Next, we introduce perturbations about the FLRW background, following [15, 16]. Metric
perturbations in the flat gauge are composed of two scalar modes α and χ, one vector mode
Vi and one tensor mode hij . The line element reads

gµνdxµdxν = −
(

1 + 2 α

MPl

)
dt2 + 2

MPl

(
∂iχ

MPl
+ aVi

)
dtdxi + a2(t)

(
δij + hij

MPl

)
dxidxj .

(4.14)
The vector mode is transverse and the tensor mode is traceless and transverse, so that they
each have two degrees of freedom. In here and what follows, spatial indices i, j, · · · are raised
and lowered with respect to the spatial Euclidean metric δij .
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The vector field Aµ is parametrized by two scalar perturbations δφ and χV , together
with a (transverse) vector mode Zi. The perturbed vector field is then defined as

A0 = φ(t) + δφ ,

Ai = 1
a2 δ

ij
(
aZj −

a

MPl
φVj + ∂jχV

Λ

)
.

(4.15)

The appearance of Vi in the vector field perturbation may appear as unnecessary at this stage
but will prove convenient later and prevent the need of additional field redefinitions.

For the perfect fluid matter we use the Schutz-Sorkin action [50],

SM = −
∫

d4x
[√
−g ρM (n) + Jµ

(
∂µl +Ai∂µBi

)]
. (4.16)

Here

n =
√
JµJµ
g

, (4.17)

is the fluid number density, whose background value is given by n = N0/a
3, with N0 a

constant. The current Jµ is decomposed as
J0 = N0 +M2

PlδJ ,

J i = MPl
a2 δik (∂kδj +MPlWk) , (4.18)

where δJ and δj are scalars and Wk is a transverse vector.
The scalar l in (4.16) is such that on the background,

∂0l = −ρM,n ≡ −
∂ρM
∂n

, (4.19)

and we define its scalar perturbation v by

l = −
∫ t

ρM,ndt′ − ρM,nv

M2
Pl

, (4.20)

and note that on FLRW we have

ρM,n = ρM + PM
n

= a3 ρM + PM
N0

. (4.21)

Finally, the vectors Ai and Bi are also transverse. The canonical choice for their associated
perturbations δAi and δBi reads

Ai = δAi
MPl

, Bi = MPlxi + δBi
MPl

. (4.22)

For later use we note that the normalized 4-velocity of the fluid can be found by varying
the action (4.16) with respect to the current Jµ, with the result

uµ = Jµ
n
√
−g

= 1
ρM,n

(
∂µl +Ai∂µBi

)
, (4.23)

and ui can be further split as
ui = − ∂iv

M2
Pl

+ vi
MPl

, (4.24)

where vi is transverse.
In the rest of this subsection we compute the quadratic part of the action for all

perturbations, respectively for tensor, vector and scalar modes, and determine the conditions
for every dynamical mode to be stable.
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4.2.2 Tensor perturbations
The quadratic action for the tensor perturbations is given by

Ŝ
(2)
T =

∫
d4x a3 1

8

[
ḣ2
ij −

1
a2 (∂khij)2

]
. (4.25)

We see that, in the special model, the EPN dynamics does not affect the quadratic action for
the tensors, which are therefore entirely determined by the Einstein-Hilbert term. Thus not
only is the tensor sector of (4.1) free of instabilities, the speed of propagation of gravitational
waves in this set-up is also exactly luminal. This is an interesting property considering the
fact that the vector field, even though minimally coupled, still interacts non-trivially with the
metric.2 Having the same dispersion relation as that of GR is of course also a phenomenological
virtue given the recent experimental measurements on the speed of gravitational waves [51].

4.2.3 Vector perturbations
For the vector sector it is convenient to consider first the matter action (4.16). Expanding to
quadratic order in perturbations we find

S
(2)
M,V =

∫
d4x

1
M2

Pl

[
ρM,n

2a2N0

(
M3

PlWi + aN0Vi
)2
− 1

2a
3ρMV

2 −
(
N0δḂi + M4

Pl
a2 Wi

)
δAi

]
,

(4.26)
in agreement with [16]. We now proceed to eliminate the non-dynamical variables so as to
identify the dynamical degrees of freedom. Varying (4.26) with respect to Wi we have

Wi =
N0
(
δAi − ρM,na

Vi
MPl

)
ρM,nM2

Pl
. (4.27)

Plugging the definitions of δAi and δBi in eq. (4.22) into eq. (4.24) we find

δAi = ρM,nvi
MPl

, (4.28)

and hence
Wi = N0

M3
Pl

(vi − aVi) . (4.29)

Varying (4.26) with respect to δAi we get

vi = a

(
Vi − a

δḂi
MPl

)
. (4.30)

Combining these results we may integrate out Wi and δAi to obtain

S
(2)
M,V =

∫
d4x

a3

2
1
M2

Pl

(ρM + PM )
(
Vi − a

δḂi
MPl

)2

− ρMV 2
i

 . (4.31)

2Indeed, it can be checked that the speed of GWs will differ from unity if one were to “detune” the relative
coefficients between the operators in the L̂2 or L̂3 terms in the Lagrangian (4.1). It is also worth remarking
that the property of luminal GWs is not an accident stemming from the symmetries of the FLRW background;
in particular, we have checked that it also holds for a static spherically symmetric background.
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Collecting eq. (4.31) with the expansion of the vector part of the EPN Lagrangian we arrive at

Ŝ
(2)
V =

∫
d4x

a3

2

q̂V Ż2
i −

1
a2 Ĉ1(∂iZj)2−H2Ĉ2Z

2
i + 1

2a2 (∂iVj)2 + (ρM +PM )
M2

Pl

(
Vi−a

δḂi
MPl

)2
 .

(4.32)
Note that to obtain this expression we made use of the background equations of motion. The
coefficients appearing in (4.32) are given by

q̂V = 1− 1
2
(
1+ φ̇+Hφ

2Λ2

) [α1−2
(

1−2HφΛ2

)
α2,X +Hφ

Λ2

(
2−HφΛ2

)
α3,X

]
, (4.33)

Ĉ1 = 1− 1
2
(
1+ Hφ

Λ2

) [α1−2
(

1−Hφ+ φ̇

Λ2

)
α2,X +

(
Hφ

Λ2 +
(

1−HφΛ2

)
φ̇

Λ2

)
α3,X

]
, (4.34)

Ĉ2 = 2q̂V + ∂t(q̂VH)
H2 + φ̇

H2 (α1,X +d1,X) . (4.35)

The action (4.32) describes two dynamical vector modes, since it is clear that Vi is non-
dynamical and may be integrated out (although the solution of its equation of motion involve
non-linear instances of the 3-momentum). This integration could be performed formally but
for what interests us here, namely the Proca vector mode Zi, this degree of freedom is fully
decoupled from Vi and δBi, which are moreover independent of the parameters of the EPN
model and thus evolve exactly as in GR.3

Focusing then on the Zi mode, from (4.32) we immediately infer the dispersion relation,
with sound speed and effective mass being given by

ĉ2
V = Ĉ1

q̂V
, m̂2

V = H2 Ĉ2
q̂V

. (4.36)

Stability under ghosts and gradient modes then imposes the conditions
q̂V > 0 , Ĉ1 > 0 . (4.37)

One may in addition ask for tachyon modes to be absent, which would then also require Ĉ2 > 0.

4.2.4 Scalar perturbations
Turning next to the scalar sector, we start again by expanding the matter action (4.16) to
quadratic order. It proves useful to introduce

δρM ≡
ρM,n

a3 δJ = ρM + PM
n0a3 δJ , (4.38)

in terms of which the scalar part of the action takes the form

S
(2)
M,S =

∫
d4x

M2
Pl
ρM,n

2a5n

(
∂iδj+a3 n

M3
Pl
∂iχ

)2

+ ρM,n

a2MPl
∂iδj∂iv+a3v̇δρM−3a

3nρM,nn

ρ2
M,n

HvδρM

−a
3M4

PlρM,nn

2ρ2
M,n

δρ2
M−a3MPlαδρM+ a3ρM

2M2
Pl

(
α2− (∂iχ)2

a2M2
Pl

) , (4.39)

3The resulting action for δBi, after integrating out Vi, is given by

S
(2)
δB =

∫
dt

d3k

(2π)3
a3

4
k2/a2

k2/a2 +M2
M2

M2
Pl
|aδḂ|2 ,

where M2 ≡ 2(ρM + PM )/M2
Pl.
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where
c2
M = nρM,nn

ρM,n
, (4.40)

is the squared sound speed of the fluid in pure GR. It also corresponds to the sound speed in
GP theory and, as we will see, in the EPN special model, but not in the general model.

We may already integrate out at this stage the scalar mode δj. From its equation of
motion we get

δj = −a3 n

M3
Pl

(v + χ) , (4.41)

and substituting into (4.39) furnishes

S
(2)
M,S =

∫
d4x a3

[
−nρM,n

2M4
Pl

(∂iv)2

a2 +
(
nρM,n

M4
Pl

∂2χ

a2 − δρ̇M − 3H(1 + c2
M )δρM

)
v

− c
2
MM

4
Pl

2nρM,n
(δρM )2 −MPlαδρM + ρM

2M2
Pl

(
α2 − (∂iχ)2

a2M2
Pl

)]
. (4.42)

This result is to be combined with the expansion of the EPN Lagrangian. We eventually
obtain (using again the background equations of motion)

Ŝ
(2)
S =

∫
d4x a3

{
−nρM,n

2M4
Pl

(∂iv)2

a2 +
[
nρM,n

M4
Pl

∂2χ

a2 − δρ̇M − 3H(1 + c2
M )δρM

]
v

− c2
MM

4
Pl

2nρM,n
(δρM )2 −MPl α δρM − ω̂3

(∂iα)2

a2M2
Pl

+ ω̂4
α2

M2
Pl

−
[
(3Hω̂1 − 2ω̂4) δφ

φ
− ω̂3

∂2(δφ)
a2φ

− ω̂3
∂2ψ̇

a2φΛ + ω̂6
∂2ψ

a2Λ

]
α

MPl

− ω̂3
4

(∂iδφ)2

a2φ2 + ω̂5
(δφ)2

φ2 − 1
2
[
(ω̂2 + ω̂6φ)ψ − ω̂3ψ̇

] ∂2(δφ)
a2φ2Λ

− ω̂3
4φ2

(∂iψ̇)2

a2Λ2 + ω̂7
2

(∂iψ)2

a2Λ2 +
(
ω̂1

α

MPl
+ ω̂2

δφ

φ

)
∂2χ

a2M2
Pl

}
,

(4.43)

for the complete quadratic action of scalar perturbations in the special model. Here we
introduced

ψ ≡ χV + Λ
M2

Pl
φχ , (4.44)

and the (time-dependent) coefficients ω̂I are given in appendix C.1.
We observe that the action (4.43) has the same structure as the quadratic scalar action

derived in GP theory [16], only with different ω̂I coefficients. We emphasize that this is a
non-trivial result since the special model (4.1) is manifestly not of the GP class. Indeed, if
one were to “detune” the operators in L̂2 and L̂3 in (4.1) then additional operators would
appear in (4.43). These extra operators modify the degree of degeneracy of the equations of
motion and, as a consequence, additional degrees of freedom become active.

To see that the action (4.43) propagates two dynamical modes one can simply analyse
the resulting equations of motion,

(3Hω̂1 − 2ω̂4)δφ
φ
− 2ω̂4

α

MPl
+M2

PlδρM + k2

a2Λ2

[
Ŷ + ω̂1

Λ2

M2
Pl
χ− ω̂6Λψ

]
= 0 , (4.45)
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(ρM + PM )
MPl

v + ω̂1α+MPlω̂2
δφ

φ
= 0 , (4.46)

(3Hω̂1 − 2ω̂4) α

MPl
− 2ω̂5

δφ

φ
+ k2

a2Λ2

[
1
2 Ŷ + ω̂2

Λ2

M2
Pl
χ− Λ

2 (ω̂2 + ω̂6φ)ψ
φ

]
= 0 , (4.47)

˙̂Y
H

+
(

1− φ̇

Hφ

)
Ŷ + Λ2

H

{
ω̂2
δφ

φ
+ 2ω̂7

φψ

Λ + ω̂6

(
2 αφ
MPl

+ δφ

)}
= 0 , (4.48)

δ̇ρM + 3H(1 + c2
M )δρM + k2

a2
(ρM + PM )

M4
Pl

(v + χ) = 0 , (4.49)

αMPl + c2
M

(
3Hv + M4

Pl
(ρM + PM )δρM

)
− v̇ = 0 , (4.50)

respectively for α, χ, δφ, ψ, v and δρM , and we defined

Ŷ ≡ Λ2

φ
ω̂3

(
δφ+ 2 αφ

MPl
+ ψ̇

Λ

)
. (4.51)

It is straightforward to show that these equations can be solved algebraically for α, δφ, χ and
v in order to be left with a system of two second-order differential equations for ψ and δρM .
This completes the proof that the special EPN model exhibits the correct number of degrees
of freedom in the tensor, vector and scalar sectors.

To study the stability of the propagating scalar modes we integrate out all the non-
dynamical variables. The resulting action is formidably lengthy, but for the purpose of
deciding whether the fields exhibit ghost- or gradient-type instabilities it suffices to focus on
the short wavelength limit k →∞. In this regime, the action can be recast in the form

Ŝ
(2)
S =

∫
d4x a3

[
~̇ΩtK̂ ~̇Ω− ~Ωt

(
M̂ − k2

a2 Ĝ

)
~Ω− ~ΩtB̂ ~̇Ω

]
, (4.52)

where ~Ωt ≡ (ψ, δρM/k) (note that δρM has mass dimension 2, hence the rescaling by k). For
brevity we omit the explicit expressions for the matrices K̂,M̂ , Ĝ and B̂, but let us remark
that they are independent of k (again in the limit k →∞).

Absence of ghosts requires the kinetic matrix K̂ to be positive definite. Thanks to the
special form of the Schutz-Sorkin action it turns out that K̂ is diagonal [52, 53], and we find

Q̂S,ψ = M2
PlH

2

Λ2φ2
3ω̂2

1 + 4M2
Plω̂4

(ω1 − 2ω2)2 , Q̂S,M = a2

2
M4

Pl
(ρM + PM ) , (4.53)

for the eigenvalues associated to ψ and δρM , respectively. Positivity of Q̂S,M requires
ρM + PM > 0, i.e. the (strict) null energy condition, while the condition Q̂S,ψ > 0 is
equivalent to

3ω̂2
1 + 4M2

Plω̂4 > 0 . (4.54)

Absence of gradient-unstable modes requires the sound speeds square to be positive.
From the dispersion relation,

det
[
ω̂2K̂ −

(
M̂ − k2

a2 Ĝ

)]
= 0 , (4.55)
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we obtain that the fluid propagates with speed c2
M , as previously claimed, while the Proca

scalar mode ψ has

ĉ2
S,ψ = 1

M2
PlH

2φ2
Γ̂

8q̂V (3ω̂2
1 + 4M2

Plω̂4) , (4.56)

where

Γ̂≡ 2ω̂2
2ω̂3(ρM +PM )− ω̂3(ω̂1−2ω̂2)(ω̂1ω̂2 +φ(ω̂1−2ω̂2)ω̂6)

(
φ̇

φ
−H

)
− ω̂3(2ω̂2

2
˙̂ω1− ω̂2

1
˙̂ω2)

+φ(ω̂1−2ω̂2)2(ω̂3 ˙̂ω6 +φ(2ω̂3ω̂7 + ω̂2
6))+ ω̂1ω̂2

(
ω̂1ω̂2 +(ω̂1−2ω̂2)

(
2φω̂6− ω̂3

φ̇

φ

))
.

(4.57)

Note that q̂V > 0 is already required by the stability of vector perturbations (cf. eq. (4.33)),
while 3ω̂2

1 + 4M2
Plω̂4 > 0 from the above no-ghost condition. It therefore suffices to impose

Γ̂ > 0 for Laplacian instabilities to be absent.
While tachyonic instabilities are less concerning — on the contrary, they are potentially

interesting — later we will also examine the effective masses of the scalar modes. The
expressions are somewhat lengthy and so we leave them for section C.2 in the appendix.

Having derived the stability conditions for all the dynamical modes, the outstanding
question is whether there exist choices of parameters of the special model Lagrangian such
that all the criteria are satisfied while providing a consistent cosmological history. In the next
subsection we show that this is the case.

4.3 Cosmology of the special model

4.3.1 Background

Having established that the simple model we analysed could be stable on FLRW, we can push
analysis to whether it could be relevant for the cosmological evolution of our Universe. For
this, we specify the matter perfect fluid to be a mixture of pressureless matter and radiation,
respectively denoted by subscripts “m” and “r”, i.e. ρM = ρm + ρr and PM = Pm + Pr with

Pm = 0 ⇒ ρ̇m + 3Hρm = 0 ,

Pr = 1
3ρr ⇒ ρ̇r + 4Hρr = 0 . (4.58)

The effective energy density and pressure of the EPN field were defined previosuly in (4.10)
and (4.12).

We wish to recast the background equations as a dynamical system, again following
the analysis of [15, 16]. As a first step solve for φ in terms of H by using the constraint
equation (4.13). Next it is convenient to introduce the density parameters

Ωr ≡
ρr

3M2
PlH

2 , Ωm ≡
ρm

3M2
PlH

2 , Ω̂EPN ≡
ρ̂EPN

3M2
PlH

2 , (4.59)

so that the Friedmann equation reads

Ωr + Ωm + Ω̂EPN = 1 , (4.60)
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which we use to solve for H as a function of Ω̂EPN (or equivalently Ωr + Ωm). At this stage
the scalar field φ and the Hubble parameter H are now fully determined by the Lagrangian
parameters, the Planck mass MPl, the mass scale Λ and the density parameters.

We are interested in the time evolution of the density parameters Ω̂EPN and Ωr (Ωm

being trivially determined from these). We employ the e-folding number N = log(a) as the
time variable, with derivatives with respect to N being denoted by a prime. In order to
express Ω̂′EPN and Ω′r solely in terms of Ω̂EPN and Ωr we first use the Raychaudhuri equation
to write the EPN pressure as

P̂EPN = 3M2
PlH

2
(
ŵeff −

Ωr

3

)
, (4.61)

where
ŵeff ≡ −1− 2Ḣ

3H2 , (4.62)

is the effective equation of state parameter of the universe. For later use let us also introduce
the effective equation of state parameter for the vector condensate,

ŵEPN ≡
P̂EPN
ρ̂EPN

=
ŵeff − Ωr

3
Ω̂EPN

. (4.63)

The only other ingredients we need are the time derivatives ˙̂ρEPN and ρ̇r which are easily
obtained from the respective continuity equations.

Collecting these preliminary results we get

Ω̂′EPN = 3ŵeff(Ω̂EPN − 1) + Ωr = F1(Ω̂EPN,Ωr) ,
Ω′r = (3ŵeff − 1)Ωr = F2(Ω̂EPN,Ωr) .

(4.64)

The precise form of the functions F1 and F2 can only be determined once ŵeff is known in
terms of the density parameters, and for this we need to specify the model.

Before doing so let us comment on the size of the scales involved in the problem. For
consistency we require the cutoff scale Λ of the EPN sector to be parametrically smaller than
the Planck scale, i.e. Λ � MPl. In line with our aim of using the Proca field as the dark
energy fluid responsible for the late-time cosmic acceleration, we take

Λ4 ∼M2
PlH

2
dS , (4.65)

where HdS is the Hubble parameter of the late-time de Sitter fixed point, roughly of the order
of the present-day Hubble constant. Note that this implies HdS/Λ ∼ Λ/MPl � 1. Finally,
we assume the bare mass of the vector field to be of order m2 ∼ H2

dS, and for convenience
we introduce

cm ≡
m2M2

Pl
Λ4 ∼ 1 . (4.66)

Although not necessary, we will eventually set cm = 1 for the sake of simplicity.
We now specify the parameters of the model by making the following choice:

α0 = −m
2

Λ2 X , α1 = − Λ4

M4
Pl
b1X

2 − Λ2

M2
Pl
c1X , d1 = − Λ4

M4
Pl
e1X

2 + Λ2

M2
Pl
c1X (4.67)

α2,X = Λ4

M4
Pl
b2X

2 + Λ2

M2
Pl
c2X , and α3,X = Λ4

M4
Pl
b3X

2 + Λ2

M2
Pl
c3X . (4.68)
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We leave the constants bI , cI and e1 unspecified for the time being. It is convenient to introduce

y ≡ cm
3(b1 + e1) , (4.69)

where just like cm, y is a dimensionless parameter which sets relations between the various
scales in our system. With the benefit of hindsight we set

y = 4
√

6
cm

. (4.70)

The reason behind this choice is that the effective squared mass of the Proca scalar mode, in
this particular model, generically goes as ∝ −H2

dS(y − 4
√

6/cm)2/(Ω̂EPN − 1)2 near the de
Sitter attractor Ω̂EPN → 1. The tuning in (4.70) then has the purpose of eliminating this
pathological behavior.

From the background equation (4.13) we obtain

H2 = y2Λ4M4
Pl

φ6 . (4.71)

From (4.10) we can also evaluate the dark energy density in the Proca field and its associated
density parameter,

ρ̂EPN = Λ4 cmy
2/3

2

(
Λ4

M2
PlH

2

)1/3

, Ω̂EPN = cmy
2/3

6

(
Λ4

M2
PlH

2

)4/3

. (4.72)

Observe that ρ̂EPN ∼ Λ4 when approaching the de Sitter point H → HdS, justifying the choice
of scales made in (4.67).

From these results we obtain the following expressions for the effective equation of state
parameters:

ŵeff = −4Ω̂EPN + Ωr

3 + Ω̂EPN
, (4.73)

ŵEPN = − 12 + Ωr

9 + 3Ω̂EPN
, (4.74)

so that the autonomous system determining the evolution of Ω̂EPN and Ωr reads

Ω̂′EPN = 4Ω̂EPN(3(1− Ω̂EPN) + Ωr)
3 + Ω̂EPN

,

Ω′r = −
Ωr

(
3(1− Ωr) + 13Ω̂EPN

)
3 + Ω̂EPN

.

(4.75)

A straightforward analysis shows that this system admits three fixed points corresponding to
radiation domination, matter domination and dark energy domination (de Sitter fixed point).
The results are summarized in table 1. In the last column we show the eigenvalues of the
Jacobian matrix of the system evaluated at the respective fixed points, from which we can
infer their stability. We conclude in particular that the de Sitter fixed point is an attractor.

In figure 2 we show the phase portrait of the dynamical system (4.75), with the radiation,
matter and dark energy fixed points shown as colored dots. The red trajectory is a particular
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Ωr Ωm Ω̂EPN ŵeff ŵEPN eigenvalues
radiation 1 0 0 1

3 −13
9 {16

3 , 1}: unstable
matter 0 1 0 0 −4

3 {4,−1}: saddle point
de Sitter 0 0 1 −1 −1 {−4,−3}: stable

Table 1. Fixed points of the autonomous system (4.75), describing the cosmic density parameters
carried respectively in radiation, matter and in the Proca field.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Ωr

Ω
ex
tP
N

Figure 2. Phase portrait associated to the autonomous system (4.75). The radiation, matter and dark
energy fixed points are respectively indicated by the orange, green and blue dots. The red trajectory
is a particular solution resembling the hot Big Bang phase of our universe with epochs of radiation,
matter and dark energy domination.

solution that qualitatively mimics our universe’s hot Big Bang phase, starting very close to
the radiation point, flowing toward the matter point, and then asymptotically approaching
the de Sitter point.

The dynamical system (4.75) can also be solved numerically to obtain the time evolution
of the density parameters. Rather than cosmic time we will show the results as functions of
redshift z, setting Ω̂EPN = 0.68 and Ωr = 10−4 at z = 0 (the present time), approximately
the experimentally measured values. The solution for the three density parameters is shown
in figure 3, along with the effective equation of state parameter of the universe.

4.3.2 Perturbations

Finally we examine the stability conditions for the perturbations as well as their speed. Even
though all the stability conditions are time-dependent, we will evaluate them in the early-
and late-time limits as way to derive a reduced set of algebraic constraints, and then verify
numerically that there exists a choice of coefficients such that the constraints are satisfied at
all times.
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Ω EPN Ωm Ωr
w eff

0.1 100 105 108

-1.0

-0.5

0.0

0.5

1.0

z + 1

Figure 3. Evolution of the density parameters and effective equation of state parameter ŵeff as
functions of redshift, with initial conditions chosen such that Ω̂EPN = 0.68 and Ωr = 10−4 at z = 0,
indicated by the vertical dashed line.

We already remarked that tensor perturbations propagate exactly as in GR. Starting
then with the vector modes, we evaluate the kinetic term coefficient Q̂V and squared sound
speed ĉ2

V at both the radiation and dark energy fixed points:

Q̂V =

1− 3c3y
10 +O

(
1− Ωr, Ω̂1/4

EPN

)
radiation

−y[y(b1+10b2+8b3)+4(c1+10c2+8c3)]
20(1−Ω̂EPN) +O

(
Ωr, (1− Ω̂EPN)0

)
dS ,

(4.76)

ĉ2
V =

1 + 4c3y
3(10−3c3y) +O

(
1− Ωr, Ω̂1/4

EPN

)
radiation

0 + 5y[y(b1+6b2+2b3)+4(c1+6c2+2c3)]−160
8y[y(b1+10b2+8b3)+4(c1+10c2+8c3)]

(
1− Ω̂EPN

)
+O

(
Ωr, 1− Ω̂EPN

)
dS .

(4.77)

Notice that Q̂V actually diverges while ĉV asymptotes zero when one approaches the de Sitter
point. Such a behaviour can be indicative of reaching strong coupling, however we analyze
carefully the scale at which perturbative unitarity breaks down in appendix D and show that
the model becomes weakly coupled in the asymptotically de Sitter fixed point.

Recalling that we will later set y as in (4.70), the conditions that Q̂V > 0 and 0 < ĉ2
V ≤ 1

at early times4 imposes the constraint c3 < 0, while positivity of Q̂V at late times is clearly
easy to achieve, for instance by taking all the coefficients bI ’s and cI ’s negative in (4.67). We
will present a specific choice of values below. Note that this choice also ensures that ĉ2

V tends
to 0 from above about the dS point.

The Hubble-normalized effective mass of the vector mode is given, in our example, by

m̂2
V

H2 =

0 +
(

3
5 −

1
10−3c3y

)
(1− Ωr) +O

(
1− Ωr, Ω̂1/4

EPN

)
radiation

5 +O
(
Ωr, 1− Ω̂EPN

)
dS .

(4.78)

4Note that since the tensor modes behave as in GR in this example and can be trivially decoupled, the
relation between causality and subluminality of the other fields is more straightforward (see ref. [54]).
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Interestingly, the normalized mass of the vector mode approaches zero at early times and
it acquires a Hubble-scale value at late times. Moreover, we will see below that it remains
positive for all finite times, at least for this model and for a certain choice of coupling constants.

Continuing with the scalar sector, we focus on the Proca scalar mode ψ as its stability
has been shown to be independent of that of the matter fluid. The kinetic coefficient actually
takes a very compact form with no need to evaluate at specific times,

Q̂S,ψ = 48(3 + Ω̂EPN)
y2(1− Ω̂EPN)2

( Λ
MPl

)2
, (4.79)

while the expressions for the sound speed at early and late times read

ĉ2
S,ψ =


11
27 +O

(
1−Ωr, Ω̂3/4

EPN

)
radiation

0+ 5
24y2

y2[y(b1+10b2+8b3)+4(c1+10c2+8c3)]−32
y(b1+10b2+8b3)+4(c1+10c2+8c3)

(
1−Ω̂EPN

)
+O

(
Ωr,1−Ω̂EPN

)
dS .

(4.80)
We see that Q̂S,ψ is always positive, although again we have a divergence about the de Sitter
point. Similarly, ĉ2

S,ψ is manifestly positive and subluminal at early times, but tends to zero
(while keeping positive values) at late times. As with the vector mode, it can be shown that
this poses no problem, see appendix D.

Finally, the effective mass of the scalar mode is given by

m̂2
S,ψ

H2 =


0− 200

y(10−3c3y) Ω̂3/4
EPN+O

(
1−Ωr, Ω̂3/4

EPN

)
radiation

10
y5

[3y3(b1+10b2+8b3)+12y2(c1+10c2+8c3)+64]2−962

[y(b1+10b2+8b3)+4(c1+10c2+8c3)]2
Λ4

M2
PlH

2
dS

+O
(
Ωr,1−Ω̂EPN

)
dS .

(4.81)

Having m̂2
S,ψ > 0 is clearly easy to achieve at late times, while at early times the Hubble-

normalized effective mass approaches zero. It turns out that m̂2
S,ψ actually tends to zero at

early times from below, but being strongly suppressed relative to the time-dependent Hubble
scale shows that the associated tachyonic instability is harmless.

We have argued that all the stability conditions for the dynamical modes can be met,
at least in the epochs of radiation and dark energy domination and the fields are then all
also subluminal. We can further show numerically that there exist coefficients such that no
pathologies arise at any times. One simple explicit choice is

cm = 1 , cI = bI = −1, for I = 1, 2, 3 . (4.82)

The results for the time evolution (plotted as functions of redshift) of the kinetic coefficients,
squared sound speeds and effective squared masses are shown respectively in figures 4, 5 and 6.
The cosmological history is the same as that of the previous subsection, with Ω̂EPN = 0.68
and Ωr = 10−4 at z = 0.

To summarize, we have demonstrated that the EPN special model, with the particular
choice of coefficient functions given in (4.67), admits a window of parameters such that all
perturbations are free of ghost- and gradient-type instabilities and propagate subluminally.
Although the velocities ĉ2

V and ĉ2
S,ψ approach zero in the late-time de Sitter limit, we have

given an argument in appendix D which shows that this is not a pathology. Furthermore,
ĉ2
V and ĉ2

S,ψ are finite and positive for all z ≥ 0, so all the degrees of freedom behave in a
smooth, stable and subluminal way throughout the cosmological history. While gravitational
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Figure 4. Left panel: kinetic coefficients of the tensor, vector and scalar perturbations for 1 ≤ z+ 1 ≤
108. Right panel: the same kinetic coefficients rescaled by an appropriate power of the scale factor a(t)
in order to exhibit their scaling about the dS point. We observe they follow a power law scaling for
small z + 1.
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Figure 5. Left panel: squared sound speeds of the tensor, vector and scalar perturbations. Right
panel: the same speeds rescaled by an appropriate power of the scale factor a(t) in order to exhibit
their scaling about the dS point. We observe they follow a power law scaling for small z + 1.
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Figure 6. Effective squared masses of the vector and scalar perturbations, normalized by the time-
dependent Hubble parameter H(z). Note that m̂2

S,ψ/H
2 is proportional to the ratio M2

PlH
2
dS/Λ4,

which we have kept generic in our analysis but have set to 1 in this particular plot.
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waves behave identically as in GR, the presence of the vector and scalar modes could have
intriguing signatures for instance at the level of structure formation. The study of those is
beyond the scope of this work, and saved for future considerations.

5 General model

Having focused on a specific model for sake of concreteness, we now return to the more generic
covariant EPN theory given by eq. (3.1), what we refer to as the general model. Since the
procedure follows a very similar pattern to what was given in the previous section, in what
follows, we will omit intermediate steps in most cases and highlight only the final results. We
also refer the reader to the previous section for our parametrization of perturbations and
other conventions.

5.1 Background
The Friedmann and Raychaudhuri equations take the same form as before,

H2 = 1
3M2

Pl
(ρM + ρEPN) , Ḣ +H2 = − 1

6M2
Pl

(ρM + ρEPN + 3PM + 3PEPN) , (5.1)

with effective density and pressure for the dark energy fluid given by

ρEPN = Λ4
{
−α0+α0,X

φ2

Λ2 +3(α1,X+d1,X)Hφ
3

Λ4

+6
[
−(α2+d2)+2(α2,X+d2,X) φ

2

Λ2 +(α2,XX+d2,XX) φ
4

Λ4

]
H2

Λ2

−
[
5(α3,X+d3,X)+(α3,XX+d3,XX) φ

2

Λ2

]
H3φ3

Λ6

}
,

(5.2)

PEPN = Λ4
{
α0−(α1,X+d1,X) φ

2φ̇

Λ4 +2(α2+d2) 3H2+2Ḣ
Λ2

−2(α2,X+d2,X)
φ
(
3H2φ+2Hφ̇+2Ḣφ

)
Λ4 −4(α2,XX+d2,XX)Hφ

3φ̇

Λ6

+
[
(α3,X+d3,X) 2H2φ+3Hφ̇+2Ḣφ

Λ3 +(α3,XX+d3,XX)Hφ
2φ̇

Λ5

]
Hφ2

Λ3

}
.

(5.3)

Finally, from the variation of the action with respect to φ one infers

α0,X + 3 (α1,X + d1,X) HφΛ2 + 6
[
(α2,X + d2,X) + (α2,XX + d2,XX) φ

2

Λ2

]
H2

Λ2

−
[
3 (α3,X + d3,X) + (α3,XX + d3,XX) φ

2

Λ2

]
H3φ

Λ4 = 0 , (5.4)

after discarding the trivial solution φ = 0. We observe that (5.4) is again a “constraint”
equation, relating H and φ algebraically. While for the simple model this property was a
consequence of the specific tuning of coefficients, in the general model this follows from the
particular form of the non-minimal couplings and their coefficients.

We also note that this set of background equations is equivalent to those of GP theory [16].
As mentioned previously, this is simply because PN and GP coincide at the level of the FLRW
background, and therefore so does the general EPN model.
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5.2 Perturbations

5.2.1 Tensor perturbations
Interestingly, in the presence of tensor perturbations the relation

Kµν = 1
Λ2 ∇µAν (tensor modes, quadratic order) , (5.5)

remains true up to quadratic order in the tensor modes. As for the background, it follows as
an immediate result that the quadratic action for tensor perturbations in the general model
will match that of GP:

S
(2)
T =

∫
d4x a3 qT

8

[
ḣ2
ij −

c2
T

a2 (∂ihjk)2
]
, (5.6)

with

qT = 1 + 2 Λ2

M2
Pl

[
(α2 + d2)− φ2

Λ2 (α2,X + d2,X)
]

+ Hφ3

M2
PlΛ2 (α3,X + d3,X) , (5.7)

c2
T =

1 + 2 Λ2

M2
Pl

(α2 + d2) + φ2φ̇
M2

PlΛ2 (α3,X + d3,X)
qT

. (5.8)

These results imply that the general model describes the expected two degrees of freedom in
the tensor sector. Stability of tensor perturbations then dictates qT , c2

T > 0. Subluminality
of the tensor modes would also require c2

T < 1 but we refer to refs. [54–56] for a word of
caution on applying generic subluminality criteria to gravitational waves propagation without
other further considerations. Imposing the speed of gravitational waves to be exactly luminal
requires setting α2,X + d2,X = α3,X + d3,X = 0 at all times, meaning for all values of the
argument X of those functions (unless φ̇ is constant). Such a choice would correspond to
the example explored in details in the previous section. We point out however that there
may exist some subtleties related to the frequency at which the existing constraints on
the speed of gravitational waves are satisfied [57], and in principle one would only require
α2,X + d2,X = α3,X + d3,X = 0 for a given range of arguments.

5.2.2 Vector perturbations
Continuing with the vector perturbations, combining the expansion of (3.1) with the matter
action derived before in (4.31), we find

S
(2)
V =

∫
d4x

a3

2

[
qV Ż

2
i −

1
a2C1(∂iZj)2 −H2C2Z

2
i + 1

a2C3∂iVj∂iZj + 1
a2C4∂iVj∂iŻj

+ qT
2a2 (∂iVj)2 + (ρM + PM )

M2
Pl

(
Vi − a

δḂi
MPl

)2]
, (5.9)

where the coefficients entering in this result are given in appendix C.3. The structure
of (5.9) matches that of GP [16] except for the presence of the operator proportional to C4.
Nevertheless, we see that this extra term does not spoil the counting of degrees of freedom,
since the mode Vi is still non-dynamical. This establishes that the general EPN model
propagates the correct number of vector modes, namely one.
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The extra operator proportional to C4 is interesting in that it modifies the dispersion
relation of the dynamical field Zi in a way that is qualitatively different from GP. In order to
highlight this effect we will ignore matter for the moment and return to the general case at the
end. Taking ρM , PM = 0 in (5.9) and integrating out Vi we obtain, after Fourier transforming
and performing a partial integration,

S
(2)
V =

∫
dt d3k

(2π)3
a3

2

{
qV

[
1− k2

a2
C2

4
2qT qV

]
|Żi(k)|2

−
[
C2H

2 + k2

a2

(
C1 + C2

3
2qT
− a−1∂t

(
a
C3C4
2qT

))]
|Zi(k)|2

}
. (5.10)

For a localized sub-Hubble perturbation we then infer the dispersion relation

ω2
V =

C2H
2 + k2

a2

(
C1 + C2

3
2qT − a

−1∂t
(
aC3C4

2qT

))
qV
(
1− k2

a2
C2

4
2qT qV

) (no matter) . (5.11)

We see that the presence of the new coefficient C4 makes the dispersion relation non-linear.
Expanding at small momenta (more precisely for k2/a2 � |qT qV |/C2

4) we have the linear
approximation

ω2
V ' m2

V + c2
V

k2

a2 , (5.12)

with effective mass and speed of sound

m2
V ≡

C2
qV

H2 , c2V ≡
1
qV

(
C1 + C2

3
2qT
− a−1∂t

(
a
C3C4
2qT

)
+ C2C2

4
2qT qV

H2
)
. (5.13)

In this approximation and remembering that we are neglecting matter, absence of gradient
instabilities requires qV , c2

V > 0. Similarly one may also wish to demand the absence of
tachyonic modes, which is achieved if m2

V > 0. Note that while the coefficient of the kinetic
term is also modified by the C4 coupling, at low energies we still have the simple no-ghost
condition qV > 0.

Returning to the general set-up with matter present, we proceed again to integrate out
Vi from its equation of motion. The resulting action is non-diagonal in the fields Zi and δBi,

S
(2)
V =

∫
dt d3k

(2π)3
a3

2

qV
1−

k4

a4 C2
4

2qV
(
k2

a2 qT +M2
)
 |Żi|2 + 1

2

k2

a2 qT
k2

a2 qT +M2
M2

M2
Pl
|aδḂi|2

−

C2H
2 + k2

a2 C1 +
k4

a4 C2
3

2
(
k2

a2 qT +M2
)−a−3∂t

a3
k4

a4 C3C4

2
(
k2

a2 qT +M2
)
 |Zi|2

+ 1
2

k2

a2 C3
k2

a2 qT +M2
M2

MPl

(
aδḂ∗iZi+c.c.

)
+ 1

2

k2

a2 C4
k2

a2 qT +M2
M2

MPl

(
aδḂ∗i Żi+c.c.

) ,

(5.14)

and we introduced
M2 ≡ 2ρM + PM

M2
Pl

. (5.15)
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Observe that the scale M acts as a sort of infrared regulator modifying the long wavelength
behavior of the coefficients in the action. Fourier transforming with respect to time in the
sub-Hubble limit we find the following dispersion relation for the Proca vector mode:

ω2
V =

C2H
2 + k2

a2

(
C1 + C2

3
2qT

)
− 1

2a
−3∂t

(
a3

k4
a4 C3C4

k2
a2 qT+M2

)
qV
(
1− k2

a2
C2

4
2qT qV

) . (5.16)

Expanding at small momenta, assuming k2/a2 � |qT qV |/C2
4 and k2/a2 � M2/qT , we find

the same effective mass as before (cf. eq. (5.13)) and a speed of sound

c2
V = 1

qV

(
C1 + C2

3
2qT

+ C2C2
4

2qT qV
H2
)
, (5.17)

which curiously is a simpler expression than in the case without matter, as a consequence of
the modified infrared behavior mentioned before.

The dispersion relation for the matter perturbation δBi is ω2 = 0. We emphasize that
this result only assumes that the fluctuation is localized on sub-Hubble scales but is otherwise
exact. This degenerate dispersion relation may seem pathological but was in fact expected.
The variable δBi corresponds physically to the vorticity field of the fluid, which is indeed
gapless and has no gradient energy (see [58] for a discussion of this aspect in an EFT context).

The condition for the vector mode not to be ghostly is less immediate because of the
non-trivial derivative couplings appearing in (5.14). To determine the norm of the propagating
field we compute the residue matrix (see for instance [10] for a review of this method),

lim
ω2→ω2

V

(ω2 − ω2
V )P(ω, k) , (5.18)

where P is the matrix of propagators that we read off from (5.14). By construction the residue
matrix has a single non-zero eigenvalue, which we find to be

1
QV
≡ 1
qV


1 +M2

Pl
C2

4
q2
T

1− k2

a2
C2

4
2qT qV

+
M2

Pl
C2

3qV
q2
T

C2H2 + k2

a2

(
C1 + C2

3
2qT

)
− 1

2a
−3∂t

(
a3

k4
a4 C3C4

k2
a2 qT+M2

)


' 1
qV

[
1 +M2

Pl

(
C2

4
q2
T

+ C2
3qV

C2q2
TH

2

)]
,

(5.19)

where in the second line we have neglected k-dependent corrections. Absence of ghosts in the
vector sector then implies the condition QV > 0. Note that this does not necessarily imply
qV > 0 as one might have naively inferred from the action in the form (5.9).
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5.2.3 Scalar perturbations

The analysis of scalar perturbations in the general model proceeds very analogously to that
of the special model. Expanding the full action including matter we find

S
(2)
S =

∫
d4xa3

[
− nρM,n

2M4
Pl

(∂iv)2

a2 +
(
nρM,n

M4
Pl

∂2χ

a2 −δρ̇M −3H(1+c2
M )δρM

)
v

− c
2
MM

4
Pl

2nρM,n
(δρM )2−MPlαδρM −(ω3−2ω8 +2ω9) (∂iα)2

a2M2
Pl

+ω4
α2

M2
Pl

−
(

(3Hω1−2ω4)δφ
φ
−(ω3−3ω8 +ω9) ∂

2(δφ)
a2φ

−(ω3−ω8 +ω9) ∂2ψ̇

a2φΛ +ω6
∂2ψ

a2Λ

)
α

MPl

−(ω3−4ω8)(∂iδφ)2

4a2φ2 +ω5
(δφ)2

φ2 −
1
2
(
(ω2 +ω6φ)ψ−(ω3−2ω8)ψ̇

) ∂2(δφ)
a2φ2Λ −

ω3
4

(∂iψ̇)2

a2φ2Λ2

+ ω7
2

(∂iψ)2

a2Λ2 +
(
ω1

α

MPl
+ω2

δφ

φ

)
∂2χ

a2M2
Pl

]
. (5.20)

The coefficients ωI are given in appendix C.4. We have defined them in a way that highlights
the differences with the result of GP theory [16], in which case the coefficients ω8 and ω9
vanish. Although these parameters do not introduce any new operators (as it occurred in the
vector sector), they do have the effect of “detuning” the relative coefficients among some of
the terms. In (5.20) we introduced

c2
M ≡

nρM,nn

ρM,n
, (5.21)

which we recall is the GR value of the matter fluid speed of sound. As anticipated previously,
the actual speed of sound in EPN will turn out to be different.

The counting of degrees of freedom is again most easily performed by examining the
equations of motion. Varying the action with respect to α, χ, δφ, ∂ψ, v and δρM , respectively,
we derive

(3Hω1 − 2ω4)δφ
φ
− 2ω4

α

MPl
+M2

PlδρM + k2

a2Λ2

[
Y1 + ω1

Λ2

M2
Pl
χ− ω6Λψ

]
= 0 , (5.22)

(ρM + PM )
MPl

v + ω1α+MPlω2
δφ

φ
= 0 , (5.23)

(3Hω1 − 2ω4) α

MPl
− 2ω5

δφ

φ
+ k2

a2Λ2

[
1
2Y2 + ω2

Λ2

M2
Pl
χ− Λ

2 (ω2 + ω6φ)ψ
φ

]
= 0 , (5.24)

Ẏ3
H

+
(

1− φ̇

Hφ

)
Y3 + Λ2

H

{
ω2
δφ

φ
+ 2ω7

φψ

Λ + ω6

(
2 αφ
MPl

+ δφ

)}
= 0 , (5.25)

δ̇ρM + 3H(1 + c2
M )δρM + k2

a2
(ρM + PM )

M4
Pl

(v + χ) = 0 , (5.26)

αMPl + c2
M

(
3Hv + M4

Pl
(ρM + PM )δρM

)
− v̇ = 0 , (5.27)
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where

Y1 ≡
Λ2

φ

[
(ω3 − 3ω8 + ω9) δφ+ 2 (ω3 − 2ω8 + 2ω9) αφ

MPl
+ (ω3 − ω8 + ω9) ψ̇Λ

]
, (5.28)

Y2 ≡
Λ2

φ

[
(ω3 − 4ω8) δφ+ 2 (ω3 − 3ω8 + ω9) αφ

MPl
+ (ω3 − 2ω8) ψ̇Λ

]
, (5.29)

Y3 ≡
Λ2

φ

[
(ω3 − 2ω8) δφ+ 2 (ω3 − ω8 + ω9) αφ

MPl
+ ω3

ψ̇

Λ

]
. (5.30)

Note that Y1 = Y2 = Y3 when ω8 = ω9 = 0. The equations for the variables α, δφ, χ and v
can be solved algebraically in terms of ψ and δρM . These expressions can be plugged back
into (5.25) and (5.27) leading to a system of two second-order differential equations for ψ
and δρM . This concludes the proof that the covariant EPN theory is completely free from
unwanted degrees of freedom at the level of linear perturbations about the FLRW background.

To determine the dispersion relations and stability conditions we proceed as in sec-
tion 4.2.4. After integrating out the non-dynamical modes, and focusing from the outset on
the long wavelength approximation, we may recast the resulting action in the same form
as in eq. (4.52) for the propagating fields ψ and δρM . Recall that K, M , G and B are all
independent of k in this approximation. Moreover, we find that the kinetic matrix K is still
diagonal. The no-ghost conditions are therefore immediately inferred from its entries, which
we denote by QS,ψ and QS,M . We find

QS,ψ = 1
2Λ2φ2 [(ω1−2ω2)2ω3−4(ω1−2ω2)((ω1−ω2)ω8+ω2ω9)−2(ρM+PM )(ω8+ω9)2]2

×
{
−(ω1−ω2)

(
3Hω2

1−2(ω1−ω2)ω4
)(
ω1(ω3−2ω8)−2ω2(ω3−ω8+ω9)

)2
+4(ρM+PM )

(
3Hω2

1−2(ω1−ω2)ω4
)(
ω1(ω3−2ω8)−2ω2(ω3−ω8+ω9)

)2(ω8+ω9)ω9

+4(ρM+PM )2(ω8+ω9)2
[
2ω4ω

2
9 +3H(ω8−ω9)

(
ω1(ω8+ω9)−ω2(ω8−ω9)

)]}
,

(5.31)

QS,M = a2

2
M4

Pl
(ρM+PM )

1
1−∆ , (5.32)

where
∆ ≡ 2(ρM + PM ) (ω8 + ω9)2

(ω1 − 2ω2) [ω1(ω3 − 4ω8)− 2ω2(ω3 − 2ω8 + 2ω9)] . (5.33)

We observe that the “new” coefficients ω8 and ω9 have the interesting effect of inducing a
modification of the kinetic term of the Proca scalar mode ψ that depends on the matter
density and pressure. These coefficients similarly affect the matter fluid’s kinetic term through
the parameter ∆. In particular, we see that QS,M now depends on the EPN Lagrangian
parameters, whereas in GP the result would coincide with that of pure GR.

From the long-wavelength expansion of the dispersion relations we obtain the sound
speeds c2

S,ψ and c2
S,M respectively for the Proca scalar and the fluid. The fluid speed of sound

can be written as
c2
S,M = (1−∆)c2

M , (5.34)
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showing that the parameter ∆ has the interesting effect of modifying the GR (and also GP)
value of the sound speed. On the other hand, the precise expression for c2

S,ψ is not particularly
illuminating, so we choose to omit it. However, one can get insight on the difference between
the GP and the EPN predictions by going to a minimal example where we set some of the
coefficients to 0 for simplicity’s sake. A particularly simple example that is consistent with
the GP constraints [15, 16] is reached when taking ω2 = ω4 = ω6 = 0. As a result, ω1
and ω4 are written solely in terms of qT , and hence the problem is fully described by the
variables {qT , qV , ω7, ω8, ω9}. Furthermore, we will redefine the variables ω8 and ω9 into the
dimensionless W8 ≡ ω8/(qV φ2) and W9 ≡ ω9/(qV φ2). With these definitions, we can write

c2
S,ψ = c

(GP)2
S,ψ

[
1 + 2W8 + qV

4q2
T

φ2

M2
Pl

ρM + PM
M2

PlH
2 (W8 +W9)2

]2

Υ−1 , (5.35)

where

c
(GP)2
S,ψ =− ω7φ

2

6M2
PlH

2qT
, (5.36)

Υ =
[
1 +W8 + qV

4q2
T

φ2

M2
Pl

ρM + PM
M2

PlH
2 (W8 +W9)2

]
(5.37)

×
[
1 +W8 −

qV
4q2
T

φ2

M2
Pl

ρM + PM
M2

PlH
2 (W 2

8 −W 2
9 )
]
.

One can see that the positivity of c(GP), 2
S,ψ necessarily implies ω7 < 0, whereas this condition is

relaxed to be ω7/Υ < 0 in the EPN case.
One can now turn to the masses and derive their expressions in all generality, however

once again their expressions are not particularly illuminating. However under the same
limiting choice of coefficients as we did previously, one can check explicitly that the scale of
the mass of the fluid is set by the Hubble parameter H. In principle, we would require the
fluid’s mass to be positive to avoid tachyonic instabilities but as we have already discussed
in the cosmological context, a negative square mass of order H2 is not worrisome. As for
the mass of the ψ-mode (or vector helicity-0 mode), it happens to vanish for that particular
choice of parameters, however relaxing this choice (for instance choosing a non-zero ω6), one
can check that the mass of this mode is also of order H, and there is therefore no risk of a
faster than H2 tachyonic instability in the scalar sector.

The stability of the matter fluid is easy to analyze. The condition c2
S,M > 0 is equivalent

to ∆ < 1, which in turn implies the null energy condition, ρM + PM > 0, in order to
have QS,M > 0. For the Proca mode ψ to be stable we similarly require QS,ψ > 0 and
c2
S,ψ > 0. While these conditions are difficult to dissect given the long expressions, it is worth
remembering that they include the results of GP theory as a particular case, in which context
it has been shown that stability can be achieved for a wide range of parameters [16].

6 Discussion

Our aim in this paper was to explore further generalizations of the standard Einstein-Proca
theory of a massive spin-1 field coupled to gravity, beyond those given by the GP class
of models, motivated by the recent discovery of PN theory. In spite of being qualitatively
different in their constraint structure, we have shown that PN can be extended simply by
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adding a subset of the GP operators, at least in flat spacetime. The full result for the flat-space
Lagrangian is given in eq. (2.18). This “extended PN” model is interesting already from a
formal point of view in that it provides a link between GP and PN, both of which may be
recovered by a particular choice (in a limiting sense in the case of GP) of the coefficients that
define the theory.

Aside from generalized massive gravity [59, 60], the existence of another complete
covariantization of EPN (and of PN) remains an open question. Here we have taken a first
step toward its solution by proposing a covariant model (eq. (3.1)). With this covariantization
in mind, one can find a null eigenvector (given in (3.18)) for the full Hessian of the first
family of operators (namely L1(X )) proving that it enjoys a constraint at all orders. For
the other family of operators (namely Ln≥2(X )), we showed that the same ansatz for the
null eigenvector correctly annihilates the Hessian matrix at leading order in an expansion
in the strong coupling scale Λ but the process fails when pushing it to higher order. The
result is nevertheless non-trivial and provides a hint that a full covariantization is in principle
feasible. We note also that the failure of the constraint only occurs from mixing with the
gravitational degrees of freedom and is thus Planck scale-suppressed. Moreover, we show that
our proposed eigenvector remains a null one for the Hessian of the full theory (including the
gravitational degrees of freedom), on any background where the tensor ∇µAν is symmetric.
This directly implies the presence of a constraint that would remove the unwanted ghostly
additional degree of freedom at linear order in perturbations about any such backgrounds,
including on FLRW.

These results for the covariant EPN theory are by themselves sufficient to motivate the
study of the predictions of the model in the context of cosmology. This is so because the theory
describes the correct number of degrees of freedom at the level of cosmological backgrounds,
defined by eqs. (4.7) and (4.8), as well as at the level of linear perturbations about these
solutions. In addition to establishing this result, in section 5 we also derived the dispersion
relations for the propagating variables in the presence of perfect fluid matter. Interestingly,
EPN has some qualitative differences relative to GP in the dynamics of perturbations. Two
particular results to highlight are that the Proca vector mode exhibits a non-linear dispersion
relation (cf. eq. (5.16)) and that the sound speed of the longitudinal matter perturbation
(the phonon) is modified in the EPN set-up relative to its GR value (cf. eq. (5.34)). We also
found that the kinetic coefficient of the phonon differs in EPN from its GR and GP values, an
effect which may in principle percolate to higher-point interactions and hence be potentially
observable. While we did not explore explicit solutions in this general model, we remark again
that EPN contains GP as a particular case, in which set-up consistent cosmological solutions
do exist. It would be interesting to perform a dedicated study of solutions and comparison
with data within the complete theory.

In addition to investigating the possibility of covariantizing the full EPN theory, we have
also considered the option that a subclass of the theory may admit a simpler covariantization,
even if only a partial one in the sense we have described. Our so-called special model of
section 4 shows that this is the case, providing a particularly neat set-up with few unspecified
functions and which has the virtue that the Proca field interacts with gravity only through
minimal coupling terms. To our knowledge, this is the first instance of a generalized Einstein-
Proca theory (i.e. models with non-trivial derivative self-interactions beyond those given by
contractions of the Maxwell field strength and/or the undifferentiated field) with this property.
As with the general model, the caveat is that the covariantization scheme is only a partial
one, but it is again sufficient for cosmological applications as long as one is interested in
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linear perturbations about homogeneous and isotropic backgrounds. Our results of section 4
show that the special model indeed describes the expected dynamical degrees of freedom.
Moreover, we have shown that explicit solutions exist such that all the dynamical variables
are ghost-free, gradient-stable and subluminal. We believe that these results motivate further
scrutiny of the set-up.
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A Recovering GP from EPN

In this appendix, we will show how one can recover most of the GP from the Extended
Proca-Nuevo Lagrangian given in (2.18), in the limit where Λ̃→∞ while keeping the scale Λ
finite and the vector field mass finite.

We start with the extended PN Lagrangian (2.18) written in the form

LEPN = L̃PN + LGP , (A.1)

with

L̃PN = Λ̃4
4∑

n=0
αn(X̃)Ln[K̃[A]] , (A.2)

and where LGP includes all the GP interactions aside from the generic function f(Fµν , F̃µν , X),

LGP = Λ4
4∑

n=1
dn(X)Ln[∂A]

Λ2n . (A.3)

Assuming analyticity of the functions αn and dn, the mass term of the vector field is given by

m2 = Λ̃2α′0(0) . (A.4)

Keeping the mass of the vector field finite in the Λ̃→∞ limit therefore requires scaling the
coefficient α′0(0) as α′0(0)→ m2/Λ̃2. Since Ln(K̃) ∼ O

(
(∂A)n/Λ̃2n

)
, we see that in the limit

Λ̃→∞, keeping the scale m fixed, the only relevant terms of PN origin are, up to irrelevant
constant and total derivatives

L̃PN −−−→
Λ̃→Λ

−1
2m

2A2 + α′′0(0)A4 − 1
2α
′
1(0)A2∂A+ 1

4α1(0)F 2
µν −

1
2α2(0)F 2

µν . (A.5)

These are all of GP nature, so added to LGP, we directly deduce that in the limit Λ̃→∞,
keeping the scales m and Λ fixed, the extended PN Lagrangian given in (A.1) includes all the
GP interactions aside from the generic function f(Fµν , F̃µν , X).
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B Null eigenvector

B.1 Null eigenvector on a fixed background

In this section, we shall prove that the EPN theory defined in (3.2) admits a constraint about
any fixed background (no matter how curved and spacetime-dependent). To prove this, we
simply need to show that the vector Vµ defined in (3.9) is indeed a null eigenvector for this
EPN theory on any background. To be more precise, we have defined H(n)

αβ in eq. (3.11) to
be the Hessian matrix corresponding to the Lagrangian Ln[X ] for n = 1, . . . , 4, as expressed
in (3.3)–(3.6). In what follows, we shall show that V α is a null eigenvector for each H(n)

αβ

for n = 0, . . . , 3. The case n = 0 is trivial since it is purely a potential term. For the other
non-trivial Lagrangians, it turns out to be easier to consider them as functions of X rather
than K. This change of variable is always possible since the set {Ln[X ]} is linearly related
the set {Ln[K]} as long as one considers all interactions, i.e. including L4. In what follows we
shall thus simply prove that

H(n)
αβ V

α = 0, for n = 1, . . . , 4 . (B.1)

The case n = 1 was proven in the main text (3.12). Let us now turn to the proof that
V is indeed the NEV for Ln[X ], with n = 2, 3, 4. To begin with, we make use of the
following identity

∂[X n]
∂Ȧα

= nΛ−2
(
X n−2

)0

µ

(
δµα + Λ−2∇µAα

)
. (B.2)

• L2[X ]

One can start by showing that the momentum associated with this Lagrangian reads

p(2)
α = 2Λ2

{
[X ]Vα −

(
δ0
α + Λ−2∇0Aα

)}
, (B.3)

it is then easy to prove that V is indeed the correct null eigenvector,

H(2)
αβV

α = 2Λ2
{
∂[X ]
∂Ȧβ

VαV
α + [X ] ∂Vα

∂Ȧβ
V α − 1

Λ2 g
00gαβV

α
}

= 2Λ2g00
(
∂[X ]
∂Ȧβ

− Vβ
Λ2

)
= 0 .

(B.4)

• L3[X ]

The momentum associated with L3[X ] is given by

Λ−2p(3)
α = 3

(
[X ]2 − [X 2]

)
Vα−6[X ]

(
δ0
α + Λ−2∇0Aα

)
+6X 0

µ

(
δµα + Λ−2∇µAα

)
. (B.5)

We will make use of the following identities

V α
(
δµα + Λ−2∇µAα

)
= X 0µ , (B.6)

∂X 0µ

∂Ȧβ
X 0

µ = Λ−2g00
(
δ0
β + Λ−2∇0Aβ

)
, (B.7)
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so as to derive the following matrix product between the Hessian and the vector V ,

H(3)
αβV

α = 6
{

[X ]Vβ −
(
δ0
β + Λ−2∇0Aβ

)}
VαV

α + 3
2Λ2

(
[X ]2 − [X 2]

) ∂ (VαV α)
∂Ȧβ

− 6Vβ
(
δ0
α + Λ−2∇0Aα

)
V α − 6[X ]g00Vβ + 6Λ2∂X

0
µ

∂Ȧβ

(
δµα + Λ−2∇µAα

)
V α

+ 6X 00Vβ

= 6
[
−g00

(
δ0
β + Λ−2∇0Aβ

)
−X 00Vβ + Λ2

2
∂X 0

µ

∂Ȧβ
X 0µ + X 00Vβ

]
= 0 . (B.8)

• L4[X ]
The canonical momentum coming from the Lagrangian at order 4 reads

Λ−2p(4)
α = 4L3[X ]Vα − 12(L2[X ]δ0

µ − 2([X ]X 0
µ − f0

µ))
(
δµα + Λ−2∇µAα

)
, (B.9)

and the eigenvalue equation follows directly

H(4)
αβV

α = 4Λ−2p
(3)
β g00 + 4Λ2L3[X ] ∂Vα

∂Ȧβ
Vα

− 12
[
Λ−2p

(2)
β δ0

µ − 2Λ−2p
(1)
β X

0
µ − 2Λ2[X ]

∂X 0
µ

∂Ȧβ
+ 2g00

(
gµβ + Λ−2∇µAβ

)
+ 2δ0

µ

(
δ0
β + Λ−2∇0Aβ

)]
X 0µ

− 12(L2[X ]δ0
µ − 2([X ]X 0

µ − f0
µ))g0µVβ

= 4g00
[
3L2[X ]Vβ − 6[X ]

(
δ0
β + Λ−2∇0Aβ

)
+ 6X 0

µ

(
δµβ + Λ−2∇µAβ

)]
− 24

[{
[X ]Vβ −

(
δ0
β + Λ−2∇0Aβ

)}
X 00 − f00Vβ − g00[X ]

(
δ0
β + Λ−2∇0Aβ

)
+g00X 0µ

(
δµβ + Λ−2∇µAβ

)
+ X 00

(
δ0
β + Λ−2∇0Aβ

)]
− 12

(
g00L2[X ]− 2[X ]X 00 + 2f00

)
Vβ

= 0 . (B.10)
This concludes the proof that V is the common null eigenvector to L1, L2, L3 and L4,

⇒ H(n)
αβ V

α = 0, for n = 1, 2, 3, 4 . (B.11)

B.2 Null eigenvector on a dynamical background
In this section, we will consider the background to be dynamical, and hence extend the
dynamical phase space including those contained in the gravitational sector. The NEV V ∗µ
defined in (3.19) is now embedded in a higher-dimensional vector V = (V ∗µ , 0) where the null
entries run through the metric components. We have proven that H(n)

αβ V
α = 0 for n = 1, . . . , 3

on a non-dynamical background. When coupling EPN to gravitational degrees of freedom,
the vector V ∗µ is related to Vµ by the linear transformation V ∗µ = (M−1) ν

µ Vν and thus it is
immediate to see that H∗,(n)

αβ V ∗,α = 0 for n = 1, . . . , 3, i.e. V annihilates the pure vector sector.
This is trivially true for the pure metric sector. In order to prove that the higher-dimensional
vector V is the correct NEV on a dynamical background, one has to check that it also
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annihilates the mixed vector-metric sector. The Hessian matrix for the mixed vector-metric
sector is defined to be

H∗(n)
µ,ij = ∂p

∗(n)
µ

∂γ̇ij
= Λ4 ∂

2Ln[X ]
∂Ȧ∗µ∂γ̇ij

. (B.12)

We have previously shown that V ∗µ is indeed a NEV for the Hessian H∗(1)
µ,ij and hence V is

a NEV of the full Hessian associated with L1[X ]. We will now prove that even though V
fails to remain a NEV for L2 (and L3), it is possible to add non-minimal couplings to L2
such that symbolically HV vanishes in all sectors at leading order in (∇A)/Λ2. This seems
to indicate that one could possibly add further non-minimal couplings to push the constraint
to the next order and so on in an infinite series. However, this is only postulated at this stage
and proving such a statement in generality is beyond the scope of this work. Nevertheless,
our results are interesting in their own right and we will further show that it immediately
follows that V is the NEV of L(non-min)

2 on any background such that ∇µAν is symmetric, e.g.
FLRW. Even though the covariantization fails on a generic dynamical background, this is a
proof that EPN can be considered for cosmology. An estimation for the mass of the resulting
ghost on background where the field strength tensor acquired a non-vanishing vev is given in
the main text.

L2 without non-minimal couplings. We start by computing the Hessian matrix asso-
ciated with L2 in the mixed vector-metric sector. First note that with the covariantization
introduced in (3.1), the time-derivatives of the spatial metric do not only enter through the
curvature, but also through the covariant derivative of the vector field. To include their
contributions, we first consider the following derivatives

∂Γβµα
∂γ̇kl

= 1
4g

βλ
(
δ0
µδ
k
λδ
l
α + δ0

αδ
k
λδ
l
µ − δ0

λδ
k
µδ
l
α

)
+ {k ↔ l} . (B.13)

Throughout the rest of this appendix, we will consider Aµ (with upper index) to be constant
with respect to γij and as a result ∂µAν will also contribute when differentiating with respect
to γ̇ij . The derivative of ∇µAν is hence given by

∂(∇µAν)
∂γ̇ij

= −1
4γikγjlg

νλ
(
(δ0
µδ
k
λ − δ0

λδ
k
µ)Al + δkµδ

l
λA

0
)

+ {i↔ j}

= −1
4
[
(δ0
µδ
ν
i − gµig0ν)Aj + gµiδ

ν
jA

0 − 2δ0
µδ
ν
i NjA

0 + δ0
µg

0νNiNjA
0
]

+ {i↔ j} ,
(B.14)

while that of ∇µAν follows trivially. Now, in order to compute the derivative of the momentum
p(2) with respect to γ̇ij , we need

∂[X ]
∂γ̇ij

= 1
2
∂fµν
∂γ̇ij

(
X−1

)µν
=
[
∂(∇µAα)
∂ ˙γij

+ Λ−2∂(∇µAν)
∂ ˙γij

∇αAν
] (
X−1

)µα
= Λ−2∂(∇µAν)

∂ ˙γij
(
X−1

)µα (
δνα + Λ−2∇αAν

)
= Λ−2∂(∇µAν)

∂ ˙γij
V µν

= 1
4Λ−2

{
Ai
(
V 0
j − Vj

)
+A0

(
2ViNj − Vij −NiNjV

0
)}

+ {i↔ j} , (B.15)

where we have introduced

V µν =
(
X−1

)µα (
δνα + Λ−2∇αAν

)
, (B.16)
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such that
V µ = V 0µ . (B.17)

On the hand, we have

∂
(
∇0Aα

)
∂γ̇ij

V α = 1
4g

00
(
A0(2ViNj −NiNjV

0)−AiVj
)

+ {i↔ j} . (B.18)

Putting everything together we find that the contraction of the Hessian of α2,XL2 with the
null eigenvector for L1 is now

H(2)
α,ijV

α = ∂p
(2)
α

∂γ̇ij
V α

= 2α2,XΛ2
{
∂[X ]
∂γ̇ij

VαV
α + [X ] ∂Vα

∂γ̇ij
V α − Λ−2∂

(
∇0Aα

)
∂γ̇ij

V α

}

= 2α2,XΛ2
{
g00∂[X ]

∂γ̇ij
− Λ−2∂

(
∇0Aα

)
∂γ̇ij

V α

}

= 1
2α2,Xg

00
(
V 0
i Aj + V 0

j Ai − VijA0 − VjiA0
)

= −α2,Xg
00γijA

0 + 1
2Λ2α2,Xg

00F
0

(i Aj) +O((∇A)2/Λ4) , (B.19)

which does not generically vanish. Considering this result in an operator expansion, or power
expansion in ∇A/Λ2, we see that to leading order in that expansion, we get

Vµν = gµν + Fµν
2Λ2 −

1
8Λ4

(
F α
µ Fνα − 4∇αA[µ∇ν]A

α
)

+O((∇A)3/Λ6) , (B.20)

and it is clear that (B.19) does not vanish at leading order in the operator expansion. The
previous result is surprising in itself and indeed the same occurs for GP at precisely the same
level. The resolution in that case is the introduction of non-minimal couplings to gravity as
already provided in [29].

Addition of non-minimal couplings. In the context of EPN, the generalization of those
non-minimal couplings is however much more challenging to find, particularly due to the fact
that the constraint has to be satisfied non-linearly through mixing of orders. At this stage,
there is no candidate for a straightforward and natural non-minimal coupling, however for
lack of a better insight, we consider the inclusion of the following non-minimal coupling:

√
−gΛ2α2[X]R =

√
−gΛ2α2[X]gµν

(
∂αΓαµν − ∂νΓααµ + ΓαµνΓβαβ − ΓβµαΓανβ

)
=
√
−gΛ2α2[X]gµν

(
∇αΓαµν −∇νΓααµ +O(Γ2)

)
=
√
−gΛ2α2[X]

(
∇α

(
gµνΓαµν

)
−∇µΓααµ +O(Γ2)

)
=
√
−gΛ2

(
Γααµ∇µα2[X]− gµνΓαµν∇αα2[X] +O(Γ2)

)
=
√
−gα2,X [X]Aβ

(
gµνΓαµν∇αAβ − Γααµ∇µAβ +O(Γ2)

)
. (B.21)

Now defining p(2,R) as the momentum conjugate to A with respect to the non-minimal coupling
part of the Lagrangian at order 2,

⇒ p(2,R)
α = ∂

(
Λ2α2[X]R

)
∂Ȧα

= α2,XAα
(
gµνΓ0

µν − gµ0Γνµν
)
, (B.22)
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and H(2,R)
α,ij as the contribution to the second-order Hamiltonian purely coming from the

second-order non-minimal coupling to gravity,

H(2,R)
α,ij = ∂p

(2,R)
α

∂γ̇ij
= −γikγjlα2,XAα

(
gµν

∂Γ0
µν

∂γ̇kl
− gµ0∂Γνµν

∂γ̇kl

)

= −1
4γikγjlα2,XAα

((
4g0kg0l − 2g00gkl

)
− 2g00gkl

)
= γikγjlα2,XAα

(
g00gkl − g0kg0l

)
= α2,XAα

(
g00

(
γij + g00NiNj

)
−
(
−g00Ni

) (
−g00Nj

))
= g00γijα2,XAα , (B.23)

then, we get the following eigenstate equation

⇒ H(2,R)
α,ij V

α = g00γijα2,XAαV
α = α2,Xg

00γij

(
A0 + 1

2Λ2F
0αAα +O((∇A)2/Λ4)

)
. (B.24)

Separately, neither (B.19) nor (B.24) vanish at leading order in (∇A)/Λ2. However, when
adding these two contributions, we get a cancellation at leading order,

⇒
(
H(2)
α,ij +H(2,R)

α,ij

)
V α = 1

2g
00α2,X

(
2γijAαV α + V 0

i Aj + V 0
j Ai − VijA0 − VjiA0

)
= 0 + 1

2Λ2α2,Xg
00
(
F

0
(i Aj) + γijF

0αAα
)

+O((∇A)2/Λ4) . (B.25)

Now, this equation is vanishing at leading order in (∇A)/Λ2 but not to higher order. From
this we conclude that by itself the minimal coupling α2[X]R does help with the pushing the
breaking of the constraint to a higher order but is not sufficient to ensure that the constraint
will be satisfied to all orders. Other more general non-minimal couplings are currently under
investigations but those are kept to another study since for what interests us in the context
of cosmology is to ensure the absence of ghosts on cosmological backgrounds. In this context,
the tensor ∇µAν is symmetric and the right hand side of (B.25) then vanishes. Indeed, if
∇A is symmetric then f is nothing other than (1 +∇A/Λ2)2, meaning that χ reduces to the
simple form 1 +∇A/Λ2. Finally, we have

V µν =
[(

1 +∇A/Λ2
)−1

]µα [
1 +∇A/Λ2

] ν

α
= gµν , (B.26)

which is simply the zeroth-order of the general formula, proving that the right hand side
of (B.25) vanishes for any configurations where the field strength tensor Fµν vanishes.

B.3 Special model with no non-minimal coupling
We now establish whether the special model considered in section 4 enjoys a constraint when
coupled to gravity. We start by defining the momenta associated with the GP operators as

p(n,GP)
α = ∂Ln[∇A]

∂Ȧα
, (B.27)

so that we have

p(1,GP)
α = δ0

α , (B.28)

p(2,GP)
α = 2

(
δ0
α∇µAµ −∇αA0

)
, (B.29)

p(3,GP)
α = 3δ0

α

(
(∇µAµ)2 −∇µAν∇νAµ

)
+ 6

(
∇αAµ∇µA0 −∇αA0∇µAµ

)
. (B.30)
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From there we can immediately check that by themselves, the GP type of terms constructed
out of symmetric polynomials of (∇A) do not contribute to the Hessian matrix, namely

H(n,GP)
αβ = 0, n = 1, 2, 3 . (B.31)

Is is then clear that V α (the covariantization of the Minkowski NEV for EPN) is still satisfying

Hαβ(L̂)V α = 0 . (B.32)

Now focusing on the part of the Hessian matrix that probes the mixing between Ȧ and γ̇
we find

H(2,GP)
α,ij V α = −1

2
[
γijA

0V 0 + g00AiVj
]

+ {i↔ j} , (B.33)

leading to

Hα,ij(L̂(2))V α = 1
2α2,X

[
A0(γijV 0 − Vijg00) + g00Ai(Vj + V 0

j )
]

+ {i↔ j} (B.34)

= 0 + 0
Λ2 −

1
8Λ4

[
γijA

0F 0αF0α + g00
(
2F 0αA(iFj)α −A0F α

i Fjα
)]

+O((∇A)3/Λ6) ,

which again fails to vanish at all orders but vanishes at leading and next-to-leading order in
the operator expansion and vanishes on any background for which the field strength tensor
vanishes, Fµν = 0, as is the case for cosmology.

C Definition of some coefficients in the perturbed quadratic actions

C.1 Coefficients of the scalar perturbations in the special model

We define here the 7 coefficients entering the quadratic scalar action of the special model (4.43),

ω̂1 = −2M2
PlH − φ3 (α1,X + d1,X) ,

ω̂2 = ω̂1 + 2M2
PlH ,

ω̂3 = −2φ2q̂V ,

ω̂4 = −3M2
PlH

2 + 1
2φ

4α0,XX −
3
2Hφ

3
[
(α1,X + d1,X)− φ2

Λ2 (α1,XX + d1,XX)
]
,

ω̂5 = ω̂4 −
3
2H(ω̂1 + ω̂2) ,

ω̂6 = −φ2 (α1,X + d1,X) ,
ω̂7 = −φ̇ (α1,X + d1,X) . (C.1)

C.2 Masses of the scalar modes in the special model

In this appendix, we present the results for the square masses of both scalar modes, the
matter perturbation δρM/k and the scalar ψ. These masses are inferred from the dispersion
relation (4.55) and hence are canonically normalized. To begin with, the mass of the matter
field is given by

m̂2
S,M = Θ̂

2φ2q̂V (ω̂1 − 2ω̂2)2 , (C.2)
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where

Θ̂ = 2(ρM + PM )ω̂2
2

+ ω̂3

[
(ρM + PM )2 −H(ρM + PM )

{
(ω̂1 − 2ω̂2)

(
1 + 6c2

M

)
+

˙̂ω1 − 2 ˙̂ω2
H

}
(C.3)

+3H2(ω̂1 − 2ω̂2)2
{

3c4
M + c2

M − 2− (1 + c2
M )
(
Ḣ

H2 −
∂t(ρM + PM )
H(ρM + PM )

})]
.

Avoiding a tachyonic instability is achieved by requiring

Θ̂ > 0 . (C.4)

On another hand, one can also derive the mass of the scalar field ψ,

m̂2
S,ψ = 1

(ω̂1 − 2ω̂2)2ω̂2
3

Ξ̂1

Ξ̂2
, (C.5)

where

Ξ̂1 =−(ω̂1−2ω̂2)2ω̂3Ξ̂2φ ˙̂ω6

+2(ω̂1−2ω̂2)(ω̂1−ω̂2)ω̂3φ
[
ω̂2(ω̂2

1−ω̂1ω̂2+(PM+ρM )ω̂3)+(ω̂1−2ω̂2)(ω̂1−ω̂2)ω̂6φ
]

˙̂ω4

+(ω̂1−2ω̂2)(ω̂1ω̂2+(ω̂1−2ω̂2)ω̂6φ)Ξ̂2 ˙̂ω3

−ω̂3φ
[
3Hω̂2

1

{
ω̂1(ω̂1(ω̂1+2ω̂2)−2ω̂2

2)+(ω̂1−2ω̂2)(3ω̂1−2ω̂2)ω̂6φ)

+(PM+ρM )(ω̂1+4ω̂2)ω̂3}
−2ω̂4 {ω̂1(ω̂1−ω̂2)(ω̂1(ω̂1+ω̂2)+2(ω̂1−2ω̂2)ω̂6φ)

+(PM+ρM )(ω̂1(ω̂1+2ω̂2)−2ω̂2
2)ω̂3

}]
˙̂ω2

−ω̂3φ
[
3Hω̂1

{
ω̂1ω̂2(ω̂2

1−8ω̂1ω̂2+6ω̂2
2)+(ω̂1−2ω̂2)(ω̂2

1−6ω̂1ω̂2+4ω̂2
2)ω̂6φ

−(PM+ρM )(ω̂1+4ω̂2)ω̂2ω̂3}
+2ω̂2ω̂4 {(2ω̂1−ω̂2)(2(ω̂1−ω̂2)ω̂2+(PM+ρM )ω̂3)+2(ω̂1−2ω̂2)(ω̂1−ω̂2)ω̂6φ}] ˙̂ω1

+3ω̂2
1(ω̂1−2ω̂2)ω̂3 [ω̂2(ω̂1(ω̂1−ω̂2)+ω̂3(PM+ρM ))+(ω̂1−2ω̂2)(ω̂1−ω̂2)ω̂6φ]φḢ

−(ω̂1−2ω̂2)ω̂2ω̂
2
3

[
3Hω̂2

1−2(ω̂1−ω̂2)ω̂4
]
φ∂t(PM+ρM )

+(ω̂1−2ω̂2)ω̂3(3Hω̂2
1−2(ω̂1−ω̂2)ω̂4)

×[2ω̂2(ω̂1(ω̂1−ω̂2)+ω̂3(PM+ρM ))+(ω̂1−2ω̂2)(ω̂1−ω̂2)ω̂6φ] φ̇

−(ω̂1−2ω̂2)
[
2ω̂2ω̂3(3Hω̂2+(PM+ρM ))+ω̂2

1(2ω̂2+3Hω̂3)−ω̂1ω̂2(2ω̂2+9Hω̂3)
]

×(3Hω̂2
1−2(ω̂1−ω̂2)ω̂4)φ2ω̂6

+
[
2(ω̂1−2ω̂2)2(ω̂1−ω̂2)2ω̂2

6φ
3+2ω̂2(ω̂1(ω̂1−ω̂2)+ω̂3(PM+ρM ))

×{ω̂1ω̂2(ω̂1−ω̂2)+ω̂3(3H(ω̂1−2ω̂2)(ω̂1−ω̂2)+ω̂2(PM+ρM ))}φ] ω̂4

−12Hφω̂3
2ω̂

2
3(PM+ρM )2

−3Hω̂2
1φ [ω̂2ω̂3(2ω̂1ω̂2+3H(ω̂1−2ω̂2)ω̂3)(PM+ρM )

+(ω̂1−ω̂2)
{

3Hω̂1(ω̂1−2ω̂2)ω̂2ω̂3+ω̂2
1ω̂

2
2 +(ω̂1−2ω̂2)2ω̂2

6φ
2
}]
, (C.6)
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and
Ξ̂2 = (ω̂1 − ω̂2)(3Hω̂2

1 − 2(ω̂1 − ω̂2)ω̂4)φ . (C.7)

The absence of tachyonic instabilities for the scalar mode ψ is ensured by the positivity of
m̂2
S,ψ, which is equivalent to require Ξ̂1/Ξ̂2 > 0.

C.3 Coefficients of the vector perturbations in the general model

In this appendix, we will define the coefficients entering the quadratic action for the vector
field in the general model (5.9).

qV = 1− 1
2µα1 + 1

µ

(
1−2HφΛ2

)
α2,X

+ 1
2µ2

{
3H2µ−

(
1+Hφ/Λ2) Ḣ
Λ2 α3−µ

Hφ

Λ2

(
2−HφΛ2

)
α3,X

}
,

C1 = 1+ 1
2(1+Hφ/Λ2)

[
−α1 +2

(
1−Hφ+ φ̇

Λ2

)
α2,X + 3H2 +2Ḣ

Λ2 α3

−
(
Hφ

Λ2 +
(

1−HφΛ2

)
φ̇

Λ2

)
α3,X

]
,

C2 = (α1,X +d1,X) φ̇

H2 + Ḣ

Λ2µ
α3 + 1

H2∂t

(
H

[
4(α2,X +d2,X)+ Ḣ

Λ2µ
α3−

Hφ

Λ2 (α3,X +d3,X)
])

+2qV + ∂t(qVH)
H2 ,

C3 = 2 φ

MPl
(α2,X +d2,X)− H

MPl

(
Hφ− φ̇
2Λ2µ

α3 + φ2

Λ2 (α3,X +d3,X)
)
,

C4 = φ̇−Hφ
2Λ2MPlµ

α3 , (C.8)

where we have used

µ = 1 + Hφ+ φ̇

2Λ2 . (C.9)

C.4 Coefficients of the scalar perturbations in the general model

Finally, we define the coefficients entering the quadratic action for the scalar sector of the
general model (5.20).

ω1 =−2M2
PlH−φ3(α1,X+d1,X)−4Λ2H

[
(α2+d2)+ φ4

Λ4 (α2,XX+d2,XX)
]

(C.10)

+H2φ3

Λ2

[
(α3,X+d3,X)+ φ2

Λ2 (α3,XX+d3,XX)
]
,

ω2 =ω1+2M2
PlHqT ,

ω3 =−2φ2qV ,
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ω4 =−3M2
PlH

2+ 1
2φ

4α0,XX−
3
2Hφ

3
[
(α1,X+d1,X)− φ

2

Λ2 (α1,XX+d1,XX)
]

−3Λ2H2
[
2(α2+d2)+2φ

2

Λ2 (α2,X+d2,X)+ φ4

Λ4 (α2,XX+d2,XX)− φ
6

Λ6 (α2,XXX+d2,XXX)
]

+ 1
2
H3φ3

Λ2

[
9(α3,X+d3,X)− φ

4

Λ4 (α3,XXX+d3,XXX)
]
,

ω5 =ω4−
3
2H(ω1+ω2) ,

ω6 =−φ2(α1,X+d1,X)+4Hφ
[
(α2,X+d2,X)− φ

2

Λ2 (α2,XX+d2,XX)
]

(C.11)

−H
2φ2

Λ2

[
(α3,X+d3,X)− φ

2

Λ2 (α3,XX+d3,XX)
]

+2ḢHφ
µΛ2 α3 ,

ω7 =−φ̇(α1,X+d1,X)−4
[
Ḣ(α2,X+d2,X)+Hφφ̇

Λ2 (α2,XX+d2,XX)
]

+H(2Ḣφ+Hφ̇)
Λ2 (α3,X+d3,X)+H2φ2φ̇

Λ4 (α3,XX+d3,XX)− ḢH
2

µΛ2 α3−∂t

(
ḢH

µΛ2 α3

)
,

ω8 = Ḣφ2

µΛ2 α3 ,

ω9 = Hφ(Hφ−φ̇)
µΛ2 α3 .

On a side note, these coefficients do not reproduce the ones of the special model depicted
in (C.1) in the limit α2 = −d2 and α3 = −d3, showing the non-trivial relation between the
special and the general models. This highlights the importance of either the tuning in the
special model or the non-minimal couplings in the general model to construct a healthy theory.

D Operator relevance about the de Sitter point

We have seen in section 4.3.2 that the scalar and vector velocities vanish about the dS point.
This could potentially suggest the presence of strong coupling issues associated with the
breakdown of perturbative unitarity as we reach those fix points. We will show that this is
not the case. Schematically, the action for the mode ψ reads

S
(2)
S,ψ =

∫
dtd3xa3

(
−1

2Z
µν∂µψ∂νψ

)
=
∫

dtd3x
a3

2 Q̂(t)
(
ψ̇2 − ĉ(t)2

a2 (∂iψ)2
)
, (D.1)

defining an effective metric Zµν . To determine the strong coupling scale, or the scale at which
perturbative unitarity gets broken, we first normalise the field and the spacetime coordinates
as performed for instance in [61],

t̃ =
∫
ĉ(t)dt , x̃i = xi , and ψ = (Q̂ĉ)−1/2ψ̃ , (D.2)

so that in terms of these variables the field is canonically normalized

S
(2)
S,ψ =

∫
dt̃d3x̃

a3

2

((
∂t̃ψ̃

)2
− 1
a2

(
∂x̃iψ̃

)2
)
. (D.3)
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vector scalar ψ
Q̂ a3 a6

ĉ2 a−3 a−3

Table 2. Power-law behaviour of the vector and scalar kinetic terms and velocities as functions of the
scale factor a(t) about the dS point.

Treated as an EFT, we would expect the theory to include an infinite number of irrelevant
operators of the form a3−2LψN ψ̇M (∂iψ)2L entering at the respective scale ΛNML, where
ΛNML is expected to be at least of order Λ and where N , M and L are positive integers
respecting N + 2M + 4L > 4. In terms of the normalized fields and coordinates, this operator
enters at the physical scale µ̃NML given by

µ̃NML = Q̂
N+M+2L

2(N+2M+4L−4)
(
ĉ2
) N−M+2L+2

4(N+2M+4L−4) ΛNML . (D.4)

Now, the kinetic term Q̂ and the velocity ĉ2 are power laws of the scale factor a(t) when
approaching the dS point, for both the vector and the scalar mode. Let us define

pQ = ln(Q̂)
ln(a) , pc = ln(ĉ2)

ln(a) , (D.5)

so that

pNML ≡
ln(µ̃NML/ΛNML)

ln(a) = (N + 2L)(2pQ + pc) +M(2pQ − pc) + 2pc
4(N + 2M + 4L− 4) . (D.6)

The validity of the EFT is preserved as long as no scale µ̃NML has a much smaller value
than the corresponding scale ΛNML, for any non-negative integers N , M , L such that
N + 2M + 4L > 4. This translates into

pNML > 0, for all N,M,L ≥ 0, N + 2M + 4L > 4 . (D.7)

The scaling of the kinetic terms and velocities of the scalar and vector modes in terms of the
scale factor a(t) can be deduced from figures 5 and 4 and is summarised in the table 2 below.
It follows that the value of pNML for the vector and scalar ψ modes about the dS point read{

(pNML)V = 3
4
N+3M+2L−2
N+2M+4L−4 ,

(pNML)S,ψ = 3
4

3N+5M+6L−2
N+2M+4L−4 .

(D.8)

From here, it is easy to prove that pNML is always strictly positive for any of the allowed
values of N , M and L, for both the scalar and the vector. This concludes the proof that our
EFT does not suffer any strong coupling issue due to the vanishing of the velocities about the
de Sitter point (in link with the divergence of the associated kinetic terms).
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