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Abstract

Trawl processes are continuous-time, stationary and infinitely divisible processes
which can describe a wide range of possible serial correlation patterns in data.
In this paper, we introduce new simulation algorithms for trawl processes with
monotonic trawl functions and establish their error bounds and convergence
properties. We extensively analyse the computational complexity and practical
implementation of these algorithms and discuss which one to use depending on
the type of Lévy basis. We extend the above methodology to the simulation of
kernel-weighted, volatility modulated trawl processes and develop a new simu-
lation algorithm for ambit fields. Finally, we discuss how simulation schemes
previously described in the literature can be combined with our methods for
decreased computational cost.

Keywords: ambit fields, infinite divisibility, Lévy bases, numerical study of
stochastic processes, serial correlation, stochastic simulation, trawl processes
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1 Introduction

This paper introduces new simulation algorithms for trawl processes and ambit
fields and establishes their error bounds and convergence properties. Deriving
efficient simulation schemes, easily adaptable implementations and understand-
ing the corresponding theoretical and numerical errors come naturally as first
steps before employing such processes to model real-world data.

Trawl processes and ambit fields have been introduced in the context of Am-
bit Stochastics, which was first developed to model physical phenomena such
as turbulent flow and tumour growth by [1]. Since its introduction, Ambit
Stochastics proved to be a powerful modelling tool in other settings, such as
spatio-temporal statistics [2], brain imaging [3] and finance [4]. [5] studied trawl
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workloads for network communications. Together with the theoretical develop-
ment of the topic, multiple computer libraries became available, as developed
by [6, 7, 8, 9, 10] and [11]. Apart from the extensive analysis of existing and new
simulation schemes, we release a unified Python library at [12], which contains
efficient implementations of the discussed algorithms.

We start our analysis in the temporal setting with the class of trawl processes,
then expand to the spatio-temporal case of ambit fields. Trawl processes are
stationary and infinitely divisible stochastic processes which heavily rely on the
following two concepts: the trawl set At, i.e. the region which influences the
value of the trawl process X at time t, and the Lévy basis L, a type of random
measure which extends the concept of noise from Gaussian and Poisson random
measures to a general infinitely divisible setting. The trawl process X is then
defined as the Lévy basis evaluated over the region of interest Xt = L(At). This
framework enforces the modelling belief that the value of the trawl process at
time t is only influenced by a subset of the whole system, represented here by
the trawl set At, and not by the entire system. In many settings, the choice
of the trawl set is inspired by the physical knowledge of the phenomenon to
be modelled. A great advantage of trawl processes is the flexibility of the au-
tocorrelation structure and of the marginal distribution, which can be chosen
independently. Indeed, the areas of the overlaps At ∩As determine the correla-
tions Corr (Xt,Xs) and the Lévy basis determines the marginal law of X, which
can be any infinitely divisible distribution. This allows for the modelling of
data displaying stylized facts, such as non-Gaussianity or heavy tails and offers
a concrete and tractable alternative to modelling via stochastic partial differ-
ential equations (SPDEs), whose solutions can even be difficult to approximate
numerically. A natural extension of trawl processes to spatio-temporal fields is
given by random fields Y defined as Y (t, x) = Yt(x) = L (At(x)) , where the set

At(x) ⊂ Rd now depends on both time and d−1 spatial coordinates. We call this
a simple field. Simulation methods previously described in the literature and
which are applicable to trawl processes include simulation via grid discretiza-
tion in [13], via compound Poisson processes in the case of integer-valued trawls
in [4] and by using a slice partition in [14, Chapter 4.4], [15, Chapter 8.6]. We
generalize these methods, derive their theoretical errors and computational com-
plexities and discuss practical implementation details. Further, we expand on
the slice partition method, develop a novel simulation algorithm for simple am-
bit fields and explain how the calculations required for higher accuracy can be
performed ahead of the simulations, amortising the computational time across
simulations. This allows for the implementation of high-accuracy simulation
studies and simulation-based inference.

Recent empirical work in areas such as environmental sciences in [16] and energy
pricing in [17, 18] suggests the presence of volatility clusters, and hence of a
stochastic volatility, which can be easily incorporated into the Ambit Stochastics
framework. Indeed, we consider the volatility modulated, kernel-weighted trawl
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Kt (t̄, x̄)σ(t̄)dL (t̄, x̄) , and their spatio-temporal analogue,

ambit fields Yt(x) = ∫At(x)Kt,x (t̄, x̄)σ (t̄, x̄)dL(t̄, x̄), where the deterministic
kernel K multiplied by the stochastic volatility σ is integrated against the Lévy
basis L. The integration is understood in the sense of [19, Theorem 2.7] for
deterministic σ and in the sense of [20, 21] and [22] for stochastic σ. This
general formulation introduces a kernel and a stochastic volatility with respect
to the basis model of trawl processes and simple ambit fields and offers a complex
framework which can be used to explicitly construct random fields with certain
statistical properties, such as symmetry in space and time [23]. We improve
on the grid methods previously used in the literature by [2, 11] and show that
despite the added terms, the trawl process simulation algorithms can be directly
applied for the efficient simulation of kernel-weighted, volatility modulated trawl
processes and ambit fields.

1.1 Contributions of the paper

We consider three simulation algorithms previously described in the literature
and which are applicable to trawl processes: the grid discretization, slice par-
tition and compound Poisson methods. We derive for the first time their con-
vergence properties and develop a theoretical analysis for the simulation error.
Further, we discuss their computational complexity and provide a Python li-
brary containing the simulation algorithms described in this paper, see [12].

Out of the three schemes mentioned above, only the slice partition is an exact
algorithm, i.e. incurs no simulation error. The slice partition method accom-
modates any monotonic trawl shape and any infinitely divisible distribution de-
scribed via the Lévy basis, requiring only access to samples from the marginal
distribution of the Lévy basis. The other two algorithms, the grid discretization
and compound Poisson approaches are exact only for particular types of trawl
sets and Lévy seeds. In general, they incur a simulation error; we derive their
convergence properties, error bounds and computational complexity. We extend
the slice partition method from trawl processes and develop a novel simulation
algorithm for simple ambit fields. In general, this does not lead to exact simula-
tion of simple ambit fields. However, it has the advantage that the calculations
required for higher accuracy only need to be performed once, before the simula-
tion, leading to amortized computational cost across simulations, as opposed to
the grid and compound Poisson methods, which in general require an increased
cost per simulation; we also discuss in which situations the compound Poisson
method might be preferable to the slice partition method. Finally, motivated
by the high computational complexity and relative inefficiency of grid methods,
as discussed in Subsection 3.4, we show how the compound Poisson and slice
partition methods can be generalized to the simulation of volatility modulated,
kernel-weighted trawl processes and ambit fields.

Our algorithms allow for the practical implementation of high-accuracy simula-
tion studies and the applications are threefold. The first use-case is parameter
inference, where we simulate trawl processes or simple ambit fields and attempt
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ond application is producing Monte Carlo confidence intervals with parametric
bootstrap methods for the parameters inferred above. In this case, we generate
multiple simulations of the trawl process with the estimated parameters; we
then infer the parameters for each of the simulations to get approximate confi-
dence intervals, see [24]. Such simulation studies have already been performed
for integer-valued trawls and spatio-temporal Ornstein-Uhlenbeck processes in
[4, 2]. Thirdly, trawl processes are non-Markovian stochastic processes with a
highly intractable likelihood function, hence indirect inference techniques have
to be used. In future work, we aim to use our algorithms within the simulation-
based inference framework to fit the parameters of trawl processes and simple
ambit fields.

1.2 Structure of the paper

Section 2 defines the notion of Lévy bases, which can be viewed as non-Gaussian
extensions of Gaussian white noise, and settles the notation and theoretical
framework. In particular, we discuss an extension of the Lévy-Khintchine the-
orem from Lévy processes and give formulae for the cumulant, autocorrelation
structure and marginal distribution of the trawl process. Section 3 presents and
compares the three simulation algorithms for trawl processes, employing grid
discretizations, compound Poisson processes and slice partitions and analyses
the convergence properties and computational complexity, first in the case of
bounded trawl sets, and then in the unbounded case. Sections 4 and 5 ex-
tend the above methodologies to kernel-weighted, volatility modulated trawl
processes and ambit fields. In particular, Subsection 5.1 further derives a new
simulation scheme for simple ambit fields via Monte Carlo methods. Proofs that
have been omitted from the main body, background material and a discussion
of efficient implementations of the discussed algorithms can be found in Sections
A, B and C of the supplemental file.

2 Trawl processes and their properties

We first introduce the notation and preliminaries needed in this section. For
a set S ⊂ Rd, let BLeb(S) denote the collection of Borel measurable sets of
finite Lebesgue measure which are contained in S. We view S as a subset of
space-time, where the first coordinate gives the time component and the last
d − 1 coordinates give the spatial component. We say that the measure l is
finite if l(R) < ∞ and infinite otherwise. By a Lévy measure l on R we mean
a (possibly infinite) Borel measure with l(0) = 0 and ∫Rmin (1, y2)l(dy) < ∞.
Finally, for a random variable X we define the cumulant (log-characteristic)

transform C(θ,X) = log (E [eiθX]) [cf. 25, p. 33] and write X
d= Y if X and Y

have the same law.

We formally define Lévy bases and present some of their theoretical properties.
We define the trawl process Xt = L(At) as the Lévy basis evaluated over a
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correlation structure.

2.1 Lévy bases

Definition 2.1 (Lévy basis). A Lévy basis L on S is a collection {L(A) ∶ A ∈ BLeb(S)}
of infinitely-divisible, real-valued random variables such that for any sequence
A1,A2, . . . of disjoint sets in BLeb(S), the random variables L(A1), L(A2), . . . are
independent and further, if ∪∞j=1Aj ∈ BLeb(S), then L(∪∞j=1Aj) = ∑∞j=1L (Aj).
In the following, we assume that the Lévy bases L is homogeneous; a thorough
discussion of this property can be found in Chapter 5.1 of [15].

Definition 2.2 (Homogeneous Lévy basis). A Lévy basis L on S is homogeneous
if there exist ξ ∈ R, a ∈ R≥0 and a Lévy measure l on R such that for any
A ∈ BLeb(S), the following holds

C(θ,L(A)) = (iθζ − 1

2
θ2a + ∫R (eiθy − 1 − iθy1[−1,1](y)) l(dy))Leb(A).

Another important concept is that of the Lévy seed, see e.g. in [4].

Definition 2.3 (Lévy seed). A random variable L
′
is called a Lévy seed of the

Lévy basis L if

C(θ,L′) = iθζ − 1

2
θ2a + ∫R (eiθy − 1 − iθy1[−1,1](y)) l(dy).

Then
C(θ,L(A)) = Leb(A)C(θ,L′), (2.1)

and the distribution of the Lévy seed determines the distribution of the Lévy

basis. Note that if L
′ d= L′′ , then L

′′
is also a Lévy seed. Further, L

′
is infinitely

divisible and to each Lévy basis L we can associate the Lévy-Khintchine triplet(ξ, a, l) of L′ , which fully characterises the distributional properties of L. In the
above triplet, ξ denotes the drift term, a the variance of the Gaussian component
and l the Lévy measure of the jump part [cf. 25, p. 37]. Differentiating (2.1)
once, respectively twice with respect to θ gives

E [L(A)] = Leb(A)E [L′] , (2.2)

Var (L(A)) = Leb(A) Var(L′) , (2.3)

and taking higher derivatives gives the relation between the cumulants of L(A)
and these of L

′
.

Finally, to construct a trawl process, we need to choose the trawl sets. In the
following, we restrict our attention to trawl processes with monotonic trawl
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At = A + (t,0), A = {(s, x) ∈ R2∶ s < 0,0 < x < ϕ(s)},
where ϕ∶ (−∞,0] → R≥0 is a continuous increasing function. Define the trawl
process X = (X)t≥0 by the Lévy basis evaluated over the trawl set Xt = L(At).
We note that, while the trawl process X is defined to take values in R, the trawl
set is chosen as a subset of R2, i.e. it includes an abstract spatial dimension in
addition to the temporal dimension. Further, the trawl set is non-anticipative,
in the sense that At does not contain any points (s, x) with s > t. If there is some
T < 0 such that ϕ(T ) = 0, then A is compactly supported and we say that the
trawl is bounded. Otherwise, we say the trawl is unbounded. Generalizations
are straightforward for A ⊂ Rd with d > 2.
2.2 Marginal distribution

As seen in Definition 2.1, the only restriction on the marginal distribution of a
trawl process is that it has to be infinitely divisible. This provides a rich class
of stochastic processes supported on the integers, on the real line and on the
positive or negative real line, with short or long memory and light or heavy tails.
Some examples include the following processes.

Integer-valued trawl processes

Example 2.4 (Poisson Lévy basis). Let L′ ∼ Poisson(ν) for some intensity ν > 0.
Then Xt = L(At) ∼ Poisson(νLeb (A)).
Example 2.5 (Skellam Lévy basis). Let L′ ∼ Skellam(µ1, µ2), i.e. L′ ∼ N1 −N2

with N1,N2 independent and Poisson distributed with intensities µ1, µ2 > 0.
Then Xt = L(At) ∼ Skellam(µ1Leb (A) , µ2Leb (A)).
Real valued trawl processes

Example 2.6 (Gaussian Lévy basis). Let L
′ ∼ N(µ,σ2) be Gaussian distributed

with mean µ and variance σ2. Then Xt = L(At) ∼ N (µLeb (A) , σ2Leb (A)) .
Example 2.7 (Cauchy Lévy basis). Let L

′ ∼ Cauchy(γ) with scale parameter
γ > 0. Then Xt = L(At) ∼ Cauchy(γLeb (A)).
Positive real valued trawl processes

Example 2.8 (Gamma Lévy basis). Let L
′ ∼ Gamma(k, θ) with shape and rate

parameters k, θ > 0 and pdf p(x) = 1
θkΓ(k)xk−1e−x/θ, x > 0. Then Xt = L(At) ∼

Gamma(kLeb (A) , θ).
Example 2.9 (Inverse Gaussian Lévy basis). Let L′ ∼ IG(δ, γ), with parame-

ters δ, γ > 0 and pdf p(x) = δ√
2πx3

e
δγ− 1

2( δ2

x +γ2x)
, x > 0. Then Xt = L(At) ∼

IG(δLeb (A) , γ).
A more general example is given by the class of trawl processes with stable
distributions.

6
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′ ∼ Stable(α, β, c, µ) have a stable
distribution with stability and skewness parameters α ∈ (0,2], β ∈ [−1,1] and
location, scale parameters µ ∈ R, c > 0, defined through the cumulant function
C(θ,L′) = iθµ +∣cθ∣α (1 − iβ sign (θ)Φ), where Φ = tan πα

2
if α ≠ 1 and − 2

π
log∣θ∣

if α = 1. Then Xt = L(At) ∼ Stable(α, β, cLeb(A)1/α, µLeb(A)). The support

of L
′
is [µ,∞) if α < 1, β = 1, (−∞, µ] if α < 1, β = −1 and R otherwise.

Lévy bases can thus be seen as a generalization of the Gaussian white noise
process to a class of random measures with flexible marginal distributions.

2.3 Covariance and Correlation structure

We saw previously that the distribution of L
′
, together with the Lebesgue mea-

sure of the trawl set, determines the marginal distribution of the trawl pro-
cess Xt. Similarly, the shape of the trawl set A, specified here by the trawl
function ϕ, determines the autocorrelation structure of Xt. Indeed, note that
the sets At/At+h, At+h/At and At ∩ At+h are disjoint, hence the random vari-
ables L (At/At+h), L (At+h/At) and L (At ∩At+h) are independent. By using
this decomposition and by (2.2) and (2.3), we obtain that Cov(Xt,Xt+h) =
Leb (A ∩Ah) Var(L′) = ∫ 0−h ϕ(s)dsVar(L′) and further that

ρ(h) := Corr(Xt,Xt+h) = Leb (A ∩Ah)
Leb (A) = ∫ 0−h ϕ(s)ds∫ 0−∞ ϕ(s)ds . (2.4)

Thus we have a representation of the autocorrelation function ρ solely in terms
of the trawl function ϕ. In particular, the trawl process can realize any positive,
strictly decreasing autocorrelation function. Figure 1 displays some realizations
of the trawl process, with short and long memory, light and heavy tails, simu-
lated by the algorithm from Section 3.3.

7



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1: a-d) Realizations of the trawl process at times τ, . . . ,250τ with τ = 0.5, obtained
by varying the trawl function and Lévy seed. For short and long memory we set ϕsm,
ϕlm∶ (−∞,0] → R≥0 given by ϕsm(t) = et and ϕ(t)lm = 0.5(1− t)−1.5, which result in trawl sets
of Lebesgue measure 1. The corresponding autocorrelation functions ρsm, ρlm∶ [0,∞) → R≥0
are given by ρsm(h) = e−h for Figures 1a and 1d, and ρlm(h) = (1 + h)−0.5 for Figures 1b and

1e. For light and heavy tails, we set L
′
lt ∼ N(0,1), respectively L

′
ht ∼ Cauchy(1). Since the

Lebesgue measure of both trawl sets is 1, the corresponding marginal distribution is N(0,1)
in Figures 1a and 1b and Cauchy(1) in Figures 1d and 1e. e-f) Theoretical and empirical
autocorrelation functions of the trawl process, with trawl function ϕsm in e) and ϕlm in f).
The boxplots describe the distribution of empirical autocorrelation functions at different lags,
based on 500 simulations, in which we simulate the trawl process at times τ, . . . ,1000τ in e)
and τ, . . . ,5000τ in f), with τ = 0.5. The blue circle and red triangle show the true, respec-
tively the mean of the empirical autocorrelation functions. Note that the convergence of the
empirical autocorrelation function, as a function of the number of simulated trawls, is much
faster in the short memory case, where the two markers are superimposed.
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In this section, we present and compare three simulation algorithms for trawl
processes: the grid discretization, the simulation via compound Poisson pro-
cesses and the slice partition. Grid methods were previously considered in [13]
and [2] for ambit field simulation, whereas simulation via compound Poisson
processes was employed in [4] for the simulation of integer-valued trawls. The
main disadvantage of these methods is that they are exact only for certain trawl
shapes and marginal distributions of L

′
; in general, the computational time in-

creases as a function of the required accuracy. Based on the slice partition ideas
from [15, Chapter 8.6] and [14, Chapter 4.4], we describe the slice partition
algorithm, which provides an efficient alternative for the exact simulation of
monotonic trawls. We establish the convergence properties of these algorithms:
in probability, in Skorokhod’s topology and uniformly, providing MSE bounds
on the theoretical error. In all three algorithms, we require samplers either
from the law of L(A) for sets A of various Lebesgue measures or from the Lévy
measure l. We postpone discussing this technical but crucial requirement to
Subsection 3.4, when the presentation of the simulations schemes has finished
and the need for such samplers is clear.

For ease of presentation, assume there is only one spatial component, i.e. d = 2.
Consider a homogeneous Lévy basis L on S = R2, with triplet (ξ, a, l), where
ξ ∈ R, a ∈ R≥0 are constants and where l is a Lévy measure on R. Let the trawl
set A of finite Lebesgue measure be given by

At = A + (t,0), A = {(s, x) ∈ R2∶ s < 0, 0 < x < ϕ(s)},
for some smooth, increasing function ϕ∶ (−∞,0] → R≥0. We aim to simulate
the trawl process Xt = L(At) = L(A + (t,0)) at equidistant times τ, . . . , kτ . In
the following, we simulate both the Gaussian and jump parts, but note that
it is enough to simulate the jump part. Indeed, the covariance matrix Σ of
Lg(Aτ), . . . , Lg(Akτ) is given by the areas of the overlaps of the translated trawl
sets. Thus the Gaussian part can be simulated by Hx, where H comes from the
Cholesky decomposition of Σ, i.e. Σ =HHt, and x is a vector sampled from the
standard k dimensional multivariate Gaussian. In general, the Cholesky factori-
sation has complexity O(k3) and the matrix-vector multiplication O(k2) .
3.1 Algorithm I: grid discretization

Assume that A is bounded, i.e. there exists T < 0 such that ϕ(T ) = 0 and
A = {(t, x) ∈ R2 ∶ T < t ≤ 0,0 < x < ϕ(t)}; we later relax this assumption.
Assume that T + τ < 0; otherwise, the sets Aτ , . . . ,Akτ are disjoint and we can
simulate the trawl process by drawing k iid samples from the law of L(A). In
this algorithm, we discretize the rectangle [T + τ, kτ] × [0, ϕ(0)] into a grid of
cells, simulate the Lévy basis over these cells and approximate L(A) by ∑L(c),
where the sum is over cells c which are fully contained in A.

Let the discretization step-sizes on the time, respectively space axes be ∆t =
τ/Nt, ∆x = ϕ(0)/Nx for some positive integers Nt,Nx. If T /∆t is not an integer,

9
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choice excludes boundary effects and ensures that all the cells we consider in this
algorithm have equal area. In total, there are ((k − 1)Nt +N)Nx cells contained

in the grid on [T + τ, kτ] × [0, ϕ(0)]. Let Y be an Nx × ((k − 1)Nt +N) random
matrix with iid entries Yij

d= L(c), corresponding to the Lévy basis simulated
over all the grid cells. Practical experiments show that for small values of ∆t

and ∆x, it is not feasible to hold a realization of Y in memory. Nevertheless,
note that to simulate L(At), it is enough to hold the samples L(c) for cells c
contained in [t + T, t] × [0, ϕ(0)] in memory. To this end, for each trawl set
Alτ, define the corresponding set of N ⋅Nx grid cells on [lτ + T, lτ] × [0, ϕ(0)]
by Gl = {glij ∶ 1 ≤ i ≤ Nx,1 ≤ j ≤ N}(see Figure 2a), where each cell is of

the form glij = [lτ + T + (j − 1)∆t, lτ + T + j∆t] × [(i − 1)∆x, i∆x]. Define

I to be the Nx × N indicator matrix with entries Iij = 1 if glij ∈ Alτ and 0
otherwise and note that I does not depend on the chosen trawl set Alτ . Finally,
let Yl = Y [∶, (l−1)Nt +1 ∶ (l−1)Nt +N] be the Nx ×N random matrix obtained
by subsetting only the columns of Y corresponding to cells in Gl; the grid
approximation of L(Alτ) is then given by Yl ⊙ I, i.e. the sum of the entries
of the component-wise product of matrices Yl and I. Iteratively, at step l + 1,
we can compute Yl+1 from Yl by discarding {L(c)}g∈Gl/Gl+1 and adding new
samples {L(c)}g∈Gl+1/Gl

(see Figure 2b). This corresponds to removing the first
Nt columns from the left of Yl, adding Nt new sampled columns to the right
of Yl and approximating L (A(l+1)τ) by Yl+1 ⊙ I. The full procedure is given in
Algorithm 1.

t

x

lτ + T lτ

gl21

gl11 gl12 gl13

(a) Illustration of the grid discretization algo-
rithm: the Lévy basis evaluated of the trawl set
Alτ is approximated by ∑L(c), where the sum
is taken over cells c which are fully contained
in Alτ . These cells are shaded in gray.

t

x

lτ + T lτ(l + 1)τ + T (l + 1)τ

remove
Gl\Gl+1

keep
Gl ∩Gl+1

add
Gl+1\Gl

(b) Illustration of the grid update procedure at
step l: we remove from memory the values L(c)
corresponding to cells whose ’upper-left’ cor-
ners have time coordinates less than (l+1)τ +T
and simulate L(c) over cells whose ’upper-left’
corners have time coordinates in the interval[lτ, (l + 1)τ].

Figure 2

Remark 3.1. Algorithm 1 requires checking if a cell c is fully contained in a
monotonic trawl set At (step 5) and a sampler for L(c) (steps 12,17). For
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Input: Trawl function ϕ and T < 0 such that ϕ(T ) = 0; number of stepsNt,Nx on
the time and space axes; sampler S(area,m,n) which returns an m×n array
of iid samples with the same law as L(A), where Leb(A) = area; number of
trawls to be simulated k and distance τ between them.

Output: Vector X containing the simulated values of the trawl process at times
τ, . . . , kτ.

1: function ComputeIndicator(ϕ, T, N, Nx, ∆t, ∆x) ▷ Helper function
2: I ← zeros(Nx,N)
3: for i = 1, . . . ,N do
4: for j = 1, . . . ,Nx do
5: if i∆x ≤ ϕ(T +(j −1)∆t) then Iij ← 1 ▷ Check if glij is contained

in Alτ (see Remark 3.1)

6: return I
7: function main(ϕ, T, Nt, Nx, S, k, τ)
8: T ← ⌊T /∆t⌋∆t ▷ Ensures all cells have the same area

and excludes boundary effects
9: ∆t ← τ/Nt, ∆x ← ϕ(0)/Nx, N ← −T /∆t

10: X ← zeros(k)
11: I ← ComputeIndicator(ϕ, T, N, Nx, ∆t, ∆x)
12: Y1 ∼ S(∆t∆x, N, Nx) ▷ Sample L(c) for c ∈ G1

13: X[1] ← Y1 ⊙ I
14: for 2 = 1, . . . , k do
15: Yl ← zeros(N,Nx) ▷ Update step (see Figure 2b)
16: Yl[∶,1 ∶ N −Nt] ← Yl−1[∶,Nt + 1 ∶ N] ▷ Keep L(c) for c ∈ Gl+1 ∩Gl

17: Yl[∶,N −Nt + 1 ∶ N] ∼ S(∆t∆x, Nx, Nt) ▷ Sample L(c) for
c ∈ Gl+1/Gl

18: X[l] ← Yl ⊙ I
return X

the first requirement, note that a cell c is fully contained in a monotonic trawl
set At iff the ‘top-left’ corner (s, x) of the cell is in At. The cells can then
be represented by their ’top-left’ corner and the inclusion condition c ⊂ At is
equivalent to x ≤ ϕ(s − t), which can be easily checked on a computer. The
second requirement is discussed extensively in Subsection 3.4.

Even if A is unbounded, we can still apply Algorithm 1 by truncating and
approximating L(A) by L(A ∩ {t > T}). In this case, the algorithm has two
sources of error: firstly, taking a grid discretization and considering a cell as part
of the trawl if its ’top-left’ corner is in the trawl set, and secondly, neglecting
L (A ∩ {t < T}) .We now derive the convergence properties of the grid discretiza-
tion algorithm in the setting of both infill and increasing domain asymptotics;
further, if the Lévy seed L

′
has finite variance, we provide MSE bounds on the

error.

Theorem 3.2. Let A = {(s, x) ∈ R2∶ s < 0, 0 < x < ϕ(s)} be a monotonic trawl set

11
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be the set of grid cells on [T,0] × [0, ϕ(0)] with step-sizes ∆t,∆x on the time,
respectively space axes. Let LT,∆(A) be the approximation of L(A) with respect
to GT,∆ (see Figure 3)

LT,∆(A) = ∑
g∈GT,∆∶g⊂AL(g).

Let Tn → −∞,∆n = (∆n
t ,∆

n
x) → 0. Then LTn,∆n(A) → L(A) in probability and,

if VarL
′
is finite, in L2; further, if VarL

′
is finite, then E [(LT,∆(A) −L(A))2] ≤

C2
T,∆E [L′] +CT,∆VarL

′
, where CT,∆ = T∆x + ϕ(0)∆x + ∫ T−∞ ϕ(s)ds. In partic-

ular, if A is bounded and ∆t =∆x, then E [(LT,∆(A) −L(A))2] = O (∆2
t ) .

−7 −6 −5 −4 −3 −2 −1
0

0.2

0.4

0.6

0.8

1

t

x

Figure 3: Illustration of the grid discretization for the unbounded trawl set A = {(t, x) ∈
R2∶ t < 0,0 < x < e2.75t}, with truncation parameter T = −3 and step-sizes ∆t = 1, ∆x = 0.2.
The cells included in the simulation are shaded in gray. For unbounded trawls, we incur both
truncation and discretization error.

The MSE bound in Theorem 3.2 is not sharp for unbounded trawls, in the
sense that it gives L2 convergence only when Tn∆

n
x → 0 (see proof in Section

A). Nevertheless, it provides a way to choose the truncation parameter T and
step-sizes ∆t, ∆x for the purpose of computer simulations. Despite the conver-
gence properties, Algorithm 1 is computationally expensive, requiring samples
for Nx((k − 1)Nt+N) = ((k − 1) τ + T)⋅ϕ(0)/(∆t∆x) cells. In general, if A ⊂ Rd

with d > 2 and with same step-size ∆t for all dimensions, the number of cells
grows like O(1/∆d

t ) and holding the grids Gl in memory, even one at a time, is
not feasible. In the following, we discuss two alternatives: the compound Pois-
son and the slice partition algorithms, which are less computationally intensive.

12
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Given a Lévy basis L with characteristic triplet (ξ, a, l), by the first part of
Theorem B.1, there exist a decomposition of L into a Gaussian Lévy basis Lg,
with triplet (ξ, a, 0), and a jump Levy basis Lj , with triplet (0, 0, l), such that
Lg and Lj are independent and L = Lg + Lj . Assume that the Gaussian part
has already been simulated, which can be done exactly by Algorithm 3 of the
next subsection, or by using a Cholesky decomposition and a standard normal
sampler. By the second part of Theorem B.1, there exists a Poisson random
measure N on BLeb(R2) ×R with intensity measure ν := Leb⊗ l such that

Lj (A) = ∫
A
∫(−1,1) y d(N − ν)(z, y) + ∫

A
∫R/(−1,1) y dN(z, y),

where Leb is the Lebesgue measure on R2, z = (t, x) ∈ R2 and y ∈ R. In the above,(t, x) are the time and space coordinates at which a jump appears, whereas y
is the value of the jump. For ease of presentation, assume that the trawl set is
bounded; we relax this assumption at the end of the subsection. We analyse the
cases of finite and infinite Lévy measures separately.

If l is a finite measure, i.e. if c := l(R) < ∞, we can simplify the above expression
to

Lj (A) = ∫
A
∫R/(−1,1) y dN(z, y) − Leb(A)∫ 1

−1 y l(dy). (3.1)

With this representation in mind, to simulate the trawl process, we can simulate
a Poisson point process on R2 with constant intensity c, where to each generated
point (ti, xi) we associate a corresponding jump sample yi with law l̃ := l/c. Let
ξ̃ = ∫ 1−1 y l(dy). The value of Lj(A) is then given by the difference between the
sum of all jumps yi corresponding to points zi = (ti, xi) contained in the trawl
set A and the drift term ξ̃Leb(A)

Lj(A) = ∑
i∶ (ti,xi)∈A

yi − ξ̃Leb(A).
It follows that Lj(A) is compound Poisson distributed, with jumps distributed

according to l̃, minus a constant. This property is also clear from the simplified
expression for the cumulant transform from Definition (2.2)

C(θ,Lj(A)) = cLeb(A)∫R (eiθy − 1) l̃(dy) − iθξ̃Leb(A).
Finally, as the trawl is bounded, we can choose T < 0 be such that ϕ(T ) = 0 and
note that we only need to simulate the Poisson point process on [T + τ, kτ] ×[0, ϕ(0)]. The full procedure for the simulation of trawl processes with bounded
trawl sets and finite Lévy measures is given in Algorithm 2. Note that the nested
for loops in steps 9 and 10 require an expected number of O(k2) comparisons of
the form x[i] < ϕ(t[i]−lτ). Since A is bounded, at most ⌈−T /τ⌉ consecutive trawl
sets have non empty intersections, hence it is enough to do ⌈−T /τ⌉ comparisons
in step 10 and the complexity reduces to O(k).

13
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Input: Trawl function ϕ and T < 0 with ϕ(T ) = 0; sampler S(n) which returns

an n dimensional vector of iid samples from l̃; c = l(R) and ξ̃ = ∫ 1−1 y l(dy);
number of trawls to be simulated k and distance τ between trawl sets;
sampler U(a, b, n) which returns an n dimensional vector of iid samples
from the uniform distribution on [a, b]

Output: Vector X containing the simulated values of the trawl process at times
τ, . . . , kτ.

1: function CppSimulation(S, c, ξ̃, ϕ, T, k, τ)
2: ν ← cϕ(0) ((k − 1)τ − T)
3: N ∼ Poisson(ν)
4: t ∼ U ([T + τ, kτ]) ▷ Generate N jump time samples

5: x ∼ U ([0, ϕ(0)]) ▷ Generate N jump height samples

6: y ∼ S(N) ▷ Generate N jump value samples
7: X ← −ξ̃Leb(A) ⋅ ones(k) ▷ Initialization with the compensator
8: for i ∈ {1, . . . ,N} do
9: for l ∈ {1, . . . , k} do

10: if x[i] < ϕ(t[i] − lτ) then ▷ Check if (ti, xi) ∈ Alτ

11: X[l]+ = y[i]
return X

On the other hand, if l is an infinite measure, we can no longer represent Lj

via a compound Poisson process; we need to truncate and discard jumps with
magnitude below some threshold, as we would when simulating a Lévy process.
Let lϵ be the restriction of l to (−∞,−ϵ) ∩ (ϵ,∞) and l̃ϵ := lϵ/lϵ (R). Define the
corresponding truncated Lévy basis Lϵ

j

Lϵ
j (A) = ∫

A
∫(−1,−ϵ)∪(ϵ,1) y d(N − ν)(z, y) + ∫

A
∫R/(−1,1) y dN(z, y), (3.2)

the resulting approximation Xϵ
t = Lϵ

j(At) and Xt = Lj(At). Note that Xϵ can
be simulated with Algorithm II and that

E [(Lj(A) −Lϵ
j(A))2] = E

⎡⎢⎢⎢⎢⎣(∫A ∫(−1,−ϵ)∪(ϵ,1) y d(N − ν)(z, y))2⎤⎥⎥⎥⎥⎦
= Leb(A)∫ ϵ

−ϵ y
2dl(y) → 0 as ϵ→ 0,

which gives different convergence rates for different Lévy measures l. Even
when the Lévy seed does not have any finite moments, the error Lj(A)−Lϵ

j(A)
is square integrable and converges to 0 in L2, which already improves on the con-
vergence of Theorem 3.2. We further establish convergence of Xϵ as a stochastic
process, rather than just at the level of the marginals Xt.

Theorem 3.3. The process Xϵ converges uniformly on compacts to X on the
space of càdlàg paths as ϵ→ 0.

14



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofWe now relax the bounded trawl set assumption. Previous simulation meth-

ods for integer-valued trawl processes with unbounded trawls from [15, 26]
approximated L(A) by L(A ∩ {t > T}) for some truncation threshold T, as
L(A ∩ {t ≤ T}) → 0 in probability as T → −∞. Apart from losing the uniform
convergence properties, T must be chosen with a very large absolute value, sig-
nificantly increasing the computational time. For example, if the trawl process
has long memory, with autocorrelation function given by ρ(t) = (1 + t)1/4, then
even choosing T = −104 would incur an unacceptable trawl set truncation error.
The apparent difficulty comes from simulating a Poisson point process on an
unbounded domain of finite area, which we will discuss next.

In the case of unbounded trawl sets, apply Algorithm 2 to simulate Lϵ
j on[τ, kτ] × [0, ϕ(0)] and sample the number of atoms zi = (ti, xi) of Lϵ

j on Aτ

N ∼ Poisson(lϵ(R)Leb(Aτ)). Conditionally on N , the ti’s are iid with density

p(t) = ϕ(t − τ)/ ∫ 0−∞ ϕ(s)ds for t < τ and 0 otherwise. Finally, conditionally on
N and ti, xi ∼ U(0, ϕ(ti)) and we can continue with Steps 6 − 11 of Algorithm
2. By decomposing ϕ into its convex and concave parts, we can draw samples
with density p by rejection sampling, as described in [27].

Finally, note that the proof of Theorem 3.3 does not require a bounded trawl set,
thus we obtain the same convergence results for unbounded trawls. Nevertheless,
for infinite Lévy measures, l (R/(−ϵ, ϵ)) → ∞ as ϵ → 0, hence the intensity ν of
the Poisson process N to be sampled in Step 3 of Algorithm 2 diverges, leading
to an increasing cost per simulation. In the next subsection, we present an
algorithm which simulates trawl processes exactly, regardless of the type of
Lévy measure.

3.3 Algorithm III: slice partition

In this algorithm we decompose the sets Aτ , . . . ,Akτ into a collection S of dis-
joint slices S, simulate the values of the Lévy basis L over each slice and then
set

Xlτ = ∑
S⊂Alτ

L(S).
Indeed, because of the indepedent-scatteredness of the Lévy basis, i.e. the first
property in Definition 2.1, we can sample {L(S)}S∈S independently; then, by
the additivity of the Lévy basis, i.e. the second property in Definition 2.1, we can
reconstruct the value of the trawl Xlτ by summing the values corresponding to
the Lévy basis simulated over the slices contained in Alτ . In general, there could
be up to 2k slices of the form B1∩. . .∩Bk, where Bl ∈ {Alτ ,A

C
lτ} . For monotonic

bounded trawls, the number of slices isO(k) , whereas for monotonic unbounded
trawls, it is O(k2), making the simulation scheme feasible. We analyse the slice
partition separately in the bounded and unbounded case. For ease of notation
and without risk of confusion, we write Al for Alτ .

If there is some T < 0 such that ϕ(T ) = 0, let I = ⌈−T /τ⌉, where ⌈⋅⌉ is the ceiling
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Si1 = {t ≤ τ} ∩ (Ai/Ai+1) ,
Sij = ({(j − 1) ⋅ τ < t ≤ j ⋅ τ} ∩Ai+j−1) /Ai+j , for j ≥ 2.

Then exactly I consecutive trawl sets have non-empty intersection and each of
the trawl sets Alτ contains exactly I slices, making up for a total of kI slices.
Let sij = Leb (Sij) ; by the translation invariance of the Lebesgue measure,
sij = sij′ for j, j′ ≥ 2. Hence to determine the areas of the slices Sij it is enough
to compute sij for i ∈ {1, . . . , k} and j ∈ {1,2}. A short calculation shows that

si1 = ∫ (−i+1)⋅τ
−i⋅τ ϕ(t)dt, (3.3)

si2 = si,1 − si+1,1, (3.4)

where we set sI+1,1 = 0. The above two equations fully specify the areas sij .
Let Y be the I × (I − 1 + k) random matrix of independent random variables
L (Sij) ,1 ≤ i ≤ I, 1 ≤ j ≤ k, padded with I − 1 columns of 0’s to the left and F
be the I × I lower diagonal matrix filer

Y =
⎛⎜⎜⎜⎜⎜⎝

0 . . . 0 L (S11) . . . L (S1k)
0 . . . 0 L (S21) . . . L (S2k)
...

...
...

...

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I − 1

0 . . . 0 L (SI1) . . . L (SIk)

⎞⎟⎟⎟⎟⎟⎠
, F =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1
0 0 . . . 1 1
...

... ⋰ ...
...

0 1 . . . 1 1
1 1 . . . 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.5)

The values of the trawl process at times τ, . . . , kτ are given by the convolution Y ∗
F (see Section C.1 for the definition of matrix convolution). The full procedure
is given in Algorithm 3. Since sij = sij′ for j, j′ ≥ 2, we can vectorize steps 6− 8
by sampling columns of Y. Further, the convolution step 8 can be computed
efficiently by taking advantage of the form of the filter F (see Algorithm 6 in
Section C.1), which is also implemented in [12]. In both cases, the number of
operations is O(k).
If the trawl set A is unbounded, define the slice partition

Sij = (Aj ∩Ai+j−1) /Ai+j , 1 ≤ i, j ≤ k, i + j ≤ k + 1.
In total, we have k(k + 1)/2 slices (see Figure 4b). Algorithm 3 still applies,
with the mention that the areas sij have different formulae (see Equation C.1
in the supplemental material), Y is k × (2k − 1), F is k × k

Y =
⎛⎜⎜⎜⎜⎜⎝

0 . . . 0 L (S11) . . . L (S1,k−1) L (S1k)
0 . . . 0 L (S21) . . . L (S2,k−1) 0
...

...
... ⋰ ...

...

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k − 1

0 . . . 0 L (Sk1) . . . 0 0

⎞⎟⎟⎟⎟⎟⎠
, F =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1
0 0 . . . 1 1
...

... ⋰ ...
...

0 1 . . . 1 1
1 1 . . . 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,
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Input: Sampler S(area) which returns independent samples with the same law
as L(A), where Leb(A) = area; number of trawls to be simulated k and
distance τ between them; I = ⌈−T /τ⌉.

Output: Vector containing the simulated values of the trawl process at times
τ, . . . , kτ.

1: function main(S, k, τ, I)
2: Compute the areas sij from (3.3),(3.4) ▷ Requires I integrations and I

differences
3: F ← tril(I) ▷ I × I lower triangular matrix of ones as in (3.5)
4: Y ← zeros(I, I + k − 1)
5: for i = 1, . . . , I do
6: for j = 1, . . . , k do
7: Y [i, I − 1 + j] ← S (sij)

return Y ∗ F ▷ Convolution step

and we now perform O(k2) operations. In practice, some of these k(k + 1)/2
slices might have areas below machine precision, and for the purpose of computer
simulations, we can approximate Y ∗F by Y [1 ∶ n, ∶]∗F [1 ∶ n, ∶], where Y [1 ∶ n, ∶]
and F [1 ∶ n, ∶] are obtained from Y and F by discarding the last k − n rows,
where n ∈ {1, . . . , k − 1}. In this case, the first k − n trawls are not simulated
exactly and the last n trawls are simulated exactly; further, since the errors{ϵnl }k−nl=1 are given by

ϵnl = L
⎛⎜⎜⎜⎝ ⋃

1≤j≤l
i>n,i+j≥l+1

Sij

⎞⎟⎟⎟⎠ ,
we have access to the joint distribution of the errors, and in particular, to the
mean and variance of the errors. This can be used to calibrate the truncation
parameter n.

Remark 3.4. Note that Theorem 3.3 of the previous subsection establishes not
just convergence of Xϵ to X at discretely observed times τ, . . . , kτ, but con-
vergence of stochastic processes in the supremum norm. A similar result holds
for the slice partition algorithm. To this end, simulate X via the slice parti-

tion method at discrete times Dn = {0, 1
2n

, . . . ,1} and define Xn(t) =X ( ⌊2nt⌋
2n
) ,

where ⌊⋅⌋ is the floor function.

Theorem 3.5. The sequence of stochastic processes Xn converges a.s. to X in
Skorokhod’s J1 topology.
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(a) Illustrates the slice partition Sij of a bounded monotonic trawl,
with I = 3 and k = 4. Each of the trawl sets are decomposed into I
slices.

(b) Illustrates the slice partition Sij of monotonic trawl process with
infinite decorrelation time and with k = 4. For each i, there are k−i+1
slices Sij .

Figure 4: The slice partition for monotonic trawls with (a) finite decorrelation time and (b)
infinite decorrelation time

3.4 Summary of convergence properties and discussion of algorithm require-
ments

In Subsections 3.1-3.3 we presented the grid discretization, compound Pois-
son and slice partition algorithms for the simulation of trawl processes; we de-
rived their computational complexity and convergence properties and further
discussed efficient implementation methods. Based on this analysis, we can
compare the schemes and discuss in which cases one should be used over the
other.

The grid discretization method is the most general one and can be employed to
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kernel weighted trawl processes and ambit fields, as defined in Sections 4 and
5. Nevertheless, it does not share the same convergence properties as the other
two algorithms and further, it is the only algorithm which affects the autocor-
relation function of the simulated trawl process. To quantify the discretization
error by statistical measures, let ρT,∆(h) := Corr (LT,∆ (At) , LT,∆ (At+h)) be
the theoretical autocorrelation function of the trawl process simulated by the
grid method with truncation parameter T and step-size ∆ = ∆t = ∆x. Let
Var (LT,∆ (A)) be the corresponding variance. Figure 5a shows slow conver-

gence of ρT,∆(h) to ρ(h) and of Var (LT,∆ (A)) to Var (L(A)) for A = {(t, x) ∈
R2∶ t < 0,0 < x < ϕ(t)} with ϕ∶ (−∞,0] → R≥0 given by ϕ(t) = 0.5(1 − t)−1.5. The
simulation error in the finite scale (non-asymptotic) regime depends heavily on
the rate of decay of the trawl function ϕ. Consequently, accurately simulat-
ing long memory trawl processes, such as the ones with ϕH(t) ∝ (1 − t)−H ,
ρH(t) = (1 − t)−H+1 for H ∈ (1,2) becomes increasingly difficult with the grid
method as H → 1. Moreover, the discretization error is reflected not only at
the simulation level, through the autcocorrelation function and moments of the
marginal dsitribution, but also when inferring the parameters of the simulated
trawl process, as shown in Figure 5b. This is particularly important when carry-
ing out simulation-based inference or when comparing two methods to infer the
parameters of the trawl process, such as in [28]. Performing high accuracy or
exact simulations ensures that the inference error is entirely due to the inference
method rather than the simulation error.
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(a) (b)

Figure 5: (a) Autocorrelation and variance of the trawl process with trawl function
ϕ∶ (−∞,0] → R≥0 given by ϕ(t) = 0.5(1 − t)−1.5, simulated with the grid method for differ-
ent values of ∆. For each ∆, we set T = ∆−0.5, which satisfies Theorem 3.2 and ensures that
the discretization error dominates the truncation error. Note that the autocorrelation function
and variance are slow to convergence, and that both effects compound on the autocovariance
function. By (2.2) and (2.3), Var (LT,∆ (A))/Var (L (A)) is equal to E [LT,∆ (A)] /E [L (A)]
and to the ratio of the area of the cells included in the simulation to the area of the trawl
set A. (b) Boxplots of relative error for GMM parameter estimates from 1000 simulations

for each of ∆ = 0.025, 0.05, 0.075 and 0.1. Here τ = 0.15, k = 1000, L
′ ∼ Gamma(k, θ) with

k = 2, θ = 3 and ϕ ∶ (−∞,0] → R≥0 given by ϕ(t) = λeλt with λ = 1. We match the first two
empirical moments to infer k, θ and the empirical autocorrelation function at lags 1, 3, 5 to
infer λ. The results appear to be robust to the choice of lags. Note the improvements across
all parameters in the relative error as ∆ ↓ 0.

The above observations agree with Sections 4 and 5 of [2], in which the grid
method was applied to simulate a Spatio-temporal Ornstein-Uhlenbeck (STOU)
process of the form

Yt(x) = ∫
At(x) e

−λ(t−s)L(dz,ds).
Further, it was shown in [2] that tailoring the type of the grid to match the
shape of the set A can reduce the effects of the discretization procedure on
spatio-temporal correlations and improve convergence. In particular, the au-
thors approximated Yt(x) by a finite sum on a rectangular grid and on a dia-
mond grid and noticed faster convergence of the diamond grid scheme in some
parameter regimes. The error analysis for STOU processes is complicated by the
presence of the kernel e−λ(t−s), which makes it difficult to distinguish between
truncation error, kernel discretization error and Lévy basis discretization error.
All in all, tailoring the grid to each particular trawl shape is time-consuming
and the algorithm itself is both memory and computationally expensive. The
redundancy can be seen immediately: many of the cells are contained in just
one of the sets Aτ , . . . ,Akτ . Thus, instead of simulating all of these cells, we can
either discard grid methods and attempt the compound Poisson method, or we
could simulate from the slice partition, which can be seen as the optimal grid.

Accompanied by a Gaussian sampler, the compound Poisson scheme can be used
to simulate the jump part of the Lévy basis and is exact when the Lévy measure
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algorithm has good convergence properties: the approximation Xϵ obtained by
truncating the jumps at some threshold ϵ converges in the supremum norm and
in L2 to the trawl process X as ϵ→ 0. Simulating from the potentially truncated
Lévy measure can be implemented by methods such concave-convex adaptive
rejection sampling [27] or MCMC. In general, this may require custom-made
samplers or be computationally expensive.

Alternatively, the slice partition method, which can be seen as a natural gener-
alization of the grid discretization, is the only one to result in exact simulation
of the trawl process, regardless of the Lévy measure and trawl set. Further,
we can directly trade off the accuracy and speed of the simulation scheme by
neglecting slices with small areas, as discussed in Subsection 3.3. For faster,
approximate simulation, the choice between the compound Poisson and slice
partition schemes depends on the number k of trawls to be simulated, the spac-
ing τ between the trawls and the difference in the cost of obtaining samples
with law L(A) for various values of Leb(A) versus samples from the potentially
truncated Lévy measure. Generally speaking, if both samples from L(A) and l
are available, the slice partition method is suitable for increasing domain simula-
tions where the trawls are sampled at equidistant times, whereas the compound
Poisson method is suitable for infill simulations and non-equidistant times.

Finally, note that Algorithms 1 and 3 require samples from L(A) for some sets
A. Let µ be the probability distribution of L(A). In many cases of interest,
such as the ones in Subsection 2.2, µ is part of a family of named probability
distributions for which efficient samplers are already available. Nevertheless,
µ can also be specified through its cumulant transform C(θ, µ).We show that
samples from µ can be obtained efficiently even in this case, under the mild
assumption that the discrete and continuous components of µ can be separated.
Indeed, by the Lebesgue decomposition theorem, µ can be decomposed into µac+
µsc + µd for some absolutely continuous measure µac, some singular continuous
measure µsc and some discrete measure µd = ∑∞i=1 piδai , where δx is the Dirac
measure at x, pi are strictly positive and ai are non-zero real numbers. To
exclude pathological cases, assume that µsc = 0 and further that given C(θ, µ),
we can separate C(θ, µac) from C(θ, µd) = ∑∞i=1 eiθaipi. We can sample from µd,
as it has discrete support. We can also sample from µac, by means of efficiently
inverting the Fourier transform of µac, which we discuss next.

Let f and F be the probability densitity, respectively cumulative distribution
functions of µac. The inversion method samples from µac by solving x = F −1(u)
where u is generated from the uniform distribution on (0,1). When analytic
expressions are not available for F −1, a numerical procedure such as Newton-
Raphson can be used. This amounts to iterating

xk+1 = xk − F (xk) − u
f(xk) , (3.6)

from a starting point x0 until a predefined tolerance level is achieved. To account
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be used, which switches to the bisection method whenever necessary [29]. It
remains to approximate the values of F (xk) and f(xk) by numerical inversion
of the Fourier transform w → ∫ eiwxµac (dx) = eC(θ,µac) of µac. There is a rich
literature on the topic of Fast Fourier Transform algorithms and quadrature
methods for the approximation of probability functions. We mention [30], which
provides a comprehensive exposition and error analysis, and [31], which employs
the Gil-Pelaez inversion formula in conjunction with the fast Fourier transform
algorithm to draw samples from distributions with known cumulant transform.
In the case of distributions supported on the positive or negative real line, such as
Gamma and Inverse Gaussian, we can work with the Laplace transform instead
of the Fourier transform. [32] demonstrates that the Post-Widder inversion
formula can be used to approximate f and F specifically for infinitely divisible
distributions. Alternatively, [29] takes a general approach and approximates the
Bromwich inversion integral of the Laplace transform of µac by the trapezium
rule and by employing the Euler summation to accelerate convergence. The
paper provides an extensive error analysis and an R script, which we adapt for
Python and make available at [12]. All in all, there are multiple off-the-shelf
algorithms which provide arbitrary accuracy and can aid in the simulation of
trawl processes and ambit fields.

4 Extensions to volatility modulated, kernel-weighted trawl processes

Trawl processes are stationary, infinitely divisible and ergodic processes which
can describe a wide range of possible serial correlation patterns in data. Never-
theless, many systems of interest are inherently non-stationary; examples include
precipitation data from [33] and financial time series. To model such behaviour,
steps are usually taken to transform the initial process into a stationary one, to
which standard methods can be applied. Furthermore, recent empirical work in
areas such as environmental sciences in [16] and energy pricing in [17, 18] shows
the presence of volatility clusters, and thus of stochastic volatility, which cannot
be replicated by traditional models. In the following, we show that both non-
stationarity and stochastic volatility can easily be incorporated into the trawl
process framework and the same algorithms can be used for efficient simulation,
despite the more complicated structure. We present the non-stationary case first
and then the volatility modulated one. Finally, we extend the aforementioned
methodology to the spatio-temporal case in Section 5.

Since trawl processes are given by the Lévy basis evaluated over the trawl sets,
and depending on the kind of desired non-stationary behaviour, we can change
either the trawl sets or the Lévy basis. At the level of the trawl sets, we can use
different trawl functions ϕt∶ (−∞,0] → R≥0 to define At = {(s, x)∶ 0 < x < ϕt(s −
t)}, which changes both the correlation structure and marginal distributions.
At the level of the Lévy basis, we can drop the homogeneity assumption of
Definition 2.1, which allows the distribution of the jumps of Lj to depend on
the point z = (t, x) where they appear, the jumps to have a nonuniform intensity
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intensity. Similarly, the distribution of Lg(A) is allowed to depend on the points
in A, not just on Leb(A). The following result from [19, Proposition 2.1] reflects
the extra flexibility of inhomogeneous Lévy basis over homogeneous ones.

Lemma 4.1 (Cumulant of Lévy bases). Let L be a Lévy basis on S ⊂ Rd, θ a real
number and A in Bb(S). Then
C (θ,L(A)) = ∫

A
(iθξ(z) − 1

2
θ2a(z) + ∫R (eiθy − 1 − iθy1[−1,1](y)) l(dy,z)) c(dz),

(4.1)

where ξ∶S → R, a∶S → R≥0, l(⋅,z) is a Lévy measure on R for each z in S and
c is a measure on S, called the control measure, such that the above integral is
well defined. Similarly to Definition 2.3, functions ξ and a give the local drift
and variance of the Gaussian component at z.

To each z = (t,x) in S, we can associate an infinitely divisible random variable

L
′(z) with

C (θ,L′ (z)) = iθξ(z) − 1

2
θ2a(z) + ∫R (eiθy − 1 − iθy1[−1,1](y)) l(dy,z),

which we call the Lévy seed at z. Then

C (θ,L(A)) = ∫
A
C (θ,L′ (z)) c (dz) ,

and the distribution of L
′ (z) can be seen as the distribution of the infinitesimal

L (dz) . As opposed to the homogeneous case in Definition 2.3, this is now a
function of z. Further, to exclude pathological cases, assume that c has no
discrete or singular continuous part. In this case, without loss of generality, we
can incorporate the Radon–Nikodym derivative dc

dLeb
into ξ(z), a(z), l(dy,z)

and set c = Leb. Then the intensity function of the jumps at z is given by the
total mass l(R,z).
Despite the great flexibility, we are not aware of settings, apart from theoretical
study, where inhomogeneous Lévy bases have been used. We propose the kernel-
weighted trawl processes, which encompasses both the changes in the trawl sets
and Lévy basis by introducing a kernel with respect to a homogeneous Lévy
basis. This results in a more general class of trawl processes with compact nota-
tion for which the slice partition and compound Poisson simulation algorithms
can be applied with few or no modifications.

Definition 4.2. Let S ⊂ Rd, Kt∶ (S,BLeb(S)) → (R,B (R)) be a family of mea-
surable mappings and A ∈ BLeb(S). The kernel-weighted trawl process over the
collection of trawl sets At = A + (t,0) is given by

Xt = ∫
At

Kt(t̄, x̄)L(dt̄,dx̄),
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understood in the L0 framework of [19, Theorem 2.7]. We mention that it is
enough for the L2-norm of the kernel over the trawl sets t → ∫At

K2
t (t̄, x̄)dt̄dx̄

to be bounded on compacts [0, T ] for the existence conditions to be satisfied.
Similarly to the case of trawl processes, the cumulant transform of Xt is given
by [19, Proposition 2.6]

C (θ,Xt) = C (θ,∫
At

Kt(t̄, x̄)L (dt̄,dx̄)) = ∫
At

C (θKt(t̄, x̄), L′)dt̄dx̄, (4.2)

and if Var(L′) is finite, the second order structure is given by

E [Xt] = E [L′]∫
At

Kt(t̄, x̄)dt̄dx̄,
Cov (Xt,Xs) = Var(L′)∫

At∩As

Kt(t̄, x̄)Ks(t̄, x̄)dt̄dx̄.
We discuss the simulation of the kernel-weighted trawl process in increasing
order of complexity. In Subsection 4.1, we consider processes of the form Xt =∫At

K(t̄, x̄)L(dt̄,dx̄). The kernel K(t̄, x̄) can be thought of as the nonstationary
component of the trawl process, or equally as a deterministic volatility. In
Subsection 4.2, we extend to time dependent kernels Kt (t̄, x̄), which allow for
a more complicated joint distribution and, in particular, for the autocorrelation
function to take both positive and negative values. Further, we discuss how the
joint structure can be controlled solely through the kernel, by using a simple
shape for the trawl set, such as a rectangle. In this setting, we recover the
Brownian and Levy semistationary processes. Finally, in Subsection 4.3, we
discuss modulation of the trawl process by a stochastic volatility. As in Section
3, we only discuss the simulation in the case S = R2; generalizations to S ⊂ Rd

for d > 2 are straightforward.

4.1 The non-stationary and deterministic volatility cases

We can directly generalize the slice partition method to simulate the kernel-
weighted trawl process at times τ, . . . , kτ. We decompose the sets Aτ , . . . ,Akτ

into a collection S of disjoint slices S, sample ∫S K(t̄, x̄)L(dt̄,dx̄) for all S ∈ S
and set

Xlτ = ∑
S⊂Alτ

∫
S
K(t̄, x̄)L(dt̄,dx̄).

As discussed in Subsection 3.4, the above sampling may be done analytically or
may involve numerically inverting the cumulant transform by a Fast Fourier Al-
gorithm or the Laplace transform by approximating the inversion integral over
a contour in the complex plane, such as the Bromwich contour. In turn, this re-
quires multiple evaluations of the integrand, which is itself given as an integral in
(4.2). If the integral in (4.2) is difficult to compute, we can separate the kernel-
weighted trawl process into Xt = ∫At

K(t̄, x̄)Lg(dt̄,dx̄) + ∫At
K(t̄, x̄)Lj(dt̄,dx̄)

and simulate the Gaussian part via the slice partition and the jump part via
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′
g ∼ N (µ,σ2) and which re-

quires only one integral evaluation per slice. For the jump part, note that
Lj is a discrete measure supported on at most countably many points (ti, xi),
with jumps yi distributed according to the Lévy measure. In particular, we
have Lj = ∑i yiδ(ti,xi). Then ∫At

K(t̄, x̄)Lj(dt̄,dx̄) = ∑i yiK(t̄i, x̄i). If the Lévy
measure is infinite, then we truncate at some small jump threshold ϵ, as in Sub-
section 3.2, and Xt is approximated by ∑i∶yi>ϵ yiK(t̄i, x̄i). The uniform conver-
gence of Theorem 3.3 is still valid for kernels K for which t→ ∫At

K2 (t̄, x̄)dt̄dx̄
is bounded on compacts [0, T ], as sketched in Remark A.2.

Figure 6 displays all the possibilities. Figure 6a has L
′ ∼ Poisson(5), i.e. a

finite Lévy measure for which the compound Poisson approach can be used for
exact simulation and an integer-valued kernel K (t̄, x̄) = ⌊2 (1 + x̄) (t̄ − ⌊t̄⌋)⌋; note
the sharp peaks induced by (1 + x̄) , which assigns larger values to points with
larger x̄ coordinate, i.e. points which ‘leave’ the trawl sets faster and further
note the periodic trend induced by (t − ⌊t⌋). Figure 6b has L

′ ∼ Cauchy(1) and
K (t̄, x̄) = sin t̄; then ∫S K (t̄) ∼ Cauchy (∫S K (t̄, x̄)dt̄dx̄) and the slice partition

can be applied without modification. Figure 6c has L
′ ∼ N(2,4)+Gamma(2,2)

and K (t̄, x̄) = 1 + 0.1t̄. The numerical evaluation of the cumulant transform
from (4.2) for multiple values of θ is expensive, hence we use the slice partition
method for the Gaussian part and the compound Poisson method for the jump
part; note the increasing trend.

(a) L
′ ∼ Poisson(5), K (t̄, x̄) =

⌊2 (1 + x̄) (t̄ − ⌊t̄⌋)⌋.
(b) L

′ ∼ Cauchy(1), K (t̄, x̄) =
0.1 sin t̄.

(c) L
′ ∼ N(2,4) +Gamma(2,2),

K (t̄) = 1 + 0.1t̄.
Figure 6: Simulation of three kernel-weighted trawl processes between t = 0 and t = 120 for a
triangular trawl set A = {(s, x) ∶ −2 < s < 0,0 < x < 1 + s/2} in a) and exponential trawl set
A = {(s, x) ∶ s < 0,0 < x < es} in b) and c); a) is simulated exactly, b) and c) are simulated at
equidistant times τ, . . . ,250τ, where τ = 0.5. Whereas b) just requires one integration per slice
to determine the distribution of ∫S K (t̄, x̄)dt̄dx̄, c) also requires drawing samples from the

truncated Lévy measure lϵ with density dlϵ

dLeb
(y) = 2y−1e−3y1y>ϵ, where we choose ϵ = 5 ⋅10−3.

We draw samples from lϵ by rejection sampling with a convex envelope of the log density, as
inspired by [27].

4.2 Time dependent kernels

The extra dependence of Kt(t̄, x̄) on t allows for a different kernel for each
trawl set At and results in a more general joint distribution.The increased
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tion method can only be used for the Gaussian part, as dependent random
variable sampling is difficult outside the Gaussian framework. Further, the
simulated slices are not reusable, in the sense that we need to sample up
to k values ∫S Kτ(t̄, x̄)Lg(dt̄,dx̄), . . . , ∫S Kkτ(t̄, x̄)Lg(dt̄,dx̄) for each slice in
the partition induced by Xτ , . . . ,Xkτ . Similarly, the approximation of Xt ≈∑i∶yi>ϵ yiKt(t̄i, x̄i) now requires up to k evaluations of the kernels at each jump
location (ti, xi), the number of evaluations corresponding to the number of
trawl sets Aτ , . . . ,Akτ which contain (ti, xi). Unlike the general algorithms
from Section 3, the efficient simulation of kernel-weighted trawl processes de-
pends heavily on the special structure to be exploited in each setting. In par-
ticular cases, we are still able to pull back to these off the shelf methods.
We study one such example, inspired by [34]. Consider the generalized Orn-
stein–Uhlenbeck(OU) process Xt = ∫At

eλ(t̄−t)L(dt̄,dx̄). By the multiplicative

property of the exponential function, we can break eλ(t̄−t) into eλt̄e−λt, simulate∫A eλt̄L(dt̄,dx̄), . . . , ∫Akτ
eλt̄L(dt̄,dx̄) as discussed in Subsection 4.1 and then

multiply the above values by e−λτ , . . . , e−λkτ . The same procedure is applicable
if K is given by sin (t̄ − t), cos (t̄ − t), a linear combination of sines and cosines
or if K is well approximated by such a linear combination.

More generally, consider Kt(t̄, x̄) = g(t̄ − t) for some square integrable g and

Xt = ∫At
g(t̄ − t)L(dt̄,dx̄) for some Lévy basis L with finite Var (L′). Although

this type of kernel-weighted trawl process is stationary, it is strictly more general
than a trawl process, and it can exhibit negative correlations. The Fourier
expansion methodology from Section 3 of [34] can be adapted to show that for
a slice S ⊂ {(t, x) ∶ (l − 1)τ ≤ t ≤ lτ}, we have

∫
S
g(t̄ − t)L(dt̄dx̄) ≈ e−λlτ ∫

S
eλt̄
⎛⎝a0 +

N∑
i=1ai cos (nπ(t̄ − lτ)/τ)

⎞⎠L (dt̄,dx̄)
=e−λlτ ⎛⎜⎝a0 ∫S eλt̄L (dt̄,dx̄) +R⎛⎝

N∑
i=1aie

−inlπ ∫
S
einπt̄/τL (dt̄,dx̄)⎞⎠

⎞⎟⎠ ,
where the approximation is understood in L2, N is the number of terms in the
approximation, a0, . . . , aN are constants and λ is a parameter to be calibrated.
In the above formula, we require N evaluations per slice, as compared to up to
k evaluations. This approximation removes the t dependency of the kernel and
works well as long as N is smaller than k. The trade off is that the convergence
is just in L2, and not uniformly on compacts. An observation on the type of
kernels to be used is in order. Since the autocorrelation function can be modelled
through the shape of the trawl set A, the kernel can in principle be chosen from a
family of straightforward functions, with which we can work easily, with the aim
of inducing drift, seasonal behaviour or deterministic volatility. Consequently,
for most practical purposes, it is enough to consider kernels to which the above
simplifications apply.
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work of [19] do not require A to be bounded. Indeed, provided the kernel integra-
bility conditions are satisfied, we can choose a trawl set with a simple geometry,
such as an unbounded rectangle A = {(s, x) ∶ s < 0,0 < x < 1} and control the
joint distribution solely through the kernel. If K is chosen to depend only on
t and t̄, we recover the Lévy semistationary processes Xt = ∫ t−∞Kt(t̄)H(dt̄),
where H is a two-sided Lévy process with H1

d= L
′
and which are extensively

studied in [15, Chapters 1,2 and 10].

4.3 Volatility modulated trawl processes

A stochastic volatility σ can easily be added to the trawl process framework.

Definition 4.3 (Kernel-weighted, volatility modulated trawl processes). Let S ⊂
Rd, Kt∶ (S,BLeb(S)) → (R,B (R)) be a family of measurable mappings and
A ∈ BLeb(S). Let σ be a stochastic process on the same probability space as
L. The kernel-weighted, volatility modulated trawl process over the collection
of trawl sets At = A + (t,0) is given by

Xt = ∫
At

Kt(t̄, x̄)σ(t̄)L(dt̄,dx̄).
In general, if σ and L are dependent, the integration is understood in the sense
of [20] and [21]. We restrict our attention to the case in which σ and L are
independent. Then the integration can be defined conditionally on σ, using the
same L0-framework of [19, Theorem 2.7], as for Definition 4.2. The second order
structure is given by

E [Xt∣F t
σ] = E [L′]∫

At

Kt(t̄, x̄)σ(t̄)dt̄dx̄, (4.3)

Cov (Xt,Xs∣ F t
σ ∨Fs

σ) = Var(L′)∫
At∩As

Kt(t̄, x̄)Ks(t̄, x̄)σ2(t̄)dt̄dx̄, (4.4)

C (θ,Xt∣ F t
σ) = C (θ,∫

At

Kt(t̄, x̄)σ(t̄)L (dt̄,dx̄))
= ∫

At

C (θKt(t̄, x̄)σ(t̄), L′)dt̄dx̄, (4.5)

where F t
σ is the σ algebra generated by {σ(t̄) ∶ (t̄, x̄) ∈ At for some x̄}. The

unconditional structure follows by integrating taking the expectation over σ.
An extensive presentation can be found in [15, Chapter 5.3.2.1]. We restrict our
attention to the case S = R2.

The observations from Subsection 4.2 still apply: the slice partition can be used
for the Gaussian part and the compound Poisson method for the jump part; in
some cases, the t dependence can be removed by means of a Fourier approxi-
mation. As explained before, the difficulty in sampling by numerically inverting
the cumulant is that every step in the iterative procedure of (3.6) requires eval-
uations of the cumulant from (4.5) for multiple values of θ. In turn, each of

27



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofthese evaluations requires the values of σ and K for multiple arguments. In

this situation, it is usually more expensive to simulate the volatility σ than to
evaluate the kernel K, hence inverting the cumulant may not be practical. The
difference between the general case and that of a Gaussian Lévy basis Lg is that
conditionally on σ, the distribution of ∫S K(t̄, x̄)σ(t̄)L(dt̄,dx̄) is fully specified
by the two integrals ∫S K(t̄, x̄)σ(t̄)dt̄dx̄ and ∫S K2(t̄, x̄)σ2(t̄)dt̄dx̄, and sampling
does not require other integral evaluations. The underlying property is that of
closure under linear combinations and is satisfied by the family of Lévy sta-
ble distributions from Example 2.10. In particular, if L

′ ∼ Stable(α, β, c, µ)
with α ≠ 1, then ∫S K(t̄, x̄)σ(t̄)L(dt̄,dx̄)∣F t

σ ∼ Stable(α, β̃, c̃, µ̃), where c̃ =
c(∫S ∣K(t̄, x̄)σ(t̄)∣α dt̄dx̄)1/α, β̃ = β

c̃
(∫S ∣K(t̄, x̄)σ(t̄)∣α sign (K(t̄, x̄)σ(t̄))dt̄dx̄)1/α

and µ̃ = ∫S K(t̄, x̄)σ(t̄)dt̄dx̄, provided the integrals are finite. In the definition

of β̃, we write xα for sign (x)∣x∣1/α. A similar, simpler formula holds for α = 1,
which corresponds to the the Cauchy distribution translated by a location pa-
rameter. Consequently, as longs as L

′
has a stable distribution and the terms

c̃, β̃, µ̃ can be approximated well, inverting the cumulant is feasible, by first
simulating σ and then sampling X conditionally on σ. Note that the restriction
on the distribution of L

′
is not significant. Although the distribution of Xt

conditional on σ is Stable, the unconditional distribution of Xt does not have
to be Stable.

The flexible marginal distribution and autocorrelation structure, as well as the
computational efficiency and convergence properties of the simulation schemes
in Section 3 recommend the trawl process as a candidate for the stochastic
volatility component. Thus we model σ2 with a trawl process. Figure 7 shows
such an example, where Xt is conditionally Gaussian (which corresponds to
α = 2 in the family of Stable distributions) on the volatility. More precisely, we
use a Gaussian Lévy basis L and model σ2 as a stationary trawl process with
long memory and Inverse Gaussian marginal distribution.

5 Extensions to ambit field simulation

So far we concentrated on the simulation of trawl processes, which amounts
to evaluating the Lévy basis, potentially modulated by a kernel and stochastic
volatility, over a collection of time-indexed trawl sets At. Note again that the
trawl sets include an abstract spatial dimension in addition to the temporal
dimension, which allows for a flexible joint distribution and autocorrelation
function of the trawl process. A natural extension of the trawl process to spatio-
temporal fields is the simple ambit field Y given by

Yt(x) = L (At(x)) ,
and more generally, the ambit field Y given by

Yt(x) = ∫
At(x)Kt,x (t̄, x̄)σ(t̄, x̄)L(dt̄,dx̄).
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(a) Realisation of σ2, modelled as a trawl process
with long memory and Inverse Gaussian marginal

(b) Realisation of the volatility modulated trawl
process Xt = ∫At

σ(t̄)L(dt̄,dx̄)
Figure 7: b) shows the simulation of a volatility modulated trawl process Xt =
∫At

σ(t̄)L(dt̄,dx̄) with L
′ ∼ N(1,1) and A = {(s, x) ∶ 0 < x < 0.25e0.25s} at times τ, . . . ,250τ ,

where τ = 0.5. We use the slice partition method for Lévy stable distributions. Conditionally
on the values of σ, ∫S σsdLs ∼ N(∫S σ(t̄)dt̄dx̄, ∫S σ2(t̄)dt̄dx̄). To approximate these integrals

we simulate the volatility on a fine equidistant grid. We model σ2 as a trawl process with

trawl set B = {(s, x) ∶ 0 < x < 0.5(1 − s)0.5} and Lévy seed L
′
σ ∼ Inverse Gaussian(2,1), which

we simulate from −10 to 250τ in steps of τ̃ = 0.05. A realisation of σ2 is shown in a). The
trawl functions are normalized such that the areas of A and B are 1.

Ambit fields have already been used in turbulence and tumor growth modelling
in [23], and also outside spatio-temporal statistics, for example in electricity
futures pricing [35].

We start Subsection 5.1 by showing that the slice partition algorithm can be
generalized to the simulation of simple ambit fields. As opposed to simulation
via compound Poisson processes, which leads to an increased cost per simu-
lation, the slice partition method can be implemented in a way such that the
calculations required for higher accuracy only need to be performed once, before
the simulation, leading to lower computational cost across simulations. Finally,
we expand on the simulation of ambit fields in Subsection 5.2. To distinguish
between the temporal and spatio-temporal cases, we refer to time and space
indexed sets At(x) as ambit sets.

5.1 The slice partition method for simple ambit fields

As in the trawl case, the autocovariance and autocorrelation structures for the
simple ambit field Yt(x) = L(At(x))

Cov(Yt1(x1), Yt2(x2)) = Leb (At1(x) ∩At2(x2))Var(L′)
Corr(Yt1(x1), Yt2(x2)) = Leb ((At1(x1) ∩At2(x2)) /Leb (A)

and the cumulant transform C (θ, Yt(x)) = Leb(A)C(θ,L′) present simple ambit
fields as a tractable approach to modelling spatio-temporal data. We present
the simulation algorithm for d = 2 dimensions, as generalizing to more spatial
dimensions is straightforward. The goal is then to simulate the simple ambit
field Yt(x) at coordinates {(jτ, ix) ∶ 1 ≤ j ≤ kt,1 ≤ i ≤ ks}.
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Intuitively, we order trawls from left to right and from bottom to top. For ease
of presentation, assume that the ambit set is bounded; we relax this assumption
in Section C.2. We say a set S ⊂ R2 is a minimal slice if it can be represented as

S = ⋂(i,j)∈KAij

for some indicator set K ⊂ Z2 and further S ∩ Aij = ∅ for any (i, j) /∈ K. The
ambit sets can be partitioned into disjoint minimal slices; thus, to simulate the
simple ambit field, it is enough to simulate all the minimal slices and keep track
of which ambit sets Aij each slice belongs to. In this algorithm, we simulate
Lévy basis over trawls sets from left to right along each row, moving over rows
from bottom to top. At step (k, l), we simulate slices that belong to Akl and
have empty intersection with trawls that are left and on the same row as Akl,
or bottom of Akl.

Formally, define It = ⌈−Tτ ⌉ and Is = ⌈ϕ(0)x
⌉ . Note that the sets Aij and Ai′ j′ are

disjoint whenever ∣i − i′ ∣ ≥ Is or ∣j − j′ ∣ ≥ It. Thus each minimal slice S can be
represented by a minimal pair (k, l) =min{(i, j)∶S ⊂ Aij}, where the minimum
is understood in the sense of ≺, and by an Is × It indicator matrix KS , where

(KS)
ij
= ⎧⎪⎪⎨⎪⎪⎩

1 if S ⊂ Ai+k−1,j+l−1,
0 otherwise.

Let Skl be the set of minimal slices S whose minimal pair is (k, l). Then (see
Figure 8)

Akl / ⋃(i,j)≺(k,l)Aij = ⋃
S∈Skl

S.

By the translation invariance property of the grid of ambit sets {Aij}−∞≤i,j≤∞,Skl and Sk′ l′ contain the same number of minimal slices S, with the same

Lebesgue measures and with indicators KS which are translated by k − k′ and
l − l′ . Hence, to simulate the simple ambit field, it is enough to determine the
Lebesgue measures and indicators of minimal slices in S11. We can identify the
minimal slices S, approximate their Lebesgue measures and corresponding in-
dicators KS via Monte Carlo methods: sample points uniformly at random,
keep track of the indicators KS , count how many points are in each minimal
slice and divide the count by the total number of points to estimate the ar-
eas, as described in Algorithm 4. To account for boundary effects and simulate{Aij}1≤i≤Is

1≤j≤It exactly, we simulate the minimal slices in

⋃−Is+2≤k≤ks−It+1≤l≤kt

Skl,
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ks + Is − 1, −It + 2 ≤ j ≤ 0, and kt < j ≤ kt + It − 1. We discard the extra values.
The pseudocode for the slice partition method for simple ambit fields is given in
Algorithm 5. Note that the calculations required for a higher accuracy can be
performed ahead of the simulation. Regardless of the number of simulations, we
only have to perform this procedure once, leading to an amortised computational
cost across simulations. Figure 9 displays two simulations of simple ambit fields.
The above procedure can be generalized to unbounded trawls sets, as detailed in
Section C.2. Just as in the slice partition algorithm for trawl processes, we have
more slices to take into account and the computational complexity increases.

Figure 8: Assume that at step (k, l) with k = l = 2, we have already simulated the minimal
slices which are situated left and on the same row as A22, or bottom of A22. These slices
are shaded in gray and have been simulated at previous steps. The parts coloured in orange,
blue, yellow and purple illustrate the minimal slices of S22, together with the corresponding
indicator sets KS . These four minimal slices are the slices to be simulated at step (2,2).
Simulating the simple ambit field is then equivalent to simulating all the minimal slices S and
keeping track of the indicators KS .
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A5 1

B

1

5

(a) Ambit sets A and B with
side lengths of 1 and 5 units.

(b) Simulation of a simple ambit
field with ambit set A.

(c) Simulation of a simple ambit
field with ambit set B.

Figure 9: Simulations of two simple ambit fields with triangular ambit sets A and B and with

τ = x = 0.2, kt = ks = 100, L′ ∼ Gamma(2,3) and N = 108 samples for the slice area estimation
procedure. The time, space axes are the horizontal, respectively vertical ones. Note that for
ambit sets such as A and B, the minimal slices can be worked out by hand and the simulation
is then exact. The values of the simulated ambit fields are given by the colorbars of b) and
c). The shapes of the ambit sets induce qualitatively different spatio-temporal autocorrelation
structures.

Algorithm 4 Slice estimation for bounded, monotonic ambit sets

Input: Trawl function ϕ and T < 0 with ϕ(T ) = 0; number of samples N to be
used in the estimation; sampler U(a, b, n) which returns an n dimensional
vector of iid samples from the uniform distribution on [a, b]

Output: Hash table H[key:value] mapping the keys, Is×It indicator matrices of
minimal slices, to their correspoding values, given by the estimated Lebesgue
measures of the minimal slices.

1: function SliceEstimation(U, N, ϕ, T, It, Is, τ, x)
2: t ∼ U (0, τ,N)
3: x ∼ U (x,x + ϕ(0),N)
4: for l ∈ {1, . . . ,N} do
5: if x[l] > ϕ(t[l] − τ) and 0 < x[l] − x < ϕ(t[l] − τ) then ▷ Exclude
6: points which belong to A01 and

points which do not belong to A11

7: I ← zeros(Is, It) ▷ Indicator matrix for a minimal slice
8: for i ∈ {1, . . . , Is} do
9: for j ∈ {1, . . . , It} do

10: if x[l] − ix < ϕ(t[l] − jτ) then ▷ Check if (t[l], x[l]) ∈ Aij

11: I[i, j] ← 1

12: if I ∈ keys(H) then H[I] ←H[I] + 1 else H[I] ← 1

13: for I ∈ keys(H) do
14: H[I] ←H[I]τϕ(0)/N ▷ Approximate the area of a min-

imal slice S with indicator I
return H

5.2 Ambit field simulation
We turn our attention to the general case of ambit fields Y defined by

Yt(x) = ∫
At(x)Kt,x (t̄, x̄)σ(t̄, x̄)L(dt̄,dx̄),
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Input: Trawl function ϕ and T < 0 with ϕ(T ) = 0; number of samples N to be
used in the SliceEstimation procedure; sampler U(a, b, n) which returns an
n dimensional vector of iid samples from the uniform distribution on [a, b];
sampler T (area) which returns one sample from a collection of independent
random variables with the same law as L(A), where Leb(A) = area; number
of ambit sets to be simulated kt, ks, distance τ , x between ambit sets.

Output: ks × kt matrix Y containing the values of the simulated simple ambit
field at coordinates {(jτ, ix) ∶ 1 ≤ j ≤ kt,1 ≤ i ≤ ks}

1: function SlicePartition(U, T, N, ϕ, kt, ks, τ, x)

2: It, Is ← ⌈−Tτ ⌉ , ⌈ϕ(0)x
⌉

3: H ← SliceEstimation(U, N, ϕ, It, Is, τ, x)
4: Y ← zeros(ks + 2Is − 2, kt + 2It − 2). ▷ Corresponding to the ma-

trix L (Aij)−Is+2≤i≤ks+Is−1−It+2≤j≤kt+It−1
5: for k ∈ {1, . . . , ks + Is − 1} do
6: for l ∈ {1, . . . , kt + It − 1} do
7: for I ∈ keys(H) do
8: c← T (area) ▷ Simulate L(S) for each S ∈ Skl
9: Y [k ∶ k + Is − 1, l ∶ l + It − 1] += cI.

return Y [Is ∶ Is + ks − 1, It ∶ It + kt − 1]. ▷ Corresponding to the
matrix L (Aij)1≤i≤ks

1≤j≤kt

where K is a deterministic kernel and σ is a stochastic volatility field. We aim
to simulate Yt(x) at coordinates {(jτ, ix) ∶ 1 ≤ j ≤ kt,1 ≤ i ≤ ks}. Assume σ and
L are independent. Then the second order structure and cumulant transform
follow from Equations (4.3)-(4.5). Similarly to Subsection 4.3, we advocate for
the use of a simple ambit fields for the stochastic volatility term σ, which can
be simulated efficiently. Conditional on the values of σ, we can simulate Y .

Analogous to Lévy semistationary processes, we can choose ambit sets with sim-
ple geometries, such as unbounded rectangles At(x) = {(t̄, x̄) ∶ t̄ < t, x < x̄ < x+1},
and control the joint structure solely through the kernel. In this case, we can
identify the minimal slices by hand. In general, if we use a more complicated
ambit set and a simple kernel, this is not possible and we identify minimal slices
by their indicator matrices, as in Subsection 5.1. In both cases, we separate
L into Lg and Lj and simulate their contributions independently, conditionally
on σ. The jump part Yt(x) = ∫At(x)Kt,x (t̄, x̄)σ(t̄, x̄)Lj(dt̄,dx̄) can be approxi-
mated up to small jump truncation by a discrete sum, as in Section 4 and only
requires access to the values of the kernel K and volatility σ. The Gaussian
part Yt(x) = ∫At(x)Kt,x (t̄, x̄)σ(t̄, x̄)Lg(dt̄,dx̄) requires computing the means
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E [L′]∫
At(x)Kt,x(t̄, x̄)σ(t̄, x̄)dt̄dx̄,

Var(L′)∫
At1
(x1)∩At2

(x2)Kt1,x1(t̄, x̄)Kt2,x2(t̄, x̄)σ2(t̄, x̄)dt̄dx̄,
which can be approximated similarly to Algorithm 4, by simulating points
equidistantly or uniformly at random, evaluating the kernel and volatility at
these points and taking the mean.

Further simplifications are possible in particular cases. If the kernel satisfies

Kt,x(t̄, x̄) = g(t̄− t, x̄−x) for some square integrable g and Var(L′) is finite, the
Fourier approximation methodology from Subsection 4.2 can be used to remove
the dependence of the kernel on t and x. Similarly, if L

′
has a stable distribution,

it is enough to first simulate the volatility field σ and then approximate the
parameters of the conditional distribution of ∫S Kt,x(t̄, x̄)σ(t̄, x̄)L (dt̄,dx̄) for
all minimal slices S.

6 Conclusion

After presenting the elementary properties of Lévy bases in Section 2, we intro-
duced three algorithms for the simulation of trawl processes in Section 3. We
developed their theoretical error analysis, discussed their computational com-
plexity and provided easily adaptable computer implementations. Further, we
investigated the effects of approximating a Lévy basis through grid discretiza-
tion and small jump truncation. While the three simulation schemes were ini-
tially presented in the trawl processes framework, we showed in Sections 4 and 5
that they are directly applicable to the more general settings of kernel-weighted,
volatility modulated trawl processes, simple ambit fields and ambit fields. More-
over, we showed in Subsection 4.2 that simulation schemes previously studied in
the literature could be combined with our methods for decreased computational
cost. All of the above enable the implementation of high-accuracy simulation
studies and simulation-based inference and bring Ambit Stochastics closer to
widespread use when modelling real-world data.
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