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Abstract

Unicellular organisms can grow in a large variety of environments. Even in those
supporting robust growth, cellular resources are limited and their relative alloc‐
ation to gene expression programmes determines physiological states and global
properties such as the growth rate and the cell size. I have approached this topic
from two angles, namely a comprehensive analysis of a gene expression data set
and the construction of coarse‐grained resource allocation models (C‐GRAMs).

First, I studied a combined data set of protein and transcript abundances dur‐
ing growth of the fission yeast Schizosaccharomyces pombe on various abundant
nitrogen sources. Approximately half of gene expression was significantly correl‐
ated with the growth rate, and this came alongside wide‐spread nutrient‐specific
expression. Genes positively correlated with the growth rate participated in pro‐
tein production, whereas those negatively correlated mainly belonged to the en‐
vironmental stress response programme. Critically, the expression of metabolic
enzymes was mainly condition specific.

Second, C‐GRAMs are simple models of single cells, where large components of
the macromolecular composition are abstracted into single entities. The dynamics
and steady‐state behaviour of such models can then be easily explored. A minimal
C‐GRAM with nitrogen and carbon pathways converging on biomass production
described the effects of the uptake of sugars, ammonium, and/or compound nutri‐
ents such as amino acids on the translational resource allocation towards proteome
sectors that maximised the growth rate. Prompted by new observations that the
relation between cell volume and the growth rate was identical for both carbon
and nitrogen perturbations, but that the surface‐to‐volume ratio was elevated in
low‐nitrogen conditions, I extended this to a C‐GRAM that additionally accounted
for the cell cycle, cell division, cell wall biosynthesis, and the effect of molecular
crowding on the ribosomal efficiency.
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Now it would be very remarkable if any system existing in the
real world could be exactly represented by any simple model.
However, cunningly chosen parsimonious models often do
provide remarkably useful approximations. (...) For such a
model there is no need to ask the question "Is the model
true?". If "truth" is to be the "whole truth" the answer must be
"No". The only question of interest is "Is the model
illuminating and useful?"

(G.E.P. Box (1979), in: Robustness in the Strategy of Scientific
Model Building, pp. 202–203)
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1 Introduction

The smallest unit of life—the cell—comes in many varieties. From hyperthermo‐
phile archaea capable of surviving in boiling hot water around hydrothermal vents,
to biofilms of collaborating and competing bacteria and yeasts, via small multicel‐
lular worms all the way to the many different types of tissue present in human
beings, cellular life is varied and complex.

Many types of cells are remarkably fast at copying themselves: lab strains of
commonly used bacteria routinely duplicate within 15‐20 minutes under favour‐
able circumstances, and laboratory yeasts can reproduce asexually in mere hours.
Moreover, many unicellular organisms thrive in highly variable circumstances. Al‐
though cells might not be optimised for growth in each individual condition (Tow‐
bin et al. 2017), they are nevertheless under selective pressure to grow fast or
risk being outcompeted by rival colonies or species (Dekel and Alon 2005; Lynch
et al. 2014). However, cell cultures in fixed environments are faced with internal
constraints: the concentrations of the building blocks and machinery required for
gene expression are bounded. In other words, each atom can only be used in one
molecule of biomass, and each macromolecular complex can only process one re‐
action at a time. Fast‐growing cells must therefore possess an ability to allocate
these limited resources in varied environments (Koch 1988; López‐Maury et al.
2008; Molenaar et al. 2009; Berkhout et al. 2013; Bruggeman et al. 2020).

Although the complexity involved in the regulation of this behaviour is enorm‐
ous, strikingly simple observations have been made. For instance, in prokaryotes,
such as the bacterium Escherichia coli, it has been established that the abund‐
ances of many large classes of protein are linearly correlated with the cellular
growth rate across a large variety of environmental conditions (Schaechter et al.
1958; Neidhardt et al. 1990; Scott et al. 2010; Hui et al. 2015; A. Schmidt et al.
2016). This is true in particular for the abundance of ribosomes, an observation
termed the “ribosomal growth law”. A similar result states that the logarithm of
cell size and the growth rate are linearly correlated across conditions with vary‐
ing nutrients (Vadia and Levin 2015). Such results show that the cell somehow
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crystallises its complexity into simple behaviour rules, which should in principle
be understood in terms of simple phenomenological, optimisation‐based, and/or
mechanistical approaches.

Despite the famous assertion, what is true for E. coli is not necessarily true for
the elephant (not even when adding Monod’s “except more so”, see Friedmann
(2004) for a historical perspective). The work describing allocation in prokaryotes
needs to be extended and expanded, applying the concepts to more complex eu‐
karyotic cells. Both the budding yeast Saccharomyces cerevisiae and the fission
yeast Schizosaccharomyces pombe have been studied extensively. Although ini‐
tial research in the resource allocation field has primarily focused on S. cerevisiae
(Waldron and Lacroute 1975; Brauer et al. 2008; Metzl‐Raz et al. 2017), a great deal
is known about S. pombe’s physiology and regulation of its cell cycle (Mitchison and
Lark 1962; Fantes and Nurse 1977), and many experimental procedures have been
established for its growth in different environments (Carlson et al. 1999; Petersen
and Russell 2016). The Marguerat lab has established S. pombe as a model organ‐
ism to study the interplay between (stochastic) gene expression, growth, and cell
size across conditions (Saint et al. 2019; Sun et al. 2020). A better understanding
of fission yeast resource allocation will inform further work investigating the re‐
lationships between its growth and allocation states and the processes governing
the cell cycle, cell division, and the regulation of cell size homeostasis. For these
reasons, we chose S. pombe as our model eukaryote.

1.1 General concepts and observations

1.1.1 Balanced growth

Fission yeast is thought to thrive in a large variety of environments. For example,
Jeffares et al. (2015) identified 161 natural isolates of S. pombe obtained from more
than 20 countries. Its natural habitat is unclear though, as all strains had been
influenced by human cultivation. This does point out that yeast typically grows
in environments with a complex composition—think, for example, about all the
different nutrients present in fruits or brewers’ vats. On top of this, like most
organisms, yeasts have adapted to life in ever changing circumstances. Crucially,
external cues such as nutrient quality, stressing agents, or growth factors influence
the growth rate—the relative rate of biomass accumulation.

Counter to the complexity in the “natural” environment, experimental and the‐
oretical approaches for studying cells have focused on so‐called “balanced” growth,
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where cells have been cultured in the same environment during many generations
(Schaechter 2006). In light of the previous paragraph, this is perhaps surprising,
but this state of growth has the advantage of reproducibility, both in vivo and in
silico. Moreover, it is easily studied in formula as the steady‐state solution to a
suitably defined set of ordinary differential equations. By focusing on balanced
growth, we are able to study internal patterns of gene expression, and the ex‐
tent to which these patterns are optimised for fast growth. This is particularly
true in cultures where external resources are in excess, exemplified by traditional
batch cultures and turbidostats, the latter setup being more reproducible than the
former. In batch and turbidostat cultures, the growth state is fully determined by
internal allocation, rather than by externally imposed nutrient concentrations. As
the first step towards a full understanding of cell growth, we therefore focus on
gene expression allocation under balanced growth in defined environments.

1.1.2 The ribosomal growth law

The growth rate is a fundamental property of the cell that impacts most aspects
of cell physiology (Schaechter et al. 1958; Mitchison and Lark 1962; Waldron and
Lacroute 1975; Fantes and Nurse 1977; Neidhardt et al. 1990; Bremer and Den‐
nis 2008). Extensive quantitative experiments and modelling have explored this
relationship, as reviewed by Klumpp and Hwa (2014), Shahrezaei and Marguerat
(2015), Jun et al. (2018) and Bruggeman et al. (2020). One of the most important
observations about balanced growth is the linear correlation between the growth
rate and the abundance of ribosomes (both rRNA and ribosomal proteins) relative
to the total biomass. The effect can be explained by considering ribosomes as fully
utilised self‐replicating machineries (Scott et al. 2014). In these circumstances,
ribosomes will replicate themselves at a rate proportional to the fraction of time
they can spend on it. In balanced growth, this fraction will be equal to the frac‐
tion of the biomass that comprises the ribosomes themselves. Therefore, a larger
ribosomal fraction and a faster growth rate go hand in hand when all ribosomes
are translating at all times. This linear correlation is sometimes called the R‐line.

From the data, however, it is clear that the R‐line is extrapolated to have a
nonzero intersect with the ordinate, i.e. a significant amount of ribosomal proteins
would be expressed even at zero growth. Quantitatively, the ribosomal proteome
fraction ϕR may be expressed as

ϕR = ϕR,0 +Aµ (1.1)
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with µ the growth rate and ϕR,0 the aforementioned intercept; the inverse of the
slope A can be interpreted as the ribosomal efficiency (a higher slope means more
ribosomes are required to obtain the same increase in growth rate). Direct evid‐
ence of ϕR,0 is found in the fact that the ribosomal proteins make up significant
fractions of both the E. coli and S. pombe proteome in quiescent cells (Marguerat
et al. 2012; A. Schmidt et al. 2016). Cells may keep ribosomes in non‐translating
states unless required explicitly. This has been shown to be beneficial when a cell
encounters switches between environments (Metzl‐Raz et al. 2017). It is an open
question how this strategy is implemented and to what extent it exists in different
organisms.

1.1.3 Proteome allocation sectors

The derivation in the section above is formulated in terms of the fractional abund‐
ance of ribosomal proteins. If this is to increase with the growth rate, the frac‐
tional abundance of other proteins is to decrease with the growth rate. After all,
the fractional abundance of all proteins together must by definition add to one.
Indeed, the expression of many individual genes and proteins have been found to
correlate with the growth rate as well (treated in detail in section 2.1.1). It was
shown that about half of the total protein mass in Escherichia coli responded to
growth modulations by nutrient limitation and translational inhibition (Scott et al.
2010; You et al. 2013). These observations were formalised in a phenomenological
model separating the proteome into three broad sectors based on their growth rate
correlations (Scott et al. 2010). In this view, proteins that are positively correl‐
ated with the cellular growth rate during nutrient limitation and negatively during
translational inhibition comprise the R‐sector, whereas proteins showing the op‐
posite behaviour comprise the P‐sector. Proteins that do not respond to the growth
rate belong to the Q‐sector.

The Q‐sector proteins are generally considered to be housekeeping genes, that
always need to be expressed for the cell to survive. This suggests that they are not
actively regulated in response to the growth rate. However, for such constitutively
expressed genes to be uncorrelated with growth rate, the regulation of the P‐ and R‐
sector must have the same amplitude. Otherwise, the residual global response will
mean that constitutively expressed proteins will still be correlated with the growth
rate. If the R‐sector is generally bigger than the P‐sector, constitutive proteins will
be negatively correlated with growth, whereas the correlation will be positive if
the P‐sector exceeds the R‐sector.
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The naive phenomenological model furthermore does not account for proteins
with multiple layers of regulation. I have already remarked that the expression
of ribosomal proteins contains a considerable component that is independent of
growth. Such correlations with the growth rate that do not span the entire dy‐
namic range are common throughout the proteome, and titrations of different lim‐
iting nutrients may have opposite effects (Hui et al. 2015; A. Schmidt et al. 2016).
Additionally, proteins might have baseline expression levels that are uncorrelated
with growth, but be induced in one or more conditions (A. Schmidt et al. 2016). If
such condition‐dependent proteins are highly abundant in some conditions, their
expression will come at the expense of proteins involved in biosynthesis. The res‐
ulting passive regulation may even be sufficient to explain the R‐line (Barenholz
et al. 2016). In summary, the phenomenological separation of the proteome in P‐,
Q‐, and R‐sectors is a helpful conceptual tool, but a complete view of proteome
allocation should expect expression patterns outside of this paradigm too.

1.1.4 Mechanisms associated with the regulation of allocation

The molecular mechanisms behind the observed correlations between gene ex‐
pression and growth rate are not well understood. R‐sector proteins are univer‐
sally involved in translation and ribosome biogenesis, whereas P‐sector proteins
are more diverse and often involved in metabolic adaptation and stress response
(Brauer et al. 2008; You et al. 2013; Hui et al. 2015; A. Schmidt et al. 2016). In
E. coli, the master regulator CRP‐cAMP has been proposed to control the P‐sector
assignments of carbon catabolism enzymes when growth rate was modulated by
the quality of abundant carbon sources (You et al. 2013). Furthermore, evidence
is mounting for the role of the stringent response, mediated by guanosine tetra‐
phosphate (ppGpp), in regulating the expression of the E. coli ribosomes under
nutrient limitation (M. Zhu et al. 2019; Irving et al. 2020). Whether these conclu‐
sions are transferrable to other growth modulations and/or other organisms is an
open question.

In eukaryotes, growth‐rate‐related gene expression is thought to depend to some
extent on the target‐of‐rapamycin complex 1 (TORC1), which is widely conserved
(Weisman 2016; González and Hall 2017; Morozumi and Shiozaki 2021). TORC1
activity is affected by a variety of stressors including nutrient starvation. Up‐
stream of TORC1, the adenosine monophosphate kinase AMPK has been proposed
to mediate the response to nitrogen starvation, and intriguingly, the two com‐
plexes can inhibit each other (Davie et al. 2015; Ling et al. 2020). In fission yeast,
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the TORC1 pathway is a key regulator of the balance between stress‐ and growth‐
related gene expression (López‐Maury et al. 2008; Rallis et al. 2013, 2014), with
downstream targets including eukaryotic initiation factor 2 subunit alpha (eIF2α)
(Valbuena et al. 2012), the SAGA complex (Laboucarié et al. 2017), and the rate of
fermentation through Greatwall and PP2AB55δ (Watanabe et al. 2019).

1.1.5 The interplay between metabolism, growth, and gene expression

The cell metabolism is an exquisitely complex network of interconnected pro‐
cesses and perturbation of single pathways can have wide‐spread systemic effects
(Chubukov et al. 2014). Central carbon metabolism (CCM) relies on three path‐
ways: glycolysis, the pentose phosphate pathway, and the tricarboxylic acid (TCA)
cycle (Alberts et al. 2015, ch. 2). Together, these generate energy in the form of
ATP, in a process mediated by reducing agents such as NADH, and produce building
blocks for biosynthesis. ATP can be generated anaerobically via fermentation—a
process which consists of glycolysis and the subsequent degradation of pyruvate,
or aerobically via respiration, which requires the TCA cycle and subsequent ox‐
idative phosphorylation (OXPHOS). The extent of fermentative versus respiratory
metabolism affects the NAD+/NADH redox balance and vice versa, as NAD+ re‐
duction during glycolysis and the TCA cycle must be balanced by NADH oxidation
occurring during pyruvate degradation and OXPHOS (Vemuri et al. 2007; van Hoek
and Merks 2012; Campbell et al. 2018).

In eukaryotes, these reactions are compartmentalised between the cytoplasm
and the mitochondria, with the latter housing the respiratory enzymes and func‐
tioning as hubs that connect diverse metabolic pathways including CCM and amino
acid metabolism (Spinelli and Haigis 2018). For instance, amino acid degrada‐
tion enables the assimilation of nitrogen as ammonium or glutamate via de‐ or
transamination reactions. The remaining carbon backbone is recycled into the
cell’s biomass or excreted, and the associated metabolites affect carbon metabol‐
ism (Godard et al. 2007). Importantly, mitochondrial intermediates are required
for amino acid biosynthesis even during fermentative energy generation (Malecki
et al. 2020). In fission yeast, a single point mutation in the pyruvate kinase Pyk1,
affecting its activity, has been shown to rebalance the fluxes through the fermenta‐
tion and respiration pathways alongside shifts in the transcriptome and proteome
composition (Kamrad et al. 2020), giving a prime example of how the cell co‐
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adjusts perturbations in metabolic fluxes and expression burdens. Taken together,
shifts in the metabolic demand propagate throughout the cell, as most metabolic
pathways are tightly interlinked.

The expression levels of CCM enzymes, and therefore the fluxes through the CCM
pathways, depend on the growth environment, in particular on the nutrient con‐
ditions and presence of stressing agents. For example, during rapid growth on
glucose, yeast utilises the fermentative pathway alongside the TCA cycle even in
the presence of oxygen, a phenomenon known as aerobic glycolysis or the Crab‐
tree effect (Shimizu and Matsuoka 2018). Aerobic glycolysis is also a character‐
istic of tumour cells, for which it is known as the Warburg effect (Vander Heiden
et al. 2009). This strategy appears counterintuitive as fermentation generates
fewer molecules of ATP per glucose molecule than respiration. Several hypotheses
have been proposed to resolve this paradox. All require a second growth‐limiting
constraint besides glucose uptake which would be specific to respiro‐fermentative
growth (de Groot et al. 2019). Examples include the cytoplasmic density of mac‐
romolecules (Vazquez et al. 2008; Goelzer et al. 2015), total proteome allocation
(Basan et al. 2015), and membrane area availability (Szenk et al. 2017).

A considerable amount of information on metabolism has been collected at the
whole‐cell level, and for many organisms a full mapping of the metabolic reactions
is widely available (Kanehisa et al. 2017; Keseler et al. 2021). Using constraint‐
based approaches such as flux balance analysis, considerable progress has been
made in the understanding of metabolic fluxes through the network of reactions
(Orth et al. 2010). However, such approaches typically do not account for the
considerable burden associated with producing proteins. Thus, a whole‐cell un‐
derstanding of cellular trade‐offs between multiple constraints must take into ac‐
count gene expression alongside metabolic maps (Goelzer and Fromion 2017; Yang
et al. 2018; Dahal et al. 2020). Resource allocation constraints have been success‐
fully introduced into genome‐wide metabolic models of several organisms as more
high‐quality expression data has become available (O’Brien et al. 2013; Sánchez et
al. 2017; Y. Chen et al. 2021). In summary, quantitative surveys of the gene ex‐
pression cost of metabolic pathways are key to understanding cell physiology.

1.2 Coarse-grained modelling of unicellular organisms

The concept of proteome sectors has been the basis of several phenomenological
and coarse‐grained mechanistic models relating optimal resource allocation to pro‐
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tein abundance and cellular growth rates (Molenaar et al. 2009; Scott et al. 2014;
Maitra and Dill 2015; Weiße et al. 2015; Maitra and Dill 2016; Pandey and Jain
2016; Liao et al. 2017; Bertaux et al. 2020; Hu et al. 2020). In coarse‐grained
models of proteome allocation, large sectors of the proteome are abstracted into
a single protein, whose kinetics are explicitly described. Existing models include
various levels of detail, particularly in the extent of the gene expression machinery
that is taken into account. Here, I will introduce the main ideas implemented
in five such models together with their main applications. In chapter 3, I will
provide a methodological basis with which to understand the modelling performed
in chapters 4 and 5.

1.2.1 Brief summaries of five coarse-grained resource allocation
models

First, Maitra and Dill (2015) formulated a minimal model of cells with a single
variable representing global energy levels, and dividing biomass between meta‐
bolic enzymes and ribosomal proteins. The same authors later extended this to in‐
clude the effect of ribosomal inhibitors (Maitra and Dill 2016). They considered the
energy efficiency (growth rate divided by energy production flux) in steady‐state
growth, which they showed to depend on the allocation of ribosomes; the optimal
efficiencies were close to known experimental observations. It was assumed that
ribosomal proteins were stable, but non‐ribosomal proteins were degraded; with
this assumption the nonzero intercept of the ribosomal growth law was propor‐
tional to the degradation rate. Under slow growth, the cell spent many resources
replenishing proteins that were being degraded, but the efficiency increased with
the growth rate as increasing levels of external sugar lead to a larger allocation
towards ribosomal proteins.

Next, Weiße et al. (2015) constructed a model incorporating three important
trade‐offs in cellular growth, coupling gene expression to growth. The trade‐offs
considered were incorporated by means of finite pools of (i) intracellular energy,
utilised in all biochemical processes contained in the model; (ii) ribosomes, which
produced all proteins; and (iii) cell mass, meaning that production of one type of
protein came with an opportunity cost. This model included both transcription
and translation, and the availability of intracellular energy levels was assumed to
determine transcription and translation rates. Most parameters were taken from
the E. coli literature, except for a handful of gene expression parameters. These
came from a Bayesian (Markov‐chain Monte Carlo) fit to the ribosomal growth law
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data by Scott et al. (2010). The model provided a good balance of interpretability
and detail, allowing the authors to explain gene dosage compensation, the inter‐
play between a synthetic circuit and its host cell dynamics, and the evolutionary
stability of metabolic gene expression regulation. One notable interpretation of
this model was that of the ATP‐equivalent intracellular energy variable. This was
consumed by translation and was therefore alike to amino acids. Furthermore, a
good fit to the ribosomal growth law required ribosomal mRNA transcription to be
induced at energy levels two orders of magnitude less than non‐ribosomal mRNA.

A detailed but still coarse‐grained model of resource allocation, growth, and
gene expression in bacteria was developed by Liao et al. (2017). They described
the dynamics of three protein species, including ribosomal proteins, with their
corresponding transcripts, as well as rRNA and tRNA, ATP and free amino acid
levels, RNA polymerase levels, and the abundance of the master regulator ppGpp.
The model was used to investigate the burden of synthetic constructs, provided a
single‐cell description of a noncooperative positive feedback loop, and the dynam‐
ics of a toggle switch at single‐cell, population, and ecological scales. The authors
used a combination of widely available data, parameters inferred in earlier studies,
and additional Bayesian parameter inference to infer all of 97 parameters.

As seen by this example, complex models accounting for many biological pro‐
cesses also require many parameters, whose inference is nontrivial. This is es‐
pecially important for research into organisms other than E. coli, because fewer
experimental results are available. In contrast, a more minimal approach was pi‐
oneered by Molenaar et al. (2009), who limited themselves to describing protein
abundances and considered the proteome allocation that maximised the growth
rate instead of implementing explicit regulatory processes. They described a two‐
step carbon catabolism with two parameterizations representing metabolically
and catabolically efficient metabolism, nitrogen uptake, and ribosomal consump‐
tion of both to supply protein production. Molenaar et al. (2009) showed that
both growth‐rate‐correlated gene expression and discontinuous switches between
metabolic strategies at specific growth rates could result from simple optimisation
of ribosomal allocation for maximal growth rate.

Such a minimal, protein‐only, approach was also taken in our group by Bertaux
et al. (2020), from which the coarse‐grained models described in this thesis are a
further development. The model by Bertaux et al. (2020) will be described in detail
in section §3.4. It introduced explicit cell cycle proteins to describe the dependence
of cell size as a function of growth rate under three types of modulation: nutrient
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limitation, expression of useless proteins, and translational inhibition. One in‐
novation was the inclusion of metabolites in the system size. Furthermore, unlike
the growth‐rate maximization employed by Molenaar et al. (2009), Bertaux et al.
(2020) considered a simple regulation of ribosomal allocation as proportional to
their substrate and showed that this strategy obtained near‐optimal growth rates.

1.2.2 Consensus model behaviours and important differences

A consensus result of all these models is a hyperbolic dependence of the growth
rate on the concentration of external nutrients. This is called the Monod law and
it is one of the first global experimental observations of bacterial cultures (Monod
1949). The models also all reproduce the ribosomal growth law, and in fact both
the Monod law and the ribosomal growth law have been used to quantitatively fit
the model parameters. As mentioned above, the allocation to ribosomes contains a
sizeable offset when extrapolated down to zero growth. In the model by Maitra and
Dill (2015), this result relies on the turnover of degraded non‐ribosomal proteins,
whereas in the models by Weiße et al. (2015) and Liao et al. (2017) this behaviour
emerges as ribosomes not actively translating mRNAs are more abundant at slow
growth.

While these five coarse‐grained resource allocation models all provide a bet‐
ter understanding of growth‐rate‐correlated protein abundance, the role of non‐
metabolic “housekeeping” proteins is less clear. Maitra and Dill (2015) and Molen‐
aar et al. (2009) disregarded these proteins entirely. Weiße et al. (2015) explicitly
include negative autoregulation of housekeeping proteins to approximate constant
expression levels across conditions. For Liao et al. (2017), the housekeeping pro‐
teins are expressed constitutively and their proteome fraction is only approxim‐
ately constant. Lastly, Bertaux et al. (2020) fix the housekeeping allocation manu‐
ally to a constant fraction.

1.3 Outline of the thesis

In light of the above considerations, the following questions arise: How does the
growth environment influence the eukaryotic cell’s allocation of macromolecular
resources, such as ribosomes and polymerases, towards various gene expression
programmes? What is the interplay between growth, gene expression, the cell
cycle, and allocation? To what extent are findings replicated across the tree of life,
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and which phenomena are specific to eukaryotes? The main question explored in
this thesis is, then: how does fission yeast allocate resources to biomass production
across conditions that support different growth rates?

I approached these questions by two very different methods: (i) data analysis
of genome‐wide expression data, and (ii) coarse‐grained mathematical modelling
of growth‐optimised cells. In the remainder of this thesis, the two approaches are
described separately. In chapter 2, I describe my analysis of a multi‐omics data
set that describes the relative abundances of both protein and RNA levels across
growth conditions with varying nitrogen sources. The data gathering and analysis
was a large joint effort and has recently been published (Kleijn et al. 2022). In the
remaining chapters, I describe the coarse‐grained mathematical modelling. First,
chapter 3 gives a general description of the main methodology. Then, chapter 4
describes successively more complicated models of ribosomal resource allocation,
applied to conditions with varying carbon and nitrogen concentrations as well as
a representation of the growth media with varying nitrogen sources from the ex‐
perimental data. Finally, chapter 5 postulates a whole‐cell model that additionally
accounts for the size and shape of the cell.
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2 Data analysis of growth-rate correlated and
medium-specific gene expression in fission yeast

2.1 Introduction

As explained in the general introduction, the expression of large classes of proteins
(proteome sectors) correlates with the growth rate in both bacteria and budding
yeast. This is particularly important for the ribosomes, whose connection with
the growth rate has been particularly well studied. With this in mind I analysed
a large data set comprising both proteomics and transcriptomics data of S. pombe
grown across a range of growth rates. While my principal objective was to study
the extent of growth‐correlated gene expression in fission yeast, I also performed
a thorough exploratory analysis of the data set.

As I will explain in this chapter, my analysis highlighted the coexistence of both
considerable growth‐rate correlations and medium‐specific gene expression. In
order to fairly assess the correlations in the presence of medium‐specific outliers, I
used robust linear models that have not been previously used in this context. As ex‐
pected, protein synthesis was strongly positively correlated with growth, whereas
many genes negatively correlated with the growth rate were involved in the en‐
vironmental stress response. Furthermore, I found that metabolic enzymes were
under considerable condition‐specific regulation, which is notable because they
represented up to 70% of the proteome by mass. Lastly, I proposed signatures of
medium‐specific gene expression after subtraction of the growth rate effect, using
a custom normalisation procedure.

2.1.1 Proteomics and transcriptomics

Transcriptomics and proteomics analyses have been widely used to study the in‐
terplay between growth and gene expression, and some important results have
already been touched upon in chapter 1. Here I give some further background on
important omics studies in the field.

Recall that the “ribosomal growth law” refers to the observation that ribosomal
abundance is linearly and positively correlated with the growth rate. This obser‐
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vation was confirmed in genome‐wide proteomics studies in E. coli by Peebo et al.
(2015), who studied continuous cultures limited by carbon availability; by Hui et
al. (2015) under titrations of carbon and nitrogen, and under translational inhib‐
ition, and most convincingly by A. Schmidt et al. (2016) in an extensive study of
22 growth conditions. An early transcriptomics study in S. cerevisiae, using mi‐
croarrays, showed strong correlations between hundreds of transcripts with the
chemostat dilution rate across six nutrient titrations (Brauer et al. 2008). Many ri‐
bosomal transcripts were positively correlated with the dilution rate, in agreement
with the ribosomal growth law; furthermore, genes involved in stress response
and metabolism were generally negatively correlated with the dilution rate. The
S. cerevisiae proteome also exhibited the ribosomal growth law, as determined by
Metzl‐Raz et al. (2017), who combined existing data sets of cultures grown in a
variety of carbon sources (Paulo et al. 2015, 2016) with their own data obtained
under nitrogen and phosphorus limitation. In summary, proteomics and transcrip‐
tomics data have provided a very direct way to quantify the extent of the ribosomal
growth law in particular and of growth‐rate‐correlated gene expression in general.

Simple correlations with the growth rate are by no means the only feature of
these genome‐wide omics data sets though. Besides being the first to directly con‐
firm the ribosomal growth law in the eukaryote proteome, Metzl‐Raz et al. (2017)
also observed a sizeable allocation towards ribosomes when the ribosomal growth
law was extrapolated to zero growth. To explain this, they proposed the pres‐
ence of a pool of non‐translating ribosomes, which can serve as a buffer during
changing growth conditions. This strategy has also been observed in prokaryotes
(Dai et al. 2016; Mori et al. 2017; Kohanim et al. 2018). The idea that proteins are
expressed in excess of the minimally required capacity has been reported for meta‐
bolic pathways as well, including glucose catabolism (R. Yu et al. 2020). Further
omics studies in S. cerevisiae have defined additional characteristics of resource
allocation such as reallocation of proteome mass from amino acid biosynthesis to
protein translation upon amino acid supplementation (Björkeroth et al. 2020), or
the respective contribution of transcription and translation to different allocation
strategies (R. Yu et al. 2021). Altogether, genome‐wide omics experiments have
been key to understand resource allocation in both E. coli and S. cerevisiae. The
study presented in this chapter adds to this debate both by its different choice of
model organism, as well as its treatment of the dichotomy between growth‐rate
correlations and medium‐specific expression.
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2.2 Methods

2.2.1 Contributions

In this section I explain the methods used in the processing of the omics data
and the exploratory analysis and in‐depth treatment of the growth rate models,
as well as the details of the functional analyses. While I performed some of the
experiments, I did not substantially contribute to their design, and I gratefully ac‐
knowledge the work of Amalia Martínez‐Segura, François Bertaux, Malika Saint,
and Holger Kramer in this regard. The work on growing fission yeast on nitro‐
gen sources to obtain different growth rates was initiated in the Marguerat lab by
Malika. François developed and calibrated the turbidostat setup; he also grew the
cultures in the turbidostats for six of the nitrogen sources (Trp, Gly, Phe, Ser, Pro,
and Amm). I grew the cultures for the Ile and Glu conditions myself. Amalia ex‐
tracted the omics samples. The proteomics experiments were run by Holger from
the MRC LMS proteomics facility, and the RNA‐Seq experiments were performed
by the MRC LMS sequencing facility. Amalia and myself jointly worked on the ini‐
tial stages of the analysis. Readers interested in the details of the experimental
procedures or the initial treatment of the RNA‐Seq and LC‐MS proteomics data are
referred to the published paper (Kleijn et al. 2022). All the figures shown in this
chapter are my own work.

2.2.2 Normalisation and omics data processing

RNA-Seq

After sequencing, demultiplexing, and genome mapping, the RNA‐Seq pipeline
yielded raw counts cijk for each gene i, growth medium j, and biological replicate
k. These were normalised using the DESeq2 estimateSizeFactors function, yielding
size factors Sjk for each sample (Love et al. 2014). Using this, normalised counts
are defined as

nijk =
cijk

Sjk
. (2.1)

Unless otherwise noted, the downstream transcriptome analyses were performed
using these normalised counts, which enable between‐sample comparison of the
expression of genes or sets of genes.
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Proteomics

LC‐MS proteomics quantifies peptides, not proteins directly. In sample prepara‐
tion, proteins are digested into peptides, (for our data, in a two‐step process in‐
volving Lyx‐C and trypsin) and the abundance of the peptides in the digest is what
is determined by the analysis. The abundance of the peptides is then aggregated
to determine protein abundance. Many peptides, however, cannot be uniquely as‐
signed to a single protein. This happens when two (or more) proteins are close
homologues, such that the same peptide could have resulted from either of them.
There are a few options to resolve this situation: (i) ignore the peptide entirely
in the quantification; (ii) include it for both proteins; (iii) include it for only one
protein. The major downside of options (i) and (ii) is that it not only biases the
abundance estimate of the individual proteins, but also of classes of proteins that
the ambiguous ones happen to belong to. This is especially undesirable because
most close homologues are functionally similar, such that they often occur together
in the downstream analysis. For gene classes that contain many homologues, such
as ribosomal proteins, options (i) and (ii) will severely under‐ or overestimate
the total expression of the gene class. With ribosomal proteins so central to the
resource allocation problem, we chose option (iii). We assigned the ambiguous
peptide to the protein that was most abundant based on the quantification of the
non‐ambiguous peptides. This process is called “razoring”. With each “razor” pep‐
tide assigned to a single protein, the sum of the close homologue’s abundances is
not affected by the ambiguity.

It was recently shown that the relative abundances, normalised using the total
proteome mass, were as reproducible as those using an external standard curve
(Sánchez et al. 2021). Furthermore, the proteome allocation strategy is defined in
terms of the relative mass fractions. We therefore rescaled protein abundances,
traditionally reported proportional to protein numbers, to the proteome mass frac‐
tions. The considerations from the previous paragraph led us to base the reported
protein intensities on identified unique and razor peptides, and intensity‐based
absolute quantification (iBAQ) was calculated as the raw intensity/number of ob‐
tainable tryptic peptides . The data was filtered for detection in all three biological
replicates. Subsequently, proteome mass fractions ϕij were calculated for each
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protein group i, sample from growth medium j and replicate k from the reported
protein masses mi, and the iBAQ quantities Bijk as follows:

ϕijk =
miBijk∑
lmlBljk

. (2.2)

These proteome mass fractions were used to report protein expression, except in
direct comparison to transcriptome abundances, as explained next.

Protein–mRNA ratios

With our data set of matched protein and mRNA expression, we aimed to compare
the two measures, both between different conditions, and on a gene‐by‐gene basis.
However, the reported units (normalised counts and proteome mass fractions) do
not agree between the two data sets. To compare protein and mRNA expression,
we used the relative number fractions for both experiments. These were calculated
in the following way. For each protein group or gene i, and sample from growth
medium j and replicate k, the proteome number fraction was calculated from the
the iBAQ quantities Bijk as

ψP
ijk =

Bijk∑
l Bljk

, (2.3)

and the transcriptome number fraction was calculated from the normalised counts
nijk and the transcript lengths li as

ψM
ijk =

nijk

li∑
l
nljk

ll

. (2.4)

These two number fractions are directly comparable. Note that the ratio
ψP

ijk

ψM
ijk

is

proportional to the ratio of absolute protein and mRNA numbers per cell (denoted
NP

ijk and NM
ijk, respectively) with a sample‐specific normalisation:

ψP
ijk

ψM
ijk

=
NP

ijk

NM
ijk

Mjk

Pjk

, (2.5)

where Mjk and Pjk denote the total number of transcripts and proteins per cell,
respectively.

The protein‐to‐mRNA ratio of a given gene is heavily dependent on the average
expression level. To perform meaningful analyses of between‐sample protein‐to‐
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mRNA ratio differences for each gene, this effect was removed in the following
way (Franks et al. 2017). The residual log‐transformed protein‐to‐mRNA ratio was
calculated as

resid log2

(
ψP

ijk

ψM
ijk

)
= log2

(
ψP

ijk

ψM
ijk

)
−medianm,n

[
log2

(
ψP

imn

ψM
imn

)]
. (2.6)

This way, the across‐sample variation in protein‐to‐mRNA ratios could be com‐
pared between genes with wildly varying average expression levels.

2.2.3 Exploratory analysis and visualisation

Spearman correction

Noise in observations causes observed correlations between these observations to
under‐represent true underlying correlations. This effect, and a proposed method
to mitigate it, was already described by Spearman (1904); a level‐headed treat‐
ment of its meaning and arguments for and against its use is given by Muchin‐
sky (1996). The Spearman correction has previously been applied to omics data
(Csárdi et al. 2015; Franks et al. 2017) and we reported both corrected and un‐
corrected estimates of protein‐mRNA correlations. Central to the method are the
reliabilities rPj and rMj of the protein and mRNA data. For our data, these are
defined for each condition j as the geometric mean of observed pairwise Pearson
correlations between the three biological replicates:

rPj = 3

√
ρPj,1:2ρ

P
j,1:3ρ

P
j,2:3 (2.7)

and
rMj = 3

√
ρMj,1:2ρ

M
j,1:3ρ

M
j,2:3 (2.8)

Here ρPj,k1:k2
represents the Pearson correlation between the observed log2‐transformed

proteome number fractions in condition j for replicates k1 and k2, and similarly
ρMj,k1:k2

for log2‐transformed transcriptome number fractions. Likewise, a first,
uncorrected, estimate of the protein‐mRNA correlation is calculated as the geomet‐
ric mean of observed pairwise protein–mRNA correlations (ρj,k1:k2

with the above
index convention):

ρ̂j = 6
√
ρj,1:1ρj,1:2ρj,1:3ρj,2:2ρj,2:3ρj,3:3. (2.9)
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The final, corrected, estimate of the protein‐mRNA correlation is given by

Rj =
ρ̂j√
rPj r

M
j

. (2.10)

Hierarchical clustering

In order to compare the between‐sample variance of gene expression across genes,
we computed z‐scores to normalise for variations in absolute expression levels.
For each gene or protein group i in the sample with medium j and replicate k, this
z‐score was calculated as

zijk =
yijk − µi

σi
(2.11)

from the expression values yijk, where µi and σi are the mean and standard devi‐
ation of the expression of gene i across all samples.

These z‐scores were used to perform hierarchical clustering (HC) and principal
component analysis (PCA). The analysis was performed only on genes or protein
groups that were detected across all 24 samples. HC on genes/protein groups was
performed using the Euclidean distance and Ward linkage (“ward.D2”), using the
‘hclust‘ implementation of the R statistical language (v.3.5.3). PCA was performed
using the ‘prcomp‘ function, also from R, with no further zero‐centering or scaling
applied.

In the transcriptome analysis, separate dendrograms were constructed for cod‐
ing and non‐coding RNAs, using the protein‐coding list from PomBase and selecting
ncRNAs from the presence of “NCRNA.” in the systematic IDs.

Barcode plots

To visually compare the expression patterns of multiple proteins across conditions,
I developed a “barcode” plot, such as shown in Figures 2.26 and 2.29. The directed
length lij of the bar for protein i and medium j was calculated from the median
proteome mass fractions across the three biological replicates:

xij = median
k=1,2,3

ϕijk, (2.12)

and the median across all samples,

Mi = median
j,k

ϕijk, (2.13)
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in the following way:
lij =

xij −Mi

Mi

.

Missing data was imputed to xij = 0, and the scale was capped at −1 ⩽ lij ⩽ 2.

2.2.4 Growth rate correlations as quantified by repeated-median linear
models

Repeated-median linear models

For many genes, differential expression was observed between two or more growth
conditions in addition to the underlying growth‐rate correlations. This affected the
fit quality of the standard ordinary least squares (OLS) linear model fits. It was
especially noticeable when differential expression occurred in growth media with
high leverage, i.e. in the conditions with the lowest growth rate (Trp and Gly) or
the highest growth rate (Amm). Some examples showing this effect are shown in
Figure 2.6D and F. We therefore needed to use a method that was able to estimate
linear regression slopes and intercepts in the presence of outliers.

When estimating the average of a stochastic variable across a population when
outliers are present, the median is a more appropriate measure than the mean.
Similarly, when fitting a linear model to outlier‐ridden data, median‐based meth‐
ods are more appropriate than the OLS fit. Alternatively, methods may be chosen
that minimise something other than the least‐squares difference between fit and
data, though these require tuning of hyperparameters (de Menezes et al. 2021);
this was not further explored. Two median‐based linear models were conveni‐
ently implemented in the R package ‘mblm’ (Komsta 2019): the Theil–Sen estim‐
ator (Theil 1950; Sen 1968) and the repeated‐median linear model (RMLM) (Siegel
1982). The former appears to be more commonly used, but the latter has the ad‐
vantage that it is robust when up to 50% of outliers are present in the data, as
proven by Siegel (1982)—the Theil–Sen estimator is robust in the presence of up
to ~29% of outliers. A probable reason for the low popularity of the RMLM es‐
timator is its relatively high computational complexity when the number of data
points increases. However, this was not important for our data, because only 24
data points were involved in each fit. We therefore settled on the RMLM method
for computing an outlier‐robust linear model.

The RMLM fitting procedure works as follows. Consider the data as pairs of an
explanatory variable x (in our application, the growth rate) and a response variable
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y (a measure of gene expression); the aim is to find parametersA and B for a linear
fit

y = Ax+ B. (2.14)

First, for each point (xi, yi), a line segment is drawn to each of the otherN–1 points
(µj, yj) where j ̸= i. The line between points i and j has slope

aij =
yj − yi
xj − xi

(2.15)

and y‐intercept
bij =

xjyi − xiyj
xj − xi

. (2.16)

The parameters A and B are now calculated by a twice‐repeated computation of
the median. Each point i is associated with a median slope

ai = median
j̸=i

aij (2.17)

and y‐intercept
bj = median

j̸=i
bij. (2.18)

The regression coefficients for the slope and y‐intercept of the repeated‐median
linear model are now defined as the medians of those medians:

A = median
i

ai (2.19)

and
B = median

i
bi. (2.20)

Fold change (FC) measure

The regression slope and intercept are both proportional to the average expression
level of a gene (protein). A fair comparison of the steepness of the growth‐rate
dependencies between proteins or transcripts with different expression levels can
therefore not use the regression parameters directly. To compare the growth law
shapes of protein groups with varying absolute abundances, we defined a custom
measure, as a normalised spread of the data according to the best‐fit RMLM. It
resembles a fold‐change difference between the extreme ends of the data and the
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median estimate. We therefore named it the fold‐change FC and it is defined from
the RMLM predictions y(µ) as the ratio

FC =
y (µ = µmax) − y (µ = 0)

y (µ = 0.5µmax)
, (2.21)

with µmax = 0.3h−1. This can be expressed in terms of the fitted slope a and the
y‐intercept b as:

FC =
µmax

0.5µmax + b/a
. (2.22)

If expression is directly proportional to the growth rate without a y‐intercept,
FC = 2. Most genes have some baseline expression and a steep growth‐rate correl‐
ation has FC ⩾ 1. Genes without growth‐rate correlated expression have FC ≈ 0;
negative FC measures indicate negative correlations.

Sector assignment

To assign genes (proteins) to groups of significant positive or negative correla‐
tions, we used a false discovery rate (FDR) based method. We based this on the
variance explained, or R‐squared R2,of the RMLMs. For each gene or protein group
i, R‐squared and the associated p‐value was calculated using the ‘summary.lm‘
method as

R2i = 1−

∑
j,k r

2
ijk∑

j,k

(
yijk − µi

)2 . (2.23)

Here rijk denotes the residuals from the RMLM fit, yijk the expression (normalised
counts or proteome fractions), µi the mean expression across samples, and the
summation was performed across all N samples where the gene was detected. We
calculated the tail‐based false discovery rates (FDR, or q‐values) and local false
discovery rates (fdr) using the ‘fdrtool‘ R package and the false non‐discovery rate
cut‐off method (Strimmer 2008). Genes or protein groups were assigned to the P
or R sector when their tail‐based FDR < 0.1. R and P sector genes had positive and
negative slopes, respectively, as determined by the fitted RMLM.

To assess fit quality, in addition to R2, we used a normalised sum of squared
residuals, defined as

SSRnorm,i =
1

N− 1

√∑
j,k r

2
ijk

µi
.
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This resembles the calculation for the coefficient of variation CV, with the resid‐
uals replacing the observations themselves.

Removing growth-rate effects from differential expression analysis

To identify differential expression in the transcriptome on top of growth rate me‐
diated effects, we performed an analysis using ‘DESeq2‘ (v1.22.2) from the Biocon‐
ductor suite (v3.8) (Love et al. 2014; Huber et al. 2015), comparing the residual
expression in each condition to a synthetic reference condition. The fold change
obtained by this procedure can be interpreted as the ratio of observed normalised
counts and the counts predicted by the RMLM, and the associated p‐value provides
an interpretable estimate of significance.

The DESeq2 analysis pipeline enables the introduction of per‐gene, per‐sample
normalisation factors that are commonly used to correct for batch‐dependent GC‐
content or length biases. We adapted this functionality to normalise the growth
rate bias of each gene, by introducing factors Nijk that converted between the
measured raw counts cijk and RMLM‐predicted raw counts qijk:

qijk =
cijk

Nijk

, (2.24)

in analogy to the size factors in equation (2.1). However, the fitting of RMLMs
yielded per‐gene, per‐sample predictions pijk of the normalised counts so further
conversion was necessary. Using the sample‐dependent size factors,

qijk = pijkSjk. (2.25)

Therefore, the normalisation factors were calculated as

Nijk =
cijk

Sjkpijk
=
nijk

pijk
. (2.26)

We excluded genes with negative predicted raw counts and rescaled the normal‐
isation factors across samples for each gene to have a geometric mean of 1 for
numerical accuracy.
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Using the RMLM‐predicted raw counts, we further defined a synthetic reference
condition with three biological replicates. The reference condition is defined from
the median count across all growth media for each replicate k:

sik = int
(
median

j
qijk

)
. (2.27)

These reference counts were rounded to the nearest integer, as they represent raw
counts in the DESeq2 pipeline. By design, the qijk have no residual growth‐rate
trend, so a comparison between any growth medium and the synthetic reference
gives an estimate for the medium‐specific effect after accounting for the observed
growth‐rate correlations.

Subsequently, we applied the standard DESeq2 pipeline on the constructed data
set with 9 conditions: the original 8 and the synthetic one, with each set having 3
biological replicates. We tested for pairwise differential expression between each
of the original 8 growth conditions and the synthetic reference, and reported pair‐
wise fold‐changes F and the associated p‐values (both uncorrected and adjusted,
padj) Fold‐changes were shrunk using the lfcShrink function of DESeq2, using the
“apeglm” method (Love et al. 2014; A. Zhu et al. 2019). Genes were reported as
differentially expressed (DE) if padj < 0.01 and |log2 F| > 0.5 for at least one condi‐
tion.

2.2.5 Functional analysis

Enrichment of Gene Ontology

To assess hypothesised overrepresentation of defined functional categories in the
clusters resulting from our hierarchical clustering analyses, and in the P‐ and
R‐sectors, we performed the following traditional enrichment analysis. We per‐
formed one‐sided Fisher exact tests to assess the enrichment of DE genes across
the S. pombe GO‐slims and terms from the biological_process GO with at most
50 annotations in S. pombe (Gene Ontology Consortium 2019; Lock et al. 2019).
From the resulting p‐values, local false discovery rates lfdr were calculated using
the ‘fdrtool‘s false non‐discovery rate method (Strimmer 2008). In the enrich‐
ment plots for the GO‐slim terms (Figures 2.3, 2.13, 2.14, and 2.33B), terms with
lfdr < 0.05 were deemed significant, and the terms were ordered from top to bot‐
tom by increasing smallest lfdr to aid interpretation. For the biological_process
enrichment plot (Figure 2.35), the significance threshold was lfdr < 0.001. The
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significant terms were clustered hierarchically using the Euclidean distance and
Ward linkage (“ward.D2”), using the ‘hclust‘ implementation of the R statistical
language (v.3.5.3).The terms were ordered by the smallest lfdr as much as pos‐
sible while remaining consistent with the clustering constraint.

Gene set enrichment analysis

A multilevel gene set enrichment analyses were performed against the three S.
pombe GO‐slims (Gene Ontology Consortium 2019; Lock et al. 2019), using the
‘fgsea‘ package (v1.16.0) (Korotkevich et al. 2019), with boundary parameter ϵ =

0. Genes (protein groups in the proteomics analysis) were ranked based on the
following signed measure of significance:

− sign (ai) log10 (pi) . (2.28)

Here ai and pi are the slope and p‐value associated with the RMLM growth‐rate
fit for gene (protein group) i, and sign (ai) equals 1, 0, or ‐1 when ai is positive,
zero, or negative, respectively. This resulted in a list where the R‐sector was at
the top of the list, and the P‐sector at the bottom. Unlike the traditional functional
enrichment however, this analysis does not require an arbitrary cut‐off point.

2.3 Results

2.3.1 Eight nitrogen sources spanned an approximately fourfold range
of growth rates

S. pombe 972h‐ prototroph wild‐type cells were grown in turbidostats with set
maximal optical densities OD600 ≈ 0.4 (Figure 2.1A). Starter cultures were inocu‐
lated at approximately OD600 ≈ 0.1, left to reach the set point, and held in the
turbidostat for many generations (Figure 2.1B). Approximately halfway, the cul‐
tures were diluted twofold and the growth rate was measured by a linear fit of an
exponential growth model to the log‐transformed OD600. Samples were harvested
at the end of turbidostat growth. The whole procedure was repeated in biological
triplicates. The harvested samples were subjected to label‐free proteomics and
RNA‐Seq experiments to quantify the proteome and transcriptome in each condi‐
tion and replicate.

In addition to standard Edinburgh minimal media (EMM2, Petersen and Russell
2016), whose sole nitrogen source is 93.5 mM of ammonium chloride (NH4Cl, re‐
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ferred to as Amm) we used seven variations that each contained 20 mM of a single
amino acid (Trp, Gly, Phe, Ser, Ile, Pro, Glu) (Fantes and Nurse 1977; Carlson et al.
1999). The growth variables of the cultures are summarised in Figure 2.1C–E. The
steady‐state growth rates obtained ranged from ca. 0.05 h‐1 for Trp and Glu media
to ca. 0.28 h‐1 for Amm/EMM2. The cultures were grown for approximately 2–6
days depending on the nitrogen source.

2.3.2 ANOVA results show that many S. pombe genes/proteins are
differentially expressed

We first asked whether the fission yeast proteome composition differed signific‐
antly between the eight growth conditions. Strikingly, ~45% of the 1988 protein
groups robustly detected in all samples were significantly more variable across
conditions than among biological replicates (pANOVA

adj (Holm) < 0.05). This pervasive
level of gene regulation was also apparent at the transcriptome level where ~52%
of mRNAs showed significant variability. These results indicate that the compos‐
ition of the proteome and transcriptome are both strongly affected by conditions
that change the growth rate.

2.3.3 Hierarchical clustering of z-score transformed expression levels
distinguished between expression programmes

To investigate this variability further, we used the z‐score transformed protein
fraction of each gene for hierarchical clustering (Figure 2.2A, Methods). This
treatment enabled normalisation for protein expression levels across the proteome
while preserving the variation of each protein between conditions. We defined 10
clusters that revealed two major features of the datasets (Figure 2.2A‐C). First, all
clusters showed clear differences in protein expression across one or more condi‐
tions. Second, the expression of several proteins was not strictly condition‐specific
but instead showed a coordinated linear increase with growth rate (clusters 7 and
8). Interestingly, the total baseline expression of the condition‐specific clusters
was positively (clusters 7, 8, and 9), or negatively (clusters 1, 2, 3, and 6) correl‐
ated with the growth rate. Apart from clusters 1, 4, and 10, clusters were enriched
for defined functional categories, indicating that the shifting balance between
condition‐specific regulation and growth rate regulation may have physiological
consequences related to the enriched functions (Figures 2.2A and 2.3).
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Figure 2.1: Quantification of S. pombe cultures grown in eight minimal media
with varying nitrogen sources. A. Cartoon of the turbidostat cul‐
ture chamber indicating the control flow and the analysis pipeline. B.
One of the growth curves (Ile replicate 2) with the turbidostat growth
strategy indicated on the plot. C. Growth rates µ estimated from the
two‐fold dilution and regrowth cycle for the 8 growth media and 3 bio‐
logical replicates. D. Total number of generations NG experienced by
each culture. E. Total time T in hours that each culture spent in a tur‐
bidostat, with the duration of individual growth phases coloured as in
B. Note that, with Td = ln2

µ
the doubling time, NG = T

Td
.
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Figure 2.2: Initial exploration of growth‐rate dependent and nutrient‐specific
components in the fission yeast proteome. Figure printed on the
preceding page. A. Heatmap of hierarchical clustering analysis per‐
formed on proteome expression z‐scores for 1988 protein groups de‐
tected across all eight conditions, which are ordered by increasing
growth rate. The clusters are manually annotated with enriched cat‐
egories, which is shown in more detail in Figure 2.3. The colour scale
was truncated to −3 ⩽ z ⩽ 3. B. Total proteome mass fractions; C.
total DESeq2‐normalised counts for the clusters in A. together with
repeated‐median linear model (RMLM) fits and symmetric 95% con‐
fidence interval (CI). D. Flow chart of 2030 proteins detected across
all conditions detailing their assignment to the proteome (left) and
transcriptome (right) P‐, Q‐, and R‐sector. E. Total proteome mass
fractions; F. Total DESeq2‐normalised counts for the proteome (E.)
and transcriptome (F.) P‐, Q‐, and R‐sector in orange, grey, and blue,
respectively, with ordinary least squares (OLS) best fit and 95% CI.

Both modes of regulation were also apparent in the transcriptome data for cod‐
ing and non‐coding RNA (ncRNA) (Figures 2.2C, 2.4, and 2.5). Interestingly, most
ncRNAs showed clear and reproducible condition‐specific expression between rep‐
licates, suggesting the presence of active regulation, consistent with analyses us‐
ing different genetic and physiological conditions (Figure 2.5AB) (Atkinson et al.
2018). To test this hypothesis, we compared the expression patterns of ncRNA
from each cluster with the expression of their flanking coding genes (Figure 2.5CD).
We found that, apart from the growth‐rate correlated cluster 1, ncRNA expression
patterns were not generally mirrored by the neighbouring mRNA, although the
total expression of each cluster’s neighbouring genes reflected that of the ncRNA.
This indicates that many ncRNA are subjected to some level of independent reg‐
ulation, but that highly abundant transcription is mirrored between coding and
non‐coding regions. In summary, we find that regulation of gene expression pro‐
grammes across conditions that affect the growth rate has two components; one
which is condition‐specific and another which is coordinated with growth rate.
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Figure 2.5: Hierarchical clustering analysis of relative ncRNA abundances.
Figure printed on the previous page. A. Heatmap of hierarchical clus‐
tering analysis performed on transcriptome expression z‐scores for
1211 ncRNAs detected across all eight conditions, which are ordered by
increasing growth rate. The colour scale was truncated to −3 ⩽ z ⩽ 3.
B. Total DESeq2‐normalised counts for the clusters in A. together with
repeated‐median linear model (RMLM) fits and symmetric 95% con‐
fidence interval (CI). C. Heatmap of z‐scores for all transcripts that
neighbour the ncRNAs included in A. separated by cluster from fig‐
ure A. Annotations were taken from Atkinson et al. (2018). D. Total
DESeq2‐normalised counts for the neighbouring genes from C.

2.3.4 Repeated-median linear model fit parameters classified genes as
growth-related

We first focused our analysis on the growth‐dependent component of fission yeast
gene expression. Linear correlations between the expression of individual genes
and the growth rate have been observed in several organisms under different types
of growth limitation (Brauer et al. 2008; Hui et al. 2015; Peebo et al. 2015; A.
Schmidt et al. 2016; Metzl‐Raz et al. 2017; Zavřel et al. 2019). Following the ter‐
minology used in prokaryotes, we divided proteins and mRNA into three sectors
depending on whether they show a growth‐dependent component that was posit‐
ively (R), negatively (P), or not significantly (Q) correlated with the growth rate
(Scott et al. 2010, 2014). We used repeated‐median linear models to quantify the
linear coordination of each protein and mRNA quantity with growth. This model
fits a linear dependence in the presence of large numbers of outliers and is there‐
fore robust to the condition‐specific component of gene expression (Figure 2.6).

The linear fits generated two useful parameters. First, the slope of the linear re‐
gression is a measure of the strength of the dependence of a protein’s concentration
on the growth rate. Second, its y‐intercept represents the fraction of the protein
numbers that is not directly dependent on growth. Both parameters are directly
correlated with expression levels making it difficult to disentangle the strength of
the growth‐rate‐related regulation from an mRNA or protein from its abundance.
To take this into account, we developed a normalised measure of growth depend‐
ence (Methods, Figure 2.6GH), defined as the ratio of the spread in expression
level between zero and maximum growth and the median expression. It therefore
denotes the “fold change” or FC of growth rate changes relative to an intermedi‐
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Figure 2.6: Examples of repeated‐median linear model fits for selected genes.
A.–F. Proteome expression and repeated‐median linear model (RMLM)
best fit in solid black and 95% confidence interval in grey, as well as
ordinary least squares (OLS) best fit in dashed grey for example pro‐
tein groups Rpl402, Suc22, Hht1/Hht2/Hht3, Snz1, Ubi3/Ubi4/Ubi5,
and Mae2. G.Graphical explanation of the fold change (FC) calculation
for the example protein Rpl402, indicating the relationship between
FC values, slope, and y‐intercept. H. Illustrative growth law shapes
for a series of FC values.
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ate baseline. FC values are a combination of the regression slope and y‐intercept
which do not scale with abundance, thereby enabling a direct comparison of the
growth‐dependence of single genes or groups thereof.

Repeated‐median linear models captured the growth‐dependent component of
the 10 clusters from Figure 2.2, and proteins from the R and P sectors dominated
the clusters that were positively and negatively correlated with growth, respect‐
ively (Figure 2.7). Of all the genes detected in the proteome across the eight con‐
ditions examined, we found that 22% of proteins and 37% of mRNA belonged to
the R sector; similarly, 24% and 21% of the proteins and mRNA belonged to the P
sector, respectively. The protein and mRNA of a given gene belonged to the same
sector in 53% of the cases (Figure 2.2D). When they did not, the mRNA of P or R
proteins were mostly assigned to the Q sector and vice versa, with only 19 R pro‐
teins having P sector mRNA, and 55 P proteins having R sector mRNA, out of the
2033 proteins detected.

In quantitative terms, the total proteome mass fraction of the fission yeast R sec‐
tor ranged between ~20% at zero growth and 55% for the fastest measured growth
rate, whereas the mass fraction of the P sector similarly ranged from ~30% to 10%
(Figure 2.2E). The sum of all Q sector proteins was negatively correlated with the
growth rate because proteome fractions add up to one by definition. However,
none of the individual proteins showed significant correlation with the growth
rate. At the mRNA level, the R fraction ranged from 38% to 59% of the total nor‐
malised counts, and the P fraction from 19% to 10% (Figure 2.2F). Thus, during
fast growth, over half of the gene expression burden is dedicated to factors that in‐
crease in concentration with growth rate and may therefore be limiting. Moreover,
the amplitude of the variability in the concentration of fission yeast proteins and
mRNA that depend on the growth rate alone is in the order of magnitude of the
cut‐offs that are commonly used for differential expression analysis. Therefore,
differences in growth rate are important factors that affect interpretation of tran‐
scriptomics and proteomics data (R. Yu et al. 2021).

2.3.5 Growth dependent gene expression is preserved between mRNA
and protein

Having obtained both transcriptomics and proteomics data for the same cultures
enabled us to compare the two levels of gene expression in a unified data set. To
perform a like‐for‐like comparison, we converted our expression measure in both
data sets to relative number fractions (Balakrishnan et al. 2021). First, we explored
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the correlation between protein and mRNA levels averaged across all genes, us‐
ing the Spearman correction to account for the varying reproducibility of the data
(Csárdi et al. 2015; Franks et al. 2017). mRNA reliabilities were in the range of
97.5‐99.8% and protein reliabilities were between 92.8‐97.6% (Figures 2.8 and
2.9). Spearman‐corrected correlations of log‐transformed relative protein and
mRNA levels were ~0.8 for most conditions, with a slightly elevated correlation
in EMM2 reference medium and slightly smaller correlation in Trp medium (Fig‐
ures 2.10 and 2.11A). Furthermore, we found evidence of post‐transcriptional amp‐
lification: the ratio of protein to mRNA generally increased with protein expres‐
sion, but a plateau was reached at very high expressions (Figure 2.12). This agrees
with earlier observations (Marguerat et al. 2012). In summary, our analysis indic‐
ates that mRNA expression levels are globally good predictors of proteome com‐
position in our system.
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Figure 2.8: Protein number fraction densities comparing expression pairwise
between the three biological replicates. Left column: replicate 1
is plotted along the x‐axis and replicate 2 along the y‐axis; middle
column: replicate 1 on the x‐axis and replicate 3 on the y‐axis; right
column: replicates 2 and 3.
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53



1 2 3

Trp
G

ly
Phe

Ser
Ile

Pro
G

lu
Am

m

-20 -10 0 -20 -10 0 -20 -10 0

-20

-10

0

-20

-10

0

-20

-10

0

-20

-10

0

-20

-10

0

-20

-10

0

-20

-10

0

-20

-10

0

log2 (ψM )

lo
g 2

(ψ
P
)

0.000

0.005

0.010

0.015

0.020

density

Figure 2.10: Protein/RNA number fraction density plots comparing protein
and RNA expression in each sample. All eight growth conditions
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Figure 2.11: Comparison of relative protein and transcript expression levels.
Figure printed on the preceding page. A. Pairwise correlations
between mRNA and protein number fractions (small circles) with
their geometric means (large circles) and Spearman‐corrected best
estimates (squares). B. Heatmap of residual log2‐transformed
protein‐to‐mRNA ratio per‐gene per‐sample, with genes clustered
hierarchically. C. Transcriptome and proteome repeated‐median lin‐
ear model (RMLM) fold changes (FC) for 2030 genes detected in all
conditions in both data sets. Proteome and transcriptome sectors are
indicated by colours for genes significantly correlated with growth
rate in both data sets. A functional enrichment of the off‐diagonal
groups is shown in Figure 2.14. D. Scatter plot of proteome and tran‐
scriptome normalised enrichment scores (NES) for GO‐slim terms
subjected to gene set enrichment analyses (GSEAs). For this analysis,
genes were ranked based on the p‐values of their RMLM fit in pro‐
teome and transcriptome. GO‐slim terms are coloured based on the
adjusted p‐values of their GSEAs; terms with padj < 10−9 in either or
both of the analyses are labelled.

Second, we explored the extent of post‐transcriptional regulation for each given
gene in different growth media. For each gene, we calculated the log2‐transformed
ratio of protein and mRNA relative number fractions and subtracted from this
the median ratio across conditions (Franks et al. 2017). Subsequently, we per‐
formed hierarchical clustering analysis (Figure 2.11B) and a functional enrichment
of the clusters (Figure 2.13). There was little if any growth‐dependent variation in
the resulting residual protein‐to‐RNA ratios (Figure 2.11B). However, some genes
showed signs of medium‐specific post‐transcriptional regulation, prominent in
Trp, Ile and Glu (clusters 1–6). Notably, clusters 4 and 5 contained genes with
elevated protein‐to‐mRNA ratios in Ile and Glu, but repressed ratios in Pro, Ser,
Phe, and (chiefly) Trp. The enrichment analysis highlighted a moderate enrich‐
ment for metabolism in cluster 5.

Next, we compared the size of the growth‐rate dependent effects between pro‐
tein and mRNA by contrasting the fold change measures of genes present in both
data sets. As shown in Figure 2.11C and in accordance with Figures 2.2D and 2.7,
the RMLMs showed good agreement between the two types of data. Protein FC
measures were generally larger than transcript FCs, again highlighting the post‐
transcriptional amplification. Further study of the disagreeing genes showed a
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Figure 2.12: Density plots of protein number fractions versus protein‐to‐
mRNA ratios in each sample. All eight growth conditions and three
biological replicates are included.
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growth‐rate correlations between proteome and transcriptome.
Log‐transformed local false discovery rates lfdr are shown for the
three Gene Ontology namespaces and capped at lfdr = 1.0 × 10−3.
Overrepresentation analyses were performed as one‐sided Fisher ex‐
act tests and only lists with lfdr < 0.05 are shown; the numbers of
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minor enrichment of proteasomal genes in the group with negative growth‐rate
correlations in the proteome and positive growth‐rate correlations in the tran‐
scriptome (Figure 2.14).

Finally, we compared mRNA and protein growth‐related regulation for a series
of functional categories using an unbiased gene set enrichment analysis, ranking
genes on the signed significance measure used to determine the P‐ and R‐sector.
This showed that most categories showed a similar growth‐related regulation for
both mRNA and proteins (Figure 2.11D). This finding was robust to changing the
ranking variable to the effect size (FC) instead of the significance (figure 2.15B).
Transcripts for transcription factors, and for proteins generally bound to the chro‐
mosome, were an exception (Figure 2.11D). This was due to limited coverage in the
proteomics data for these categories (Figure 2.15A). Specific functional categories
will be discussed below.
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2.3.6 R sector proteins participate in all steps of the protein synthesis
process

We next queried the cellular processes that had a strong R component and could
therefore be either limiting for growth or regulated by it. We used a curated list
of macromolecular complexes spanning most cellular processes and calculated the
proportion of each complex subunit that was growth rate‐dependent in each cat‐
egory (Figures 2.16 and 2.17) (Gene Ontology Consortium 2019; Lock et al. 2019).
As observed in prokaryotes and budding yeast, the top 4 categories relying the
most on R proteins belonged to a single process: the synthesis of proteins (Fig‐
ure 2.16AB). Strikingly, R complexes were found at every single step of protein syn‐
thesis: the transcription of rRNAs and tRNAs and their processing, assembly and
post‐translational modification of the ribosome, and initiation and termination of
translation (Figure 2.16B). Interestingly, expression of the chromatin‐modifying
complexes NuA4 and Ino80 were part of the R sector (Figure 2.16C), suggesting
they may be involved in ribosome biogenesis in fission yeast as has been proposed
for NuA4 in budding yeast (Uprety et al. 2015). Alternatively, these results could
indicate that the chromatin structure and levels of histone modification may be
limiting for growth.
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Figure 2.16: Functional categorisation of proteins positively correlated with
growth rate. Figure printed on the previous page. A. Proportions of
P‐, Q‐, and R‐sector genes across manually assigned categories of pro‐
tein complex annotations. Numbers of complexes (C) and genes (G)
are indicated for each category. B. and C. Volcano plots summarising
repeated‐median linear model (RMLM) fits (of total transcriptome
expression (total normalised counts) against growth rate) for each
protein complex. Log‐transformed q‐values are plotted against fold
change (FC) measures for each complex. Categories “snoRNA reg‐
ulation”, “protein translation”, “ribosomal proteins”, and “ribosome
biogenesis” are shown in B., and “mRNA regulation” and “chromatin
regulation” are shown in C. D. Aggregate normalised counts for sub‐
units of RNA polymerases I (left), II (middle), and III (right) plotted
as a function of growth rate. Total expression of subunits unique to
each one of the three complexes is highlighted in vermillion whereas
total expression of genes not necessarily unique is plotted in grey.
RMLM fits and 95% confidence intervals are indicated.

The overall correlation between growth and the factors involved in protein syn‐
thesis had a notable exception. Although RNA polymerase (RNAP) I and specific
subunits of RNAPIII were part of the R sector, RNA polymerase II specific subunits
were not significantly correlated with growth rate (Figure 2.16B–D). Therefore, the
number of RNAP II complexes is unlikely to be a limiting step in protein production
during growth. Interestingly, RNAP II numbers were found to be limiting for the
scaling of gene expression to cell size, indicating that coordination of gene expres‐
sion to cell size and growth rate follow different mechanisms (Padovan‐Merhar
et al. 2015; Sun et al. 2020).

2.3.7 The stoichiometry of translation complexes changes with the
growth rate

Differences in FC values between protein complexes indicate that their relative
levels or stoichiometry changes with the growth rate. We hypothesised that these
variations could provide mechanistic insights into the functioning of these com‐
plexes. To investigate this in the context of protein translation, we analysed three
non‐overlapping subclasses of translation proteins: the ribosomal proteins (RP),
the ribosome biogenesis regulon (RiBi), and the translation initiation, elongation
and termination factors (IET). The FC value for the IET class was the smallest of the
three, whereas the trend line for RPs was the steepest (Figures 2.18A and 2.19A).
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Figure 2.17: Volcano plots summarising repeated‐median linear model
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and C. Log‐transformed q‐values are plotted against fold change (FC)
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As a result, the ratios between IET and RPs was significantly higher at slow growth
(Figure 2.18B). It has been shown that RPs are held in reserve at slow growth rates
(Metzl‐Raz et al. 2017); these results suggest that an even larger fraction of IET
and possibly RiBi proteins could be held in reserve. The relative abundances in
EMM of IET:RiBi:RP were approximately 4:1:8 for the proteome mass fractions
and 5:4:64 for the transcriptome RPKMs. This confirms earlier observations that
the burden on transcription for RP synthesis is higher than for the rest of the pro‐
teome (M. W. Schmidt et al. 2007; Marguerat et al. 2012). The growth laws for the
initiation and elongation factors were almost identical to each other, suggesting
constant stoichiometry with the growth rate (Figure 2.19BC). Within the IET cat‐
egory, elongation factors were about three times as abundant as initiation factors,
and about fifty times compared to termination factors (Figure 2.19BC). This is in
line with biochemical evidence showing that translation initiation is a limiting step
for protein synthesis (Aylett and Ban 2017). Taken together, we have shown how
the growth law can inform on the regulation of gene expression through changes
in the stoichiometry of factors with the growth rate.
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Figure 2.18: Analysis of translational proteins and of proteins negatively cor‐
relatedwith the growth rate in S. pombe. Figure printed on the pre‐
ceding page. A. Total proteome fractions as a function of growth rate
for proteins involved in translation initiation, elongation, and ter‐
mination (IET; left panel), ribosome biogenesis (RiBi; middle panel),
and ribosomal proteins (RP; right panel). Repeated‐median linear
model (RMLM) best fits and 95% confidence intervals (CIs) based on
a bootstrapping analysis are shown in black and grey. The RMLM fold
change (FC) measure and standard deviation according to the boot‐
strapping analysis are printed on the figure. B. Ratios of proteome
mass fractions of the three categories. Superimposed are the best‐fit
ratios and 95% CIs, as determined by the bootstrapped models fit‐
ted to the data in A. C. FC measures for all individual protein groups
assigned to the IET, RiBi, and RP categories as a function of their me‐
dian expression. D. Ribosomal protein mass fraction as a function
of growth rate for S. pombe (this study: Kleijn et al. 2022), E. coli
(reanalysed from A. Schmidt et al. 2016, see also Figure 2.22), and S.
cerevisiae (fit parameters taken from Metzl‐Raz et al. 2017). E. Vol‐
cano plots summarising repeated‐median linear model (RMLM) fits
(of total proteome expression against growth rate) for each GO‐slim
term and literature list (Mata et al. 2002; D. Chen et al. 2003; Rustici
et al. 2004; Rallis et al. 2013; Kamrad et al. 2020). Log‐transformed
q‐values are plotted against fold change (FC) measures for each gene
class. Lists with q < 0.001 are plotted in blue, biological_process GO‐
slim terms related to metabolism are in green, the stress and growth
modules from D. Chen et al. (2003) in vermillion, and cell cycle in‐
duced modules from Rustici et al. (2004) are in orange. F. Total pro‐
teome mass fractions with RMLM best‐fit and symmetric 95% CIs
for the growth module (core environmental stress response (CESR)
repressed) and stress module (CESR induced). G. Assignment of pro‐
teins and corresponding transcripts to growth correlation categories
for growth and stress modules; proteins (Prot) and corresponding
transcripts (Trans) are connected by lines with colours that match to
the protein classification.
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2.3.8 Most ribosomal proteins are coordinately expressed

Furthermore, the large burden of RPs during fast growth resulted from the co‐
ordinated growth‐related expression of most individual RPs and from a growth
dependence component steeper than that of IET and RiBi (Figure 2.18C). This in‐
dicates that the aggregate burden of RPs results from coordinated regulation at
the level of single genes (Petibon et al. 2020). The IET and RiBi categories also
contained more proteins that were assigned to the P‐ and Q‐sectors, and whose
expression data was not well explained by the robust model due to significant
condition‐dependent expression (Figures 2.20 and 2.21). For instance, the initi‐
ation factor eIF3E was present in sub‐stoichiometric amounts relative to eIF3A.
Interestingly eIF3E has been shown to selectively regulate the translation of tran‐
scripts coding for metabolic enzymes (Shah et al. 2016).

Sixteen protein groups annotated as RPs were assigned to the Q‐sector because
their expression was not significantly positively correlated with the growth rate
and we here explore these Q‐RPs further (Figure 2.21). Their relative protein
abundances were slightly lower than those of RPs that did belong to the R sec‐
tor (R‐RPs, see Figure 2.21A). However, median transcript abundances and FC val‐
ues were not significantly different between Q‐RPs and R‐RPs (Figure 2.21B). This
opens the possibility of regulatory feedback at the post‐transcriptional level. In‐
terestingly, half of these Q‐RPs (Rlp7, Rpl102, Rpl2501, Rpl35A02, Rps1502, Rps20,
Rps27, and Rps2801, and Rps2802) are annotated with functions in ribosome bio‐
genesis on the PomBase database (Lock et al. 2019). Additionally, the budding
yeast orthologue of Q‐RP Rps20 has been proposed to regulate RNAPIII transcrip‐
tion, providing a potential link between ribosomes and tRNA synthesis (Warner
and McIntosh 2009). Together this suggests that Q‐RPs could be attractive can‐
didate proteins that could have additional functions outside of the ribosome.
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Figure 2.19: Further analysis of translational proteins in S. pombe. A. His‐
tograms of parameters for bootstrap analysis of Figure 2.18A show‐
ing fold change (FC), intercept, and slope. B. Total proteome frac‐
tions as a function of growth rate for proteins involved in translation
initiation (I), elongation (E), and termination (T). Repeated‐median
linear model (RMLM) best fits and 95% confidence intervals (CIs)
based on a bootstrapping analysis are shown in black and grey. The
RMLM fold change (FC) measure and standard deviation according
to the bootstrapping analysis are printed on the figure. C. Ratios
of proteome mass fractions of the three IET subcategories. Super‐
imposed are the best‐fit ratios and 95% CIs, as determined by the
bootstrapped models fitted to the data in A.
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Figure 2.20: Further analysis of translational proteins not significantly pos‐
itively correlated with growth rate. Figure printed on the previ‐
ous page. A. Scatter plot of normalised sum of squared residuals
(SSR) and coefficient of determination R2of the repeated‐median lin‐
ear model (RMLM) best fits for protein groups annotated to proteins
involved in translation initiation, elongation, and termination (IET;
left panel), ribosome biogenesis (RiBi; middle panel), and ribosomal
proteins (RP; right panel). Q‐sector proteins were labelled if their
normalised SSR was greater than 0.2; R‐sector at a threshold of 0.1;
all P‐sector proteins were labelled. proteins involved in translation
initiation, elongation, and termination (IET; left panel), ribosome
biogenesis (RiBi; middle panel), and ribosomal proteins (RP; right
panel). B.‐C. Proteome expression and repeated‐median linear model
(RMLM) best fit in solid black and 95% confidence interval in grey
for translation elongation and termination factor eIF5A (Tif512, B.)
and translation initiation factor eIF3e (Int6, C.). D. Observed pro‐
tein mass ratios of Int6 and major eIF3 subunit Tif301 across growth
conditions.
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Figure 2.21: Expression of ribosomal proteins (RPs) not significantly posit‐
ively correlated with growth rate. Figure printed on the preced‐
ing page. A. Violin and box plots of median proteome mass fractions
across conditions for RPs in Q‐ and R‐sector. B. Scatter plot of relat‐
ive transcriptome abundances (DESeq2 normalised counts) and tran‐
scriptome repeated‐median linear model fold changes (FC) for RPs in
Q‐ and R‐sector. C. Proteome expression and repeated‐median linear
model (RMLM) best fit in solid black and 95% confidence interval in
grey for the 16 Q‐sector RPs and the P‐sector protein group compris‐
ing ubiquitin (Ubi4) and ubiquitin‐RP fusion proteins Ubi3 and Ubi5.

2.3.9 The findings on translational proteins were confirmed in E. coli

Principles of proteome allocation are often conserved in prokaryotes and euka‐
ryotes despite significant mechanistic differences in the way genes are transcribed
and translated (Dai and Zhu 2020). Therefore, we thought to compare our findings
in fission yeast with published datasets from the budding yeast S. cerevisiae and
the bacterium E. coli (A. Schmidt et al. 2016; Metzl‐Raz et al. 2017). We reana‐
lysed published proteomics data for E. coli cells growing at different rates in a
series of environmental conditions to extract the relative proteome fractions, and
we subsequently computed the growth law parameters for translational proteins
(A. Schmidt et al. 2016). For S. cerevisiae, we used growth law parameters of ri‐
bosomal proteins published elsewhere (Metzl‐Raz et al. 2017). We found that E.
coli could sustain a given growth rate with a smaller fraction of RPs than both
yeasts, which was primarily due to a smaller growth law slope (Figure 2.18D).
This suggests that the effective translation rate in the yeasts is lower than that
of E. coli. Among the two yeasts, fission yeast used its RPs significantly more
efficiently—using a smaller RP mass fraction to sustain any given growth rate—
than the budding yeast trend line, but the effect could not be assigned to a signi‐
ficant difference in either the slope or the intercept parameter specifically. Next,
we asked whether the changes in stoichiometry of translational proteins during
slow growth were conserved in E. coli. Again, both the IET/RP and RiBi/RP ratios
were higher during slower growth (Figure 2.22AB), because the individual RPs had
steeper growth laws (Figure 2.22C). A steeper growth law of RPs than that of elong‐
ation factors was recently predicted by a model of E. coli that minimised the total
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expression cost (Hu et al. 2020). Our results indicate that allocation strategies are
conserved even though protein production differs mechanistically between the two
kingdoms.

2.3.10 P sector proteins are part of the core environmental stress
response programme

To complement our analysis of the R sector, we next examined fission yeast pro‐
teins from the P sector, i.e., proteins with a negative growth‐dependent compon‐
ent. In contrast to the R sector clusters 1 and 2, we could not identify P sector
clusters whose expression could be explained exclusively by a negative growth
rate correlation (Figure 2.2A‐C). This indicates that proteins with a strong P com‐
ponent are also often regulated in response to specific nitrogen sources. Moreover,
the growth component for P proteins was less significant overall than for R pro‐
teins (Figure 2.23A–B). These results suggest that regulation of the R and P sectors
may differ mechanistically.

Unlike R proteins, which are mostly involved in protein production, P proteins
belonged to a diverse set of complexes participating in a large array of functions
(Figure 2.16). As individual proteins, they showed weaker correlations than R
sector complexes (Figure 2.23C–D). To determine if this diverse set of P proteins
was participating in a common higher‐level functional programme we analysed
the fission yeast GO‐slims alongside 21 lists covering fission yeast physiology and
environmental responses (Figures 2.18E and 2.24A) (Mata et al. 2002; D. Chen
et al. 2003; Rustici et al. 2004; Rallis et al. 2013; Kamrad et al. 2020). Func‐
tional classes with strong P‐sector components included vacuole biology, endo‐
some and phagosome, transport and genes induced in the adaptation to nitro‐
gen removal, and/or after treatment with caffeine and rapamycin. The latter two
classes, which had the strongest response, are thought to be controlled by TORC1
(Mata et al. 2002; Rallis et al. 2013). This suggests that nitrogen sources support‐
ing slower growth rates trigger a form of metabolic stress response. Accordingly,
the total expression of the fission yeast core environmental stress response pro‐
gramme up‐regulated genes (CESR up) was negatively correlated with the growth
rate (Figure 2.18F). This stress module comprises genes induced in response to a
wide range of environmental and genetic perturbations (D. Chen et al. 2003; Pan‐
caldi et al. 2010). Conversely, genes down‐regulated as part of the CESR response
(CESR down, also called growth module) belonged to the R sector (Figures 2.18F–G
and 2.24B). This finding validates the long‐standing hypothesis that the balanced
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Figure 2.22: Analysis of translational proteins in E. coli. Data from A. Schmidt
et al. (2016) was reanalysed to generate this figure. A. Total pro‐
teome fractions as a function of growth rate for proteins involved in
translation initiation, elongation, and termination (IET; left panel),
ribosome biogenesis (RiBi; middle panel), and ribosomal proteins
(RP; right panel). Repeated‐median linear model (RMLM) best fits
and 95% confidence intervals (CIs) based on a bootstrapping ana‐
lysis are shown in black and grey. The RMLM fold change (FC) meas‐
ure and standard deviation according to the bootstrapping analysis
are printed on the figure. B. Ratios of proteome mass fractions of
the three categories. Superimposed are the best‐fit ratios and 95%
CIs, as determined by the bootstrapped models fitted to the data in A.
C. FC measures for all individual protein groups assigned to the IET,
RiBi, and RP categories as a function of their median expression.
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Figure 2.23: Analysis of residuals to repeated‐median linear models (RMLMs)
for R‐ and P‐sector proteins. A. Violin and box plots of normal‐
ised sum of squared residuals (SSR) of the repeated‐median linear
model (RMLM) best fits for protein groups belonging to the P‐ or R‐
sector. B. As A. for the RMLM coefficients of determination R2. C.
Scatter plot of normalised SSR and R2 for all protein groups coloured
by their proteome sector. D. Subset of C. for protein groups belonging
to clusters 2, 7, and 9 from the analysis first plotted in Figure 2.3A.
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expression of the fission yeast stress response is quantitatively connected with the
growth rate (López‐Maury et al. 2008). Additionally, P proteins were enriched for
factors regulated during the S phases of the cell cycle, which is consistent with
evidence that the cell‐cycle phase length differs between nitrogen sources, in par‐
ticular growth on Trp (Figures 2.18F and 2.24C–D) (Carlson et al. 1999; Rustici
et al. 2004). Notably, we did not observe a simple relationship between the ex‐
pression of cell cycle markers and the growth rate (Figure 2.24E). This is in line
with earlier flow cytometry and microscopy data, which did not find a straight‐
forward relationship between the length of cell cycle phases and the growth rate
upon growth on different nitrogen sources (Carlson et al. 1999).
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Figure 2.24: Further analysis of genes negatively correlated with the growth
rate in S. pombe. Figure printed on the previous page. A. Volcano
plots summarising repeated‐median linear model (RMLM) fits (of
total transcriptome expression against growth rate) for each GO‐slim
term and literature list (Mata et al. 2002; D. Chen et al. 2003; Rustici
et al. 2004; Rallis et al. 2013; Kamrad et al. 2020). Log‐transformed
q‐values are plotted against fold change (FC) measures for each gene
class. Lists with q < 0.001 are plotted in blue, biological_process
GO‐slim terms related to metabolism are in green, the stress and
growth modules from D. Chen et al. (2003) in vermillion, and cell
cycle induced modules from Rustici et al. (2004) are in orange. B.
Total transcriptome expression with RMLM best‐fit and symmetric
95% CIs for the growth module (core environmental stress response
(CESR) repressed) and stress module (CESR induced). C. andD. Total
proteome (C.) and transcriptome (D.) expression with RMLM best‐fit
and symmetric 95% CIs for S‐phase induced periodic genes (Rustici
et al. 2004). E. Scatter plot of total transcriptome (left) and pro‐
teome (right) expression levels for M‐phase versus G1‐phase induced
periodic genes (Rustici et al. 2004).

2.3.11 The burden of specific metabolic pathways is principally
condition-dependent

Notably, the functional classes involved in metabolism were not strongly negat‐
ively correlated with the growth rate (Figure 2.18E) and the fission yeast P sector
was only marginally enriched in proteins involved in central and energy metabol‐
ism (Figure 2.25). This contrasts with previous data from E. coli and S. cerevisiae
where metabolic genes have been reported to be important components of the P
sector (Hui et al. 2015; A. Schmidt et al. 2016; Metzl‐Raz et al. 2017). However,
when considered globally, the sum of protein mass fractions dedicated to meta‐
bolic enzymes was clearly anti‐correlated with growth in fission yeast, ranging
from ~70% of the proteome in poor nitrogen sources to ~55% in the fastest media
(Figure 2.26A). This indicates that in our system which does not rely on titration
of a limiting nutrient to modulate the growth rate, the total protein burden on
metabolism is linked to the growth rate, whereas allocation to specific enzymes
is not. Therefore, the global anti‐correlation of metabolic enzymes with growth
rate observed in our data may be a manifestation of the trade‐off between meta‐
bolism and translation, and not the result of the direct quantitative regulation of
metabolic enzymes expression with the growth rate.
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Figure 2.25: Scatter plot visualisation of GO‐slim enrichment analysis of pro‐
teins negatively correlated with growth rate. Log‐transformed q‐
values plotted against the number of genes detected across all con‐
ditions in the S. pombe proteome for each GO‐slim term. GO‐slim
terms with q < 0.05 are plotted in blue and the threshold is high‐
lighted in the figure; the biological_process GO‐slim terms related to
metabolism are plotted in green.
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Figure 2.26: Exploratory analysis of metabolic enzyme expression. Figure
printed on the preceding page. A. Total proteome fractions as a func‐
tion of growth rate for proteins involved in translation and ribosome
biogenesis, energy metabolism and transport, and all other genes.
B. Bar graphs of median aggregate proteome mass fraction stacked
by metabolic protein category, separated by condition and plotted as
a function of growth rate. C. As B. for proteins in oxidative phos‐
phorylation (OXPHOS) and TCA cycle, proteins annotated with “gen‐
eration of precursor metabolites and energy” and none of the other
4 categories from B., as well as the Adh1 and Pdc101 proteins mak‐
ing up the ethanol fermentation pathway. D. Principal component
1 (PC1) contribution to protein expression across growth conditions
as a function of growth rate. E. PCA biplot of protein groups detec‐
ted across all growth conditions. Areas with greater than 50% of
expression variance explained by PC1 are shaded in yellow (negat‐
ive correlation with PC1, WFSP‐ list) and pink (positive correlation,
WFSP+ list). Enzymes comprising glycolysis and ethanol ferment‐
ation are indicated as blue points. F. Illustration of glycolysis and
ethanol fermentation pathways, with WFSP proteins coloured as in
E. G. Observed protein mass ratios of Adh1 and Tdh1 proteins across
growth conditions, with cartoon indicating their functions. H. As G.
for NADH dehydrogenase proteins Nde1 and Ndi1. I.–J.Observed pro‐
tein mass ratios of isocitrate dehydrogenase subunits Idh2/Idh1 (I.)
and alpha‐ketoglutarate dehydrogenase subunits Dld1/Kgd1.

On top of the growth‐dependent components, many fission yeast proteins showed
clear condition‐specific gene regulation (Figure 2.2ABC). Functional analysis in‐
dicated an enrichment of these genes for functions related to metabolism. This is
consistent with the adoption of distinct metabolic allocation strategies in response
to growth with different nitrogen sources (Alam et al. 2016; Mülleder et al. 2016).
We classified metabolic genes into six non‐overlapping classes based on the fol‐
lowing GO terms: canonical glycolysis (GO:0061621), generation of precursors and
energy (GO:0006091), cellular amino acid metabolic process (GO:0006520, which
includes the interconversion of ammonium, glutamate, and glutamine), lipid meta‐
bolic process (GO:0006629), vitamin metabolic process (GO:0006766), and all
other metabolic pathways (including transport of metabolites) (Figures 2.26B,
2.27). To avoid overestimating the burden of gene expression by double‐counting
genes assigned to multiple terms, each protein was assigned only to the first of
these GO‐terms it was annotated with. The relative allocation to each class was
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Figure 2.27: Aggregate growth rate models of metabolic proteins. Total pro‐
teome mass fractions and repeated‐median linear model (RMLM)
best fit in solid black and 95% confidence interval in grey for 6 cat‐
egories of proteins covering metabolism (see Figure 2.26B).

condition‐specific, indicating that metabolic states rely differentially on specific
pathways (Figure 2.26B). We note that similar growth rates can be supported by
different allocation strategies, as in the case of the Trp and Gly containing media in
which cells channelled resources preferentially towards glycolysis (Trp) or amino
acid metabolism (Gly) (Figures 2.26B and 2.27). The growth‐related components
of those categories were weak, except for the vitamin metabolism proteins which
belonged to the R sector and the precursor/energy proteins that showed a signific‐
ant P component (see below, Figure 2.27). Most coenzymes are stable molecules
synthesised only as much as necessary to support growth (Hartl et al. 2017). The
strong positive correlation of vitamin metabolism expression with growth rate sug‐
gests that cells also minimise the translation burden of vitamin metabolic enzymes.
In summary expression of metabolic enzymes in our system, although connected
to the growth rate, is mainly condition‐ and pathway‐specific.
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We next took a closer look at the energy metabolism pathways and their neg‐
ative correlation with the growth rate. Nutrient quality, cell growth, and energy
metabolism are intimately connected. The generation of ATP through fermentation
is often favoured in conditions that support faster growth whereas slow‐growing
cells in limiting conditions tend to switch to respiratory metabolism (Vander Heiden
et al. 2009; Shimizu and Matsuoka 2018). Therefore, we asked whether protein
allocation to either energy metabolism pathway was correlated with the nitro‐
gen sources used and/or growth rate. To this end, we split the non‐glycolytic
generation of precursors and energy category into the fermentation enzymes pyr‐
uvate decarboxylase (Pdc101) and alcohol dehydrogenase (Adh1), and the respira‐
tion process into tricarboxylic acid cycle (TCA, GO: 0006099) and oxidative phos‐
phorylation (OXPHOS, GO:0006119) enzymes (Figures 2.26C and 2.28). Surpris‐
ingly, none of the categories were consistently correlated with the growth rate.
Instead, condition‐specific expression was dominant, and a clear repression of all
OXPHOS complexes upon growth on serine was observed (Figure 2.29). A recent
report showed that serine catabolism generates high levels of reactive oxygen spe‐
cies (ROS) in S. pombe, suggesting that respiration may be repressed upon growth
on serine to avoid a further increase in ROS (Kanou et al. 2020). Notably, expres‐
sion of the fermentation enzymes Adh1 and Pdc101, although variable between
conditions, was consistently higher than the total expression of the respiratory
enzymes. Moreover, respiratory enzymes were not induced in nitrogen sources
supporting slow growth. Taken together, the expression balance between ferment‐
ation and respiratory enzymes was not quantitatively connected to the growth rate,
but depended on the nutrient properties.
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Figure 2.28: Aggregate growth rate models of energy metabolism proteins.
Total proteome mass fractions and repeated‐median linear model
(RMLM) best fit in solid black and 95% confidence interval in grey for
5 subcategories of energy metabolism proteins (see Figure 2.26C).

85



0e+00

1e-04

2e-04

3e-04

4e-04

0.0 0.1 0.2 0.3

Growth rate (h−1)

Pr
ot

eo
m

e 
m

as
s 

fra
ct

io
n

NADH dehydrogenase

Ndi1

0.000

0.001

0.002

0.0 0.1 0.2 0.3

Growth rate (h−1)
Pr

ot
eo

m
e 

m
as

s 
fra

ct
io

n

succinate dehydrogenase

Sdh1 Sdh2 Sdh3

Tim18

0.000

0.001

0.002

0.003

0.004

0.0 0.1 0.2 0.3

Growth rate (h−1)

Pr
ot

eo
m

e 
m

as
s 

fra
ct

io
n

cytochrome c reductase

Cob1 Cyt1 Qcr10

Qcr2 Qcr6 Qcr7

Qcr8 Qcr9 Rip1

0.00000

0.00005

0.00010

0.00015

0.00020

0.0 0.1 0.2 0.3

Growth rate (h−1)

Pr
ot

eo
m

e 
m

as
s 

fra
ct

io
n

cytochrome c

Cyc1

0.0000

0.0005

0.0010

0.0015

0.0020

0.0 0.1 0.2 0.3

Growth rate (h−1)

Pr
ot

eo
m

e 
m

as
s 

fra
ct

io
n

cytochrome c oxidase

Cox1 Cox12 Cox13

Cox2 Cox3 Cox4

Cox5 Cox6 Cox7

Cox8 Cox9

0.000

0.002

0.004

0.006

0.0 0.1 0.2 0.3

Growth rate (h−1)

Pr
ot

eo
m

e 
m

as
s 

fra
ct

io
n

F1-FO ATP synthase

Atp1 Atp2 Atp3

Atp4 Atp5 Atp6

Atp7 Atp8 Atp9

Atp14 Atp15 Atp16

Atp17 Atp18 Atp19

Atp20 Tim11

(Caption on the next page.)

86



Figure 2.29: Aggregate growth rate models and individual bar code plots for
proteins comprising the complexes involved in the respiratory
electron transport chain and proton pumps. Repeated‐median lin‐
ear model (RMLM) best fit in solid black and 95% confidence interval
are indicated in grey. Figure printed on the previous page.

2.3.12 Two groups of four conditions each were characterised by
different expression patterns, chiefly in glycolysis and
NAD-dependent metabolism

To complement this analysis, we searched for condition‐specific patterns of pro‐
tein expression that were not related to the growth rate in our proteomics dataset
using principal component analysis (PCA) (Figure 2.30). The first principal com‐
ponent (PC1) explained 29% of the total variance and split the culture conditions
in two irrespective of the growth rate with Trp (W), Phe (F), Ser (S), and Pro (P)
in one group (from here on termed the WFSP media) and Gly (G), Ile (I), Glu (E)
and Amm in the other (Figure 2.26D). Strikingly 24% (474/1988) of proteins had
more than 50% of their variance explained by PC1. We defined two large classes of
protein based on their response to this component: i) WFSP+ consisting of 259 pro‐
teins that were positively correlated with PC1 and therefore induced in the WFSP
media; ii) WFSP‐ characterised by 215 proteins with expression negatively correl‐
ated with PC1 and therefore repressed in the WFSP media. Interestingly, no single
principal component was dominated by growth rate correlation (Figure 2.30E),
reinforcing the point that nutrient‐specific and growth‐dependent components of
gene expression coexist for many proteins.

Glycolytic and NAD‐dependent enzymes were the two major classes of proteins
overrepresented in the WFSP lists. First, most glycolytic enzymes belonged to one
of the two WFSP classes (Figures 2.30E and 2.31). These enzymes were highly ex‐
pressed across conditions, amounting to ~15%–30% of the total proteome mass
(Figures 2.30B and 2.27). Therefore, the total gene expression burden of cellu‐
lar metabolism across the WFSP conditions was heavily affected by the abund‐
ance of a small number of enzymes. Second, the two enzymes glyceraldehyde‐3‐
phosphate (G3P) dehydrogenase Tdh1 and alcohol dehydrogenase Adh1 were as‐
signed to opposing WFSP lists, and the ratio of Adh1/Tdh1 expression was highly
elevated in the WFSP conditions (Figures 2.30E and 2.32). Fermentation of a single
molecule of glucose generates two molecules of ethanol and carbon dioxide. Dur‐
ing the process, Tdh1 reduces two NAD+ molecules and Adh1 oxidises two NADH
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Figure 2.30: Principal component analysis (PCA) of proteome expression data.
A. Cumulative variance of proteome expression data explained by the
first 9 principal components (PCs) of the PCA. B.–D. Scatter plots of
principal components for all protein groups detected across all eight
growth conditions and their proteome sector assignments (R: orange,
P: blue, Q: grey). E. PC contributions to protein expression across
growth conditions as a function of growth rate.
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molecules. Therefore, the elevated Adh1/Tdh1 balance exerts a pressure on the
NAD+/NADH equilibrium towards the NAD+ side. The induction of Adh1 and re‐
pression of Tdh1 proteins may be a controlled response to maintain homeostasis
under disruptions to the NAD+/NADH redox balance. This way, differential re‐
source allocation towards the NAD‐cycling glycolytic–fermentation pathway may
indicate that the metabolic rewiring invoked by the WFSP nitrogen sources could
result from changes in the cell redox balance.

To follow up on this observation, we further investigated the burden of NAD‐
dependent pathways. NADH is oxidised by NADH dehydrogenases that are situ‐
ated in the inner mitochondrial membrane; the enzyme transfers two electrons
per NADH molecule to the electron transport chain to power ATP synthesis. On the
other hand, NAD+ is reduced several times during each iteration of the TCA cycle
by the α‐ketoglutarate (αKG) dehydrogenase complex (KGDHC), the isocitrate de‐
hydrogenase (IDH) complex, and the malic enzymes. Fission yeast is thought to
have two separate NADH dehydrogenase enzymes, Ndi1 and Nde1, with the NAD‐
binding domain of Ndi1 facing the mitochondrion and Nde1 facing the cytosol. We
examined the expression burden of these enzymes in our data and found that, al‐
though neither belonged to one of the WFSP lists, the ratio of Nde1/Ndi1 expression
was strongly elevated in the WFSP conditions (Figures 2.30H and 2.32). The IDH
complex comprises the two subunits Idh1 and Idh2, and KGDHC consists of four
subunits: Kgd1, Kgd2, Ymr31, and Dld1, the latter being part of multiple complexes.
Dld1 and Idh2 were part of the WFSP+ class, unlike any of the other subunits. As
above, the ratio of protein abundances for Dld1/Kgd1 and Idh2/Idh1 were elev‐
ated in the WFSP conditions (Figures 2.30IJ and 2.32). Therefore, the response to
the WFSP nitrogen sources altered the stoichiometry of NAD‐dependent enzymatic
complexes. Importantly, these signatures were not detected in our transcriptomics
data, suggesting a role for post‐transcriptional regulation. In line with this, ubi‐
quitin and its related pathways, as well as the translation factors eIF3e and eIF5A,
showed strong WFSP patterns suggesting a role for protein stability (Figures 2.6
and 2.20B–D). In summary, we identified two distinct cellular states that differed
in the expression of enzymes involved in fermentation and the cell’s redox balance
that were not correlated with the growth rate.
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Figure 2.31: Growth ratemodels of enzymes comprising the glycolysis and eth‐
anol fermentation pathways. Proteome expression and repeated‐
median linear model (RMLM) best fit in solid black and 95% con‐
fidence interval in grey for the enzymes comprising glycolysis and
ethanol fermentation.
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Figure 2.32: Growth rate models of selected enzymes requiring the NAD
cofactor. Proteome expression and repeated‐median linear model
(RMLM) best fit in solid black and 95% confidence interval in grey.

2.3.13 Correcting for growth-rate dependence revealed additional
transcriptional signatures of growth on single amino acid sources

Defining the heterogeneity of metabolic states is key to a mechanistic understand‐
ing of cell population evolution, but this requires disentangling the gene signatures
that depend on the growth rate from those that are purely nutrient specific. Our
dataset has the unique capacity to achieve this. We performed differential expres‐
sion analysis on our RNA‐Seq dataset, by comparing each growth condition to a
reference transcriptome obtained via averaging all the conditions, and corrected
for the growth‐dependent component of gene expression (Methods). We defined
10 signatures (termed R1–R10) by clustering the log2‐transformed fold change ra‐
tios with respect to the synthetic reference of all genes that were significantly
enriched in at least one condition (Figures 2.33A and 2.34).
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Figure 2.33: Exploration of nitrogen‐source‐specific transcriptome signatures
after correcting for growth rate dependence. Figure printed on the
preceding page. A. DESeq2 log2‐transformed fold changes (fc) relat‐
ive to the repeated‐median linear model (RMLM) predicted synthetic
reference (after shrinkage) for 10 transcriptome signatures R1–R10
with scales capped at ±5. The growth conditions in the columns were
ordered by their growth rate; the genes in the rows according to a
hierarchical clustering analysis (Figure 2.34). B. log2‐transformed
ratios of observed and RMLM‐predicted proteome fractions for the
same clusters and gene ordering as shown in A. Grey tiles indic‐
ate missing data in the proteomics. C. GO‐slim enrichment analysis
of clusters from A. Log‐transformed local false discovery rates lfdr
are shown for the three Gene Ontology namespaces and capped at
lfdr = 1.0 × 10−6 (printed if capped). Overrepresentation analyses
were performed as one‐sided Fisher exact tests and only lists with
lfdr < 0.05 are shown; the numbers of genes in each GO‐category
and cluster are indicated.

The 10 signatures covered the differential expression of 2140 genes in total, rep‐
resenting ~43% of the fission yeast transcriptome. Five signatures (R2, R3, R5,
R6, and R8) were also visible at the proteome level (Figure 2.33B). About 67% of
the mRNA present in the transcriptomic signatures were quantified in at least one
condition in the proteome and ~38% were detected in all conditions, indicating
that this relatively limited agreement was not due to the lower coverage of the
proteomics data.

We next performed functional enrichment analyses of the transcriptomics clusters
(Methods), using Gene Ontology annotations (Gene Ontology Consortium 2019;
Lock et al. 2019). Broader functional categories were captured using GO‐slim ana‐
lysis (Figure 2.33C), and specific pathways using terms from the biological_process
ontology with at most 50 annotations. List overlap analyses (Figure 2.35) as well
as gene set enrichment analyses (GSEA), ranking genes based on their log2 fold
change over the synthetic reference after shrinkage, were performed for each
growth medium (Figure 2.36). In agreement with our observation that respirat‐
ory genes were repressed in Ser medium, the Ser repressed cluster R3 was strongly
enriched for genes related to mitochondrial metabolism. Additionally, genes from
clusters R6 and R10, which were induced in Ser medium, were enriched for detox‐
ification; this was confirmed in the GSEA as well. The Ser response also contained
oxidoreductases and proteins involved in metal ion homeostasis, which is compat‐
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Figure 2.34: Hierarchical clustering analysis of transcriptome signatures
after correcting for growth rate dependence. DESeq2 log2‐
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ible with the recently reported high levels of ROS generated by serine catabolism
(Kanou et al. 2020). The Trp repressed cluster R2 was enriched for genes related
to amino acid metabolism (Figure 2.35) and the corresponding GO‐term also had
a negative NES value (Figure 2.36), again suggesting that the slow growth sus‐
tained by the Trp medium was not due to any additional expression burden of
disrupted amino acid synthesis. The small cluster R7 was enriched for genes re‐
lated to pheromone activity (M‐factor precursors), signalling, and the induction
of meiosis (Figure 2.35). Interestingly, the signature expression across conditions
for these genes (induced in Trp, Phe, Pro, and Glu containing media) mirrored
that of Mae2 (Figure 2.6F), which removes excess carbon from the TCA cycle. As
meiosis is usually induced by nitrogen starvation (Petersen and Russell 2016), this
result suggests that the state of central carbon metabolism may also play a role in
the meiotic transition, as (elemental) nitrogen was abundant in all growth media
used. Altogether, we identified a rich set of metabolic signatures that were not de‐
pendent on the growth rate, but exclusively reflect changes in external nutrients.
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Figure 2.35: GeneOntology overlap analyses of transcriptome signatures after
correcting for growth rate dependence. The analysis was restric‐
ted to GO‐terms belonging to the “biological_process” ontology with
at most 50 annotations. Log‐transformed local false discovery rates
lfdr are shown for the three Gene Ontology namespaces and capped
at lfdr = 1.0× 10−9 (printed if capped). Overrepresentation analyses
were performed as one‐sided Fisher exact tests and only lists with
lfdr < 0.01 are shown; the numbers of genes in each GO‐category
and cluster are indicated. Figure printed on the previous page.
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Figure 2.36: Gene set enrichment analyses (GSEAs) of medium‐specific ex‐
pression. Heatmap and associated dendrogram of normalised en‐
richment scores (NES) associated with eight GSEAs of GO‐slim terms.
For each growth condition, one GSEA was performed: ranking tran‐
scripts by their estimated and shrinkage‐corrected log fold change
relative to the synthetic reference. Terms with at least one signific‐
ant enrichment (padj < 0.05) are shown; term‐condition pairs not
meeting this threshold are shown in grey. Figure printed on the pre‐
ceding page.

2.4 Discussion

In this chapter I showed the quantitative proteome and transcriptome of the fis‐
sion yeast S. pombe grown in eight defined media that provided a range of growth
rates. Each medium contained a single source of nitrogen, which was present in
abundance. Therefore, the observed variations in gene expression were determ‐
ined by system‐level shifts in resource allocation rather than by the response of
a single pathway to the titration of a limiting nutrient. In earlier studies, which
focused on S. cerevisiae, a specific limiting nutrient was typically used to perturb
resource allocation (Brauer et al. 2008; Hui et al. 2015; R. Yu et al. 2020). In che‐
mostats the growth rate is affected externally by the nutrient quantity, and the
same growth rate can be obtained by limiting several different nutrients (Airoldi
et al. 2016). The turbidostat cultures used for the analysis presented here can be
understood as continuous flask cultures, in which the growth rate is determined
by internal allocation in response to the nutrient quality.

The results from this chapter suggest that shifts in resource allocation can trig‐
ger two layers of gene expression regulation, with the first layer resulting in signi‐
ficant growth‐rate correlations and the second layer resulting in condition‐specific
effects. Many proteins and mRNAs showed a combination of both layers of regu‐
lation. This suggests that condition‐specific responses occur on top of global gene
regulation that is coordinated with the growth rate (Shahrezaei and Marguerat
2015). Importantly, the growth‐rate‐dependent component complicates the inter‐
pretation of condition‐specific responses. Where condition‐specific responses are
seen together with (expected) differences in growth rate, the growth‐rate depend‐
ent component of gene expression regulation should be accounted for (Airoldi et
al. 2009; Pancaldi et al. 2010; R. Yu et al. 2021). The subtraction of a robust linear
model, as proposed here, is one way to do so.
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Importantly, the global layer of regulation discussed here affects relative abund‐
ances of proteins and of mRNAs. The growth rate is also known to affect the ab‐
solute abundance of macromolecules, but indirectly: scaling of gene expression
with cell size generally ensures a constant concentrations of mRNA with only few
exceptions (Padovan‐Merhar et al. 2015; Chávez et al. 2016). This effect is medi‐
ated by a size‐dependent increase of RNA polymerase II (RNAPII) initiation rates,
such that RNAPII abundance is limiting for growth (Sun et al. 2020). The choice
of nitrogen source does affect the cell size but not in a manner coordinated with
the growth rate, as confirmed in an analysis of which more details are provided
in chapter 5. In line with this, we found that RNAPII expression was not increas‐
ing with the growth rate suggesting that, unlike for gene expression scaling to cell
size, its numbers are not limiting for the rate of growth.

Curiously, the variably‐expressed enzymes were primarily involved in carbon
metabolism, whereas the growth media differed only in their nitrogen sources
and glucose was abundantly present in each of them. The broad features of the
catabolism of the nitrogen source and its possible effects on growth‐optimal gene
expression are studied in the remainder of the thesis using coarse‐grained math‐
ematical modelling. A more detailed view of the interplay between nitrogen and
carbon metabolism at the level of individual enzymes might be given by future
genome‐scale models of fission yeast that integrate metabolism and gene expres‐
sion. The data generated for this thesis and the published paper (Kleijn et al. 2022)
might be used to constrain and inform the construction of such models (O’Brien
et al. 2013; Sánchez et al. 2017; Y. Chen et al. 2021).

As expected based on earlier studies in other model organisms, the main feature
of the data was a trade‐off between proteins involved in protein production and
stress and metabolism. All steps of protein production were represented in the R
sector, and almost all ribosomal proteins were strongly positively correlated with
the growth rate. Interestingly the growth law parameters were not significantly
different between fission yeast and budding yeast, suggesting there might be a
biophysical constraint on the translation rate. Related to this, the chemical com‐
position of ribosomes—many dozens of small proteins bound to a small handful of
large RNA molecules—is optimal for fast self‐replication (Reuveni et al. 2017). The
slope of the growth law in E. coli was smaller than both yeasts; this quantitative
difference may be explained by fundamental differences between the eukaryotic
and prokaryotic ribosome. Notably, the main qualitative features of the growth
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law were present both in the data presented in this chapter and in comparable
data on E. coli, suggesting that the main underlying principles are conserved far
across the tree of life.

Unlike the expression of ribosomal proteins, the expression of individual meta‐
bolic enzymes was strongly condition‐specific. Yet, the aggregate of this condition‐
specific regulation still induced a large change in the total proteome burden of
metabolism, as the glycolytic proteins and enzymes related to NAD metabolism are
generally highly abundant. In this light, it is interesting to note that the relative
activity levels of many promoters, including ones of genes involved in translation,
were constant across a variety of environments in both E. coli and S. cerevisiae
(Keren et al. 2013). The induction of medium‐specific gene expression can have
a large passive effect on the expression of such constitutively expressed proteins,
such that they appear as part of the R sector even in the absence of additional
regulation (Barenholz et al. 2016). In this interpretation, a small allocation to
condition‐specific enzymes will allow for a larger R‐sector allocation and thereby
induce faster growth. On the other hand, explicit regulation of growth‐rate correl‐
ated expression, e.g. mediated by the TOR pathway, could similarly decrease the
upper bound on the expression of condition‐specific enzymes. Steady‐state expres‐
sion data does not provide evidence to decide which regulation is more prominent
and full understanding of the interplay between growth and gene expression must
account for both of these effects simultaneously.

In summary, resource allocation in fission yeast across media with different
nitrogen sources is characterised by two distinct expression programmes: (i) a
growth‐rate‐correlated trade‐off between protein production and stress response,
and (ii) medium‐specific responses to the growth conditions with a large effect on
the expression burden of metabolism. To better understand the interplay between
growth and gene expression, I constructed coarse‐grained models of cellular re‐
source allocation, which will be explored in the remainder of this thesis.
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3 Methodology of coarse-grained resource allocation
models (C-GRAMs)

3.1 Introduction

In many unicellular organisms, both cell size and the abundances of large protein
classes are correlated with the growth rate across environmental conditions or
upon translational inhibition. To explain these observations, I constructed coarse‐
grained resource allocation models (C‐GRAMs), which can provide a general un‐
derstanding of the correlations between protein abundance, cell size, and growth.
In chapter 4, I describe how minimal C‐GRAMs with nitrogen and carbon pathways
converging on biomass production explained the effects of the uptake of sugars,
ammonium, and/or compound nutrients such as amino acids on the translational
resource allocation towards proteome sectors that maximised the growth rate. In
chapter 5, I describe how I extended the minimal model to a C‐GRAM that addition‐
ally accounted for the cell cycle, cell division, cell wall biosynthesis, and the effect
of molecular crowding on the ribosomal efficiency. In this chapter, I give a general
overview of the methodology used to construct and analyse both of these C‐GRAMs,
as well as some insights that should be more generally applicable to this type of
modelling. C‐GRAMs codify scientific understanding in an organism‐agnostic man‐
ner, thereby affording the study of growth rate maximisation and the interplay
between cell size, resource allocation, and other aspects of cell physiology across
species in a unified framework.

3.2 General concepts

3.2.1 The dynamics of relative abundances

Several excellent reviews of the basic concepts underlying mechanistic whole‐cell
models have been published in the last few years, notably by De Jong et al. (2017),
Bruggeman et al. (2020), and Dourado and Lercher (2020). These models describe
the growing cell as a well‐mixed solution of proteins, sometimes transcripts, and
intermediate metabolites. Such approaches can be used to describe genome‐wide
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as well as coarse‐grained whole‐cell models. In this thesis we limit ourselves only
to models of the latter type. What follows is a synthesis of concepts with a focus
on these coarse‐grained models.

Consider the vector X of absolute abundances associated with all the molecular
species present in the cell. These abundances can be measured in multiple ways;
three common choices are outlined in Table 3.1. We now consider the system size

Ω =
∑
i

Xi. (3.1)

It is often thought of as cell volume, but this makes certain assumptions that will
be explored further in section 3.2.2. For cultures in balanced growth, such as those
obtained in the turbidostats of chapter 2, the growth rate

µ =
1

Ω

dΩ

dt
(3.2)

is well‐defined and constant. Notably, in this formalism, the growth rate is an
emergent property of the system.

The relative abundances
x =

X

Ω
(3.3)

follow the concentration constraint ∑
i

xi = 1. (3.4)

The dynamics of any given cellular constituent i, written in terms of its relative
abundance xi, is calculated as

ẋi =
Ẋi

Ω
−
Ω̇Xi

Ω2
≡ vi(x) − µxi, (3.5)

where the net production rate

vi(x) =
Ẋi

Ω
(3.6)

has been written in terms of the relative abundances to create a closed system of
equations.
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Table 3.1: Common choices for the abundance measure in whole‐cell models.
Note that molar concentrations c = N

ΩV
and mass concentrations ρ = M

ΩV

are composite measures.
absolute abundance X system size Ω relative abundance x

molecule number N total number of molecules ΩN molar fraction
mass of molecular species M cell mass ΩM mass fraction ϕ

occupied volume cell volume ΩV volume fraction

Balanced growth, introduced earlier in section 1.1.1, is characterized by the steady
state of these equations, i.e. ẋ = 0, such that for each molecular species i, its pro‐
duction rate is balanced by the dilution due to growth:

vi(x) = µxi. (3.7)

In other words, the relative abundances are constant during balanced growth, be‐
cause all constituents in the vector X grow exponentially with the same rate µ.
Furthermore, any well‐defined choice of abundance measure must by its construc‐
tion result in the same growth rate µ.

3.2.2 The dynamics of absolute abundances and concentrations

Sometimes, reaction fluxes are determined not in terms of relative abundances, but
in terms of absolute abundances. That is, instead of vi(x) being directly known,
the dynamics of Xi are given in terms of

Ẋi ≡ Vi(X). (3.8)

It may sometimes be assumed that the flux vector V is extensive, meaning that it
satisfies the requirement

V(ωX) = ωV(X) (3.9)

for any constant ω. In that case, relative and absolute fluxes can be readily con‐
verted into each other, because

V(X) =
1

Ω
V(
1

Ω
X) =

1

Ω
V(x) ≡ v(x). (3.10)

However, this assumption is not usually valid when metabolite abundances are
included in the vector X—see section 3.3.1 for the reason why.
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Furthermore, the system can also be described in terms of concentrations, where
the system size is explicitly linked to cell volume, but such a description is subtly
different from the above. For example, Bruggeman et al. (2020) consider the molar
concentrations, c = N

ΩV
, with N the vector of molecule numbers and ΩV the cell

volume. A similar argument applies to the mass concentrations, as used by De
Jong et al. (2017). The basic form of the equation describing the dynamics of the
concentration vector c takes the same form as equation (3.5), namely

ċ =
Ṅ

ΩV

−
Ω̇VN

Ω2
V

. (3.11)

Note that µV ≡ 1
ΩV

dΩV

dt
can be defined in terms of the total volume, whereas Ṅ =

V(N) is initially given in terms of molecule numbers.
In general, for systems described by concentration dynamics such as equation (3.11),

a system size must be specified to normalise the abundances. Here this role is
played by the total volume ΩV . Similarly, the total mass ΩM could be considered,
or even a compound measure such as the total cell buoyant density ΩM/ΩV . This
contrasts with systems described by the relative abundance dynamics of equa‐
tion (3.5), for which the absolute abundances were sufficient.

3.2.3 The interpretation of coarse-grained models

The key choices in formulating a model, then, are the biological interpretations of
the molecules x and the functional forms that the fluxes v(x) assume. In a coarse‐
grained model, few molecules are included—in other words, the dimensionality of
x is small, typically not much greater than 10 and sometimes as small as 3 or 4.
These models usually focus on protein abundances, with the metabolites there to
regulate the protein production. Some models additionally include transcription
and translation of mRNA. A very minimal example model was initially proposed
by Maitra and Dill (2015) and expanded to include ribosome inactivation (Maitra
and Dill 2016). Two models including both transcription and translation are those
by Weiße et al. (2015) and Liao et al. (2017). Importantly, molecular species in a
coarse‐grained resource allocation model do not map one‐to‐one to molecules that
might be found in the cell. Rather, they represent the total abundance of whole
classes of proteins.
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3.2.4 The stoichiometry matrix

The flux vector v(x) can be written in terms of the stoichiometry matrix S and a
vector j(x) that contains the conversion rates associated with each reaction (Hein‐
rich and Schuster 1996):

v(x) = Sj(x). (3.12)

In this matrix S, each column corresponds to a molecular species, and each row
to a reaction. Negative values correspond to the consumption of the molecule and
positive values correspond to production. If reaction j is balanced, this means that
the j‐th column of S has sum zero:

n∑
i=1

Sij = 0. (3.13)

In coarse‐grained models, not all reactions are balanced, because the system de‐
scribes the state of the cell, or of the whole culture. Therefore, reactions exist that
grow the cell (or culture) by consuming external nutrients, thereby increasing bio‐
mass. For such reactions,

n∑
i=1

Sik = 1, (3.14)

representing that each “firing” of the reaction k increases the total abundance Ω
by one unit.

3.2.5 The distinction between proteins and metabolites

At this point, it is helpful to distinguish metabolites from macromolecules. For
proteins, vi typically represents only the production rate, because many proteins
are stable for many cell generations, and their degradation rates are negligible
compared to the dilution rate µ that is due to growth. For metabolites, vi repres‐
ents the net metabolic flux, incorporating both their production and utilisation.
For metabolites, it can be appropriate to neglect the growth‐dilution term when
their dynamics are dominated by fast turnover rates. For notation purposes, we
split the concentration vector x into three parts, representing amino acids, other
metabolites, and proteins:

x =

 am
p

 . (3.15)
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The proteins p are the main constituents of the total biomass and are produced
from the amino acids a by a single reaction, catalysed by the ribosomes. The re‐
maining metabolites m are intermediates. Likewise, the flux vector is decomposed
as

j(x) =

(
ĵ(x)

jR(x)

)
(3.16)

and the flux through the ribosomes jR is separated from the remaining fluxes ĵ.
The protein production reactions are taken to be catalysed by the ribosomes,

themselves represented as proteins in this formalism. Importantly, they consume
the amino acids a. The relative protein production rates are determined by an
allocation vector f, which has the same number of components as p. Considering
a stable protein i that does not change or degrade after its production, its time
evolution is given by

ṗi = fijR(x) − µpi. (3.17)

If required, this equation can be supplemented with a degradation term, but we
typically assume that proteins are stable. The ribosomal production reactions sat‐
isfy mass conservation typified by equation (3.13). In other words, the consumed
substrate a must be balanced with the proteins produced in the ribosomal flux
jR(x). In practice, this means that ∑

i

fi = 1. (3.18)

We refer to this as the allocation constraint.
If we assume that all proteins are produced by ribosomes, and do not change

at all afterwards, the stoichiometry matrix S takes a particular form. In a system

107



with n conversion reactions, one amino‐acid component, m metabolites, and p
proteins, S is an (1+m+ p) by n matrix with the following shape:

S =



SA1 SA2 · · · SAn −1

S1,1 S1,2 · · · S1,n 0

S2,1 S2,2 · · · S2,n 0

...
...

. . .
... 0

Sm,1 Sm,2 · · · Sm,n 0

0 0 · · · 0 f1

0 0 · · · 0 f2
...

...
. . .

...
...

0 0 · · · 0 fp



=


(
SA
)T

−1

Ŝ 0

∅ f

 . (3.19)

We call the m by n matrix Ŝ the metabolic stoichiometry matrix; the (row) vector
SA quantifies the stoichiometry of the reactions that produce the amino acids.

In the end, then, the concentration dynamics of coarse‐grained models with a
single biomass production reaction catalysed by ribosomes and stable proteins can
generally be described as:

ẋ =

 ȧṁ
ṗ

 = Sj(x) − µx =

SA · ĵ(x) − jR(x) − µa
Ŝĵ(x) − µm

jR(x)f− µp

 . (3.20)

This decomposition is a helpful tool to understand the models of chapters 4
and 5, but is is not always applicable. In particular, it does not apply to models such
as that by Bertaux et al. (2020) and explored in section §3.4, which incorporate
conversions between different protein classes after their production.

3.3 Enzyme kinetics

3.3.1 Michaelis–Menten kinetics for single-substrate reactions

The functional forms of the fluxes in coarse‐grained models are inspired by models
of enzyme kinetics, for example through Michaelis–Menten rate dependences. For
a Michaelis‐Menten enzyme X with concentration eX, the production rate j(X) of a
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metabolite by that enzyme through conversion of a substrate with concentration
xi is given by

j(X)(eX; xi) = k(X)eX
xi

xi + K
(X)
M

, (3.21)

with k(X) and K(X)
M constants that can be related to the enzyme kinetic rates. While

there is no direct justification why single‐enzyme models can be directly applied
to the abstracted enzyme classes of coarse‐grained models, the Michaelis‐Menten
rate law has three useful and important properties, namely it is (i) linear in the
enzyme concentration, (ii) linear in the substrate concentration at low concentra‐
tions, while it (iii) saturates with increasing substrate concentrations.

Empirically, the growth rate of bacterial cultures follows a similar dependency
on the availability of a single limiting nutrient source, the concentration of the
nutrient source in the environment taking the place of the substrate concentration
in the cell (Monod 1949). The dependency from equation (3.21) is then known as
the Monod curve; it can be explained by assuming Michaelis–Menten kinetics of
a limiting enzyme (De Jong et al. 2017). However, the empirical observation is
strong: the enzyme kinetics described by equation (3.21) can be used to describe
whole pathways, even though pathway fluxes are not always limited by the kinetics
of a single enzyme.

It is quickly seen that the Michaelis–Menten enzyme flux is not extensive. Letω
a constant, then it follows from equation (3.21) that

ji(ωeX;ωxi) = k(X)ωeX
ωxi

ωxi + K
(X)
M

=

= ωk(X)eX
xi

xi +
K

(X)
M

ω

̸=ωji(eX; xi). (3.22)

Regardless, the hyperbolic dependence on xj is preferred, because the alternat‐
ive linear dependence would mean that high enzyme fluxes can be sustained by
unrealistically high metabolite concentrations. However, the non‐extensivity of
the flux function means that it is important to choose the exact abundance meas‐
ure in which the fluxes are expressed, because the assumptions required by the
equivalence equation (3.10) are not met. In chapter 4, the system is described in
terms of mass fractions. The model in chapter 5 additionally describes the cell
size using multiple size measures, so there the model is recast in terms of absolute
abundances per cell.
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3.3.2 Two-substrate reactions

For reactions involving more than one substrate, the functional dependency of the
catalytic rate has to be chosen too. We opted to use a functional form that can be
derived using similar assumptions to those underlying Michaelis–Menten kinet‐
ics. This meant that the the three useful properties (i)–(iii) noted in the previous
section were maintained.

The flux equation that best describes two‐substrate enzyme kinetics depends
on the reaction mechanism. The main assumptions and derivations associated
with each mechanism have been explained in detail by Marangoni (2003, ch. 7).
A main distinction exists between the ping‐pong mechanism, where a product is
released before the second substrate binds to the enzyme, and sequential mechan‐
isms, where both substrates bind sequentially, either in a random or an ordered
fashion, before any product is released. A general form for the conversion rate ji,
catalysed by enzyme X with concentration eX, taking two substrates with concen‐
trations xj and xk, is given by

ji(eX; xj, xk) = k(X)eX
xjxk

xjxk + axj + bxj + c
. (3.23)

Here k(X), a, b, and c are free constants whose values can be expressed in terms
of kinetic rate parameters. Depending on the reaction mechanism, a, b, or c may
be equal to zero. It can be seen that the rate function for two‐substrate reactions
reverts to a Michaelis–Menten dependency when one substrate concentration is
held fixed regardless of the reaction mechanism.

So as to directly compare the parametrizations of one‐ and two‐substrate en‐
zymes, we recast the formula in terms of different parameters as

ji(eX; xj, xk) = k(X)eX
xjxk

(xj + K
(X)
j )(xk + K

(X)
k ) − ∆(X)

. (3.24)

In the coarse‐grained models described in this thesis, I chose the simple ∆(X) = 0,
such that the rate law is simply the product of two Michaelis–Menten rate laws.
This symmetrical case corresponds to a mechanism where the equilibrium con‐
stant for the binding of each of the two substrates does not depend on the presence
or absence of the other. In coarse‐grained modelling, the reaction mechanism is
not well defined, as the two‐substrate enzyme typically represents one or more en‐
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tire pathways. This choice was therefore made because it treated both substrates
symmetrically, so the topology of the full metabolic network did not need to be
assessed.

3.4 An example model of coarse-grained metabolism,
translation, growth, and division

A recent effort from the Shahrezaei group served as the baseline for the modelling
presented in this thesis (Bertaux et al. 2020). The model was used to describe the
interplay between cell growth and size regulation in E. coli, both deterministically
and stochastically. It consisted of a minimal number of components, making it in‐
terpretable and applicable to multiple model systems. We preferred this approach
to previous efforts describing the dynamics of protein and mRNA abundances in
E. coli, because the latter contained many parameters (Weiße et al. 2015; Liao et
al. 2017), most of which are as yet undetermined for S. pombe. Modifying these
models would have required a great deal of parameter inference. An earlier model
with a suitably minimal approach to the number of variables required ad‐hoc as‐
sumptions about the degradation of certain enzymes (Maitra and Dill 2015, 2016),
which we considered to be inappropriate. A closely related modelling approach to
ours was described by Molenaar et al. (2009), and direct comparisons are indic‐
ated where appropriate, both in this chapter and the rest of this thesis. Here, I will
briefly explain the baseline model as it was originally proposed by Bertaux et al.
(2020); any extensions will be described in the remainder of this thesis.

First, metabolism is represented by a single class of enzymes E that catabolise
an external nutrient into an internal precursor metabolite A. Active ribosomes Ra

then convert this metabolite into proteins, which in addition to E and R include
a sizeable fraction of housekeeping proteins Q and a small fraction of cell‐cycle
regulators X. Furthermore, the model allows for the presence of “useless” protein
U and inactive ribosomes Ri, the latter due to a translation‐inhibiting drug such as
chloramphenicol, representing experiments performed by Scott et al. (2010).

The original model (Bertaux et al. 2020) had extensions to account for both the
cell cycle and the stochasticity of cellular reactions. However, I here focus on the
steady‐state behaviour of the ordinary differential equations (ODEs) correspond‐
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ing to the relative abundances associated with the aforementioned molecules. In
the formalism from equation (3.20), the constituent concentrations are given as

x =

(
a

p

)
=

 a(
e ra ri q x u

)T
 , (3.25)

and the allocation vector as

f = (fE, fR, 0, fQ, fX, fU)T . (3.26)

No metabolites besides a are present. Note that ribosomes are produced in the
active state. The system size is calculated using all abundances, including of the
metabolite A, such that its concentration a is included in the constraint∑

i

xi = a+ e+ ra + ri + q+ x+ u = 1. (3.27)

In contrast, earlier coarse‐grained whole‐cell models calculated the cell volume or
mass based on the protein constituents only (Molenaar et al. 2009; Maitra and Dill
2015; Weiße et al. 2015).

The rate of nutrient uptake is determined by the environment as well as by the
kinetic parameters associated with the enzyme E. These effects are assimilated
into a single parameter, leading to the (concentration‐normalised) flux through E
being given by

jE = kEe, (3.28)

with kE the parameter that describes the nutrient quality. The translation flux
through active ribosomes with substrate A is modelled as a Michaelis–Menten rate
law, with flux

jR = σ
a

a+ asat
ra, (3.29)

Active ribosomes are inactivated, and vice versa, with rates kcmon and kcmoff, respect‐
ively. All proteins are assumed to be stable. Therefore, the flux vector j is given
by

j(x) =


kEe

kcmon ra

kcmoffri

σ a
a+asat

ra

 , (3.30)
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and the stoichiometry matrix by

S =



1 0 0 −1

0 0 0 fE

0 −1 1 fR

0 1 −1 0

0 0 0 fQ

0 0 0 fX

0 0 0 fU


. (3.31)

Note that the interconversion between active and inactive ribosomes violates the
assumption that all proteins are stable after their production, so the stoichiometry
matrix decomposition of equation (3.19) is not valid.

The following set of equations describes the system:

ȧ = ke− σ
a

a+ asat
ra − µa, (3.32)

ė = fEσ
a

a+ asat
ra − µe, (3.33)

ṙa = fRσ
a

a+ asat
ra − kcmon ra + kcmoffri − µra, (3.34)

ṙi = k
cm
on ra − kcmoffri − µri, (3.35)

q̇ = fQσ
a

a+ asat
ra − µq, (3.36)

ẋ = fXσ
a

a+ asat
ra − µx, (3.37)

u̇ = fUσ
a

a+ asat
ra − µu. (3.38)

It has been observed in E. coli that the translation elongation rate robustly de‐
pends on the RNA/protein ratio via a Michaelis‐Menten‐like hyperbolic function
(Dai et al. 2016). In the model, this translates to the requirement that the ri‐
bosomal saturation fraction itself follows the following dependence:

a

a+ asat
∝ fR

fR + K
(3.39)
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for some constantK, as the former represents the translation rate and the RNA/protein
ratio is a proxy for the ribosome content. We imposed the simple dynamic regula‐
tion

fR = min
(
δa, 1− fQ − fX − fU

)
(3.40)

to satisfy the allocation constraint equation (3.18). Transiently, the constraint
sometimes needed to be invoked, but the steady‐state concentration of metabolic
precursor always satisfied

a <
1− fQ − fX − fU

δ
. (3.41)

This situation, where the metabolic precursor represents a small fraction of the
total system size, is also biologically required, and suitable parametrizations all
satisfied the restriction from equation (3.41). In this model, then, the allocation
fractions fQ, fX, and fU were imposed parameters, fR was set as above, and the
allocation constraint was satisfied by

fE = 1− fQ − fX − fU − fR. (3.42)

3.5 Optimising ribosomal allocation to maximise growth rate

3.5.1 Maximising growth rate is an effective strategy to minimise the
number of parameters

While the model described above in section §3.4 contained few parameters, mak‐
ing it interpretable, the models developed in the remainder of this thesis extended
the scope considerably. In particular, I introduced pathways that processed meta‐
bolites in parallel to one another. Such pathways must balance their fluxes, as
they jointly produce an end molecule. Many examples of regulatory processes have
been found that can achieve this, as reviewed by Chubukov et al. (2014). On short
time scales, covalent or allosteric interactions between metabolites and proteins
govern the response, for example through end‐product inhibition of linear path‐
ways. On longer time scales, persistent imbalances are counteracted by broad and
pervasive gene expression regulation such as explored in chapter 2. Choosing the
right level of coarse‐graining here is difficult: both of these types of regulation are
required for cells to grow robustly, but introducing multiple levels of regulation
would necessarily require many parameters.
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We side‐stepped this problem by focussing not on the implementation of the reg‐
ulatory pathways, but by studying the steady‐state under the assumption that the
cell is able to regulate its expression in a manner that maximised its growth rate.
Precise optimality conditions have been formulated for the E. coli carbon uptake
system and expression is indeed optimal for several carbon sources (Towbin et al.
2017). Furthermore, a recent theoretical advance pointed out a general method
of adapting gene expression control towards the optimum (Planqué et al. 2018),
which, however, fell short of a general mechanistic implementation of the control.
In a model similar in scope to ours, the optimal choice between a metabolically
efficient or catabolically efficient pathway was shown to depend on the growth
rate (Molenaar et al. 2009).

In practice, the allocation vector f from equation (3.20) was therefore chosen
not as a free parameter, but rather as the result of an optimisation routine that
maximised the growth rate µ. Some components of the vector were not part of
this optimisation, for example when they represented an experimental constraint
(like fU in section §3.4 above) or the fraction of housekeeping proteins (like fQ),
whose allocation does not depend on growth rate. The allocation constraint equa‐
tion (3.18) must of course be satisfied by the optimisation routine.

3.5.2 Numerical simulation and optimisation of allocation models

The first requirement for finding optimal allocation is to have an efficient way to
numerically determine the steady‐state associated with a given set of parameters.
For this, I numerically evolved the set of ODEs dynamically until a steady state
was found. The initial condition for the evolution could partially be guessed from
the allocation fractions—the protein content in steady state is proportional to the
proteome allocation—but I had to establish the initial metabolite concentrations
manually. Unless otherwise noted, I used an initial guess of 0.05 for the relative
concentration of each metabolite.

Software‐wise, I implemented all the numerical analysis in the Julia program‐
ming language and in particular I heavily relied on the DifferentialEquations.jl
ecosystem (Rackauckas and Nie 2017). Within this ecosystem, many algorithms
for solving differential equations are made available with a unified interface. I
used trial‐and‐error to find one that worked well. For solving the concentration
ODEs towards steady‐state, I settled on the Rodas5 algorithm provided by the eco‐
system.
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The optimisation problem can be defined as finding the allocation fraction f

that maximises the growth rate µ. What complicates this dramatically is that the
function µ(f) is only defined implicitly. Efficient numerical optimisation routines
would require explicit forms of µ(f) and, importantly, its gradient functions ∇fµ.
These gradients are not available, because the nonlinearity of the Michaelis–Menten
kinetics prohibits an explicit solution for µ in terms of f in equations such as equa‐
tions (3.32) to (3.38). This restricted me to using a gradient‐free optimisation
routine, and I settled on using the Nelder–Mead algorithm as defined in the Op‐
tim.jl package (Nelder and Mead 1965; Gao and Han 2012; Mogensen and Riseth
2018).

The allocation constraint (3.18) further complicated the optimisation procedure.
While I could eliminate one element of the allocation vector by imposing the alloc‐
ation constraint, the sampling strategy still allowed for situations where this con‐
strained element became negative. As a practical solution, I evaluated the doubling
time for allocation fractions whose sum exceeded the constraint as a predefined
very large value.

The Nelder–Mead algorithm proved to be fast, but sensitive to some numerical
inaccuracies when applied to the allocation optimisation problem. The algorithm
particularly struggled when the optimal allocation fraction had elements set to
zero, i.e. the optimal cell entirely lacked expression of some enzymes. In these
occasions, I ran the optimisation several times, each with different allocation frac‐
tions set to zero and excluded from the optimisation. Then, each iteration resulted
in one set of optimal parameter vector and associated steady state and growth rate.
Out of these, the set with the largest growth rate (smallest doubling time) was se‐
lected as the optimum.
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4 C-GRAMs describing steady-state growth under
nitrogen and carbon catabolism

4.1 Introduction

In this chapter I describe a model constructed to describe the resource allocation
of ribosomes. It includes only proteins, since these are the main constituent of the
cell. In this introduction I will describe the main experimental observations that
the model reflects either as an assumption or as an output. I will then describe
the model in increasing levels of detail; the intermediate models were analysed
themselves too. Next I will show results generated from particular instances of
the model, with parameters modified using the example model by Bertaux et al.
(2020) introduced in the previous chapter as a starting point. These parameter
choices reflect bacterial physiology, although the basic modelling backbone was
general enough to be applied to yeast as well—this will be the topic of the following
chapter.

4.1.1 The abundance of most proteins is correlated with growth rate

A prominent feature of gene expression is the pervasiveness of correlations with
the growth rate when the latter is perturbed by nutrient modulations. The work
described in chapter 2 is the latest addition to a large body of work showing correl‐
ations between broad classes of proteins and the cellular growth rate in multiple
model organisms (Hui et al. 2015; A. Schmidt et al. 2016; Metzl‐Raz et al. 2017;
Zavřel et al. 2019). The model described in the current chapter reflects this basic
premise of unicellular physiology.

Recall how the proteome can be divided into three major sectors:

1. the R‐sector of ribosomes and other proteins required for self‐replication and
the production of proteins. The abundance of these proteins is positively
correlated with growth rate under nutrient modulations.

2. the Q‐sector of “housekeeping” proteins whose expression is not correlated
with growth rate.
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3. the P‐sector of “stress” proteins that, in E. coli, also contains metabolic en‐
zymes, whose abundance is negatively correlated with growth rate. Note
that, even though in our S. pombe data analysis (chapter 2) medium‐specific
expression was present to a large degree for metabolic enzymes, the total ex‐
pression of all metabolic enzymes taken together was negatively correlated
with the growth rate. Therefore at the coarse‐grained level, where only the
total abundance of proteome classes is being considered, the two observa‐
tions agree.

4.1.2 Cells are capable of both respiratory and respirofermentative
growth

As introduced in section 1.1.5, cells express both fermentation and respiratory
pathways in conditions supporting fast growth. Then, energy (in the form of ATP)
is generated primarily through fermentation. Additionally, the biosynthesis of
amino acids and lipids still requires the intermediates generated by the respir‐
atory enzymes and the TCA cycle. During these conditions, glycolytic flux is large
and the excess carbon is excreted, a phenomenon called overflow metabolism. In
more restrictive conditions, the fermentation pathway is not expressed and energy
is solely generated by respiration. This distinction between respirofermentative
and purely respiratory growth is one of the most important characteristics of mi‐
crobial growth.

From the point of view of coarse‐grained modelling, there are two primary dif‐
ferences between respirofermentative and purely respiratory growth. On the one
hand, the fermentation pathway consists of few different enzymes. Although the
individual enzymes are highly abundant, there are so few that the total expres‐
sion burden is markedly smaller than that of the respiratory pathway that would
generate an equal energy flux. On the other hand, fermentation requires more
nutrients from the environment: carbon is consumed rapidly and converted into
ethanol or acetate. These two differences point towards the existence of a trade‐
off between the efficient use of external consumables and that of internal mac‐
romolecular resources. In abundant conditions, the balance tips towards internal
efficiency, whereas the cell uses nutrients more parsimoniously in more restrictive
conditions.
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4.1.3 Biomass comprises nitrogen as well as carbon

Earlier coarse‐grained modelling efforts chiefly considered carbon modulations as
representing the effect of the nutrient quality in general, because carbon modula‐
tion was more commonly used in E. coli. In such models, metabolism was typically
considered as a linear pathway from nutrient to protein production. This included
the models proposed by Weiße et al. (2015) and by Bertaux et al. (2020). Molen‐
aar et al. (2009) did incorporate the uptake of free nitrogen, which was directly
consumed by ribosomes rather than first combined into amino acid precursors.
Contrasting with this earlier work, the growth rate modulation strategy explored
in chapter 2 of this thesis made use of different nitrogen sources, rather than car‐
bon sources. We aimed to better understand the effect of nitrogen modulation
on resource allocation in a coarse‐grained modelling context as well. Chiefly, we
saw that many enzymes involved in carbon metabolism were expressed differently
across the nitrogen sources, although none of the nitrogen sources appeared to
repress the fermentation pathway. We therefore wondered if we could reproduce
these findings in a coarse‐grained model, or exclude cross‐talk between the two
pathways in certain parametrisations.

As a first approximation, the presence of nitrogen in biomass can simply be mod‐
elled by a nitrogen assimilation pathway that runs in parallel to the carbon uptake
pathway and culminates in an amino acid biosynthesis that incorporates the two
elements. Indeed, I believe this is a good representation of the metabolism that
occurs when free nitrogen is provided to the cells in the form of ammonium ions.
However, the amino acids used as nitrogen sources also contain carbon atoms. In
order to account for this, a general understanding is required of the general mech‐
anism of amino acid uptake. The exact pathways involved are surprisingly poorly
determined in S. pombe, but there is no reason to believe that the mechanisms from
S. cerevisiae and other organisms are not preserved. The key step in nitrogen as‐
similation from most amino acids consists of a de‐ or transamination reaction. In
deamination reactions, an amino group is removed from the amino acid, in the pro‐
cess leaving free ammonium and the amino acid backbone. For all proteinogenic
amino acids bar proline, this remaining backbone is a ketoacid. Transamination
reactions can occur with either alpha‐ketoglutarate or glutamate, forming glutam‐
ate or glutamine, respectively. Glutamate, glutamine, and alpha‐ketoglutarate are
easily interconverted and particularly glutamate is very abundant. One might as
well consider glutamate a storage of free nitrogen in addition to ammonium, which
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is toxic in large cytosolic concentrations. De‐ or transamination may take the ori‐
ginal amino acid as a substrate or they might occur after some modifications, but
regardless, the remaining ketoacid needs to be recycled or excreted. In summary,
there are two ways in which nitrogen sources differ in their nutrient quality: in
their uptake, and in their recycling and/or excretion.

4.2 Model formulation

In this section, I describe my construction of a base metabolic model, that includes
pathways for both nitrogen and carbon uptake, and the synthesis of proteins from
amino acids, themselves constructed from both nitrogen and carbon. I will ex‐
plain how parametrisations of this model can represent different pathways such
as fermentative and respiratory energy generation. To represent amino acids as ni‐
trogen sources, I introduced recycling and carbon export pathways. I will describe
the full model first, before giving more details about smaller, simplified, submod‐
els used to generate part of the results. For most of this chapter, the allocation was
assumed to be optimal as in section §3.5, although the simplest submodels permit‐
ted the choice of explicitly regulated ribosomal allocation, which I have indicated
in the text.

4.2.1 Full metabolic model

The model from Bertaux et al. (2020), explained in detail in section §3.4, served
as my starting point. I aimed to describe the steady‐state behaviour of unper‐
turbed wild‐type cultures. Therefore, I disregarded the cell‐cycle protein X and
the useless protein U, as well as the inactivation of ribosomes by the translational
inhibitor. Furthermore, I introduced additional metabolic pathways representing
(i) the uptake of carbon and nitrogen, (ii) fermentative and respiratory energy gen‐
eration, represented by different parametrisations of a similar enzyme, and (iii)
the recycling and excretion of carbon from complex nitrogen sources containing
both nitrogen and carbon.

In this subsection I will describe the formulation of the full model without much
comment on the interpretation of variables and parameters included. More extens‐
ive explanations are provided in the following subsections, alongside the defini‐
tions of simpler subsystems of this full model.

The reactions included in the full model are pictured in Figure 4.1, and the model
follows the formalism from equation (3.20), here repeated:
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Figure 4.1: Illustration of the full metabolic model. It incorporates the up‐
take of two types of nutrient from the environment, the recycling of
ketoacid backbones, as well as the production of proteins from amino
acid precursors. The transporters EC import carbon precursors C, and
the transporters EN represent the uptake of amino acids as nitrogen
sources, which nets free nitrogen N as well as ketoacid backbones K.
The latter are recycled into carbon precursors by enzymes EKre or ex‐
creted from the cell by enzymes EKex. Both carbon precursors and free
nitrogen are required for the synthesis of amino acid precursors A by
the enzyme EA. Two parametrisations exist for this enzyme, represent‐
ing fermentative and respiratory growth. The ribosomes R produce all
the proteins in the system, which includes housekeeping proteins Q.

ẋ =

 ȧṁ
ṗ

 =

SA · ĵ(x) − jR(x) − µa
Ŝĵ(x) − µm

jR(x)f− µp

 . (4.1)

The quantities described by this equation are defined as the amino acids a, meta‐
bolite vector m = (k, c, n), protein vector p = (eKre

, eKex
, eC, eAF

, eAR
, eN, r, q), flux

vector

j =



jKre

jKex

jC

jAF

jAR

jN

jR


=



kKre
eKre

k
k+ksat

kKex
eKex

k
k+ksat

kCeC

kEF
eAF

cn
(c+csat)(n+nsat)+∆EF

kER
eAR

cn
(c+csat)(n+nsat)+∆ER

kNeN

kRr
a

a+asat


, (4.2)
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allocation vector f = (fKre
, fKex

, fC, fEF
, fER

, fN, fR, fQ), and stoichiometry

( (
SA
)T
Ŝ

)
=


0 0 0 +1 +1 0

−1 −1 0 0 0 γK

1 0 1 −αCF
−αCR

0

0 0 0 −αNF
−αNR

γN

 . (4.3)

To avoid the need to introduce regulatory feedback for the expression of each pro‐
tein class in the model, I chose allocations f that maximised the growth rate (sec‐
tion §3.5). Exceptions to this were the less complex models described in 4.2.2
and 4.2.3, for which regulation of the ribosomal sector was implemented as be‐
fore (section §3.4, Bertaux et al. 2020).

Mass balance is maintained in all internal reactions, but the carbon and nitrogen
transporters take up nutrients from the environment, and the ketoacid excretion
enzyme can move ketoacid back into the environment. The mass balance is reflec‐
ted by the following constraints:

αCF
+ αNF

= 1, (4.4)

αCR
+ αNR

= 1, (4.5)

γK + γN = 1. (4.6)

In amino acid nitrogen sources, the ketoacid stoichiometry parameter γK can be
calculated fromnC andnN, the numbers of carbon and nitrogen atoms in a nutrient
molecule, as

γK =
nC × 12

nC × 12+ nN × 14
=

12
nC

nN

12
nC

nN

+ 14
. (4.7)

In some plots, the carbon‐to‐nitrogen ratio nC

nN
is used instead of γK to visualise

the model behaviour.
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When entered into equation (4.1), these definitions yield the full ODE system:

ȧ = jAF
+ jAR

− jR − µa, (4.8)

k̇ = γKjN − jKre
− jKex

− µk, (4.9)

ċ = jC + jK − αCF
jAF

− αCR
jAR

− µc, (4.10)

ṅ = γNjN − αNF
jAF

− αNR
jAR

− µn, (4.11)

ėK = fKjR − µeK, (4.12)

ėC = fCjR − µeC, (4.13)

ėAF
= fEF

jR − µeAF
, (4.14)

ėAR
= fER

jR − µeAR
, (4.15)

ėN = fNjR − µeN, (4.16)

ṙ = fRjR − µr, (4.17)

q̇ = fQjR − µq. (4.18)

The growth rate µ in these equations is found by taking the sum of these equations.
Using the allocation constraint

∑
i fi = 1 and the concentration constraint

∑
i xi =

1, such that
∑

i ẋi = 0, gives

µ = jC + jN − jKex
= kCeC + kNeN − kKex

eKex

k

k+ ksat
. (4.19)

This is equal to the net uptake of nutrient from the environment.

4.2.2 Submodel I: one-enzyme metabolism

The simplest model considered in this thesis is a simplification from the model
described by Bertaux et al. (2020), where the aforementioned ribosome inactiv‐
ation reactions, cell cycle proteins, and unused proteins were discarded, but no
additional metabolism was yet introduced. A cartoon representation of the sys‐
tem, referred to as submodel I, is given in Figure 4.2. The only protein species
comprising the model are therefore an enzyme E representing nutrient uptake and
metabolism, a housekeeping fraction Q, and a Michaelis–Menten ribosome produ‐
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cing these two proteins and itself. There is a single internal metabolite A. The
ODEs that describe the system are:

ȧ = ke− σ
a

a+ asat
r− µa, (4.20)

ė = fEσ
a

a+ asat
r− µe, (4.21)

ṙ = fRσ
a

a+ asat
r− µr, (4.22)

q̇ = fQσ
a

a+ asat
r− µq. (4.23)

In this model, the allocation vector f was chosen as follows. First, fQ was held
fixed,

fR = δa (4.24)

was dynamically regulated, and

fE = max(0, 1− fQ − fR) (4.25)

followed the ribosomal allocation constraint.
The growth rate µ is calculated from the sum of the four equations using the

allocation constraint fE+fR+fQ = 1 and the concentration constraint a+e+r+q = 1

(so ȧ+ ė+ ṙ+ q̇ = 0), resulting in

µ = ke. (4.26)

Note that this relation is true dynamically, because the concentration constraint is
universally valid. We can therefore substitute this latter relation for µ in the set
of dynamic equations posed above. It follows that the parameter k can be used to
modulate the growth rate.

4.2.3 Submodel IIa: Two-enzyme linear metabolism

The first modification we made to the minimal model was to separate the enzyme
into two parts, similar to the model presented by Weiße et al. (2015). This is illus‐
trated in Figure 4.3 and referred to as submodel II. We termed the two enzymes the
transporter ET and the metabolic enzyme EM for ease of reference. An additional
metabolite S represented internal sugar molecules. As before, all were part of the
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Figure 4.2: Illustration of submodel I, the most simplified one. It is based on
the model by Bertaux et al. (2020) but includes only the metabolic en‐
zymes E, active ribosomes R, and housekeeping proteins Q, with one
metabolic intermediate A that cells import directly from the environ‐
ment.

total volume, i.e. 1 = s+a+eT +eM+r+q. We further assumed Michaelis–Menten
kinetics for the metabolic enzyme, which converted the internal sugar into the sub‐
strate for the ribosomes. The dynamic equations from above were thus modified
to:

ṡ = kTeT − kMeM
s

s+ ssat
− µs, (4.27)

ȧ = kMeM
s

s+ ssat
− σr

a

a+ asat
− µa, (4.28)

ėT = fTσr
a

a+ asat
− µeT , (4.29)

ėM = fMσr
a

a+ asat
− µeM, (4.30)

ṙ = fRσr
a

a+ asat
− µr, (4.31)

q̇ = fQσr
a

a+ asat
− µq, (4.32)

with fT + fM+ fR+ fQ = 1. The housekeeping fraction was still represented by fQ,
fixed across all model instances, and

fR = δa (4.33)

was dynamically regulated as before. However, the extra enzyme introduced free‐
dom in the choice of allocation vector f such that a trade‐off existed between fT
and fM while satisfying

fT + fM = 1− fQ − fR. (4.34)
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Figure 4.3: Illustration of submodel II, with two‐step linear metabolism. Be‐
sides the protein production module illustrated in Figure 4.2, it in‐
cludes two enzymes ET and EM as well as two metabolic intermediates
S and A.

In practice, we explored the behaviour of the model under perturbations of fM.
As before, the growth rate µ in the above equations was determined dynamically

as
µ = kTeT . (4.35)

4.2.4 Submodel IIb: Assuming optimal allocation

As described in more detail in section §3.5, I simplified the analysis of the two‐step
linear pathway and its further extensions by choosing the allocation vector in such
a way that the growth rate was maximised. That is, I removed the requirement that
fR = δa and instead calculated the allocation (fT , fM, fR) that optimised the growth
rate µ for a given set of kinetic parameters.

4.2.5 Submodel III: separate nitrogen and carbon pathways feeding
amino acid synthesis

Next, I modelled a system that contained both carbon and nitrogen metabolism,
illustrated in Figure 4.4. For this model, I considered only the steady‐state al‐
location that maximised the growth rate. Compared to the previous model, the
transporter ET is replaced by two parallel ones, named TC and TN, with the former
importing a carbon precursor with relative abundance c and the latter producing
a nitrogen precursor metabolite with relative abundance n.

The metabolic enzyme (now termed simply E) functioned anabolically in com‐
bining the two precursors into the amino acid. Mass balance was observed by this
reaction: as much mass in the form of carbon c and nitrogen n was consumed as
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was produced in the form of amino acid a. The relative requirements of the two
substrates was modelled by the parameters αC and αN, with

αC + αN = 1. (4.36)

The enzyme kinetics were modelled as the two‐step enzyme described in sec‐
tion 3.3.2. As in section 3.3.2, the parameter ∆E was set to zero.

The system of ODEs for the concentrations in this model was given by:

ṅ = kNtN − αNkEe
cn

(c+ csat)(n+ nsat) + ∆E

− µn, (4.37)

ċ = kCtC − αCkEe
cn

(c+ csat)(n+ nsat) + ∆E

− µc, (4.38)

ȧ = kEe
cn

(c+ csat)(n+ nsat) + ∆E

− σr
a

a+ asat
− µa, (4.39)

ṫC = fCσr
a

a+ asat
− µtC, (4.40)

ṫN = fNσr
a

a+ asat
− µtN, (4.41)

ė = fEσr
a

a+ asat
− µe, (4.42)

ṙ = fRσr
a

a+ asat
− µr, (4.43)

q̇ = fQσr
a

a+ asat
− µq. (4.44)

Using the concentration constraint to compute the dynamical growth rateµworks
as before, with the growth rate still determined by the total uptake of mass from
the system:

µ = kCtC + kNtN. (4.45)

4.2.6 Submodel IV: Parametrisations representing respirofermentative
and respiratory growth

As mentioned before, there are two principal growth states of the cell: respirofer‐
mentative growth, and entirely respiratory growth. The utilisation of the ferment‐
ative pathway amounts to a higher carbon usage, because overflow metabolism is
utilised to maintain energy levels in the form of ATP, and redox (NAD+/NADH)
balance. The overflow metabolites are excreted—in yeast, typically in the form of
ethanol, but in other organisms acetate or lactate fermentation are also present. I
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Figure 4.4: Illustration of submodel III, with simple branched metabolism.
The model contains nitrogen and carbon precursors N and C, with
associated transporters TN and TC, in addition to the base model il‐
lustrated in Figure 4.2.

did not model this pathway explicitly. Rather, I encoded the higher carbon usage
in the parameter αC. In other words, with respirofermentative growth represen‐
ted by the subscript F and purely respiratory growth by the subscript R, parameter
choices for these two iterations of the metabolic pathway were chosen that satis‐
fied both kEF

> kER
and αCF

> αCR
.

For a rough estimate of the stoichiometry parameters αC, I used that proteino‐
genic amino acids contain approximately 4 carbon atoms per nitrogen atom. This
converted to the mass‐action parameters gave αCR

= 4×12
4×12+14

= 24/31 using molar
masses of 12 g/mol and 14 g/mol for carbon and nitrogen, respectively. Another
rough estimate that the excess carbon excreted in fermentation is approximately
equal in amount to the carbon converted to biomass gave αCF

= 8×12
8×12+14

= 48/55.

The two parametrisations were optimised simultaneously, by replacing the single
enzyme E with two enzymes EF and ERthat represented the respirofermentative
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and respiratory pathways, respectively. The ODE equations for this model already
closely resembled those of the full model:

ċ = jC − αCF
jAF

− αCR
jAR

− µc, (4.46)

ȧ = jAF
+ jAR

− jR − µa, (4.47)

ṅ = γNjN − αNF
jAF

− αNR
jAR

− µn, (4.48)

ṫC = fCjR − µtC, (4.49)

ėAF
= fEF

jR − µeAF
, (4.50)

ėAR
= fER

jR − µeAR
, (4.51)

ṫN = fNjR − µtN, (4.52)

ṙ = fRjR − µr, (4.53)

q̇ = fQjR − µq. (4.54)

The fluxes followed the functional forms described in equation (4.2), and the α‐
parameters the stoichiometric constraints from equations (4.4) and (4.5).

4.2.7 Amino acids as sources of nitrogen

The final component of the full model was the uptake of more complex nitrogen
sources. Freely usable nitrogen comes in the form of ammonium ions (NH4

+),
which are used in the biosynthesis of nitrogen‐containing compounds including
amino acids. However, cells can assimilate nitrogen from many other sources.
In the experiments described in chapter 2, the cells were presented with various
amino acids as their sole nitrogen source. In budding yeast, these pathways typ‐
ically involve deamination of the amino acid into free ammonium ions and the
leftover ketoacid, either by a single enzyme or as the net result of a longer path‐
way (Godard et al. 2007). The ketoacid, a carbohydrate, is typically recycled into
biomass or excreted.

To account for this process in the model, I modified the nitrogen transporter
to produce both free nitrogen and a carbon‐containing ketoacid metabolite with
their relative proportions determined by parameters γN and γK. Additionally, I
introduced two Michaelis–Menten enzymes, EKre and EKex that, respectively, re‐
cycled the ketoacid into usable carbon precursor or excreted it from the cell. This
completed the model described in 4.2.1.
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4.3 Results

I will now describe some key behaviours of the model constructed in the previous
section. The results are presented in increasing order of the complexity of the
model used to generate them. The submodels are referred to by the numerals used
in the above. For submodels I and IIa, explicit ribosomal allocation regulation
was included, whereas for the more involved submodels (IIb and following) all
allocation fractions were assumed to maximise growth rate.

4.3.1 Submodel I: The ribosomal growth law followed from model
assumptions

A central point in the definition of the regulated models I and IIa is the linear
dependence of the ribosome allocation on the metabolite concentration:

fR = δa, (4.55)

with δ a fixed parameter. Furthermore, the requirement that all biomass is pro‐
duced by stable ribosomes gives the ribosome ODE

ṙ = fRσr
a

a+ asat
− µr, (4.56)

which means that
µ = fRσ

a

a+ asat
(4.57)

in steady‐state. Note that these assumptions are also met in the original model.
For a≫ asat (so fR ≫ δasat) it now follows that

µ = σ

(
f2R

δasat + fR

)
(4.58)

= σ

(
fR − δasat +

δ2a2sat
fR + δasat

)
(4.59)

≈ σ (fR − δasat) . (4.60)

In balanced growth, the allocation fraction fR is equal to the more familiar pro‐
teome mass fraction ϕR, so

ϕR ≈ ϕR0 + σ−1µ (4.61)
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with
ϕR0 = δasat. (4.62)

This is the familiar ribosomal growth law.

4.3.2 Submodel IIa: Enzymatic cost parameters modulated growth
rate

In the two‐step model, the regulation of fR by a, the imposed housekeeping frac‐
tion fQ, and the allocation constraint fT + fM + fR + fQ = 1 restricted only three
out of four allocation fractions. Therefore, we were able to modulate the growth
rate µ by changing the allocation fM towards EM. A curve of the resulting growth
rates is plotted in Figure 4.5A. The growth rate was maximised at some fM = f∗M,
separating two regimes. For fM < f∗M, the metabolic enzyme was limiting and in‐
creasing its allocation lead to an increase in growth. Here, the sugar s accumulated
as the metabolic enzyme could not cope with the load, as shown in Figure 4.5B.
For fM > f∗M, increasing allocation towards the metabolic enzyme constituted an
extra burden, and thereby decreased the growth rate. In this second regime, both
metabolites were low in abundance.

The first regime is unlikely to represent biological reality, because metabolites
are known to constitute less biomass than macromolecules (Milo et al. 2016, pp.
128–132). However, the second regime can be used to represent the situation
where the burden of metabolism depends on the composition of the growth en‐
vironment. A higher burden results in slower growth, as resources are reallocated
from the ribosome and transporter towards the metabolic enzyme. This is illus‐
trated in Figure 4.5C, where we show the four proteome fractions as a function of
the growth rate. Note how the ribosome fraction ϕR followed the growth law for
medium to fast growth, as predicted by equation (4.61).

4.3.3 Submodel IIa: Transporter and metabolic enzyme expression
were anticorrelated

In this model with this parametrisation, the transporter T was part of the “R”‐
fraction: fT correlates positively with growth rate (see Figure 4.5C). In fact, this
fact can be seen directly from equation (4.35), since k was kept constant. Some
evidence for this was found in our proteomics data as well: for example, the en‐
zyme catalysing the first step of glycolysis, Hxk2, was found to be strongly posit‐
ively correlated with the growth rate as modulated by the nitrogen source, whereas
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Figure 4.5: Analysis of the two‐stepmodel upon variation of the parameter fM.
A. Growth rate µ, B. concentration of internal metabolites s and a as
a function of fM. C. Mass fractions of each of the four proteins, para‐
metrised by growth rate. Note the ordering according to the choice of
fM, so fT is large when fM is small and vice versa. Parametrization:
kT = 10.0 h‐1, kM = 20.0 h‐1, σ = 6.46 h‐1, ssat = 0.0167, asat = 0.0167,
fQ = 0.2, δ = 5.0.

the total burden of metabolism was found to be negatively correlated with the
growth rate. This behaviour was also noted by Molenaar et al. (2009), but it is
notably different from the two‐step model described by Weiße et al. (2015), who
assumed that the transporter and metabolic enzyme were both regulated identic‐
ally. They imposed that both ϕT and ϕM correlated negatively with growth rate—
for us, while ϕM and ϕM + ϕT do,

ϕT =
eT

1− a− s
=

µ

kT (1− a− s)
(4.63)

does not.

4.3.4 Submodel IIa: Housekeeping proteins were less abundant than
widely assumed

Proteins associated with translation are estimated to constitute approximately
45% of the total protein mass in the fastest‐growing E. coli cultures (Scott et al.
2010; Hui et al. 2015; A. Schmidt et al. 2016). A minimal partitioning of the pro‐
teome based on growth rate correlations suggested that around half of the pro‐
teome mass does not change with the growth rate (Scott et al. 2010, 2014). The
model by Weiße et al. (2015) reflected this, partitioning a two‐step model similar
to ours into a metabolic P‐sector (corresponding to our T and M), a translational
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R‐sector, and a constitutive Q‐sector. In the parametrisation that best represented
the ribosomal growth laws, the Q‐proteins took up around 70% of the total protein
mass, and were negatively correlated with the growth rate.

For the parametrisation underlying Figure 4.5, the allocation towards house‐
keeping proteins was small: fQ = 0.2. However, this parametrisation was chosen
such that the ribosomal growth law agreed reasonably well with the experimental
data. The discrepancy in the estimated housekeeping allocation is explained by the
considerable cost of the two enzymes even at maximal growth, at around 25% for
T and 15% for M in the current parametrisation. Because proteins whose expres‐
sions is constant across all experimental conditions are indeed quite rare and most
proteins are either correlated with growth rate or induced in a medium‐specific
manner (chapter 2, as well as Hui et al. 2015; A. Schmidt et al. 2016), I think this
smaller allocation towards Q‐proteins is an important feature of the fM‐modulated
model.

4.3.5 Submodel IIb: Growth-optimised allocation was a good
approximation for the regulated model

The results in the previous sections were obtained using a regulated model, where
fR = δa with fixed δ = 5.0 as taken from Bertaux et al. (2020). However, for the
complete model I considered only model parametrisations where the allocation
vector maximised growth rate. In the simpler Model II with linear metabolism, I
investigated the similarities and discrepancies between the regulated model (IIa)
and the optimised model (IIb) under modulations of kC (Figure 4.6) and kE (fig‐
ure 4.7).

As expected, for both parametrisations, the dependency of the growth rate on the
modulation parameter approximated a Monod curve (Figures 4.6A and 4.7A), and
the components of the allocation vector f were approximately linearly correlated
with growth rate (Figures 4.6B and 4.7B).

Next, we considered the relationship between fR and a, as plotted in Figures 4.6C
and 4.7C. In the optimal model IIb, the allocation to ribosomes was approximately
proportional to the amino acid concentration, although a small nonlinearity was
present. However, the best‐fit proportionality factor δ was smaller than the value
of 5.0 that was derived from the relation between elongation rate and ribosome
abundance (Dai et al. 2016). As derived in the previous section, such a decreased
value of δ would decrease the offset in the ribosomal growth law in the regulated
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model. Indeed, the deviation from proportionality in fR(µ) was larger in the reg‐
ulated model than in the optimised model (compare Figures 4.6B and 4.7B to Fig‐
ure 4.5C).

Last, the mass fractions occupied by the metabolites, c and a, were appreciable
(Figures 4.6D and 4.7D). Particularly for the kC‐modulated model, the relative
abundance of the carbon metabolite increased to more than half of the total bio‐
mass. In experimental cultures, metabolites comprise only a small fraction of the
biomass, so the growth‐optimised model was a poor approximation for conditions
where this occurred.

4.3.6 Submodel III: The two-substrate metabolism was similar to the
linear pathway

From the above, I concluded that growth optimisation was a reasonable approx‐
imation to make for our coarse‐grained models. In the remainder of this section,
I discuss such optimised models where explicit nitrogen consumption was intro‐
duced. First, I discuss results for submodel III, where nitrogen uptake was intro‐
duced but the metabolic pathway was fixed. Then, I introduce the two parallel en‐
zymatic pathways representing different levels of respiration (submodel IV). Last,
I include the results on the recycling and excretion of the backbones resulting from
the metabolism of complex nitrogen sources.

Modulated transporter rates kN and kC

Under perturbations of transporter uptake rates, the two‐precursor model showed
the same behaviours of the linear two‐step model, as plotted in Figures 4.8 and 4.9
for modulation of kN and kC, respectively. The growth rate depended on both
transporter rates according to Monod law, and the allocation fractions mostly fol‐
lowed the expected phenomenological trade‐offs, where all freely optimised alloc‐
ation fractions were approximately linearly correlated with the growth rate, with
the allocation of the modulated transporter correlated negatively and all other
proteins positively. One notable exception was the growth‐rate dependence of fE,
the allocation towards the metabolic enzyme, which was clearly nonlinear under
perturbations of kN, the nitrogen transporter uptake rate (Figure 4.8B). For both
modulations, the optimal fR and a were approximately linearly correlated, fur‐
ther supporting that a simple regulation of the ribosomal allocation fraction can
approach growth optimisation. The modulation of one transporter rate (e.g. kN)
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Figure 4.6: Analysis of two‐step allocation‐optimised model under modula‐
tion of the transporter rate. The uptake rate parameter kC of the
transporter was modulated to yield different growth rates. The alloc‐
ation parameters were chosen to maximise the growth rate for each
chosen kC. Other parameters were fixed to the same values as for
Figure 4.5. A. Growth rate µ as a function of uptake rate kC. B. Com‐
ponents of the protein allocation vector (fT , fE, fR, fQ) as a function of
growth rate µ. C. Relationship between amino acid concentration a
and ribosomal allocation fR in the model for varying kC (blue points)
as well as an ordinary least squares linear fit to the data, with forced
zero intercept. D. Mass fractions of constituent molecules as a func‐
tion of growth rate µ. Metabolites were plotted as solid circles and
protein components as opaque triangles.
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Figure 4.7: Analysis of two‐step allocation‐optimised model under modula‐
tion of the metabolic rate. The turnover rate parameter kE of the
metabolic enzyme was modulated to yield different growth rates. The
allocation parameters were chosen to maximise the growth rate for
each chosen kE. Other parameters were fixed to the same values as for
Figure 4.5. A. Growth rate µ as a function of turnover rate kE. B. Com‐
ponents of the protein allocation vector (fT , fE, fR, fQ) as a function of
growth rate µ. C. Relationship between amino acid concentration a
and ribosomal allocation fR in the model for varying kE (blue points)
as well as an ordinary least squares linear fit to the data, with forced
zero intercept. D. Mass fractions of constituent molecules a function
of growth rate µ. Metabolites were plotted as solid circles and protein
components as opaque triangles.
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barely affected homeostasis of the metabolite in the other pathway (e.g. c). As in
the two‐step model, expression of metabolites was considerable but only became
greater than approximately 1/3 the biomass at large rates kC and kN, correspond‐
ing to small allocations fC and fN.

Modulated metabolic rate kE

Furthermore, I modulated the growth rate through kE, again in analogy to the
situation in the simpler model, and again with very similar results. Like the two‐
step model, metabolites c and n were very highly abundant at slow growth (Fig‐
ure 4.10D).

4.3.7 Submodel III: The ribosomal growth law was robust to random
parameter sampling

Besides studying the model behaviour under modulations of single rate paramet‐
ers, I explored the model under concurrent variations of the three rate paramet‐
ers. I drew 100 triplets of (kC, kN, kE) from independent uniform distributions
with support [0, 20]. The ribosomal growth law was nearly exactly satisfied (Fig‐
ure 4.11A), even though expression of the two transporters and the metabolic en‐
zyme was highly variable between parameter choices. Furthermore, the concen‐
tration of the amino acid a was tightly related to growth rate, and it was almost
always less abundant than c and n (Figure 4.11B). The tight growth rate correl‐
ations for both fR and a again followed from tight covariation between the two
(Figure 4.11C).

Together with the previous sections, these results suggest that a single regu‐
latory fR–a relationship is an appropriate simplification if a dynamic model of
ribosome regulation is required. For the regime explored here, with small satura‐
tion constants, the simple proportionality proposed by Bertaux et al. (2020) works
reasonably well, although fR ∝ (a− a0) could be an appropriate improvement.

4.3.8 Submodel IV: Respiration was induced by limiting the rate of
carbon metabolism, but not of nitrogen

Next, I wondered under what circumstances respiration would be triggered in the
model. I modulated the transporter rate parameters in model IV with two parallel
metabolic pathways with different parametrisations (kEf

= 10.0 h‐1 and αCf
=

48/55 versus kEr
= 5.0 h‐1 and αCr

= 24/31, see 4.2.6). The allocation fractions
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Figure 4.8: Analysis of allocation‐optimised model with nitrogen and carbon
uptake under modulation of the nitrogen transporter rate. The up‐
take rate parameter kN of the nitrogen transporter was modulated to
yield different growth rates. The allocation parameters were chosen
to maximise the growth rate for each chosen kN. A. Growth rate
µ as a function of uptake rate kN. B. Components of the protein
allocation vector (fC, fE, fN, fR, fQ) as a function of growth rate µ.
C. Relationship between amino acid concentration a and ribosomal
allocation fR in the model for varying kN (blue points) as well as
an ordinary least squares linear fit to the data. D. Mass fractions
of constituent molecules a function of growth rate µ. Metabolites
were plotted as solid circles and protein components as opaque tri‐
angles. Fixed parameters: kC = 20.0 h‐1, kE = 10.0 h‐1, σ = 6.46 h‐1,
csat = asat = nsat = 0.0167, ∆E = 0.0, αC = 48/55, fQ = 0.2.
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Figure 4.9: Analysis of allocation‐optimised model with nitrogen and carbon
uptake under modulation of the carbon transporter rate. The up‐
take rate parameter kC of the nitrogen transporter was modulated to
yield different growth rates. The allocation parameters were chosen
to maximise the growth rate for each chosen kC. A. Growth rate µ as
a function of uptake rate kC. B. Components of the protein allocation
vector (fC, fE, fN, fR, fQ) as a function of growth rate µ. C. Relation‐
ship between amino acid concentration a and ribosomal allocation fR
in the model for varying kC (blue points) as well as an ordinary least
squares linear fit to the data. D. Mass fractions of constituent mo‐
lecules a function of growth rate µ. Metabolites were plotted as solid
circles and protein components as opaque triangles. Fixed paramet‐
ers: kE = 10.0 h‐1, kN = 5.0 h‐1, σ = 6.46 h‐1, csat = asat = nsat =
0.0167, ∆E = 0.0, αC = 48/55, fQ = 0.2.
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Figure 4.10: Analysis of allocation‐optimised model with nitrogen and carbon
uptake under modulation of the metabolic enzyme turnover rate.
The turnover rate parameter kE of the metabolic enzyme was modu‐
lated to yield different growth rates. The allocation parameters were
chosen to maximise the growth rate for each chosen kE. A. Com‐
ponents of the protein allocation vector (fC, fE, fN, fR, fQ) as a func‐
tion of growth rate µ. C. Relationship between amino acid concentra‐
tion a and ribosomal allocation fR in the model for varying kE (blue
points) as well as an ordinary least squares linear fit to the data.
D. Mass fractions of constituent molecules a function of growth rate
µ. Metabolites were plotted as solid circles and protein components
as opaque triangles. Fixed parameters: kC = 20.0 h‐1, kN = 5.0 h‐1,
σ = 6.46 h‐1, csat = asat = nsat = 0.0167, ∆E = 0.0, αC = 48/55,
fQ = 0.2.
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Figure 4.11: Analysis of allocation‐optimised model with nitrogen and carbon
uptake and randomly chosen rate parameters. The rate parameters
kEf

, kC, and kN were randomly drawn from a uniform distribution
between 0 and 20.0 h‐1. The allocation parameters were chosen to
maximise the growth rate for each set of (kC, kE, kN). A. Components
of the protein allocation vector (fC, fE, fN, fR) as a function of growth
rate µ. fQ was omitted to improve clarity. B. Steady‐state biomass
fractions of metabolites plotted against growth rate µ. C.Relationship
between amino acid concentration a and ribosomal allocation fR in
the model (blue points, coloured according to 3

√
kCkEkN) as well as

a line to guide comparison with previous figures. Fixed parameters:
σ = 6.46 h‐1, csat = asat = nsat = 0.0167, ∆E = 0.0, αC = 48/55,
fQ = 0.2.
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to both enzymes were included in the growth rate optimisation. Because the two
pathways are parallel, the usage of one of the two was preferred over the other, and
in each parametrization with optimized allocation, exactly one of fEf

and fEr
was

equal to zero. As shown in figure 4.12, the respiratory enzyme was only induced by
low values of the carbon uptake rate kC. The fermentative enzyme was preferred
in all conditions where kN was varied from its default.

A complication arose for slow growth rates induced by either transporter rates.
With an extra allocation parameter to optimise, the optimisation problem was
more difficult to solve and more prone to numerical error. The metabolite con‐
centrations did not smoothly vary with the growth rate (Figure 4.12B), suggesting
that the optimisation did not always reach the global minimum.

4.3.9 Full model: Recycling of ketoacids disturbed carbon metabolism

Now I discuss the full model including the introduction of ketoacid molecules as
part of nitrogen uptake. At first, I explored the model behaviour when ketoacid
was not being excreted, i.e. fKex

= 0; this restriction was lifted later. I perturbed
the parameter γK, which represents the relative mass of recycled ketoacid with
respect to the total mass taken up by the nitrogen (amino acid) transporter. This
parametrisation was meant to represent different amino acids. For example, gly‐
cine molecules contain two carbon atoms for each nitrogen atom, which would be
represented by γK = 2×12

2×12+14
= 12/19 ≈ 0.63, whereas each molecule of isoleu‐

cine contains nine carbon atoms, for γK = 9×12
9×12+14

= 54/61 ≈ 0.89. As seen in
Figure 4.13A, the optimal growth rate decreased ever steeper with increasing γK,
dropping to zero when γK = 1, which represents no nitrogen uptake at all.

The allocation fractions leading to the optimal growth rates are plotted in Fig‐
ure 4.13B. Respiratory enzyme was not expressed, i.e. fEr

= 0.0was optimal across
all simulations. Notably, the optimal cultures expressed considerable amounts of
ribosomes even at vanishing growth rates.

There were three growth rate regimes, characterised by the types of proteins ex‐
pressed. In the fastest growing regime 1, ketoacid built up but no recycling enzyme
was expressed, i.e. fK = 0.0. In this regime, the growth rate decreased because the
metabolite k did not contribute to growth in any way, but the cost of expressing
its recycling enzyme would have exceeded that of the wasted metabolite. In the
intermediate‐growth regime 2, both ketoacid recycling enzyme and carbon trans‐
porters were expressed, and intracellular carbon originated from both ketoacid
and direct uptake. Only in this regime, the ribosome allocation fraction approx‐
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Figure 4.12: Analysis of allocation‐optimised model with parallel metabolic
enzymes under modulation of the transporter uptake rates. Al‐
location parameters were chosen to maximise the growth rate for
each chosen kC (left panels) and kN (right panels). Both uptake
rates were varied separately between 1.0× 10−2 h‐1 and 1.0× 103 h‐1.
A. Components of the protein allocation vector (fC, fE, fN, fR, fQ) as
a function of growth rate µ. The fR‐ and fQ‐components are omit‐
ted from the figure to improve clarity. B. Steady‐state biomass frac‐
tions of metabolites a function of growth rate µ. Fixed parameters:
kEf

= 10.0 h‐1, kEr
= 5.0 h‐1, σ = 6.46 h‐1, csat = asat = nsat = 0.0167,

∆Ef
= ∆Er

= 0.0, αCf
= 48/55, αCr

= 24/31, fQ = 0.2.
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imated the linear dependence on amino acid concentrations shown in the previous
sections (Figure 4.13C). Lastly, in the slowest regime 3, all carbon originated from
ketoacid, and fC = 0.0. This was the case when γK > αCf

≈ 0.87, such that with
each nitrogen, more carbon was being taken up by EN than could be anabolised
by EA. In agreement with this, ketoacid built up considerably in Regime 3 (Fig‐
ure 4.13D). It is expected that regime 3 would be negated by the possible excretion
of superfluous ketoacid, which is what we explored next.

4.3.10 Full model: Different parametrisations induced complex
trade-offs between carbon uptake, ketoacid recycling, and
excretion

Finally, we explored the behaviour of the full model with no restrictions on ketoacid
metabolism. We considered the optimal allocation when the ratio of carbon to ni‐
trogen atoms in the nutrient was varied—by way of the ketoacid stoichiometry
γK—alongside the maximal turnover rates (efficiencies) kN, kKex

, and kKre
of the

enzymes involved in ketoacid metabolism. The optimally allocated cell expressed
only one or two out of the ketoacid recycling, ketoacid excretion, and carbon up‐
take enzymes depending on the parametrisation (Figure 4.14). Neither recycling
nor excretion was expressed in nitrogen sources not also containing carbon, and
additionally this was optimal even for carbon‐containing nitrogen sources when
the ketoacid recycling and excretion enzymes were inefficient relative to the nitro‐
gen uptake enzyme (Figure 4.14ADE). The value of the ketoacid recycling rate kKre

below which ketoacid recycling was suboptimal depended weakly on the ketoacid
stoichiometry (Figure 4.14A). When recycling enzymes were expressed, the trade‐
off between the excretion and ketoacid uptake was heavily influenced by the ni‐
trogen source’s carbon content and all three enzyme rates (Figure 4.14ABC). Low‐
carbon nutrient sources required additional carbon uptake whereas high‐carbon
nutrient sources generally required ketoacid excretion, with pure recycling being
favoured in regimes with intermediate carbon content or inefficient excretion.

144



0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00
Ketoacid stoichiometry

G
ro

w
th

 r
at

e

A

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.5 1.0 1.5 2.0
Growth rate

A
llo

ca
tio

n 
fr

ac
tio

n

Protein
C
Ef
K
N
R

B

fR = 5  ́ (a - 0.0167)fR = 5  ́ (a - 0.0167)fR = 5  ́ (a - 0.0167)

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.05 0.10 0.15 0.20
Amino acid mass fraction

R
ib

os
om

al
 a

llo
ca

tio
n 

fr
ac

tio
n

0.00

0.25

0.50

0.75

1.00

Ketoacid
stoichiometry

C

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0
Growth rate

M
as

s 
fr

ac
tio

n Molecule
a
c
k
n

D

Figure 4.13: Analysis of allocation‐optimised model with recycling of ketoacid
undermodulation of the ketoacid stoichiometry. The relative mass
of ketoacid with respect to external amino acid γK was modulated to
yield different growth rates. The allocation parameters were chosen
to maximise the growth rate for each chosen γK. Dashed lines indic‐
ate regimes with qualitatively different behaviour. A. Growth rate
µ as a function of ketoacid stoichiometry γK. B. Components of the
protein allocation vector (fC, fEf

, fKre
, fN, fR) as a function of growth

rate µ. fQ = 0.2 and fEr
= 0.0 were omitted for clarity. C. Relation‐

ship between amino acid concentration a and ribosomal allocation
fR in the model for varying γK (blue points) as well as line to guide
comparison with previous figures. D. Mass fractions of metabolites
as a function of growth rate µ. Fixed parameters: kKre

= 10.0 h‐1,
kC = 20.0 h‐1, kEf

= 10.0 h‐1, kEr
= 5.0 h‐1, kN = 5.0 h‐1, σ = 6.46 h‐1,

ksat = csat = asat = nsat = 0.0167, ∆Ef
= ∆Er

= 0.0, αCf
= 48/55,

αCr
= 24/31, fQ = 0.2, fKex

= 0.
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Figure 4.14: Phase diagrams of ketoacid recycling, excretion, and carbon up‐
take under perturbations of enzyme efficiencies and nutrient
carbon‐to‐nitrogen ratio. For each figure, the optimal allocation
was determined for 412 combinations of the ketoacid stoichiometry
γK and one of the enzyme efficiencies. The ketoacid stoichiometry
was expressed in terms of the ratio of carbon and nitrogen atoms
in nutrient molecules as per equation (4.7). The enzyme efficien‐
cies were log‐transformed; parameters were chosen to be equidistant
in this representation. Colours indicate which of the enzymes were
not expressed in the optimal allocation. Dashed lines indicate para‐
meter values fixed in the other panels. A. Ketoacid recycling rate
kKre

varied, ketoacid excretion rate kKex
= 20.0 h‐1 and nutrient up‐

take rate kN = 20.0 h‐1 held fixed. B. kKex
varied, kKre

= 10.0 h‐1 and
kN = 20.0 h‐1 fixed. C. kN varied, kKre

= 10.0 h‐1 and kKex
= 20.0 h‐1

fixed. D. and E. as B. and C. but with kKre
= 5.0 h‐1. Fixed para‐

meters for all panels: kC = 10.0 h‐1, kEf
= 15.0 h‐1, σ = 6.46 h‐1,

ksat = csat = asat = nsat = 0.0167, ∆Ef
= ∆Er

= 0.0, αCf
= 48/55,

αCr
= 24/31, fQ = 0.2, fEr

= 0.
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4.4 Discussion

4.4.1 Simple feedback of free amino acids setting ribosome allocation

Throughout this chapter it appeared that the proportional regulation

fR = δa (4.64)

was a good approximation to the growth‐rate maximising allocation. The approx‐
imation was robust to many variations of the parameters describing the nutrient
quality. This relation is remarkable: in principle, optimal allocation could depend
on all internal metabolite concentrations and be highly nonlinear, but optimality is
approximated by this linear dependence on only a single metabolite. Such approx‐
imately proportional regulation also emerged in the earlier model by Weiße et al.
(2015), where this was implemented at the level of transcription. This result must
be seen in the context of the evolutionary pressure on unicellular organisms to
maximise their growth rate, at least when external resources are relatively abund‐
ant. The model formulated in this chapter suggests that this pressure is translated
into a concrete requirement to monitor the abundance of the self‐replication ma‐
chinery and its substrate, and express both in proportion to each other.

It will be interesting to see if similar regulations exist for other allocation frac‐
tions in the model. I did not find another protein whose allocation was linearly
correlated with a single metabolite, but the ribosomes are the only protein that is
the sole consumer of a single internal metabolite. A systematic exploration of the
allocation fractions of all enzymes and the concentrations of their products and
substrates might yield suitable candidate regulation functions.

4.4.2 The ribosomal growth law offset

The origin of the factor δ in the preceding paragraph is still somewhat mysterious.
In particular, it is an open question whether the optimal value of δ ≈ 5.0 can be
derived from the other parameters using suitable assumptions. However, when
simply assuming that ribosomal allocation is regulated as fR = δa, its value is
related to any observed offset ϕR0 in the ribosomal growth law ϕR = ϕR0 + σ−1µ

through
ϕR0 ≈ δasat, (4.65)
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as derived in section 4.3.1. This offset has been explained by the presence of a
pool of ribosomes not actively involved in translation (Dai et al. 2016; Metzl‐Raz
et al. 2017), but such a mechanism is absent in our model and further investiga‐
tions are therefore required. I expect that a quantitative explanation for the origin
of the offset in the ribosomal growth law will have profound implications on the
understanding of the interplay between ribosome synthesis, excess translational
capacity, and cell growth (Dai and Zhu 2020).

4.4.3 Starvation response and internal metabolite levels

In section 4.3.6, it was seen that modulating the efficiency of given enzymes repressed
the abundance of its substrate, while the abundance of other metabolites remained
at levels seen during fast growth. Such a mismatch may have implications for the
starvation response, seen at very low growth rates. When nutrient conditions
deteriorate such that growth only proceeds very slowly, cells often exit the cell
cycle instead of continuing replication. An intriguing possibility is that the starva‐
tion response is induced precisely by mismatched metabolite concentrations rather
than falling internal concentrations of the limiting nutrient. In fission yeast it is
known that carbon starvation induces cell death, whereas nitrogen starvation in‐
duces the transition into a quiescent state wherein cells can survive for very long
periods without proliferating. In this light, the observation that carbon starvation
induces respiratory behaviour whereas nitrogen starvation does not is particularly
intriguing.

On the other hand, metabolite build‐up is often toxic in addition to just wasteful,
and many pathways contain end‐product inhibition to avoid this situation. This
behaviour was not modelled but if implemented may keep metabolite levels more
coordinated. Unfortunately, introducing metabolite toxicity and/or end‐product
inhibition would have required the addition of many extra parameters (at least
one per metabolite) and it was therefore not explored further.

4.4.4 The fate of the carbon backbone

In the full model, modulations of the ketoacid stoichiometry γK gave rise to a
wide range of growth rates in a monotonically decreasing manner. However, as
observed in our fission yeast experiments described in chapter 2, the carbon‐to‐
nitrogen ratio cannot be the sole determinant of a nitrogen source’s quality. For
example, glycine and tryptophan media gave rise to very similar growth rates in S.
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Table 4.1: Carbon‐to‐nitrogen ratios of selected amino acids. The amino acids
are ordered according to the growth rate that they support in S. pombe
minimal media (Figure 2.1). Note that tryptophan molecule contains
two nitrogen atoms; the other selected amino acid molecules contain
no nitrogen apart from the backbone amino group. An estimate for the
ketoacid stoichiometry parameter γK from the model is given by γK =

nC×12
nC×12+nN×14

.
Amino acid C:N ratio nC nN γK

Tryptophan 5.5 11 2 61/80 ≈ 0.83
Glycine 2 2 1 12/19 ≈ 0.63

Phenylalanine 9 9 1 54/61 ≈ 0.89
Serine 3 3 1 36/50 = 0.72

Isoleucine 6 6 1 36/43 ≈ 0.84
Proline 5 5 1 30/37 ≈ 0.81

Glutamate 5 5 1 30/37 ≈ 0.81

pombe, but carbon is present in a 2:1 ratio in glycine and in a 5.5:1 ratio in trypto‐
phan (Table 4.1). This suggests that each growth medium is not only associated
with γK, but that at least one out of the enzymatic rates kN, kKex

,and kKre
must

also be modulated by the choice of nitrogen source. As shown in section 4.3.10,
the model behaviour of carbon‐to‐nitrogen ratio is highly complex but the coarse‐
grained model can still be used to obtain qualitative intuition.

For a quantitative mapping between the coarse‐grained proteome sectors and
proteome data, a good understanding of the nitrogen uptake pathways is neces‐
sary. Whether recycling or excretion is preferred would depend on the exact re‐
actions that are available to the organism, and the implications this has for the
effective recycling and excretion rates kKre

and kKex
. If ketoacid recycling effect‐

ively feeds into other synthesis pathways, this would correspond to large kKre
.

Similarly, the availability of excretion pathways would influence the value of kKex
.

The metabolism of indigestible ketoacids has been well studied in S. cerevisiae,
whose excretions of such “fusel oils” can spoil industrial applications (Godard et al.
2007). Unfortunately, no high‐quality metabolic model exists as yet for S. pombe,
so I was unable to calibrate the coarse‐grained model from this chapter with our
obtained expression data.
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4.4.5 Explicit overflow metabolism and energy generation

The model accounted for the distinction between respiratory and respiroferment‐
ative growth by adjusting a single parameter, αC, which represents the stoichiometry
of carbon in biomass production relative to nitrogen. We saw that this minimal
model accounted for the different behaviours under nitrogen and carbon limit‐
ation. Carbon limitation induced a switch to fully respiratory growth upon de‐
creasing growth rates but nitrogen limitation did not. However, one important
feature of fermentative growth, namely overflow metabolism, was not explicitly
modelled. Another caveat to the results described in this chapter is the lack of
energy metabolism in the model. These two potential model constituents are re‐
lated, as cellular energy in the form of ATP equivalents is generated in different
amounts by fermentation and respiration pathways. Adding an explicit ferment‐
ative pathway would therefore also be an opportunity to account for the energy
balance.

4.4.6 Non-protein biomass

While the parameter αC represented the biomass carbon‐to‐nitrogen ratio in the
model, it cannot be directly equated to observed dry mass compositions in real
cells (see Table 4.2). This is partially due to the inclusion of extra carbon that
real cells excrete during fermentation (see previous paragraph), but also because
the biomass of real cells consists of more macromolecules besides proteins. One
important pathway in this regard is the biosynthesis of nucleotides, especially
(ribosomal) RNA. Importantly, RNA biosynthesis requires the pentose phosphate
pathway (PPP). However, the PPP shares with glycolysis and amino acid metabol‐
ism multiple intermediate metabolites. A coarse‐grained model that includes both
protein and nucleotide synthesis must therefore account for two parallel (and pos‐
sibly interlocking) carbon metabolic pathways. Each interlocking metabolite must
be represented by a metabolite in the model. This is not compatible with the min‐
imal nature of the coarse‐grained models, and I therefore think that the interplay
between nucleotide and protein biosynthesis is better explored with models incor‐
porating genome‐wide metabolic maps.

Another important contribution to the biomass of S. pombe comes from its cell
wall, which mostly consists of carbon. The relative importance of the cell wall
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Table 4.2: Approximate relative dry mass composition of selected organisms.
Most of these numbers were obtained via the Bionumbers database
and corresponding identifiers (BNIDs) are indicated (Milo et al. 2010).
The protein content of S. pombe was approximated from the following
observations: (i) the cell measures approximately 14 by 3.5 microns
(Fantes and Nurse 1977), resulting in a volume of 0.123 pl if its shape
is assumed to be a spherocylinder; (ii) the average dry mass density is
282 pg/pl (Odermatt et al. 2021), such that the dry mass per cell is ap‐
proximately 35 pg; (iii) the protein content (of haploid wild type cells
in glucose minimal medium) is 15 pg/cell (Fantes and Nurse 1977).

Species Chemical formula Protein content (g/g)
E. coli CH1.77O0.49N0.24 (BNID

101800; von Stockar and
Liu 1999)

0.55 (BNID 101436;
Neidhardt et al. 1990)

S. cerevisiae CH1.613O0.557N0.158 (BNID
101801; von Stockar and

Liu 1999)

0.53(BNID 102328; Ertugay
and Hamamci 1997)

S. pombe CH1.9O0.61N0.155(de Queiroz
et al. 1993)

~0.43

changes with the size and shape of the cell, both of which depend on growth con‐
ditions and fluctuate during the cell cycle. The interplay of resource allocation,
cell size, cell shape, and growth is explored in the next chapter.
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5 A C-GRAM of S. pombe metabolism, growth, size,
and geometry

5.1 Introduction

In this final chapter I will discuss a coarse‐grained resource allocation model of the
fission yeast Schizosaccharomyces pombe that describes its size and geometry in
addition to its metabolism. Two important observations about the yeast cell that
were not modelled in the previous chapter are (i) the existence of the cell wall,
and (ii) the cell cycle. Importantly, the relative contribution of the cell wall to the
biomass depends both on the shape and size of the cell and on the cell cycle. This
is because the ratio of the cell surface area to its volume is necessarily larger for
smaller cells. The model described in this chapter will expand upon and quantify
the intuition behind these statements.

The internal metabolic model is based on the C‐GRAM described in the previous
chapter 4. However, the parametrisation has been adjusted to better describe the
physiology of S. pombe. In addition to metabolism and growth, the model discussed
in this chapter describes the geometry of the fission yeast cell. This necessitated
the introduction of lipid metabolism to describe the cell wall. Furthermore, the
system was rewritten in terms of macromolecular amounts instead of mass frac‐
tions, so as to calculate cell volume, surface area, and total dry mass separately.
As we will see, a further complication introduced was a basic model of ribosomal
efficiency as a function of cytoplasmic density.

In the first section of this chapter I will introduce the experimental observations
that informed the choices I made in the model construction. I will then describe the
model itself in detail, followed by my efforts to choose suitable parametrisations.
I will further discuss the core behaviours that the model represents.

5.1.1 The cell wall is mainly composed of polysaccharides

From a metabolic standpoint, the biomass sequestered in the (fission) yeast cell
wall should be expected to make an important contribution to resource allocation,
because it comprises an appreciable fraction of the total dry mass. One study
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found that the cell wall amounted to around 30% of the total dry mass across nine
different yeast species (Nguyen et al. 1998), with around 85% of the cell wall mass
consisting of polysaccharides, the remaining being proteins. For S. cerevisiae, the
cell wall dry mass was shown to be dependent on growth conditions; cell wall dry
mass amounted to 18.3±2.0 percent of the total dry mass in glucose minimal media
(Aguilar‐Uscanga and François 2003). This is in line with an older estimate of the
S. pombe cell wall mass in an obsolete rich medium, which amounted to 19.3± 1.9
percent of dry mass (mean and standard deviation of four reported values from
Kogane and Yanagita (1962)). Unfortunately I found no S. pombe data for defined
media. In summary, the cell wall comprises around 20% of the yeast biomass,
which is predominantly composed of carbon.

5.1.2 S. pombe cell cycle progression consists of elongation and
self-replication

The standard eukaryotic cell cycle progresses through four phases: G1, S, G2, and
M phase (Alberts et al. 2015, ch. 17). Self‐replication occurs in S and M phase, with
DNA synthesis and chromosome duplication defining S phase, and nuclear and cell
division comprising M phase. G1 is the gap phase between cell division and the
start of S phase, and G2 the gap phase between S phase and entry into M phase.
Many cell types, including unicellular organisms such as fission yeast, grow in size
and/or mass during S phase and both gap phases.

The entry into S phase is called the Start transition; it generally requires the
cells to reach a minimum size. Wild‐type S. pombe cells grown in standard (Edin‐
burgh) minimal media (EMM) exceed the Start size threshold at birth and therefore
grow little in G1/S phase (Nasmyth et al. 1979). However, mutant strains, such as
wee1∆, do have to pass Start and their characterisation has been instrumental in
understanding the control of cell cycle progression (Russell and Nurse 1987). Fur‐
thermore, wild‐type S. pombe can be induced to spend more time in G1 by a suitable
choice of growth media (Carlson et al. 1999). In particular, cells grown in EMMTrp
media (see chapter 2) are mostly in G1.

When biomass accumulates, the S. pombe cell envelope grows in size accordingly.
The envelope expands outwards from the cell tips, with the net result that the cell
elongates with a constant width (Mitchison and Nurse 1985). Initially elongation
occurs only from the so‐called old end (i.e. the cell tip which was also part of
the mother cell), but elongation starts from the new end at the “new end take
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off” or NETO point in the cell cycle. The cell tips are rounded and approximately
hemispherical, though slightly pointier than hemispheres when elongation occurs
(Abenza et al. 2015).

The final phase of the cell cycle is called M phase, and it consists of mitosis and
cytokinesis (Alberts et al. 2015, ch. 17). During mitosis the duplicate chromosomes
are separated and assembled into two daughter nuclei on opposite ends of the cell.
Yeasts such as S. pombe are able to perform this process without dissolving the nuc‐
leus into the cytoplasm, in so‐called ‘closed’ mitosis (Mori and Oliferenko 2020).
When the nuclei are physically separated, a septum is formed that splits the cell
into two compartments. Importantly, S. pombe elongation halts during M phase
(Mitchison and Nurse 1985). When both chromosome separation and septation are
complete, cytokinesis triggers as regulated by the septation initiation network (Si‐
manis 2015). The septum constricts and separates the cell into two halves, and the
turgor pressure quickly shapes the new ends into approximate hemispheres (At‐
ilgan et al. 2015). Each daughter cell contains a new nucleus containing a single
copy of the genetic code and the cell cycle restarts.

5.1.3 Dry mass density fluctuates with S. pombe cell cycle progression

A key question that arises when describing the interplay between translational
resource allocation and cellular geometry is how biomass production and volume
expansion are linked. A recent study has probed exactly this question. Using a
novel method of analysing bright‐field microscopy images, Odermatt et al. (2021)
measured the dry mass density along the cell cycle in a spatially resolved manner.
The average dry mass density was 282 ± 16 mg/ml; it fell by approximately 5%
during G2 phase, increased by ~10% during M phase, and rapidly decreased by
~5% directly after cytokinesis. Meanwhile, cells grew steadily in length during
G2 phase, but elongation was almost stopped from the G2–M transition onwards.
The ratio of surface area (including the septal surface) to total dry mass remained
approximately constant along the cell cycle, as previously seen in E. coli (Oldewur‐
tel et al. 2019). These observations, and follow‐up experiments with cells halted
in G2 and M phase, were consistent with a model comprising (i) a constant, ex‐
ponential, increase in cell mass throughout all cell cycle phases; (ii) a constant,
exponential, increase in cell volume during G2 phase, and (iii) halted elongation
during M phase (Odermatt et al. 2021).
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5.1.4 Simple models of molecular crowding optimise ribosomal volume
occupancy

An important biophysical process to account for when considering varying dens‐
ities is molecular crowding. The rate of biochemical reactions is influenced by
effective enzyme concentrations, and therefore the total protein density (Dill et al.
2011). When the total protein density is very low, reaction propensities will be
diffusion‐limited, whereas for high density, molecular crowding impedes reaction
propensities instead. At some optimal protein density, the effects are similarly
small and reactions occur at their maximal rate. The balance between crowding
and diffusion therefore influences the optimal allocation between envelope and
biomass production: if the cell does not produce enough envelope, the cytoplasm
will be too crowded, but a large allocation towards the cell envelope will dilute the
macromolecules too much in addition to being wasteful of cellular resources.

A quantitative intuition can be obtained from a simple biophysical model. Dill et
al. (2011) considered a representative chemical reaction rate rd between a sta‐
tionary reactant and moving particles with concentration c diffusing with dif‐
fusion constant D as rd ∝ cD. Approximating the cytosol as a colloidal glass,
D ∝ exp(−αϕ) for some parameter α, where ϕ is the volume fraction occupancy
(Zhou et al. 2009; Vazquez 2012); an estimate of α = 5.8 was used by Vazquez
(2012). With the diffusion length set by the concentration c or, equivalently, by
the volume fraction ϕ (Dill et al. 2012), the reaction rate is then proportional to

rd ∝ ϕ exp(−αϕ). (5.1)

It therefore has an optimum at 1/α = 0.17—approximately a third of the hard‐sphere
packing fraction. Although the exact value heavily depends on the exact assump‐
tions and values used, this analysis nonetheless highlights that the remarkable
amount of molecular crowding found in the cell can be consistent with models
that maximise enzymatic fluxes.

Direct measurements of molecular crowding have been obtained for particles
with similar sizes as RNA polymerases and ribosomes (Delarue et al. 2018). The
intracellular diffusion of purposely designed nanoparticles with diameters of ~20
nm and ~40 nm was shown to depend on the ribosomal abundance. This suggests
that ribosomes obstruct their own diffusion as well as other roughly similar‐sized
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particles such as RNA polymerases. Therefore, in a cytoplasm crowded with ri‐
bosomes, the effective biomass production flux catalysed by the ribosomes will be
reduced.

A more detailed treatment of crowding‐affected enzymes and ribosomes was
given by Pang and Lercher (2020). They considered Michaelis–Menten enzyme
kinetics with an effective Michaelis constant K∗

M that accounted for molecular
crowding and depended on several parameters, including the total volume oc‐
cupancy ρ and the sizes of the enzymes and substrates. Importantly, ribosomes
(with radius ~13 nm) and their substrates (tRNA, radius ~2.4 nm) are substan‐
tially bigger than metabolic enzymes (~2.4 nm) and their substrates (~0.34 nm).
Using suitable parametrisations, Pang and Lercher (2020) numerically calculated
the flux through representative pathways at various volume occupancies. Para‐
metrisations representing ribosomal fluxes were peaked around an occupancy of
~0.12, with the relative flux dropping more steeply than expected from equa‐
tion (5.1). However, metabolic pathway representations did not vary more than
around 10% for the entire range of permitted occupancies.

5.1.5 Carbon and nitrogen limitation have different effects on
surface-to-volume ratio

Data on the shape and size of S. pombe in conditions with varying growth rates
were generated in our lab by François Bertaux, as summarised in Figures 5.1 and 5.2.
Cells were cultured in turbidostats and the growth rate was varied by the concen‐
tration of ammonium or glucose in otherwise standard minimal medium (EMM).
In slow‐growing cultures, the cell size was generally decreased in both types of cul‐
ture (Figure 5.1), and the correlation of volume and growth rate appeared identical
in both culture types. However, the average length of cells was actually larger
in cells only moderately limited by nitrogen availability. Therefore, the surface‐
to‐volume (S/V) ratio differed between glucose‐ and ammonium‐limited cultures
(Figure 5.2), with the S/V ratio slightly elevated during strong glucose limitation,
but significantly more so during ammonium limitation. Cells became shorter and
narrower under increasing limitation, with nitrogen‐limited cultures decreasing
more in width and carbon‐limited cultures decreasing more in length.
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Figure 5.1: Length, surface area, and volume of fission yeast cells grown in
environments supporting a range of growth rates. Blue triangles
denote nitrogen modulation by the concentration of ammonium in the
medium, and green triangles denote carbon modulation by the con‐
centration of glucose. Orange squares denote translation inhibition by
cycloheximide (CHX) and open diamonds denote nutrient quality mod‐
ulation by nitrogen sources. Only nitrogen and carbon concentration
modulations were investigated in this section. The black line is a joint
linear fit to the nitrogen‐ and carbon‐limited conditions. Image kindly
provided by François Bertaux.
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Figure 5.2: Surface‐to‐volume ratio of fission yeast cells grown in environ‐
ments supporting a range of growth rates. Colours and shapes are
as in Figure 5.1. Dashed lines were drawn to guide the eye. Image
kindly provided by François Bertaux.

5.2 Model formulation

5.2.1 The core metabolic pathway was restated in terms of absolute
abundances

For the metabolism of the yeast model described in this chapter, I adapted the
model described in chapter 4. However, as mentioned in section 3.3.1, the non‐
extensivity of the Michaelis–Menten rate laws means that the parametrisation had
to be reinterpreted. In the following, I explain this for the ribosomal rate law, but
the argument and derivation is identical for all the other enzymes.

The ribosomal flux, normalised to the system size, was previously assumed to
take the form

jR(a; r) = kRr
a

a+ asat
, (5.2)

with a and r the amino acid and ribosome concentrations, kR and asat were fixed
parameters. With an explicit cell volume V and writing A and R for the amino acid
and ribosome abundances per cell, the Michaelis–Menten assumption gives a flux
per cell of

vR(A;R) = V · kR
R

V

A/V

A/V + KA

= kRR
A

A+ VKA

. (5.3)
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If Ω is the total mass of the cell, note that

vR

Ω
= kR

R

Ω

A/Ω

A/Ω+ V
Ω
KA

= kRr
a

a+ V
Ω
KA

̸= jR, (5.4)

because the model is constructed such that V
Ω

, the inverse of the dry mass density,
fluctuates during the cell cycle. However, as these fluctuations are minor (approx‐
imately 25%, see section 5.3.2), approximating the system‐size normalised flux by
5.2 is still appropriate absent an explicit interest in the cell cycle.

5.2.2 Cells were assumed to have constant width throughout all
simulations

To ensure that the cell width remained constant during the cell cycle, I assumed
that the widthwwas a constant parameter for each instantiation of the model. This
simplified the modelling considerably, because it enabled me to convert between
length, surface area, and volume according to the equations given in section 5.2.3.
I discarded alternative assumptions because they led to variations in cell width
along each cell cycle, which is not consistent with S. pombe physiology. However,
this assumption means that the model is unable to represent changes between
environments, as such a transition would require the width to be variable, rather
than a fixed parameter. Some alternative assumptions are discussed further in
section 5.4.4.

5.2.3 Useful identities for spherocylinders

Consider a spherocylindrical cell with length λ and width w. The surface area Σ
and volume V are related through the following equalities:

Σ = πwλ; (5.5)

V =
π

4
w2λ−

π

12
w3. (5.6)

Note that two out of these four geometric quantities are sufficient to specify the
other two. I assumed that the width w was constant, because S. pombe cell width
remains constant during balanced growth (Knapp et al. 2019). The identities that
relate the surface Σ, volume V, and length λ to one another and the width w are
therefore particularly useful:
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λ =
Σ

πw
(5.7)

=
4

π

V

w2
+
w

3
; (5.8)

Σ = 4
V

w
+
π

3
w2; (5.9)

V =
wΣ

4
−
π

12
w3. (5.10)

Now consider the surface‐to‐volume ratio Σ
V

, which can be expressed as a func‐
tion of width and length, surface, or volume accordingly:

Σ

V
=
4

w

1

1− w
3λ

(5.11)

=
4

w

1

1− π
3
w2

Σ

(5.12)

=
4

w
+
π

3

w2

V
. (5.13)

Over the course of a cell cycle, the length, surface, and volume all increase. It is
quickly seen, then, that the assumption of constant width corresponds to a surface‐
to‐volume ratio that decreases during the elongation phase of the cell cycle, when
λ, Σ,and V all increase.

5.2.4 Cell surface was synthesised proportionally to biomass generation

The surface of the cell separates the bulk from the environment. The fission yeast
cell surface consists of a cell wall and a cell membrane. In the model, both were
jointly represented by a metabolite L (the abbreviation was chosen for lipids, the
main component of the membrane). The species L was assumed to be present
only in the cell surface, and therefore the surface area Σ of the cell was directly
proportional to the amount L of lipid present in the cell:

Σ =
L

ρS
, (5.14)
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with ρS the concentration of molecule L per surface area (in molecule equivalents
per square micron). Together with the fixed width w, this surface area Σ uniquely
determined the size and shape of the cell: the volume V and length λ are calculated
via equations (5.7) and equation (5.10).

Because both the cell wall and the membrane consist mostly of carbon com‐
pounds (polysaccharides in the case of the wall and lipids for the membrane), the
metabolite L was assumed to be produced directly from the carbon precursor C. I
assumed that this reaction was not limited by enzyme abundances, but rather by
some process that keeps the internal density in line. In other words, even though
many processes have been implicated here, I assumed that expression of these
enzymes was cheap and did not significantly affect ribosomal allocation. Alternat‐
ively, one can think of these proteins as part of the Q‐sector of proteins with fixed
allocation. In practice, all this means that the lipid production flux was propor‐
tional to the ribosomal flux producing (protein) biomass:

vL = σvR, (5.15)

with σ a parameter that governs the surface stoichiometry.

5.2.5 The cytosolic occupancy of ribosomal proteins determined an
effective crowding factor

As noted in 5.1.4, the molecular crowding affects enzymatic fluxes. The effect is
far stronger for larger complexes, such as ribosomes, than for metabolic enzymes
(Pang and Lercher 2020). With crowding of metabolic enzymes only affecting the
flux by at most ~10%, I opted to neglect this contribution and focus on the ri‐
bosomes only. Consider, therefore, the cytosolic occupancy of ribosomal proteins,
given by

ωR =
VribR

V
. (5.16)

Here, Vrib is a parameter that reflects the volume occupied by one unit of R. Note
that one unit of R in the model is not equal to one ribosome, so Vrib is an ef‐
fective parameter and not equal to the volume occupied by a single ribosome as
experimentally determined. To model the effect of crowding, I used the following
two‐parameter crowding function gc, which takes as its argument an occupancy
0 ⩽ ω ⩽ ωmax.
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gc(ω) = exp
(
−ζ

ω

ωmax −ω

)
. (5.17)

Here, ζ andωmax are parameters. This equation was previously used by Delarue et
al. (2018); it is based on Doolittle’s model of molecular crowding (Doolittle 1952).
ωmax is the maximal cytoplasmic volume fraction occupied by ribosomes, and ζ
is a phenomenological parameter that represents the strength of the crowding
interaction. Delarue et al. (2018) estimated ωmax = 0.5 and ζ = 0.6 ± 0.2 in
S. cerevisiae for 40nm‐diameter nanoparticles of their own design, which they
showed to mostly interact with the ribosomes, I used these parameters unchanged
to model the crowding of ribosomes themselves.

Based on the above, molecular crowding of the ribosomes was modelled as a
slowdown of the non‐crowded protein production reaction by an effective crowding
factor gc(ωR) given by equation (5.17). The protein production flux after this cor‐
rection was defined as

vR = gc (ωR)kRR
A

A+ VKA

. (5.18)

All other fluxes were left unmodified from the model proposed in 4.2.1, but only
respirofermentative growth on free nitrogen was explored in this chapter. Be‐
cause gc(ωR) = gc(Vrib

R
V
) decreases exponentially with the ribosome concentra‐

tion whereas the remaining term increases linearly, the volume‐normalised ri‐
bosomal flux jR = vR

V
will be maximised by some intermediate ribosome concen‐

tration.

5.2.6 During cytokinesis, septum was produced instead of cell wall

I modelled the cell cycle in three different phases. From cell birth, the cell was ini‐
tiated in an elongation phase, in which the lipid production flux was incorporated
directly as surface growth, i.e.

dΣ
dt

=
vL

ρS
. (5.19)

This most closely aligned with the G2 phase in wild‐type S. pombe in standard
medium. In order to account for the time required for chromosome segregation
and nuclear division, I explicitly modelled a separate phase of the cell cycle, where
the lipid flux was halted and, consequently, free carbon built up. The entry into
nuclear division was triggered by cell cycle proteins, as explained in 5.2.7, and this
second phase describing nuclear division lasted for a fixed amount of time δtND =

0.25 h‐1. In the third cell cycle phase, the lipid flux—still given by equation (5.15)—
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was redirected into septum construction, such that surface area Σ (still) remained
constant. This septation phase ended when the septum was fully constructed, i.e.
when enough septum had built up to construct the two hemispherical end caps,
with total surface area

Σcaps = πw2, (5.20)

which corresponds to a “lipid” copy number of

Lcaps = πρSw
2. (5.21)

Together, the nuclear division phase and the septation phase model the M/G1/S
phases of standard S. pombe growth. However, the important feature of the model
phases is whether elongation occurs or not, rather than the DNA copy number. I
therefore expect the model to remain valid in conditions that affect the cell cycle
phases.

5.2.7 The build-up of cell cycle proteins signalled progression from
growth to mitosis

The progression from elongation into cell division was initiated by the copy num‐
ber of a signalling protein Y passing a pre‐specified threshold. Protein Y assembled
a ring structure in the cylindrical part of the cell, and cell cycle progression was
triggered when the ring was fully assembled. The allocation fY towards the ring‐
forming protein Y did not in itself scale with the cell size. Rather, it was simply
proportional to the aforementioned metabolic allocation. Therefore, fY was a small
constant. Cell cycle progression was triggered when enough Y built up to span the
circumference of the cell at a fixed linear concentration ρY . I chose ρY = 0.1 mo‐
lecule equivalents/μm, which resulted in very small allocations fY such that the
division protein did not meaningfully alter the optimal ribosomal allocation. The
circumference of the cell is given by πw, and as already noted the cell width wwas
assumed to be constant. The division threshold for Y was therefore also constant
across conditions:

Ydiv = πρYw. (5.22)

The mechanism by which Y triggered cell cycle progression resembled how the
fission yeast protein Cdr2 is thought to measure cell size (Facchetti et al. 2019).
Cdr2 does not construct a simple ring, but rather assembles in the nodal region,
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which is a wide region in the centre of the cell. Crucially, the width of this region
was found to be constant across conditions (Facchetti et al. 2019). It is therefore
equivalent to a narrow ring structure, where the amount of Cdr2 present in the
nodal region needs to be enough to circumvent the cell entirely at a fixed nodal
density.

I ensured that the allocation to these cell cycle proteins was small, so that it
did not interfere with the cell’s metabolism. However, the ribosomal allocation
towards the signalling proteins had to still satisfy the allocation constraint, even
though the allocation fY to protein Y could in principle change. To satisfy the
allocation constraint, the expression of these proteins was subtracted from the
non‐metabolic Q‐proteins. Therefore, the allocation parameter fZ only indirectly
determined the expression of the Q‐proteins, and

fQ = fZ − fY . (5.23)

5.2.8 Optimising for maximum growth rate in the copy number model

Unlike in the concentration model, the full model including the cell cycle does not
have a defined steady state. Rather, balanced growth is defined as a state where
the cell changes vanishingly little between successive cell division events. The dy‐
namic model included discrete events that represented cell divisions and changes
between elongation and mitotic phases. These events I implemented within the
DifferentialEquations.jl framework by defining suitable callback functions and us‐
ing the DiffEqCallbacks.jl package (Rackauckas and Nie 2017). The Rosenbrock‐
type solver, which I used to good effect to solve the concentration‐based ODEs to
steady‐state, was not well suited to the more complex model including these call‐
back events. This was due to interpolation errors, which often multiplied leading
to unstable solutions. I found that the OwrenZen3 method better handled the di‐
vision and cell cycle progression events, and I used it for the evolution of the full
model.

The full model evolution was rather more costly than that of the concentration‐
only model. To save computing time, I was able to start the evolution of the full
model at initial conditions based on the steady‐state solution of the concentration‐
only model. I scaled up the steady‐state solution to the concentration model by
ensuring that the lipid copy number was exactly equal to 2πρSw2, which is the
surface area of a cell whose aspect ratio is exactly 2. I further initiated the division
protein Y as present at half threshold levels.
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To optimise cell width or surface stoichiometry in addition to the allocation vec‐
tor, I used a two‐step approach. First, I maximised the growth rate of a simplified
model of allocation only, with saturation constants approximated by their values
when V = wΣ

4
, negligible crowding slowdown, and negligible metabolite concen‐

trations, such that the dry mass density is approximately

ρapprox ≈ 4ρS
1+ σ

wσ
. (5.24)

For the ribosomal flux equation (5.18) for example, this approximation results in
a saturation constant

asat =
KA

ρapprox
(5.25)

such that
jR = kRr

a

a+ asat
(5.26)

as in the allocation‐only models from earlier. I then used this optimum to define
the concentrations in the initial condition of the full model describing the copy
number evolution. I solved this model for a pre‐specified time span (20 doubling
times of the simplified model unless otherwise noted) and ensured that the solu‐
tion was approximately equal between the final two division events.

5.2.9 Global parameter estimation based on observed cell physiology
and geometry

To obtain a parametrization that approximated observed cell geometries in three
different conditions, I followed the following procedure. First, I defined the fol‐
lowing cost function for each condition:

C =

(
µobs − µfit

δµ

)2

+

(
Vobs − Vfit

δV

)2

+

(
ϕM
obs − ϕ

M
fit

δϕM

)2

+

(
ϕS
obs − ϕ

S
fit

δϕS

)2

.

(5.27)
Here, µ is the growth rate, V the cell volume, ϕM the metabolite mass fraction,
and ϕS the total surface biomass fraction. The subscripts denote the observed
and fit values, and the δ‐values correspond to a weighting of the four types of
observations. This cost was based on the fit obtained for any parametrisation after
the joint optimization of the surface‐to‐mass stoichiometry σ and the allocation
fractions fC, fEf

, fN, and fR.
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For any given parametrisation, I evaluated this cost function for three condi‐
tions, one corresponding to fast growth in EMM (µobs = 0.28 h‐1; Vobs = 100 μm3),
and one each corresponding to carbon‐ and nitrogen‐limited conditions supporting
half the growth rate in EMM (µobs = 0.14 h‐1; Vobs = 70 μm3). The total cost of a
parametrisation was the sum of the cost for each of the three conditions. I manu‐
ally chose the width parameter to reflect the different surface‐to‐volume ratios of
the three conditions. I set w = 3.4 μm for the EMM culture, w = 3.6 μm for low‐
carbon, and w = 2.9 μm to represent the low‐nitrogen culture. This corresponded
to approximate surface areas of Σ = 130 μm2 for EMM, Σ = 91 μm2 for low‐carbon,
and Σ = 105 μm2 for low‐nitrogen, such that the surface‐to‐volume ratio equalled
(to three significant digits) 1.30 for both EMM and low‐carbon cultures and 1.50
for the low‐nitrogen culture. Furthermore, I aimed for a parametrisation that kept
the metabolite mass fraction low, but had an appreciable fraction of biomass se‐
questered in the surface molecules (the septum and the cell wall equivalents). I
therefore chose ϕM

obs = 0.05 and ϕS
obs = 0.20. Since these were manual estim‐

ates not based on direct experimental observation, I weighted the growth rate and
volume fit more heavily: δµ = 0.01 h‐1, δV = 1 μm3, δϕM = 0.05, and δϕS = 0.20.

Using a generating‐set‐based global optimisation algorithm implemented in the
Julia package BlackBoxOptim.jl (Kolda et al. 2003; Feldt and Stukalov 2019), I min‐
imised this cost function to obtain the parametrisation summarized in Table 5.1
(for the parameters fit by this method) and Table 5.2 (for the parameters held at
a constant, manually chosen, value). A comparison between the fit and observed
cell physiologies is given in Table 5.3.

5.3 Results

5.3.1 Dynamics of cell physiology in the full model

Using the parametrisation outlined in Tables 5.1 and 5.2, I evolved the model to
steady‐state for the three parametrisations corresponding to (i) fast growth in
EMM, (ii) carbon‐limited growth for glucose‐restricted cultures, and (iii) nitrogen‐
limited growth for ammonium‐restricted cultures. The growth rates supported by
the nutrient parametrisations in (ii) and (iii) were approximately equal to each
other and half of the growth rate in the conditions mimicking EMM. The dynamics
of the three model parametrisations over the course of a cell cycle are plotted in
Figures 5.3, 5.4, and 5.5. These dynamics followed the expected behaviour, as
described in the following paragraphs.
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Table 5.1: Model parametrisation that best fit the observations outlined in
Table 5.3. Values in italics denote parameters that were obtained via
growth‐rate optimisation in the inside optimisation loop. Values indic‐
ated with asterisks were set manually.

Description Symbol Unit Fast low‐C low‐N
Surface lipid density ρS μm‐2 2.411×104 2.411×104 2.411×104

Ribosome volume Vr μm3 6.827×10‐7 6.827×10‐7 6.827×10‐7

Ribosome efficiency kR h‐1 0.6996 0.6996 0.6996
Carbon uptake efficiency kC h‐1 2.0* 0.3078 2.0*

Nitrogen uptake efficiency kN h‐1 4.0* 4.0* 0.02889
Division protein allocation fY 5.606×10‐8 3.526×10‐8 2.954×10‐8

Width w μm 3.4* 3.6* 2.9*
Carbon enzyme allocation fC 0.1696 0.4765 0.0805

Fermentation enzyme allocation fEf
0.1623 0.0799 0.0977

Nitrogen enzyme allocation fN 0.0102 0.0041 0.3751
Ribosome allocation fR 0.4579 0.2394 0.2467

Surface‐to‐mass stoichiometry σ 0.1771 0.0713 0.0853

Table 5.2: Manually fixed parameters of the copy number model. In this
chapter, if parameter values are not explicitly given, the values were
as in this table. Note that the chosen value for the fermentative stoi‐
chiometry αCf

= 96/103 ≈ 0.932 corresponds to a carbon‐to‐nitrogen
atomic ratio of exactly 8:1 (4.2.6).
Description Symbol Unit Value

Michaelis constant (all) KC = KA = KN μm‐3 500.0
Fermentation enzyme efficiency kEf

h‐1 2.0
Enzyme nonlinearity ∆CN 0.0

Non‐metabolic allocation fZ 0.2
Fermentative stoichiometry αCf

96/103
Ring‐bound cyclin threshold ρY μm‐1 0.1

Crowding interaction ζ 0.6
Maximal ribosome occupancy ωm 0.5

Nuclear division time tND h 0.25
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Table 5.3: Selected observations of fission yeast size, shape, and non‐protein
biomass fractions under different types of limitation, and best‐fit
approximation by the model parametrised as in Table 5.1. The cost
according to equation (5.27) of this parameterization was approxim‐
ately 22.1. The observed volumes were taken from Figure 5.1 and its
underlying raw data. The surface‐to‐volume ratios were calculated us‐
ing equation (5.13) from the fit volumes and manually set widths of
3.4, 3.6, and 2.9 μm, thereby approximating the observations from Fig‐
ure 5.2. A single value for each of the surface lipid density ρS, ribosome
volume Vr, and ribosome efficiency kR was fit jointly to each of the three
conditions.

Growth rate
(h‐1)

Volume (μm3) Surface/
volume (μm‐1)

Target Fit Target Fit
Error 0.01 1
Fast 0.28 0.2818 100 100.08 1.2974

low‐C 0.14 0.1420 70 70.06 1.3048
low‐N 0.14 0.1474 70 69.81 1.5055

Metabolite
mass fraction

Surface mass
fraction

Target Fit Target Fit
Error 0.05 0.05
Fast 0.05 0.1418 0.20 0.1170

low‐C 0.05 0.0735 0.20 0.0588
low‐N 0.05 0.0742 0.20 0.0689
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The cell cycle consisted of three phases. Directly after cell division, the cells
were in the elongation phase until the ring‐bound cyclin protein Y reached its di‐
vision threshold (subfigures A). During the elongation phase, the lipid molecule
comprising the surface built up in approximately exponential fashion (subfigures
B), which halted at the progression into the subsequent nuclear division phase.
During the nuclear division phase, internal carbon storage increased rapidly, be‐
cause carbon consumption due to lipid and septum construction was halted (sub‐
figures C). After the (constant) nuclear division time had passed, the cells entered
the septation phase, in which the lipid flux was rerouted to septum construction
(subfigures B). The cell divided into two daughter cells when the septum was fully
constructed.

During the entire cell cycle, the total dry mass of the cells steadily increased,
but the relative protein content appeared to decreased somewhat during the latter
part of the cell cycle (subfigures D). The internal cell volume increased during the
elongation phase and remained constant afterwards (subfigures E). Note that the
volume did not halve at cell division, due to the instantaneous addition of the new‐
end hemisphere. The combined dynamics of the dry mass and volume resulted in
typical fluctuations in the cell dry mass density (subfigures F), which decreased
gradually during the elongation phase, increased strongly during the nuclear divi‐
sion and septation phases, and decreased in a discontinuous manner at the point
of cell division. These fluctuations were approximately 25% of the dry mass dens‐
ity, which contrasts with the observed fluctuations of only approximately 10%. A
possible explanation for this discrepancy will be explored in 5.3.2.

When comparing the three different conditions, note that the septation phase
has the longest duration in the carbon‐limited parametrisation. This is because the
width, and therefore the relative size of the septum to the rest of the surface area,
is largest in the carbon‐limited cultures. In other words, in the carbon‐limited
parametrisation, the cell is short and a large proportion of the cell surface area
is taken up by the hemispherical end caps. In contrast, in the nitrogen‐limited
parametrisation, the cell is long and thin and the hemispherical end caps are less
important relative to the cylindrical cell mantle.

A further difference between the carbon‐ and nitrogen‐limited cells is that the
former has low internal carbon concentrations, whereas the latter have low in‐
ternal nitrogen concentrations. This agrees with the behaviour observed in the
allocation model of the previous chapter.
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Furthermore, the absolute values of the dry mass density in the model represent‐
ing fast growth in EMM are only approximately half those in the nutrient‐limited
cells, whose dry mass densities are of comparable magnitude. This is probably
due to crowding only affecting the ribosomes. Related to this, note that in the two
nutrient‐limited parametrisations, the ribosome allocation is approximately half
that in EMM Table 5.1. This of course follows the ribosomal growth law.

5.3.2 Dynamics of dry mass density in a simplified model

For a simplified model of a spherocylindrical cell with constant width, the dry
mass densities at cell birth, cell division, and at the transition from elongation to
septation are related to each other, parametrised only by the geometry of the cell
at division. Importantly, the timing of the transition is also determined by the cell
geometry. Consider a simplified model of the cell cycle composed of two phases:
the elongation phase and the septation phase. The biomassM grows exponentially
throughout the cell cycle. During the elongation phase, the surface area of the cell
envelope Σ grows exponentially, whereas during the septation phase, the envelope
remains at a constant size. The width w of the cell is assumed to be constant, so
the volume V and length λ are linearly related to the surface of the cell according
to equations (5.7) and (5.10).

Let
µL =

λ̇

λ
=
Σ̇

Σ
(5.28)

the elongation rate during the elongation phase. Note that Σ = πwλ means that
the elongation rate and the surface production rate are equal to each other. During
the elongation phase, the length, surface area, and volume are therefore given by
the following functions of time:

λ(t) = λ(0) exp (µLt) , (5.29)

Σ(t) = πwλ(t) = (5.30)

= Σ(0) exp (µLt) , and (5.31)

V(t) =
πΣ(t)

4
−
π

12
w3 = (5.32)

= V(0) exp (µLt) +
π

12
w3 [exp (µLt) − 1] . (5.33)

Furthermore, let

µM =
Ṁ

M
(5.34)
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Figure 5.3: Dynamics of cell physiology in model parametrised as EMM cul‐
ture. All plots are taken during the same time interval, correspond‐
ing to approximately 1.5 cell cycle times in balanced growth. A. Divi‐
sion protein copy number (blue) and cell cycle progression threshold
(orange). B. Copynumbers of surface‐like proteins: lipids (blue) and
septum (orange). C. Copynumbers of internal metabolites represent‐
ing carbon (blue), amino acids (orange), and nitrogen (green). D.
Total dry mass (blue) and total protein biomass (orange), in units of
copynumbers. E. Cell volume (in μm3). F. Dry mass density (total dry
mass divided by cell volume, in μm‐3).
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Figure 5.4: Dynamics of cell physiology in model parametrised for low car‐
bon concentrations. All plots are taken during the same time inter‐
val, corresponding to approximately 1.5 cell cycle times in balanced
growth. A. Division protein copy number (blue) and cell cycle pro‐
gression threshold (orange). B. Copynumbers of surface‐like proteins:
lipids (blue) and septum (orange). C. Copynumbers of internal meta‐
bolites representing carbon (blue), amino acids (orange), and nitrogen
(green). D. Total dry mass (blue) and total protein biomass (orange),
in units of copynumbers. E. Cell volume (in μm3). F. Dry mass density
(total dry mass divided by cell volume, in μm‐3).
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Figure 5.5: Dynamics of cell physiology in model parametrised for low nitro‐
gen concentrations. All plots are taken during the same time inter‐
val, corresponding to approximately 1.5 cell cycle times in balanced
growth. A. Division protein copy number (blue) and cell cycle pro‐
gression threshold (orange). B. Copynumbers of surface‐like proteins:
lipids (blue) and septum (orange). C. Copynumbers of internal meta‐
bolites representing carbon (blue), amino acids (orange), and nitrogen
(green). D. Total dry mass (blue) and total protein biomass (orange),
in units of copynumbers. E. Cell volume (in μm3). F. Dry mass density
(total dry mass divided by cell volume, in μm‐3).
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be the growth rate of biomass increase and, assume that the cell divides in half at
the end of a cell cycle, such that the mass at birthMb =M(0) is exactly half of the
mass at division Md =M(Td) = 2Mb. Therefore, the biomass growth rate is equal
to

µM =
ln 2
Td

(5.35)

with Td the doubling time, and the total biomass is given as a function of time as

M(t) =Mb exp (µMt) . (5.36)

Now, it may be further assumed that the total amount of “surface” molecules,
i.e. the cell envelope plus the septum, also increases exponentially during the cell
cycle and exactly halves at cell division. This is equivalent to assuming that surface
production is exactly proportional to biomass production as then µL =

ln 2
Td

= µM.
With this assumption, a septum accumulates until it is large enough to be con‐
verted instantaneously into two new hemispherical end caps, thereby producing
two equal daughter cells. Many of the following derivations do not require this
assumption and I will not equate the two rates µM and µL until necessary to make
progress, in the interest of easy generalisation to a model where cell division is
not limited by septum construction.

At division, the mother cell envelope is shared equally between the two daughter
cells, and the envelopes of both daughter cells are expanded instantaneously by
the construction of hemispherical end caps, one for each cell. The surface area
of a hemispherical cap is 1

2
4π
(
w
2

)2
= π

2
w2. Therefore, the surface area at birth

Σb = Σ(t = 0) is related to the surface area at division Σd = Σ(t = Td) as

Σb =
Σd

2
+
π

2
w2. (5.37)

Likewise, the volume of one hemispherical cap is 1
2
4π
3

(
w
2

)3
= π

12
w3 and therefore

the volumes at birth and division are related as

Vb =
Vd

2
+
π

12
w3. (5.38)
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From this, the dry mass density at division is related to the density Db = D(0) at
birth:

Db =
Mb

Vb

=

=
1
2
Md

Vd

2
+
π

12
w3

=

= Dd
1

1+ π
6

w3

Vd

, (5.39)

with Dd = D(Td) the dry mass density at division. This can be further rewritten
in terms of the aspect ratio ηd =

λd

w
=
Σd

πw2
at division:

Vd

πw3
=

π
4
w2λd − π

12
w3

πw3

=
1

4

(
ηd −

1

3

)
, (5.40)

so
Db =

3ηd − 1

3ηd + 1
Dd. (5.41)

A typical S. pombe aspect ratio at division is ηd ≈ 4, givingDb = 11/13Dd ≈ 0.85Dd.
Let the transition between elongation and septation phases occur at time 0 <

τ < Td. At the septation time, the dry mass density is given by

D(τ) =
M(τ)

V(τ)
=
Mbe

µMτ

Vd

=

=
Mb

Vd

exp
(
ln 2
Td
τ

)
=

=
1
2
Md

Vd

2
τ
Td =

= Dd2
τ
Td

−1
. (5.42)

The transition time τ can be written in terms of the aspect ratio if it is furthermore
assumed that surface and biomass production are exactly proportional. In the
following, let µL = µM = µ, and septum construction continuously follows the
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construction of the cell envelope, i.e. the amount of septum is given as a function
of time as

S(t) = Σb exp (µt) − Σd = (5.43)

= Σd

(
eµ(t−τ) − 1

)
(5.44)

during the division phase (and S = 0 during the elongation phase). If division is
initiated when the septum can be converted into two hemispherical end caps,

S(Td) = πw
2. (5.45)

Then,

πw2 = Σd

(
eµ(Td−τ) − 1

)
πw2

Σd

= eµTde−µτ − 1

1

ηd
+ 1 = 2 exp

(
−
ln 2
Td
τ

)
ηd + 1

ηd
= 2

1− τ
Td

2
τ
Td

−1
=

ηd

ηd + 1
, (5.46)

and therefore
D(τ) =

ηd

ηd + 1
Dd. (5.47)

For ηd ≈ 4, D(τ) = 0.75Dd.

5.3.3 The full geometry-aware model recovered the main results from
the allocation-only model

Next, I explored the behaviour of the model under modulations of the carbon up‐
take efficiency kC and of the nitrogen uptake efficiency kN. For this, I extrapolated
from the parametrisation for EMM, keeping fY constant. Initially, I kept the width
constant to w = 3.4 μm and left the surface stoichiometry parameter σ part of the
growth‐maximisation. The behaviour of this model is plotted as a function of the
growth rate in Figure 5.6. The main behaviours of the allocation‐only model from
chapter 4 were reproduced, in particular the Monod laws (Figure 5.6AB) and the ri‐
bosomal growth law (Figure 5.6C). The surface stoichiometry decreased even more
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strongly with decreasing growth rate than in the model parametrised by the best
fit to the data (Figure 5.6D). The metabolite mass fractions remained small, with
the largest metabolite storage happening in the fastest conditions (Figure 5.6E).

5.3.4 The observed cell geometry did not maximise the growth rate in
the model

However, the main difference in cell geometry between the carbon‐ and nitrogen‐
limited cultures was the difference in width. I therefore explored an alternative
strategy for maximising growth, namely optimising the width w jointly with the
ribosomal allocation fraction f⃗ and keeping the surface stoichiometry fixed at its
EM value of σ = 0.1771. This is shown in Figure 5.7. Overall, the results were sim‐
ilar to the parametrisation with constant width, with one important difference:
at carbon and nitrogen uptake efficiencies that resulted in similar optimal growth
rates, the optimal cell width was considerably smaller in the nitrogen‐limited cul‐
tures than in the carbon‐limited ones (Figure 5.7D). The direction of this differ‐
ence was in agreement with the observed difference in cell width in the nitrogen‐
and carbon‐limited cultures. However, the growth‐maximising width was consid‐
erably smaller in the model than in the experiments. This suggests that the cell
width is influenced by factors other than growth maximisation, but that the cell
may adjust its width in the direction of the pressure to maximise the growth in the
nitrogen‐limited cultures, when it is most beneficial to do so.

Further observations as a function of the nitrogen‐ and carbon‐limited growth
rates of both growth‐maximisation strategies are plotted in Figure 5.8. The ef‐
fect of ribosomal crowding was small but appreciable, reducing the ribosomal
flux between approximately 7% and 20% for most parametrisations (Figure 5.8A.)
An important difference between the fixed‐width and fixed‐surface‐stoichiometry
strategies is shown in Figure 5.8B. For the former, the fraction of time spend in
mitosis (nuclear division and septation phase, as opposed to the “G2” or elonga‐
tion phase) approximated 1 at slow growth. In other words, for the fixed‐width
strategy, small cells were spherical. This was also apparent from the cell size and
shape variables (Figure 5.8C–F). In contrast, for fixed stoichiometry and variable
width, the division length of the cell was almost constant across carbon‐ and ni‐
trogen perturbations (Figure 5.8C), but as the width and growth rate decreased
together with increasing limitation (Figure 5.7D), the fraction of time spent in mi‐
tosis decreased to approximately zero (Figure 5.8B), and the surface‐to‐volume ra‐
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Figure 5.6: Behaviour of fixed‐width parametrisation as a function of growth
rate under perturbation of the nitrogen or carbon uptake effi‐
ciency. A.–B. Maximal growth rate as a function of the modulated
nitrogen uptake efficiencies kN while the latter was modulated. B.
As A. for the carbon uptake efficiency kC. C. Ribosomal allocation
fractions f⃗, D. surface stoichiometry σ that together maximised the
growth rate. E. Abundances of metabolites and lipids in the growth‐
rate‐maximising parameterization as a fraction of total biomass dir‐
ectly preceding cell division.
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Figure 5.7: Behaviour of fixed‐surface‐stoichiometry parametrisation as a
function of growth rate under perturbation of the nitrogen or car‐
bon uptake efficiency. A.–B.Maximal growth rate as a function of the
modulated nitrogen uptake efficiencies kN while the latter was mod‐
ulated. B. As A. for the carbon uptake efficiency kC. C. Ribosomal
allocation fractions f⃗, D. cell width w that together maximised the
growth rate. E. Abundances of metabolites and lipids in the growth‐
rate‐maximising parameterization as a fraction of total biomass dir‐
ectly preceding cell division.
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tio increased several‐fold (Figure 5.8F). This again suggests that neither is a good
approximation for the experimentally observed behaviour, where these variables
stayed in more moderate ranges.

5.4 Discussion

While I made good progress in constructing a model that approximated key obser‐
vations about S. pombe physiology, the results described in this chapter should be
seen as a work‐in‐progress. Here I outline three main shortcomings of the model,
as well as possible modifications to the model that may provide improvements.
I end this section by discussing alternative assumptions for coupling cell shape,
surface production, and biosynthesis that were made in other models but that I
discarded.

5.4.1 Varying allocation towards cell cycle proteins

In Table 5.1, it was seen that the division protein allocation parameter fY depended
on the environment. However, in 5.3.3 and 5.3.4 it was held constant when explor‐
ing the models with optimal width or surface stoichiometry. The effect of increases
in fY would be a more rapid build‐up of the division protein Y, such that division
would occur sooner. The parameter thereby affects the cell size at division. In
the bacterial model from which I started my efforts, Bertaux et al. (2020) showed
that a scaling of fY with enzymatic abundances appropriately explained cell sizes
across a range of limitations, including translational inhibition and the expression
of metabolically useless proteins in addition to nutrient limitation. However, in
their model, only a single enzyme was present, which I replaced by three differ‐
ent ones. It is not immediately obvious from Table 5.1 how to proceed: there is
no single enzyme in my current model whose allocation is proportional to that of
the division protein across all three modelled conditions. Some progress might
be made by including the effect of translational inhibition and/or the expression
of metabolically useless proteins in the model. Like nutrient modulation, both of
these processes reduce the growth rate, but each have different effects on the cell
size and shape.
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Figure 5.8: Further behaviour of fixed‐width and fixed‐surface‐stoichiometry
growth‐maximisation strategies as a function of growth rate. Col‐
ours and shapes are as in Figures 5.6 and 5.7: purple and dark blue
squares denote the fixed‐width strategy and pink and light blue circles
denote the fixed‐surface‐stoichiometry strategy; open symbols denote
carbon limitation and filled symbols denote nitrogen limitation. Plot‐
ted are A. the relative efficiency of the ribosomes compared to a non‐
crowded model (see gc(ω) in equation (5.18)), B. the fraction of time
each cell spent in the nuclear division and septation phases, C. the
cell length, D. the surface area, E. the volume of the cell, and F. the
surface‐to‐volume ratio. For A. and C.–F. the value was taken at the
moment immediately preceding cell division.
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5.4.2 Crowding of non-ribosomes

A major shortcoming of the model are the observed large difference in dry mass
density between EMM and nutrient‐limited cultures (compare the axes on Fig‐
ures 5.3F, 5.4F, and 5.5F). It is generally thought that the dry mass density does
not vary much between conditions (van den Berg et al. 2017). This discrepancy
is likely due to the crowding mechanism: in the model, the ribosomal crowding
does not affect the total dry mass density, only the ribosomal density itself. In
conditions supporting slow growth, the ribosomes are less abundant following the
ribosomal growth law. However, it is not obvious how the crowding of small meta‐
bolites should be modelled. Analogous to how one can fit an entire bag of rice in
a pot already filled with potatoes, small metabolites are likely to find accessible
volume even when macromolecules such as ribosomes are strongly affected by
crowding.

5.4.3 Septum–new end transition and changes in width

In 5.3.1 it was noted that the dry mass density fluctuations in the model were con‐
siderably larger than observed experimentally by Odermatt et al. (2021). In 5.3.2
I showed that these large dry mass density fluctuations were reproduced in a sim‐
pler model too. Related to this, Odermatt et al. (2021) also showed that the septum
was constructed within approximately 30–40 minutes, whereas this took longer in
our model, especially in carbon‐limited parametrisations. Here a key assumption
is the constant surface density of the surface area, including the new‐end hemi‐
spheres, as well as the assumption that all the mass of the septum is transformed
into the cell wall at the new end. In contrast, a mechanistic model of the cell wall,
such as presented by Abenza et al. (2015), could implement interactions between
the cell wall expansion and its biophysical properties. Locally, cell wall expansion
decreases the cell wall thickness and a thicker wall inhibits growth (Davì et al.
2018). Following cytokinesis, there may therefore be a need for the new end to
be reshaped and strengthened prior to new‐end take off. This would shorten the
time required to construct the septum, because the cell wall would be thinner at
the new end.

Such a mechanistic model of the septum–new end transition may provide a fur‐
ther benefit, as then the assumption that the cell width is constant may be re‐
laxed. Differences in balanced‐growth width have been observed across conditions
in both S. pombe and the related fission yeast Schizosaccharomyces japonicus (Gu
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and Oliferenko 2019). The transient response of fission yeast cell width to chan‐
ging environments is an open question, and a C‐GRAM incorporating fluctuations
in width may provide valuable insights. However, these biophysical models are
a large step up in terms of model complexity and this was therefore not pursued
further.

5.4.4 Alternative assumptions coupling cell shape, surface production,
and biosynthesis

I stress here that the assumption of constant width is specific to S. pombe in steady‐
state nutrient environments. For E. coli, the aspect ratio is approximately constant
across nutrient conditions, and a model implementing aspect ratio homeostasis
was proposed by Ojkic et al. (2019). However, this model is incompatible with
the current data on S. pombe which is consistent with a constant width during
the cell cycle in balanced growth. In contrast, E. coli does indeed vary its cell
width during the cell cycle in balanced growth (Harris and Theriot 2016). Another
possible assumption is that the surface‐to‐volume ratio Σ

V
is held constant during

the cell cycle. However, consider equation (5.13). Because the volume V increases
during the cell cycle, the widthw has to decrease accordingly if Σ

V
is to be constant.

Again, this is not appropriate for a model of S. pombe. Because neither constant
aspect ratio nor constant surface‐to‐volume ratio describe S. pombe well, I did not
explore these assumptions further.

A different assumption was made to model E. coli growth by Oldewurtel et al.
(2019), who let surface area be produced in direct proportion to the production
of total dry mass. This behaviour is mirrored in our model, because the total bio‐
mass production, including that of the lipids and septum and hence surface area,
is proportional to vR. However, the model described in this chapter additionally
considers that elongation halts during M phase in yeast, a complication not present
in the bacterial model.
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6 Discussion and conclusion

In this final chapter I provide a general summary of the main results presented in
this thesis. I furthermore discuss points that connect the four chapters, as well as
describe possible further developments of the broad ideas presented in this thesis.

6.1 General summary

In chapter 2, I described the extent of growth‐rate‐correlated and medium‐specific
gene expression in fission yeast grown in conditions with different nitrogen sources.
Gene expression positively correlated with the growth rate was found across all
classes of proteins involved in the production of proteins. This was counteracted to
some degree by negative growth‐rate‐correlations of proteins associated with the
environmental stress response. The expression of metabolic enzymes was mostly
medium‐specific, although the aggregate burden of metabolism on translational
resource allocation was negatively correlated with the growth rate, thereby balan‐
cing the growth‐rate‐correlated effect on protein production.

A holistic understanding of growth, gene expression, and resource allocation
can be described in coarse‐grained resource allocation models (C‐GRAMs), where
a fundamental understanding is distilled into each component of the model. In
chapter 3, I formulated a general methodology for this type of modelling, which I
applied to two models of microbial growth. In chapter 4, I constructed a minimal
C‐GRAM of microbial metabolism that accounted for the metabolism of both carbon
and nitrogen, simplifying the parametrisation by considering resource allocation
that maximised the growth rate. This induced complex trade‐offs in metabolism
when describing growth on complex nitrogen sources. Furthermore, in chapter 5,
I proposed a C‐GRAM of S. pombe that additionally accounted for the biomass se‐
questered in the cell wall, as well as for the effects of molecular crowding and the
existence of multiple stages in the cell cycle. This model showed how the shape
and size of fission yeast adjusted in the direction of growth‐rate‐maximising evol‐
utionary pressures but were not themselves optimal for growth rate. Across both
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models, the ribosomal growth law was very robust, and the optimization of ri‐
bosomal resource allocation for maximal growth rate was in good agreement with
our understanding of the data.

6.2 Stress–growth trade-off and optimal ribosome allocation

In chapter 2, I quantified the ribosomal growth law in fission yeast and showed
it to be part of a broader trade‐off between stress‐ and growth‐related gene ex‐
pression programmes. As I noted in the introductory chapter 1, this stress–growth
trade‐off is thought to be under the control of the TORC1 complex in S. pombe,
whose activity is modulated by nitrogen starvation mediated by AMPK (Davie et
al. 2015; Weisman 2016; González and Hall 2017; Ling et al. 2020; Morozumi and
Shiozaki 2021). In the allocation model of chapter 4, regulation of the ribosomes
directly proportional to the availability of free amino acids was a good approxim‐
ation to growth‐optimal behaviour. This raises the intriguing possibility that the
TORC1‐AMPK axis of regulation functions to regulate the expression of the pro‐
tein production programme, and ribosomes specifically, to approximate growth
rate maximisation. This would be analogous to the role of the stringent response
mediated by ppGpp in bacteria (M. Zhu et al. 2019; Irving et al. 2020).

6.3 Non-protein biomass involved in translation: ribosomes and
other factors

In the data analysis of chapter 2, ribosomal proteins, proteins involved in ribo‐
some biogenesis, and other translation‐related factors were all positively correl‐
ated with the growth rate, but with different offsets when extrapolated to zero
growth. In other words, the normalised slope of the growth law differed between
these three categories. However, in the C‐GRAMs I did not account for this dif‐
ference to keep the model minimal. Instead, I accounted for all proteins involved
in translation as the single R‐sector and referred to them as ribosomes. Here I
provide more detail and compare the observed proteome mass fractions to the al‐
location fractions in the S. pombe C‐GRAM of chapter 5.

An initial estimate of the total R‐sector allocation fraction comes directly from
the observed proteome mass fractions: ϕRP ≈ 0.17, ϕRiBi ≈ 0.02, and ϕIET ≈ 0.07

in EMM, for the non‐overlapping ribosomal protein (RP), ribosome biogenesis
(RiBi), and translation initiation, elongation, and termination (IET) functional
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classes plotted in Figure 2.18A. However, ribosomes consist of several large RNA
molecules in addition to many small ribosomal proteins—in a fashion highly op‐
timised for autocatalysis (Reuveni et al. 2017). Without introducing RNA to the
models (which has a different C‐to‐N stoichiometry), the rRNA can be accounted
for as additional ribosomal proteins, which in eukaryotes account for approxim‐
ately 45% of the total ribosome mass (Reuveni et al. 2017). Approximating slightly,
mrRNA ≈ mRP, which importantly must also be accounted for in the total “protein”
biomass, which now includes rRNA and all proteins. Therefore, a better estimate
for the R‐fraction in the model based on the observed proteome mass fractions for
ϕRP, ϕRiBi, and ϕIET is then

ϕ̂R =
mrRNA +mRP +mRiBi +mIET

mallprotein +mrRNA

≈

≈ 2mRP +mRiBi +mIET

mallprotein +mRP

=

=
2ϕRP + ϕRiBi + ϕIET

1+ ϕRP

. (6.1)

At fast growth with rate µ ≈ 0.28h−1, corresponding to EMM in the experiments,
this equals ϕ̂R ≈ 2×0.17+0.07+0.02

1+0.17
≈ 0.37; at intermediate growth with µ ≈ 0.14h−1,

ϕ̂R ≈ 2×0.11+0.055+0.015
1+0.11

≈ 0.26; extrapolating to zero growth, it gives an intercept
of about ϕ̂R,0 ≈ 2×0.06+0.04+0.01

1+0.06
≈ 0.15 and a fold‐change of around 0.37−0.15

0.26
≈

0.85.
In the model (Table 5.1), the ribosomal protein sector accounts for approximately

fR ≈ 0.46 in EMM, which is perhaps a slight overestimate. Assuming the ribosomal
growth law is quantitatively the same between the nitrogen‐source modulations of
chapter 2 and the carbon‐ and nitrogen titrations modelled in chapter 5, the estim‐
ate at intermediate growth is closer at approximately fR ≈ 0.24. I expect that the
allocation parameters could be tweaked somewhat by tweaking the baseline rates
kC and kN for the carbon and nitrogen uptake enzymes in the model. However,
I did not explicitly include the ribosome fraction in the parameter fitting used to
obtain Table 5.1, because the estimate obtained in the above is somewhat uncertain
due to the necessary rRNA assumptions, as well as the generally underestimated
intercept already in the allocation model.
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6.4 Protein reserves and underutilised enzymes

The assumption that expression of all proteins is optimised for growth in any given
condition considerably simplifies the modelling. It is not obvious how the altern‐
ative of explicitly regulated allocation would be implemented and in any case it
would require many extra parameters. However, recent evidence has challenged
the view that all allocation is growth‐optimal. It is thought that significant frac‐
tions of the E. coli (Valgepea et al. 2013; Peebo et al. 2015; Mori et al. 2017) and
budding yeast (Metzl‐Raz et al. 2017; R. Yu et al. 2020) proteome are not imme‐
diately required for sustaining the growth rate and are instead held in reserve.
This reserve pool of protein could support cell adaption to sudden environmental
changes. It has furthermore been suggested that central carbon metabolism has
a large reserve capacity, suggesting that many enzymes may also not be utilised
solely to maximise metabolic fluxes (O’Brien et al. 2016; Christodoulou et al. 2018;
R. Yu et al. 2021).

These considerations are particularly important for the translational proteins.
A reserve pool of ribosomes has been proposed to account for the y‐intercept in
the ribosomal growth law (Metzl‐Raz et al. 2017; Mori et al. 2017). However, the
mechanism by which the reserve pool is sequestered from the actively translat‐
ing ribosome fraction is unclear and in the C‐GRAMs proposed in this thesis, this
effect was therefore not explicitly accounted for. Intriguingly, as described in sec‐
tion 4.3.1, part of the nonzero y‐intercept could be explained by a combination
of the nonlinearity in the dependence of ribosomal flux on its amino acid sub‐
strate and proportional regulation of the ribosomal allocation with the substrate.
However, the observed intercept is larger than the model offset explained this
way. Therefore, while coarse‐grained modelling points to a partial explanation
of the effect, further experiments are required to clarify the mechanism behind
underutilised ribosomes. In light of the quantitatively different growth laws for
ribosomal proteins, ribosome biogenesis proteins, and other translation factors
(section 2.3.7), broadening such a search to include translational proteins beyond
ribosomes could be fruitful.

Considering the degree of utilisation is also important for metabolic enzymes.
Some nutrient‐specific regulatory programmes were detected in both the tran‐
scriptome and the proteome of chapter 2, in particular responses specific to serine
and tryptophan media. Most of these enzymes were present in all conditions to
some degree, suggesting that they were under‐ or unutilised in most. Unlike the
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Ser‐ and Trp‐responses, the broader WFSP pattern was only present in the pro‐
teome, not in the transcriptome. A better understanding of post‐transcriptional
regulation in fission yeast is therefore required to fully understand the relation‐
ship between the high translational burden of metabolism and the extent to which
that burden is required to sustain fluxes.

6.5 Medium-specific expression and the Q-sector

One feature of the allocation model in chapter 2 was a smaller Q‐sector of house‐
keeping proteins than in previous models. This was due to basal expression of
other enzymes. The mechanism that ensures the constant expression of the Q‐
sector is unclear; in the models their allocation fQ was held fixed as including it in
any growth‐maximisation strategy would quickly generate fQ = 0 as the optimal
solution, since the Q‐proteins definitionally do not contribute to metabolism and
growth.

Likewise I found that there were few proteins in the S. pombe data set of chapter 2
whose expression was really constant across all conditions. Instead, many proteins
without a clear growth‐rate‐correlated component to their expression exhibited
medium‐specific expression. This was unexpected as previous experiments poin‐
ted to growth rate correlations as the main driving force between resource alloca‐
tion trade‐offs. Still, relatively minimal changes in the growth medium (swapping
out one saturating nitrogen source for another) resulted in large shifts in the re‐
source allocation burden of metabolism. I repeat here that the aggregate burden
of all metabolic proteins was negatively correlated with the growth rate. Import‐
antly, this was also the case for the net burden of proteins not showing significant
individual growth rate correlations.

Together, these points supports the hypothesis that the true Q‐sector is indeed
smaller than previously thought. Rather, many proteins can be expressed in a
medium‐dependent manner, thereby occupying a significant fraction of the pro‐
teome at the expense of other proteins more directly required for biomass produc‐
tion. In this view, illustrated in Figure 6.1, the medium‐specific proteins function
complementary to the original P‐sector and I propose the name M‐sector for them.
Most of proteome is then a trade‐off between the R‐sector (biomass production),
M‐sector (metabolism), and P‐sector (stress), with only a small ~20% allocation
to a Q‐sector that is somehow regulated to be expressed at a constant proportion
of the proteome.
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Figure 6.1: Proteome pie chart incorporating the trade‐off between growth‐
rate‐correlated and medium‐specific expression. The green slices
of the pie represent the parts of the proteome that are induced in a
medium‐specific manner; the orange slice is the R‐sector (positively
correlated with growth rate) and the blue slice the P‐sector (negatively
correlated with growth rate). The growth condition that induces the
vertically hatched slice M1 supports faster growth than the condition
inducing the diagonally hatched M2.

6.6 The difficulty of mapping real proteins to C-GRAM sectors

As touched upon in the discussion about protein reserves, it can be difficult to
match observed proteome fractions to the burden of proteome sectors in the coarse‐
grained models. An initial thought‐provoking example is provided by the possib‐
ility of inactive translational proteins. Intriguingly, sequestered ribosomes may
be thought of as a component of the “housekeeping” sector if they do not influ‐
ence metabolism in any way. If this thought is followed, the y‐intercept of the
ribosomal growth law can never be directly explained from the properties of the
model ribosomes, as it should be implemented as a proportion of the housekeeping
proteins.

The complications for assigning metabolic enzymes to C‐GRAM sectors are even
larger, because of the complexity inherent in the metabolic network. For example,
TCA cycle intermediates may be thought of as prime candidates representing the
carbon metabolite C, since these molecules are required for energy generation,
amino acid production, and the production of lipids. This view is consistent with
including the glycolytic pathway as the carbon‐generating enzyme EC. However,
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several glycolytic intermediates are required as part of amino acid synthesis as
well, so enzymes constructing them may equally be included in the amino‐acid
metabolism enzymes EA. The largest problem comes with the uptake of nitrogen
in the form of amino acids: some of those pathways are thought to be the reverse
of the amino acid synthesis pathways, and regardless of the nitrogen assimilation
pathway, the recycling of the carbon backbones can be part of glycolysis, the TCA
cycle, or the pentose phosphate pathway.

Because of these difficulties mapping proteins to coarse‐grained sectors, I did
not directly use the observed proteome fractions from chapter 2 to inform the
allocation model of chapter 4 and beyond. However, I do not think that this is ne‐
cessarily a weakness. The coarse‐grainedness of the modelling approach presen‐
ted in this thesis implies that only few model parameters directly correspond to
biological variables. Rather, the components of the model represent broad con‐
cepts, such as “nutrient quality”, that are implicitly defined by the resulting model
behaviours. The analysis of coarse‐grained models provides a way to generate hy‐
potheses and quantify the interplay between the model components even when a
direct match between model variable and observations may be lacking. However,
it can sometimes be tempting to draw unwarranted conclusions and the onus is on
the modeller to keep this in mind.

6.7 Outlook

In spite of the pithy assertion that all models are wrong but some are useful, I
believe that the models presented in this thesis may be adapted to become more
‘illuminating and useful’ (Box 1979) by reducing their wrongness. To start with,
the model from chapter 5 could be improved by a better understanding of molecu‐
lar crowding beyond the effect on ribosomes only. A further improvement may be
to explicitly implement mechanisms that are responsible for the shape of the cell
wall, particularly at the growth regions in the cell tips. Additionally, the coarse‐
grained metabolism could be expanded to account for a cellular pool of chemical
energy in the form of ATP. A further expansion to metabolism would be account‐
ing differentially for biomass in nucleotides and in proteins, considering that ri‐
bosomes are primarily composed of RNA, which has a higher nitrogen content than
protein.

A broader use for C‐GRAMs such as I presented in this thesis may be to form the
basis of a stochastic or multi‐scale model that provides a more detailed descrip‐
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tion of a particular biological problem. For example, the coarse‐grained model of
bacterial physiology by Weiße et al. (2015) was successfully adapted to provide a
stochastic view of growth dynamics in single cells (Thomas et al. 2018). Consist‐
ent with the view of biotic systems as processors of information (Hogeweg 2011),
biological processes are interlinked across spatio‐temporal scales and multi‐scale
models require efficient linking of the models describing each level of detail and a
deep understanding of each individual level (Cilfone et al. 2015). As a specific ex‐
ample, consider that microbes heavily share resources in their extracellular meta‐
bolome (J. S. L. Yu et al. 2022). A suitably adapted C‐GRAM based on the model
from chapter 5 may be incorporated into a broader ecological model to aid our un‐
derstanding of the interplay between resource allocation, the optimality of growth,
and the sharing of metabolites.

6.8 Conclusion

In this thesis I have presented how global resource allocation in fission yeast can
be primarily divided into growth‐rate‐correlated and medium‐specific expression.
I have further shown how coarse‐grained mathematical modelling provides an im‐
proved understanding of the interplay between cellular growth and the physiolo‐
gical and translational burden of gene expression. Further study of these topics
across diverse biological and mathematical systems will influence a wide range
of research areas such as microbiology, synthetic biology, and cancer research.
Beyond its contribution to our understanding of gene regulation, the results and
further hypotheses presented in this thesis will support future experimental and
modelling efforts aimed at defining the nature of the trade‐offs involved in growth,
stress resistance, and metabolism across the tree of life.
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