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ABSTRACT 
 

The mammalian gut microbiota provides important functions for the host but at the same time 

varies greatly between species, populations, individuals and even within individuals over time. 

Drivers of this variation and particularly their relative importance remains poorly understood. 

Further, a large proportion of gut microbiota research has been conducted using the laboratory 

mouse as a model organism. However, laboratory mice inhabit an artificial world where 

individuals are inbred, the environment is stable, and microbial exposures are limited. As a 

result of domestication, the gut microbiota of laboratory mice differs in notable ways from that 

of their wild relatives, and studies investigating the gut microbiota of wild house mice have 

great potential to aid the interpretation of findings from the laboratory. In this thesis, I explore 

how the gut microbiota varies between laboratory and wild mice, and examine drivers of 

natural gut microbiota variation among and within wild mouse populations. I show that 

although wild mice have a compositionally and functionally more diverse gut microbiota with 

a faster turnover rate that is clearly shaped by their more complex environment, major patterns 

of gut microbiota assembly during early life are conserved between laboratory and wild house 

mice. Since the gut microbiota showed strong age-related variation, I developed a non-invasive 

epigenetic clock-based method for assessing age in wild mice, whose application showed 

promise for future studies estimating biological (if not chronological) age in this system. Gut 

microbiota composition was also influenced by spatial factors, with stronger effects on the 

fungal than bacterial components of the microbiota, and microbial transmission from soil was 

identified as one possible source of spatial variation. Finally, I investigate gut microbial 

ecology in a mammalian species that is quite the opposite of a model organism, the critically 

endangered Saiga antelope which suffers periodic mass mortality events. I characterise healthy 

gut microbiota in comparison to other similar species, providing important background for 

future conservation efforts, as well as contributing to our broader understanding of what shapes 

microbiota among mammals. Together the results from this thesis increase our understanding 

of the gut microbiota variation but also highlight challenges in studying the gut microbiota, in 

the laboratory and beyond.
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The mammalian gut microbiota 

All mammals harbour complex communities of microbial organisms on their epithelial barrier 

surfaces throughout the body (McFall-Ngai et al., 2013). A collection of these microbes in a 

given site is referred to as the microbiota. A particularly dense and diverse microbiota is found 

in the mammalian gut. In humans, the gut microbiota contains approximately 2,000 bacterial 

species that collectively contain more than 100 times more genes than there are in our own 

genome and at least as many cells as there are human cells (Almeida et al., 2019; Gill et al., 

2006; Sender et al., 2016). Species in this gut community range from beneficial to potentially 

harmful but as a whole the gut microbiota provides important functions for the host, such as 

immune training and vitamin biosynthesis (Chung et al., 2012; Yatsunenko et al., 2012). At the 

same time, numerous disease states have been linked to an ‘altered’ gut microbial community 

(Turnbaugh et al., 2009; Le Chatelier et al., 2013; Qin et al., 2012; Fujimura et al., 2016; Wang 

et al., 2011), although findings are often limited to correlation and identification of mechanisms 

by which the microbiota influences disease pathogenesis has been limited. 

 

Historically, microbes were primarily studied as individual, isolated microbial species. 

Advances in culture-independent techniques have enabled a rapid expansion of our 

understanding of the gut microbiota, where entire microbial communities rather than single 

species can be studied. In particular, 16S rRNA gene sequencing has been widely used to 

identify members of microbial communities and quantify their relative abundances. While 

lacking resolution at lower taxonomic levels (Johnson et al., 2019), this well-established and 

readily available method provides a broad overview of microbiota composition, richness, and 

evenness. More recently, the method has been coupled with quantitative PCR or similar to 

quantify bacterial density, allowing measurement of absolute taxon abundances in the gut 

(Jokela et al., 2022; Vandeputte et al., 2017; Jian et al., 2020). Together these data allow us to 
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study host–microbiota dynamics from various angles. More advanced sequencing 

technologies, such as metagenomics, can add further resolution and information to these data, 

though their high cost still hinders widespread and large-scale application.  

 

Establishment of the gut microbiota 

The developing mammalian gut is thought to remain sterile until birth (Walter et al., 2021), 

when primary colonisers initiate the gradual establishment of a resident microbial community. 

This initial colonisation by vertically transmitted maternal microbes is followed by – at least 

in humans – a largely predictable microbial succession with stochastic elements (Rao et al., 

2021; Stewart et al., 2018; Bäckhead et al., 2015; Ferretti et al., 2018). New microbes continue 

to enter the gut through e.g., skin contact and environmental exposure, and the relative 

abundance of gut microbes is influenced by host selection and stochastic processes. 

 

Important sources of host selection in the developing gut include oxygen levels, the immune 

system, and diet (Barroso-Batista et al., 2015; Stewart et al., 2018; Sprockett et al., 2018; 

Albenberg et al., 2014; Friedman et al., 2018). The gut is aerobic at birth but through oxygen 

depletion it becomes increasingly anoxic, favouring anaerobes over aerotolerant taxa, and 

through immune maturation a host’s ability to suppress pathogenic taxa increases. Further, diet 

change, particularly a shift from milk to solid food, represents a major selective pressure on 

the microbiota as species vary in their ability to utilise different substrates. Alongside these 

deterministic factors shaping the gut microbiota, compositional changes are also induced by 

stochastic processes, such as drift. Such effects can be strong, particularly for low-abundance 

species that are more likely to go locally extinct (Sprockett et al., 2018). 
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As a result of these community processes, the gut microbiota becomes more diverse within 

individuals but more similar between individuals as they develop (Bäckhead et al., 2015; 

Ferretti et al., 2018), eventually reaching an ‘adult-like’ community structure. Still, the gut 

microbiota continues to fluctuate and adapt throughout life (Murillo et al., 2022; Vandeputte 

et al., 2021). In particular, the host continues to be exposed to new microbes through 

environmental and social transmission. Various factors, including baseline microbiota 

composition, contribute to whether these microbes manage to colonise the gut or not (Sprockett 

et al., 2018; Bittleston et al., 2020). 

 

Variation in the gut microbiota 

Once established, the gut microbiota varies between host species, populations, and across and 

within individuals (Ochman et al., 2010; Phillips et al., 2012; Yatsunenko et al., 2012; Suzuki 

& Worobey, 2014; Wang et al., 2014; Smits et al., 2017). Such variation can be detected on 

many levels, including taxonomy (Rojas et al., 2021; Knowles et al., 2019), diversity (Rudolph 

et al., 2022), absolute and compositional abundance (Jokela et al., 2022; Vandeputte et al., 

2017; Risely et al., 2021), stability (Lozupone et al., 2012), and functionality (Baniel et al., 

2022). The mammalian gut microbiota displays a prominent host phylogenetic signal (Song et 

al., 2020; Kohl et al., 2018; Weinstein et al., 2021; Ochman et al., 2010) and is relatively host 

species-specific, such that typical features are shared between individuals of a given species 

and certain microbiota-dependent functions will be altered if the host is colonised with a 

microbiota from a heterospecific individual (Mallott & Amato, 2021; Chung et al., 2012). At 

the same time, the gut microbiota varies between individuals to the extent that for instance in 

humans, the vast majority of gut microbial species in the population are not detected in a 

majority of individuals (Almeida et al., 2021; Gilbert et al., 2018). 
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Drivers of gut microbiota variation 

Within any given species, various genetic and environmental factors are recognised to 

influence the composition and diversity of the gut microbiota (Gacesa et al., 2022; Yatsunenko 

et al., 2012; Suzuki & Worobey, 2014; Grieneisen et al., 2021; Spor et al., 2011; Rudolph et 

al., 2022; Falony et al., 2016; Kurilshikov et al., 2021; Rothschild et al., 2018). Perhaps the 

most intuitive driver of gut microbiota variation is diet. Dietary components that are not 

digested in the upper gastrointestinal tract end up in the large intestine, where the majority of 

gut microbes reside. These substrates can then be utilised by the resident microbes. As 

microbes vary in their ability to utilise different substrates, a given diet may promote certain 

microbial species while depleting others. In line, compositional differences are evident 

between individuals with distinct diets and the gut microbiota can rapidly respond to dietary 

changes within individuals (Turnbaugh et al., 2008; Sonnenburg et al., 2010; Arifuzzaman et 

al., 2022; David et al., 2014; Lancaster et al., 2022). Perhaps the best described diet-induced 

changes in the gut microbiota are those induced by a Western diet, which is low in fibre but 

rich in fat and sugar. Consumption of this diet is characterised by an overrepresentation of taxa 

from phylum Proteobacteria, such as Escherichia coli, and reduction in the overall diversity of 

the gut microbiota (Agus et al., 2016; Martinez-Medina et al., 2014). 

 

The gut microbiota is further influenced by spatial factors, such as altitude and latitude 

(Yatsunenko et al., 2012; Suzuki & Worobey, 2014; Zhang et al., 2018; Suzuki et al., 2019; 

Olm et al., 2022), temporal factors, such as season and time of day (Smits et al., 2017; Maurice 

et al., 2015; Marsh et al., 2022; Risely et al., 2021), and host-level factors, such as age, social 

interaction, reproductive status, and genetics (Stewart et al., 2018; Koren et al., 2012; DiGiulio 

et al., 2015; Grieneisen et al., 2021; Rothschild et al., 2018; Raulo et al., 2021; Tung et al., 

2015). Despite the insights on environmental and genetic influences on gut microbiota, the 
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majority of variation often remains unexplained and the relative importance of identified 

drivers appears to be context-dependent with the explanatory power of a given predictor 

varying vastly between studies. Variation in gut microbiota is, however, expected to have 

important effects on host physiology and immunity, and ultimately on fitness, thus an enhanced 

understanding of gut microbiota variation and its drivers would be valuable. 

  

Effects of gut microbiota variation on the host 

Both the gut microbiota and immune system develop in early life. A key role of the mammalian 

immune system is to defend against pathogenic microbes. Intriguingly, it appears that to do 

this properly, it first needs to be trained by non-pathogenic microbes. The microbiota’s clear 

impact on host immunity is perhaps most evident in early life, when colonisation by microbes 

is essential for immune maturation (Gensollen et al., 2016). 

 

The clearest insights on cross-talk between commensals and host immunity come from germ-

free (GF) models, where animals lacking microbes present defects in lymphoid tissue 

architecture and immune functioning, such as a substantial reduction in IgA levels and missing 

subsets of lymphocytes (Bauer et al., 1963; Ivanov et al., 2009). Microbial colonisation of GF 

animals restores at least some of these functions, further highlighting the importance of 

microbes in immune maturation (Hapfelmeier et al., 2010; Chung et al., 2012). Importantly, 

colonisation with host-specific microbes is required for maximal immune restoration, 

indicating that exposure to any microbes is not sufficient (Chung et al., 2012). 

 

Interactions between host immunity and the microbiota continue beyond development allowing 

maintenance of regulatory pathways but also protection against pathogens (Belkaid & Hand, 

2014; Chung et al., 2012). By providing suitable conditions for hosting a microbiota, the gut 
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also provides a site through which pathogens can access the host. Resident microbes can protect 

the host against pathogen colonisation (known as ‘colonisation resistance’) through niche 

competition. Microbiota members can, for instance, alter nutrient availability with 

consequences for pathogen growth rate and expression of virulence genes (Kamada et al., 2013; 

Stecher et al., 2011; Britton & Young, 2014). Importantly, resident microbes provide protection 

by being there: in an established gut community of a healthy individual there are no free niches 

and local microbes are well-adapted, thus entering pathogens are generally excluded through 

competition (Kamada et al., 2013; Stecher et al., 2011). 

  

Alongside having a deficient immune system, GF animals present various behavioural 

abnormalities including exaggerated stress responses and reduced anxiety (Sudo et al., 2004; 

Diaz Heijtzet al., 2011). These findings on the apparent link between gut microbes and the 

central nervous system have sparked investigations into the gut–brain axis. Changes in the gut 

microbiota have now been linked to microstructural (Liu et al., 2019; Ong et al., 2018), cellular 

(Möhle et al., 2016), and transcriptional changes (Hoban et al., 2016) in the brain and 

implicated in a variety of developmental disorders (Sharon et al., 2019; Li et al., 2021) and 

behavioural phenotypes (Schretter et al., 2018; Wu et al., 2021). Nutritional (Donovan, 2017), 

metabolic (Bouter et al., 2017) and immunological signals (Foster & McVey Neufeld, 2013) 

have been identified as possible mediators of the bi-directional cross-talk between microbes 

and the central nervous system, although the exact mechanisms are still largely unknown. 

 

Perhaps the most established link between gut microbes and host health is the gut microbiota’s 

effect on host metabolism (Turnbaugh et al., 2006; Bäckhead et al., 2004; Ley et al., 2005; 

Turnbaugh et al., 2007; Ley et al., 2006). In particular, it has been demonstrated that gut 

microbes contribute to energy extraction from food. Colonisation of GF animals with a 
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‘standard’ laboratory mouse microbiota drastically increases body fat within a matter of two 

weeks, even when food consumption is reduced (Bäckhead et al., 2004). Gut microbiota can 

promote energy harvest through fermentation of indigestible dietary fibre to monosaccharides 

and short-chain fatty acids (SCFAs), which can then be absorbed and converted to more 

complex lipids in the liver followed by lipid deposition in adipocytes (Flint et al., 2012). More 

recently the gut microbiota has been demonstrated to facilitate adaptation to cold environments 

(Chevalier et al., 2015). Mice exposed to cold undergo compositional changes in their gut 

microbiota and transplantation of this ‘cold’ microbiota to GF mice promotes their tolerance 

to cold and increases insulin sensitivity (Chevalier et al., 2015). Similar indications of gut 

microbial adaptation to cold have been observed outside the laboratory: wild mice from colder 

climates produce larger amounts of bacteria-driven energy sources in relation to food 

consumption, suggesting their gut microbiota to be more efficient in energy extraction from 

food (Suzuki et al., 2020). 

  

The value of wild microbiota studies 

While most gut microbiota studies have been undertaken on humans or laboratory animals, the 

gut microbiota has been studied in numerous host species (Yatsunenko et al., 2012; Chung et 

al., 2012; Blyton et al., 2019; Roeselers et al., 2011; Debebe et al., 2017; Baniel et al., 2022; 

Rojas et al., 2021; Youngblut et al., 2019), each of which perhaps being best suited as a study 

system for a specific setting. 

 

Human studies, particularly twin studies, have been pivotal in building an understanding of the 

gut microbiota, particularly in the context of human biology. However, humans are exposed to 

environmental factors that are difficult to disentangle from each other and from genetic effects, 

and are too long-lived to effectively investigate fitness effects of the microbiota. The short-
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lived laboratory mouse (Mus musculus) is perhaps the most extensively studied mammal, 

providing a vast set of baseline information on which gut microbiota research can build. As 

such, laboratory mouse models can be extremely powerful for understanding mechanisms of 

host–microbiota interaction, by which phenotypic effects arise. A key advantage here, 

however, is also a major limitation: in order to unpick mechanisms of interest, genetic variation 

and environmental exposures are deliberately limited and tightly controlled for laboratory 

mice. Further, as a result of domestication, the gut microbiota of the laboratory mouse is 

substantially different from that of their wild counterparts. As such, results can be difficult to 

put into wider context, considering their separation from the natural world. 

 

Studying gut microbiota in the wild can have several advantages. In particular, studying gut 

microbiota of the wild house mouse holds great potential in increasing our understanding of 

host–microbiota interactions. First, unlike the laboratory mouse, it is outbred and exposed to 

environmental factors in a fluctuating way, thus providing a natural platform for investigation 

of both the drivers and consequences of naturally occurring microbiota variation. 

Understanding links between how variation arises and what influences it has on host will allow 

us to understand the evolutionary significance of host–microbiota interactions, for instance, 

whether and how microbes might provide adaptive plasticity. Second, since the house mouse 

has been used in the laboratory for decades, a vast collection of robust reagents and related 

technologies have been designed specifically for this species and can be applied to wild house 

mouse systems. Third, studying gut microbiota of the wild house mouse allows us to test 

whether observations from laboratory models are an artefact of the constrained laboratory 

environment or somewhat different microbiota, or whether they reflect natural processes 

observed in the wild. Finally, studying ‘wild gut microbiota’ beyond model organisms can 
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increase our understanding of microbiota’s role in ecology and provide key information of host 

biology with possible conservation applications. 

  

However, moving from the laboratory to the wild can come at a cost. Factors that could shape 

the gut microbiota under natural conditions, such as age, diet, and health status, can be difficult 

to determine, and genetic relatedness and social contact between wild mice laboursome to 

measure. Lack of precise age determination is a particularly key limitation, as age is an 

important driver of gut microbiota variation (Olm et al., 2022; Stewart et al., 2018; Bosco & 

Noti, 2021). Further, longitudinal study of wild mice can be limited by poor recapture rate, 

which could be influenced by predation, anthropogenic interference (e.g., pesticides), and 

abiotic factors (e.g., temperature). The wild mouse population chosen as the focus for this 

thesis, and the work undertaken herein, attempts to overcome some of these challenges and 

develop wild house mouse as a powerful natural model system for mammalian gut microbiota 

research. 

 

Study systems 

The research in this thesis uses an island population of the house mouse (Mus musculus 

domesticus) as a model system. Paralleling studies will be conducted using the most widely 

used laboratory mouse strain, C57BL/6, in order to gain tools for the wild system, as well as to 

examine findings from the wild in relation to those from the laboratory. 

  

The laboratory mice were housed in two separate facilities at the University of Oxford and 

King’s College London and the wild mice are part of an island population on Skokholm Island, 

Wales, UK (Figure 1A). This wild population presents a great opportunity for studying the gut 

microbiota in a wild setting for several reasons. First, house mouse is the only small mammal 
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species present on this small island (~100 hectares), making trapping efforts straightforward 

and meaning there are no interspecific interactions with other small mammals that could affect 

population size or enable cross-species microbial transmission among closely related species. 

Second, there are no natural predators of house mice breeding on the island, thus predation is 

limited and presumably does not have a great impact on recapture of marked individuals. 

 

Third, many mice on this island are likely to live a lifestyle that is completely independent of 

humans. The island is completely free of human inhabitants for the winter months, while at 

other times up to 25 people stay on the island in a small number of buildings, which are far 

from the expected home ranges of many mice on the island. Hence, mice on Skokholm live 

largely independent of humans unlike many of their mainland relatives, which are often subject 

to anthropogenic influences, such as pesticides. Lastly, the ecology of the Skokholm mouse 

population was well studied in the 1960–1970s by Richard Berry and others, providing much 

baseline knowledge about their history, ecology and population dynamics to build upon (Berry 

& Jakobson, 1971; Berry, 1968; Berry et al., 1973). Skokholm Island is colonised by thousands 

of nesting seabirds, such as Manx shearwaters, carcasses of which have been identified to 

possibly form a part of Skokholm mouse diet (based on camera trap footage) alongside seeds 

and a range of invertebrates, including amphipods (Berry & Jakobson, 1974). 

  

Two geographically separated but closely located sampling sites were set up on the island in 

2019. The ‘Observatory’ is located in a central, northern part of the island (Fig. 1B) and 

surrounds a few buildings, including a bird observatory, after which the site was named. In this 

sampling site, buildings and human-made walls provide protection from harsh weather, and the 

communal kitchen, compost, and toilet facilities provide possible sources of food for the mice. 

The second sampling site, the ‘Quarry’ (named after part of this sampling site which is 



  General introduction 

 16 

colloquially known as the Quarry of the island), is located in the southwest of the island (Fig. 

1B), near and partly surrounding the lighthouse where the island wardens live. Quarry 

represents a more exposed habitat: the majority of trapping points there are close to cliffs, thus 

the site is subject to more harsh wind and even waves from the sea. These two sampling sites 

were decided upon in discussion with the wardens and after some preliminary trappings in 

April 2019, to target areas with suspected high mouse density and away from highly sensitive 

seabird nesting areas.  

 

Each sampling site has 150 fixed trapping points, which were scattered around the two sites 

with the aim of covering as much of the sites as possible without disturbing other wildlife (a 

symmetric grid of trapping points was not feasible on the island). Distance between trapping 

points across the two sites ranges from ~0.5km to ~1.3km. Only 5 out of 337 (1.5%) individual 

mice caught on the fieldtrips mentioned below were captured at both sampling sites, suggesting 

mouse migration across the two sites is limited despite geographic proximity. Data for this 

thesis was collected over five fieldtrips: three in 2019 (spring, summer, autumn), one in 2020 

(autumn) and one in 2021 (spring). Three seasonal fieldtrips were planned for 2020 as well; 

however, it was only possible to conduct one fieldtrip in 2020 due to COVID19 restrictions. 

Fieldtrips were designed to have a capture-mark-recapture (CMR) study design, where we 

attempted to conduct a minimum 6 nights of live trapping at each site from summer 2019 

onwards. RFID technology (PIT-tagging) and ear notching were used to identify individuals. 
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Figure 1. (A) Skokholm Island is located 4 km off the coast of Pembrokeshire in south-west Wales, UK. (B) Two 

wild house mouse sampling sites on Skokholm Island. 150 trapping points (white circles) were distributed at each 

site. 
  

In addition to these two mouse systems – the Skokholm and C57BL/6 mice – samples from 

additional laboratory mouse strains (n=3) and other wild mouse populations (n=6, including 

mainland and island populations from Europe and beyond) were acquired from collaborators 

to put the main study systems into a broader ecological context and test how representative of 

lab/wild mice they are. 

  

Finally, as a case study of the gut microbiota in the context of a species of conservation concern, 

I studied the gut microbiota of the critically endangered Saiga antelope, infamous for suffering 

from recurring mass mortality events (Kock et al., 2018). The Saiga live out of sight in the 

remote lands of Kazakhstan, the largest land-locked country in the world, making them a 

difficult species to study. As a result, much of the biology of the Saiga remains unknown. 

Further, as the mass mortality events have been seemingly caused by overgrowth of Pasteurella 

multocida (Kock et al., 2018), a possible symbiont of the Saiga, the microbiota of the Saiga is 

of particular interest. Two sub-populations of the Kazakh Saiga were sampled cross-sectionally 
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in 2019, a year without mass die-offs, in order to characterise the baseline gut microbiota of 

the Saiga and investigate how the Saiga gut microbiota compares with that of other antelope 

species. 

 

Research aims and overview of chapters 

With the presented study systems, this thesis has four main aims: 

 

I. Identify drivers of gut microbiota variation in an island house mouse population. 

II. Optimise and test a lab-based epigenetic clock method for age estimation in wild 

house mice. 

III. Investigate gut microbiota assembly patterns in wild and lab mice, and whether they 

are conserved across these settings. 

IV. Characterise and assess geographic variation in the gut microbiota of the critically 

endangered Saiga antelope. 

 

In Chapter I, I conduct an extensive analysis of gut microbiota variation within wild house 

mice, focusing on the wild population from Skokholm Island as the main study system. In 

addition to cross-sectional analyses, I analyse wild house mouse gut microbiota longitudinally, 

allowing study of within-individual temporal turnover. I show that the gut microbiota of wild 

mice is shaped by spatial factors, with stronger effects on fungal than bacterial microbiota, and 

that microbial transmission from soil might explain some of the spatial variation detected. In 

order to understand gut microbiota variation in house mice across settings, I compare the gut 

microbiota of Skokholm mice with that of laboratory mice from multiple facilities and strains, 

as well as other wild house mice from mainland and island populations. 
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In Chapter II, I attempt to overcome a common limitation of wild small mammal study systems 

– the lack of accurate age estimation – and estimate chronological age of wild mice using a 

methylation-based epigenetic clock approach. I show that an epigenetic clock built with faecal 

samples from laboratory mice can be used to estimate chronological age in these wild mice: 

the clock successfully predicted adult mice to be older than juvenile mice, and predicted age 

was generally higher at a later timepoint for mice sampled twice. However, the method did not 

appear to provide a more accurate estimate of chronological age than body mass, thus I decided 

not to use predicted ages in subsequent chapters. However, it appeared the method holds 

promise as a tool for assessing ‘biological’ age among repeat-captured mice. Further, the 

framework used in this study (building a clock with samples from captive individuals and using 

this to estimate age in wild individuals, using faecal samples as a source of host DNA) may be 

useful when estimating age in other wild species that are hard to capture or even detect. 

  

In Chapter III, I investigate early life gut microbiota assembly dynamics in laboratory and wild 

mice in parallel. I demonstrate that despite harbouring distinct gut microbiotas on many 

measures, lab and wild mice share several major patterns of gut microbiota assembly, including 

similar changes in alpha and beta diversity as well as in the relative abundance of predominant 

phyla. I argue that these results indicate some degree of intrinsic host programme in gut 

microbiota assembly that transcends contrasting genetic and environmental backgrounds. As 

such, these results suggest the broad patterns of gut microbiota assembly are relatively 

conserved across lab and wild mice, and demonstrate that the widely used lab mouse model – 

despite their artificial environment and lack of genetic variation – can be used to study age-

related microbiota dynamics. 
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In Chapter IV, I study the gut microbiota in a completely different context and characterise the 

gut microbiota of the critically endangered Saiga antelope, which has suffered from recurring 

mass mortality events. It has been suspected that these mass die-offs are caused by outgrowth 

of a normally commensal symbiont. As such, the Saiga gut microbiota and the possible 

presence of this symbiont in healthy Saigas is of interest. Here, I describe the general 

characteristics of the gut microbiota in two geographically distinct populations of the Kazakh 

Saiga during a ‘healthy’ year without die-offs, and investigate the extent to which the Saiga 

gut microbiota resembles that of other antelopes. With this, I demonstrate that the Saiga has a 

fairly typical gut microbiota for an antelope, that is most similar to a geographically proximate 

species rather than its closest relative. This characterisation of the Saiga gut microbiota will 

provide a useful baseline for future work looking into the role of gut microbiota in mammalian 

mass mortalities. 
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Abstract 

The mammalian gut microbiota is a complex community of microbes that has diverse impacts 

on host biology. House mice constitute the model organism for research on mammals, but 

laboratory domestication has altered their gut microbiota from that of their wild counterparts. 

Knowledge about what shapes the gut microbiota of house mice under natural conditions 

remains limited, but would improve this species’ utility as a model organism both inside and 

outside the lab. Here, we use a large, longitudinal dataset to investigate the factors predicting 

natural gut microbiota variation within a single wild house mouse population, inhabiting the 

Skokholm Island, Wales. We reveal prominent temporal and small-scale spatial variation in 

microbiota composition (with larger spatial effects on fungal than bacterial components of the 

microbiota), and identify microbial transmission from soil as one possible source of this spatial 

variation. To put our findings in a wider ecological context, we compare gut microbiota 

composition and dynamics of Skokholm mice to those of multiple laboratory mouse strains 

and other wild house mice from mainland and island populations. While the microbiota of 

Skokholm mice is broadly representative of other wild populations, collectively wild mice 

possess a microbiota that is not only compositionally distinct, taxonomically and functionally 
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more diverse than that of lab mice, but also has a faster temporal turnover rate. These findings 

highlight the much greater spatiotemporal turnover of gut microbes in wild mice compared to 

laboratory strains, which may affect how they influence host phenotypes in these contrasting 

settings. 

 

Introduction 

The mammalian gut houses a diverse collection of microbial organisms known as the gut 

microbiota, that provides many important functions for the host. It is involved in several 

developmental processes, such as growth, immune maturation, and development of the central 

nervous system (Sharon et al., 2016; Chung et al., 2012; Yan et al., 2016), but also in host 

processes beyond early life, such as regulation of the immune system, metabolism, and 

protection against pathogens (Round & Mazmanian, 2009; Fan & Pederson, 2021; Pickard et 

al., 2017). Most insights into host-microbiota interactions in mammals come from human or 

laboratory animal studies. In particular, the laboratory mouse (Mus musculus) is a widely used 

model system in gut microbiota research and mammalian research more broadly. It is a 

powerful system in which virtually everything from genetic background to diet can be tightly 

controlled, biological processes can be studied across the lifespan as mice are short-lived, and 

the gut microbiota can be readily modulated, for instance by colonizing germ-free mice with 

specific combinations of microbes. 

 

However, laboratory mice live in an artificial world where individuals are typically inbred, 

housed under stable environmental conditions and exposed to a limited number of other 

individuals, raising concerns about the relevance of gut microbiota findings from laboratory 

mice, and the influence lab-adapted gut microbiotas may have on other mouse research. Indeed, 

laboratory mice have a somewhat different gut microbiota from that of their wild house mouse 
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relatives (Wang et al., 2014; Kreisinger et al., 2014; Wang et al., 2015, Rosshart el al., 2019; 

Bowerman et al., 2021) and results from recent experiments where laboratory mice were 

colonised with wild-derived microbiota were shown to have greater applicability for 

understanding human health (Rosshart, et al., 2019). Considering the model organism status of 

the house mouse, understanding natural drivers of wild house mouse microbiota is pivotal. An 

enhanced understanding of house mouse gut microbiota across different genetic and 

environmental backgrounds is also important for the next generation of wild-reconstituted 

model organisms (Thomson et al., 2022). 

 

Previous studies on the gut microbiota of wild house mice have indicated geography to be one 

of the most influential drivers of variation, while individual-level attributes such as age and sex 

appear to have a lesser effect (Goertz et al., 2019; Weldon et al., 2015; Linnenbrink et al., 

2013). Compositional and diversity differences are seen in mice from different 

countries/regions (Linnenbrink et al., 2013; Weldon et al., 2015) and altitudes (Suzuki et al., 

2019) but also on a fine spatial scale within a population (Goertz et al., 2019), with possible 

downstream effects on the host. For instance, mice from higher altitudes had higher relative 

abundances of anaerobic bacteria better adapted for environments with limited oxygen, and 

this ‘high altitude microbiota’ is enriched in a functional pathway involved in regulation of 

blood pressure (Suzuki et al., 2019). 

 

Here, we build upon previous work and investigate drivers of gut microbiota variation in a wild 

house mouse (Mus musculus domesticus) population on Skokholm Island, Wales. Using a large 

dataset containing nearly 1,000 samples from over 300 individual mice, we disentangle the 

relative importance of different drivers of variation in wild house mouse microbiota. In addition 

to cross-sectional analysis, we use repeat-sampled individuals to analyse temporal variability 
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of the wild house mouse gut microbiota for the first time. We further expand on previous 

studies by including analysis of the fungal microbiota (‘mycobiota’; Rosshart et al., 2019), as 

well as by exploring associations between microbial communities from the natural 

environment (soil) and the gut that could indicate microbial transmission between these two 

habitats. To put these findings in context and gain further understanding of house mouse 

variation and ecology across settings, we also compare microbiota composition and dynamics 

of wild Skokholm mice with both other wild-captured house mice other islands and mainland 

settings, as well as those of laboratory mice of various strains, from multiple facilities. 

 

We hypothesised that due to contrasting environmental and genetic backgrounds as well as 

different microbial exposure patterns, laboratory and wild mice have distinct gut microbiotas 

in terms of taxonomy, functionality as well as stability. Further, we hypothesised that dispersal 

of gut microbes might be reduced in island mice living in closed ecosystems compared to 

mainland mice, and that island and mainland mice might have differences in diet, possibly 

resulting in different gut microbiota characteristics between mainland and island mice. Finally, 

we hypothesised that spatial effects on gut microbiota composition are detectable within an 

island population of the house mouse, with effects on both bacterial and fungal components, 

and that these spatial effects might be partly driven by variation in environmental microbiotas. 

 

Methods 

Sample collection 

Six laboratory mouse (Mus musculus) colonies from three animal facilities were sampled 

between November 2020 and May 2021. These included a C57BL/6 colony from King’s 

College, London, C57BL/6 and transgenic SKG colonies from Kennedy Institute, Oxford, and 

C57BL/6, transgenic CCSP-rtTA and transgenic Pdgfra-creER colonies from BMS, Oxford 
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(Supplementary Table 1). SKG mice presented intestinal inflammation that had been induced 

with curdlan injection while all other sampled mice were not subject to interventions. For 

sample collection, mice were placed on a sterile surface until defaecation. Faecal pellets were 

immediately preserved in DNA/RNA Shield and stored in -80oC until DNA extraction. 

  

Wild house mouse (Mus musculus domesticus) samples originated from seven populations. The 

main study population, the Skokholm Island population, was sampled in April–May 2019, July 

2019, September–October 2019, August–September 2020, and April–May 2021 on Skokholm 

Island in Wales, UK, yielding a total of 948 samples from 337 unique mice (1–12 samples per 

mouse; Suppl. Table 1). 

 

Mice were live-trapped with small Sherman traps with a standardised weight of peanuts (4g) 

as bait and non-absorbent cotton wool as bedding. Traps were set at dusk and collected at dawn. 

Traps were set at two geographically separate but closely located sampling sites (‘Observatory’ 

and ‘Quarry’) and trapping was generally conducted in sets of three consecutive nights at one 

site, after which traps were set for three nights at the other site. Traps that a mouse had been 

inside were washed thoroughly and sterilised with 20% bleach solution before being re-used. 

Captured mice were tagged with a subcutaneous passive integrated transponder (PIT) tag for 

permanent identification, or identified through PIT tag detection upon recapture. Mice were 

then aged, sexed, measured (from tip of nose to base of tail) and weighed before release within 

2 meters of their trapping point. Aging was carried out based on body size and appearance; 

small (typically <15g of mass and <80mm of length) were ranked as juveniles, full-sized mice 

as adults (typically >20g and >80mm of length) and anything in between as sub-adults. Sex 

was determined based on visual inspection and anogenital distance. Body condition score was 
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determined on a scale from 0–4 by palpating the lower spine and hips to estimate the amount 

of subcutaneous fat. 

 

Faecal samples were collected from traps in a sterile manner and preserved in DNA/RNA 

Shield (Zymo Research, Irvine, California, USA). Samples were stored at -20oC while on the 

island (up to 6 weeks), after which samples were transported back to the lab and stored at -

80oC until DNA extraction (up to 17 months). In order to investigate the effect of preservative 

on sample-level gut microbiota profiles, replicate aliquots were collected for a subset of 15 

Skokholm Island faecal samples, from 15 separate individuals. Aliquots were stored in either 

DNA/RNA Shield, RNAlater, absolute ethanol, or without preservative, and then stored and 

transported as described above. At DNA extraction, all four replicates from a given sample 

were extracted in the same batch, and processed in a single round of library preparation and 

amplicon sequencing.  

 

Gut microbiota samples from other wild mouse populations (n=6) were acquired through 

collaboration. As some of these samples had already been collected, sample type and 

preservation system varied between populations (Suppl. Table 1). Samples from Midway Atoll 

and the Faroe Islands were large intestinal contents taken from dissected animals and samples 

from Cologne, Espelette, Isle of May, and Oxford were faecal pellets. Further, while samples 

from Skokholm, Wytham, and all laboratory colonies were preserved in DNA/RNA Shield, 

samples from other wild mice had been preserved differently: Midway Atoll and Faroe Islands 

samples had been stored in -20oC or -80oC in isopropyl alcohol (Midway Atoll) or without 

preservative (Faroe Islands), however, samples were preserved with DNA/RNA Shield before 

sample shipping to the UK. Samples from the Isle of May had been stored at -20oC or -80oC 

without preservative. Cologne samples were stored in RNAlater and Espelette samples in PBS.  
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Others have demonstrated limited differences between large intestinal and faecal microbiota 

compositions in mice (Kohl et al., 2018; Suzuki & Nachman, 2016; Anders et al., 2021; 

Knowles et al., 2019). Further, our analysis on the effect of preservative (see above) 

demonstrated preservative to have limited effect on microbiota composition: samples strongly 

clustered by mouse ID (Suppl. Figure 1), which explained 75.7% of microbiota variation 

(PERMANOVA on Aitchison distance, p=0.001; beta dispersion, F=2.4151, p=0.018), while 

type of preservative only explained 2% of microbiota variation (p=0.020; beta dispersion, 

F=0.1523, p=0.926). Thus, we expect differences originating from distinct sample types or 

preservatives to be limited in our study. 

  

To investigate how transmission from the natural environment might affect the gut microbiota 

of wild house mice, we collected soil samples from both sampling sites (‘Quarry’ or 

‘Observatory’) on Skokholm Island. The full set of trapping points (n=150) at each sampling 

site were divided into 6–7 ‘sub-sites’ (6 at one site and 7 at the other) with different types of 

habitats (1–9 trapping points per sub-site), and 16% of trapping points within each sub-site 

were then randomly selected for soil sampling for a total of 25 trapping points per sampling 

site, and 50 in total across the two sampling sites. At each of these points, two soil samples 

were collected one week apart in September 2020. Soil samples were collected within 50 cm 

proximity of the trapping point, from approximately 2 cm depth (or shallower where 2 cm was 

not feasible, such as on rocks) using a sterile metal spatula. Samples were preserved and stored 

in an identical way to faecal samples from Skokholm (see above). 

 

DNA extraction, library preparation, and sequencing 

DNA was extracted from the samples using ZymoBIOMICS DNA MiniPrep kits in 24-tube 

format according to manufacturer’s instructions (sample type-specific instructions were 
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followed for faecal and soil samples; Zymo Research, Irvine, California, USA). Samples were 

randomised into 64 extraction batches of up to 23 samples. A negative control (an equivalent 

volume, 40μL, of DNAse-free H2O) was included in every extraction batch at varying 

positions, with the exception of one extraction batch in which a negative control was not 

included. For samples preserved with DNA/RNA Shield, DNA/RNA Shield was used as lysis 

solution in the first step of DNA extraction. For other faecal samples, any preservative was 

removed by centrifuging and pipetting, after which ZymoBIOMICS Lysis Solution was added 

in the first step of DNA extraction. 

 

Library preparation and amplicon sequencing was completed by the Integrated Microbiome 

Resource (IMR), Dalhouise University, using the protocol described in Comeau et al. (2017). 

Briefly, the V4–V5 region of the bacterial 16S rRNA gene was targeted using primers 515(F) 

and 926(R) (Parada et al., 2016; Walters et al., 2015). For a subset of 60 Skokholm mouse 

faecal samples, the mycobiota was also characterised, targeting the fungal ITS2 in amplicon 

sequencing using primers ITS86(F) and ITS4(R) primers (Op De Beeck et al., 2014), also at 

the IMR. Amplification and sequencing of 16S rRNA gene was conducted in 16 batches of up 

to 95 samples using the Illumina MiSeq platform (Reagent kit v3, 2x300 bp chemistry). 

Amplification and sequencing of ITS2 gene conducted in a single batch with the same 

sequencing platform. All extraction controls (n=63) were sequenced, and a negative PCR 

control was included for each batch of library preparation (n=16). 

 

Data selection 

All laboratory mice sampled were adult (>3 months of age) and reproductively inactive. For 

comparisons of laboratory and wild mice, to maximise the comparability of wild mice with 

laboratory mice in terms of age and reproductive state, we excluded wild mice (1) classed as 
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juvenile or sub-adult and (2) that showed signs of active reproduction (females: pregnancy, 

prominent nipples, lactation, perforate vagina; males: large testes). As environmental factors 

(e.g., temperature, humidity, food type and availability) are stable in the laboratory, we only 

included wild mice sampled in September, October, or November to minimise seasonal 

variation (Maurice et al., 2015; Marsh et al., 2022), when sampling date was known (samples 

from Skokholm Island, Midway Atoll, Isle of May, and Wytham; sampling date was unknown 

for samples from Faroe Islands, Espelette and Cologne). This sub-sampling is unlikely to have 

had a major impact on lab-wild comparisons, as the proportion of shared taxa between lab and 

wild mice (Jaccard similarity) only showed slight variation according to the month wild mice 

were sampled (Suppl. Fig. 2; permutational Wilcoxon rank sum test for July vs Oct, p=0.452, 

April vs Oct, p<0.001). 

 

For longitudinal analysis of lab and wild mouse samples, three subsets of data were selected: 

(1) the above lab-wild dataset was subsetted to include individual mice sampled >3 times. The 

maximum sampling interval for wild mice in this data subset was 40 days, thus lab mice with 

>40-day sampling interval were excluded to achieve a comparable time window. (2) The same 

analysis was repeated with all repeat-sampled lab and wild mice without exclusion based on 

age, reproductive status, sampling season or sampling interval. (3) To investigate ASV 

persistence within individuals on comparable timescales in the lab and in the wild, we selected 

mice from both settings that had been sampled 4–5 times at approximately one-week intervals 

(regardless of sampling month or year and reproductive status). For the mainland vs island 

analyses, same data selection was applied, as above for lab vs wild analyses (though herein 

only wild mice were included), i.e., only samples from September–November months were 

included, and samples from mice that had recordings of reproductive activity were excluded. 
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Data processing of bacterial data 

Data processing and analyses were carried out in R version 4.1.2 (R Core Team, 2021). 

Sequences were denoised and amplicon sequence variants (ASVs) inferred using DADA2 

version 1.16 (Callahan et al., 2016), with the pipeline run separately for wild mouse, laboratory 

mouse and soil samples. Taxonomy was assigned using the SILVA rRNA database version 

138. R packages DECIPHER and phangorn were used to build a phylogenetic tree, and package 

iNEXT (Hsieh et al., 2022; Chao et al., 2014) was used to generate sample completeness and 

rarefaction curves. The read depth threshold was set at 4,000, based on where these curves 

plateaued. Samples falling below this threshold were excluded from further analysis. Data were 

not rarefied. 

 

Asymptotic ASV richness and Shannon diversity were equally estimated with iNEXT. 

Singleton and doubleton ASVs were separately removed from lab and wild mouse datasets, 

and non-gut microbial ASVs (chloroplasts, mitochondria) were removed from mouse datasets. 

464 unique ASVs were detected across 63 DNA extraction controls and 16 library preparation 

controls, with 0–1,394 reads (mean 75, median 13) for any given control, with the exception 

of one control for library preparation, which had 255 unique ASVs and 29,300 reads (mean 

read count of biological samples was 29,235; range 5,662–232,225, median 26,097). All 

extraction controls from the same 96-well plate (n=5) had <20 reads each, indicating the entire 

plate was not contaminated during library preparation but rather that the most likely 

explanation is that a biological sample was mistakenly pipetted into the control well in addition 

to its designated well. Since all other controls on this plate were negative, we retained this plate 

of samples in our analyses. 
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R package decontam was used to test for the presence of potential contaminants. The package 

was used with the ‘prevalence’ (presence/absence) method, in which each sequence in 

biological samples was compared to the corresponding prevalence in negative controls and 

considered a contaminant if it reached a probability of 0.1 in a Fisher’s exact test. With this, 

we identified 31 contaminants which were removed from the dataset. R package phyloseq 

(McMurdie et al., 2013) was used to normalise ASV counts to proportional abundance. 

 

Data processing of fungal data 

Fungal data was processed as the bacterial data (above), with a few differences: as a processing 

pipeline, DADA2 ITS workflow version 1.8 was used (Callahan et al., 2016). The fungal ITS2 

gene was not sequenced for the negative controls, thus data could not be decontaminated. 

However, extraction batches in which these samples were processed included negative controls 

that did not present significant bacterial contamination (above), thus fungal contamination was 

similarly unlikely. As fungal sequences in faecal samples can include those derived from 

ingested macrofungi, which can be difficult to separate from symbiotic fungi (Lavrinienko et 

al., 2021), sequence filtering was conducted to only include putative symbiont sequences. For 

this, we used BLAST version 2.2.28+ (word size = 20) to scan sequences against Targeted 

Host-associated Fungi ITS Database version 1.6.1, which includes fungal symbionts previously 

detected in human or mouse samples. Sequences with an identity percentage ≥97% and a total 

length of matched segment >180bp (335 out of 1115 (30.0%)) were considered symbiont-

derived. 

 

Functional profiles 

Functional pathways were predicted from the 16S rRNA data using Phylogenetic Investigation 

of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) version 2.5.0 pipeline 
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(picrust2_pipeline.py) using default options (Douglas et al., 2020) and MetaCyc Metabolic 

database. Read counts of functional pathways were normalised to relative abundance. 

 

Analysis 

Alpha and beta diversity differences across lab and wild, mainland and island, and sub-

populations of Skokholm mice were tested with Wilcoxon rank sum tests with 1,000 

permutations. Principal coordinates analysis (PCoA) was performed using phylogenetically 

uninformed (Jaccard, Aitchison) and phylogenetically-informed (unweighted and weighted 

UniFrac) distances. A centered log-ratio (clr) transformation was performed before ordination 

on Aitchison distance, using the R package microbiome (Lahti & Shetty, 2017). In clr-

transformation, zero relative abundances were replaced with a pseudocount as follows: 

min(relative abundance/2). 

 

Further measures of beta diversity included a pairwise dissimilarity analysis among samples 

(one random sample per individual) using R package microbiome, and marginal permutational 

multivariate analyses of variance (PERMANOVA) on Jaccard and clr-transformed Aitchison 

distances using the adonis2 function from R package vegan (Oksanen et al., 2022). In 

PERMANOVA a range of spatiotemporal and individual-level factors were included as 

explanatory factors. Month was fitted as a year-specific multilevel factor (e.g., 04/2019), 

sampling site as a 2-level factor (Quarry or Observatory), minimum distance to a building or 

sealine as continuous variables, age as a 3-level factor (juvenile/sub-adult/adult), body mass as 

a continuous variable, body condition as a multilevel factor, and sex and reproductive activity 

as a 2-level factors (female/male, active/inactive). Interaction terms between e.g., sex and 

reproductive activity were fitted with separate models. Beta dispersion were tested using the 

betadisper function in package vegan. 
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Random Forest regressions were used to identify key taxa driving differences between 

laboratory and wild mice and between mainland and island mice, with mean decrease in Gini 

used as a measure of importance. A Mantel test was used to measure correlation between 

geographic proximity and gut microbial dissimilarity between (1) mouse-mouse, (2) mouse-

soil, and (3) soil-soil sample pairs, using the R package ade4. A brm model from the R package 

brms (Bürkner, 2017) was used to investigate whether (1) sampling site or (2) geographical 

proximity predicted fungal dissimilarity more strongly than bacterial dissimilarity. For this, 

pairwise Jaccard dissimilarity (measured separately for bacteria and fungi) was used as 

response variable, with either sampling site or geographic proximity, together with their 

interaction with microbiota component (bacteria/fungi) as predictors. In both models, a multi-

membership random effect was included to account for the non-independence of dyadic data.   

 

Ethical statement 

Samples from transgenic mice were collected under Home Office licence PPL PP0574716 held 

at the University of Oxford. Skokholm wild mouse samples were collected under Home Office 

license PPL PB0178858 held at the University of Oxford, and with a research permit from the 

Islands Conservation Advisory Committee (ICAC), and Natural Resources Wales. Protocol for 

soil sampling was discussed with Skokholm Island wardens prior to sample collection and 

conducted with minimal disturbance to vegetation. 

 

Results 

Wild mice have compositionally distinct and taxonomically and functionally more 

diverse gut microbiota than laboratory mice 

Across six laboratory mouse colonies and seven wild mouse populations, wild mice had 

significantly higher alpha diversity than lab mice overall (both estimated ASV richness and 
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Shannon diversity; permutational Wilcoxon rank sum test, p<0.001; wild, n=436; lab, n=146). 

However, alpha diversity varied greatly between colonies and populations such that it was not 

consistently higher in every wild-laboratory population comparison (Fig. 1A, Suppl. Fig. 3). 

Among laboratory mice, alpha diversity was highest in transgenic SKG mice (n=3), which had 

curdlan-induced intestinal inflammation. Due to lack of steady state SKG mice, this effect 

could not be separated from the effect of strain (steady-state SKG mice have also been reported 

to present microbiota alterations; Rehaume et al., 2014). Alpha diversity was similarly high in 

steady state transgenic CCSP-rtTA mice (n=7), a strain in which activation of specific genes 

in the respiratory epithelium can be induced (Perl et al., 2009). 

 

The gut microbiota of wild mice was also more compositionally variable among individuals 

within each population than for lab mice (Jaccard dissimilarity, Wilcoxon rank sum test with 

permutations, p<0.001; wild, n=436; lab, n=146; Fig. 1B), and wild mice had a significantly 

higher number of unique predicted functional pathways per individual on average than lab mice 

(permutational Wilcoxon rank sum test, p<0.001; wild, n=436; lab, n=146; Fig. 1C). Median 

within-population number of pathways was lower in all laboratory colonies than in wild 

populations, with the exception of SKG mice (n=3) that had intestinal inflammation and also 

the highest alpha diversity among lab colonies (Fig. 1A, Suppl. Fig. 3). However, there was no 

universal relationship between alpha diversity and number of functional pathways (Fig. 1A, 

Fig. 1C, Suppl. Fig. 3). 
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Figure 1. (A) Asymptotic Shannon diversity, (B) pairwise, within-population/colony Jaccard dissimilarity, and 

(C) number of unique functional pathways per mouse in wild (n=436) and laboratory (n=146) mice from seven 

populations and six colonies, respectively. Samples are from >3-month-old laboratory mice and wild mice 

estimated to be adults based on body size. Boxplots are individual wild mouse populations (green = mainland 

populations, blue = island populations) or laboratory mouse colonies (pink). Empty boxplots are all wild (teal) or 

laboratory (pink) mouse samples together. Statistical differences between lab and wild mice were tested with 

permutational Wilcoxon rank sum tests (***; p<0.001). 
 

The gut microbiota of lab and wild mice was also compositionally distinct, with samples 

clustering by source (lab/wild) and largely separately from each other on both non-

phylogenetic and phylogenetic distance metrics (Fig. 2A, Suppl. Fig. 4). Samples from 

Skokholm Island population clustered somewhat separately from other wild mouse samples on 

non-phylogenetic distances (Jaccard, Aitchison), but not on phylogenetic distances 
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(unweighted and weighted Unifrac; Fig. 2A, Suppl. Fig. 4). Despite the clustering patterns, 

source (lab/wild) explained only 1.5% of gut microbial variation (PERMANOVA on Jaccard 

distance, p=0.001; source explained just 1.1% of variation on Aitchison distance, p=0.001). 

Since wild mouse samples showed more variability in composition than lab mouse samples 

(dispersion test, F=59.337, p=0.001), this effect of source may be influenced by differences in 

both the mean and variability in composition. 

 

Overall, wild mice had a higher ratio of Firmicutes to Bacteroidota (Fig. 2B). At the bacterial 

family level, the lab mouse microbiota was dominated by Muribaculaceae (mean relative 

abundance 46.7%, standard deviation 14.1%), while wild mice did not present such consistent 

dominance by a single family (Fig. 2C). In Random Forest regression models, the ten ASVs 

most important for distinguishing wild from lab mice all had either very low or zero relative 

abundance in wild mice and belonged to the bacterial families Muribaculaceae, 

Desulfovibrionaceae, and Erysipelothricaeae (Suppl. Fig. 5). 
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Figure 2. (A) Principal coordinate analysis of wild (n=436) and laboratory (n=146) mouse samples from seven 

populations and six colonies, respectively, on weighted UniFrac distance. Circles are individual samples coloured 

by population/colony (green = mainland wild mice, blue = island wild mice, pink = laboratory mice). (B–C) Mean 

relative abundance of bacterial (B) phyla and (C) families across seven wild populations and six laboratory 

colonies. Bars are individual populations/colonies, as indicated with coloured circles on x-axis. 
  

Gut microbiota turnover rate is faster within wild than laboratory mice 

We next hypothesised that wild mice are exposed to a higher and more variable pool of 

microbes than lab mice and consequently should have higher within-host turnover in gut 

microbial taxa. Consistent with this hypothesis, among mice repeat-sampled over short time-
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spans (mice with >3 samples each with ≤40 days between sampling dates), gut microbiota 

dissimilarity increased with sampling interval among repeat-sampled wild mice but was fairly 

constant irrespective of sampling interval in lab mice (Fig. 3A–B; log-linear model on 

Aitchison distance; wild mice R2=0.29, p<0.001; lab mice R2=0.0094, p=0.268). Over longer 

sampling intervals, gut microbial turnover also increased with sampling interval in lab mice 

(log-linear model; R2=0.34, p<0.001; all samples from repeat-sampled laboratory mice from 

C57BL/6 colony from Animal Facility B, n=99; Suppl. Fig. 6A). In wild mice, within-

individual dissimilarity increased with sampling interval among sample pairs less than 20 days 

apart, but then reached a plateau (quadratic plateau model; R2=0.44, critical point of 

inflexion=20.1 days; all samples from repeat-sampled Skokholm Island mice without exclusion 

based on season, age, or reproductive status, n=762; Suppl. Fig. 6B). 

 

This observed faster short-term microbial turnover in wild mice can be illustrated by 

considering ASV changes during a fixed one-month period in both systems. Over one month, 

25% of ASVs detected at the start were still detected at the end in lab mice, whereas this was 

true of only 12.5% of ASVs in wild mice (Fig. 3C–D). Similarly, around 85% of total relative 

abundance in the lab mouse microbiota at the end comprised ASVs detectable at the start, 

whereas for wild mice this was only 50% (Fig. 3E–F). 

 

Lab mice harboured 35 ‘persistent’ ASVs (defined as ASVs detected at all timepoints in all 

included lab mice (n=4), regardless of abundance) that originated from nine bacterial families 

(Muribaculaceae, Rikenellaceae, Marinifilaceae, Oscillospiraceae, Bacteroidaceae, 

Akkermansiaceae, Lachnospiraceae, Sutterellaceae, and Erysipelotrichaceae). The combined 

relative abundance of these ASVs was 52.3–83.0% (mean 72.1%, median 75.7%) in these 

longitudinally studied mice, and similar abundances were seen in other samples from the 
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colony in which all 35 ASVs were detected (32 out of 123 samples; combined relative 

abundance 29.0–83.0%, mean 62.1%, median 63.9%). These persistent ASVs included 27 

ASVs that were detected in >90% and six ASVs (all Muribaculaceae) that were detected in all 

samples from the colony. 

 

In contrast, only 7 persistent ASVs were identified in wild mice (n=3). These ASVs were from 

families Lactobacillaceae (n=1), Oscillospiraceae (n=5) and Deferribacteraceae (n=1) and had 

a relative abundance of 2.3–23.6% (mean 8.9%, median 5.6%) in these three mice. Similar 

proportions were detected again when studying all samples from the population in which the 7 

persistent ASVs were detected (n=575; 60.7% of all 948 samples); combined relative 

abundance ranged from 0.05 to 69.3% (mean 8.2%, median 6.0%). Across 15,733 ASVs 

detected across all of the Skokholm samples (n=948), only 7 ASVs were detected in >90% 

samples (at any abundance). Only two of these ASVs were not in the identified persistent ASVs 

(these two additional ASVs were from Oscillospiraceae and Lachnospiraceae families). These 

results suggest gut microbiota changes faster in the wild than in the lab, and that taxa that are 

found across individuals are also those that persist within individuals over time. 
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Figure 3. Gut microbiota turnover in adult laboratory (left) and wild (right) mice. (A–B) Within-individual 

microbiota dissimilarity on Aitchison distance (log-transformed) between sample pairs from the same (A) 

laboratory or (B) wild mouse (98 samples from 16 laboratory mice, 5–7 samples per mouse; 72 samples from 14 

wild mice, 4–10 samples per mouse) against time between samples. Laboratory mice were from a single C57BL/6 

colony (Animal facility B, Supplementary Table 1). The relationship is fitted with a log-linear model. Lab mice: 

F131=1.239, adjusted R2=0.001806, p=0.2677; wild mice: F164=65.12, adjusted R2=0.2799, p<0.001. (C–D) Mean 

proportion and (E–F) mean relative abundance of amplicon sequence variants (ASVs) at five timepoints in (C, 

E) laboratory (n=4) and (D, F) wild (n=4 for timepoints 1–4, n=3 for timepoint 5) mice based on timepoint the 

ASV was first detected. Laboratory and wild mice for which similar sampling intervals (4–5 samples ~1 week 

apart) were available were selected for the analysis. Timepoints are days 0, 9, 15, 23, and 29 for laboratory mice 

and days 0, 6–8, 12–16, 22–23, and 28–32 for wild mice. 
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Mainland and island mice harbour similar gut microbiotas 

We next investigated whether among wild mice there is a difference in the gut microbiota of 

mainland versus island mice, and if so, whether Skokholm mice are similar to other island mice 

in terms of their gut microbiota. House mice are one of the most successful invasive species 

and have colonised many islands (Cuthbert & Hilton, 2004; Berry & Tricker, 1969; Kappes et 

al., 2022; Berry, 1968) where they are often of larger body size (Phifer-Rixey and Nachman, 

2015). This provides an opportunity to examine whether there have been consistent shifts in 

gut microbiota composition after island colonisation. We hypothesised that mainland and 

island mice might present different gut microbiota characteristics that may arise from (1) 

reduced dispersal of gut microbes to island mice living in ecosystems that are more isolated 

and closed compared to mainland mice, and (2) differences in diet, due to island mice possibly 

having access to seabird carcasses and remains of marine vertebrates, which should be rarer 

for mainland mouse populations. 

 

Setting (mainland/island) showed some compositional distinction, but this was subtle with 

setting explaining only 0.7% of gut microbial variation on Aitchison distance (PERMANOVA, 

p=0.002; setting explained 0.5% of variation on Jaccard distance; PERMANOVA, p=0.010). 

Compositional distinction by setting was not visible on principal coordinates analyses (PCoAs) 

irrespective of the distance metric used (Jaccard, Aitchison, unweighted and weighted UniFrac; 

Fig. 4A–B, Suppl. Fig. 7). Some of the results on Jaccard distance may have been influenced 

by beta dispersion which varied significantly between island and mainland mice (F=23.533, 

p=0.001; beta dispersion did not vary significantly on Aitchison distance, F=0.5186, p=0.504). 

 

Random Forest regression models were used to identify ASVs driving the distinction between 

mainland and island mice. The top ten ASVs all had a higher relative abundance in mainland 
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than island mice and belonged to either the order Bacteroidales or Lachnospirales (Suppl. Fig. 

8). The third most important taxon was Muribaculum intestinale, which was also an important 

driver of the lab/wild distinction, with higher relative abundance in lab than wild mice (Suppl. 

Fig. 5). Overall, the gut microbiota of island mice was more variable than that of mainland 

mice (Jaccard distance; permutational Wilcoxon rank sum test, p<0.001), although 

compositional variation in the microbiota among individuals varied among populations of both 

mainland and island mice (Fig. 4C). Particularly, mainland population from Espelette (~15 km 

from coastline) had significantly higher mean variation than the other two mainland 

populations (Cologne, Oxford; ~200 and ~70 km from coastline, respectively). Overall, we 

detected gut microbiota differences between mainland and island mice, but these differences 

appeared subtle.  
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Figure 4. (A–B) Principal coordinate analysis of mainland (n=26) and island (n=410) mouse samples from three 

mainland and four island populations on (A) Aitchison and (B) weighted UniFrac distances. (C) Pairwise Jaccard 

dissimilarity within mainland and island populations. Empty boxplots are mainland (green) or island (blue) mouse 

samples together. Statistical differences between mainland and island mice were tested with permutational 

Wilcoxon rank sum tests (***; p<0.001). 
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Factors predicting gut microbiota composition within an island mouse 

population 

Finally, we investigated gut microbiota variation within a population by focusing on the 

Skokholm Island population. When limiting analysis to spatial and temporal predictors, 

sampling time (at the resolution of month) was the strongest and only significant biological 

predictor of gut microbial composition, explaining 1.2% of variation on Aitchison distance 

(Table 1A). When including individual-level variables, additional significant predictors were 

sampling site (Fig. 5H) and body mass, although both explained less than 1% of variation. 

Although age category did not predict microbiota composition when body mass was in the 

model, a significant age effect was detected when body mass was removed from the model 

(Age category, R2=0.013, F=0.8968, p=0.002), as these two terms are somewhat collinear. All 

significant predictors had significant beta dispersion which may have influenced the detected 

effects. Among adult mice only, the same significant predictors of gut microbiota composition 

were detected, with a weak but significant effect of body mass still present (Table 1B). Here, 

sampling site was identified as a significant predictor both when excluding and including 

individual-level variables. 
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Table 1. Spatial, temporal and host-level predictors of gut microbial composition in an island mouse population 

(A) across mice of all ages and (B) only in adult mice. The power of spatial and temporal variables in predicting 

gut microbial composition were tested without (left) and with (right) host variables using marginal permutational 

multivariate analyses (PERMANOVAs) on Aitchison distance. For each model, one sample was selected 

randomly per individual (A: without host variables; n=340, with host variables; n=133; B: without host variables, 

n=244; with host variables, n=101). Significant p-values (<0.05) are in bold. Beta dispersion was tested for 

significant terms (factors only) and was significant for all (p=0.001 for ‘month, year’ in all models; p=0.012 for 

sampling site in A with host variables model; p=0.004 and p=0.001 for sampling site in B without and with host 

variables models, respectively). Interaction terms were fitted in separate models, all other results are from models 

without interactions terms. 
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Geographic distance predicts gut microbiota dissimilarity with stronger effects 

on fungal rather than bacterial component 

Mice from two geographically distinct but closely located sampling sites (‘Observatory’ and 

‘Quarry’; Fig. 5H) had differences in both bacterial and fungal microbiota composition (only 

previously identified symbiotic fungi were included, see Methods; Fig. 5A, 5D). Mice from 

Observatory had a higher relative abundance of Lachnospiraceae and Muribaculaceae bacteria 

as well as Didymellaceae and Sclerotiniaceae fungi. Meanwhile, the relative abundances of 

Enterobacteriaceae bacteria, Bulleribasidiaceae and Pleosporaceae fungi were higher in mice 

from Quarry. 

 

Samples clustered by sampling site more strongly for fungal than bacterial components of the 

microbiota (Fig. 5B, Fig. 5E, Suppl. Fig. 9), with sampling site explaining 8.3% of fungal but 

only 4.1% of bacterial community variation (PERMANOVA on Jaccard distance, p<0.001 for 

both, n=38), indicating mice from the two sites varied more in their fungal rather than bacterial 

microbiota. However, both bacterial and fungal dissimilarities were significantly higher 

between mice from different sampling sites than between mice from the same sampling site 

(Jaccard dissimilarity, permutational Wilcoxon rank sum test, p<0.001 for both types of 

symbionts; Fig. 5C, 5F), although fungal dissimilarity was higher than bacterial dissimilarity 

(Fig. 5C, 5F). 

 

At a finer spatial resolution, geographic distance between exact trap locations of mice had a 

stronger correlation with fungal than with bacterial dissimilarity (Mantel test on geographical 

distance and Jaccard dissimilarity; fungi, r=0.32, p<0.001; bacteria, r=0.14, p=0.005). 

Consistent with this, the microbiota component (bacteria/fungi) had a strong effect on the 

predictive power of space on gut microbial dissimilarity, regardless of spatial resolution (brm 
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model; sampling site: bacteria, posterior mean 0.15, 95% credible intervals (CI) 0.05–0.26; 

fungi, posterior mean 0.98, 95% CI 0.79–1.16; geographic proximity: bacteria, posterior mean 

0.28, 95% CI 0.12–0.44, fungi, posterior mean: 0.98, CI 0.79–1.16, Fig. 5G). 
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Figure 5. (A–C) Bacterial and (D–F) fungal variation in gut microbiota of mice (n=37) from two geographically 

distinct sampling sites (yellow = Observatory, blue = Quarry). (A, D) Relative abundance of (A) bacterial and (B) 

fungal families. (B, E) Principal coordinates analysis (PCoA) on Jaccard distance based on (B) bacteria and (E) 

fungi. (C, F) Pairwise Jaccard dissimilarity of (C) bacterial and (F) fungal microbiota in sample pairs from same 

or different sampling sites. Differences in dissimilarity between groups (same vs different sampling site) were 

tested with permutational Wilcoxon rank sum tests (***; p<0.001). (G) Estimated spatial effects on Jaccard 

dissimilarity (slope of the relationship between sampling site similarity (same vs different) or geographic 

proximity and Jaccard index) and 95% credible intervals from a Bayesian regression (brm) model that included 

an interaction term between microbiota component (fungi/bacteria) and sampling site similarity (same vs 

different) or geographic distance. Colour indicates the model (measure of spatial proximity used): grey = sampling 

site, black = geographic distance. Both measures of spatial proximity have a significant association with microbial 

dissimilarity such that mice from different sites or with a larger geographic proximity have more dissimilar 

microbiotas than mice captured closer to each other (same site or shorter distance). (H) Sampling sites on 

Skokholm Island, Wales (yellow = Observatory, blue = Quarry). Dots are individual sampling locations within 

sites (n=150 at each site). 
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Microbial similarity between mice and soil increases with geographic proximity 

Considering the compositional differences between mice from the two sampling sites, we 

investigated whether soil microbiota may influence mouse gut microbiota composition. For 

this, we analysed 86 soil and 41 mouse (bacterial) microbiota samples collected within a single 

month (September 2020) and limited ASVs used in analyses to those detected in both soil and 

mouse samples (at any prevalence and abundance, n=185). These ASVs found in both soil and 

mouse faecal material made up 1.9–79.7% (mean 13.6%) of reads in mouse gut microbiota 

profiles, and 4.1–32.5% (mean 16.5%) of soil microbiota relative abundance. However, 

prevalence of these ASVs was low across samples, such that no ASV was found in >50% of 

mice and >10% of soil samples (regardless of abundance).  

 

Still, microbiota dissimilarity was significantly higher in mouse-soil sample pairs that 

originated from different than same sampling sites using both Jaccard and Aitchison distances 

(permutational Wilcoxon rank sum tests; p<0.001, Fig. 6B). A similar pattern was detected in 

mouse-mouse and soil-soil sample pairs, when using the same sample and taxa filtering criteria 

as for mouse-soil sample pairs, i.e., only including taxa detected in both mouse and soil samples 

(permutational Wilcoxon rank sum tests; p<0.001 for both; Fig. 6A, 6C). Further, the 

proportion of shared ASVs between mouse-soil sample pairs increased with the geographic 

proximity of their sampling locations across the island (Mantel test on Jaccard distance, 

r=0.081, p=0.005). These findings suggest gut microbiota may be influenced by environmental 

transmission of microbes from soil, but that overall the gut microbial communities in wild 

mouse faeces are qualitatively and compositionally very distinct from those found in soil, as 

expected. 
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Figure 6. Jaccard (grey) and Aitchison (black) dissimilarity in bacterial community (A) mouse-mouse, (B) mouse-

soil, and (C) soil-soil sample pairs from the same or different sampling sites (Quarry or Observatory, Fig. 5C). 

Samples (soil; n=86, mouse; n=41) were collected within a single month from 25 locations across each site. 

Dissimilarity was measured using amplicon sequence variants (ASVs) that were detected in both mice and soil 

(at any prevalence and abundance, excluding singletons and doubletons; n=185). Microbiota dissimilarity was 

significantly higher in sample pairs from different than from the same sampling site within each sample pair type 

and on both measures (Jaccard, Aitchison; permutational Wilcoxon rank sum tests, p<0.001 for all different vs 

same sampling site comparisons). 
 

Discussion 

We investigated drivers of gut microbiota variation in a wild house mouse (Mus musculus 

domesticus) population on the Skokholm Island, Wales, using a large dataset of nearly 1,000 

samples from over 300 individual mice. We studied gut microbiota variation both cross-

sectionally as well as longitudinally, and explored both the bacterial and fungal components of 

the microbiota. We further investigated similarities between soil and gut microbiota, which 

may reflect transmission of microbes between these two habitats. To put our study population 

into a wider ecological context, we first compared the gut microbiota of Skokholm mice to that 

of laboratory mice from multiple facilities and strains, as well as other wild mice from both 

mainland and island populations. 
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In line with previous studies (Rosshart et al., 2019; Wang et al., 2014; Kreisinger et al., 2014; 

Wang et al., 2015), wild mice had a taxonomically and functionally more diverse gut 

microbiota than lab mice, although alpha diversity in particular varied greatly between 

laboratory colonies and wild mouse populations. This included variation between laboratory 

strains from the same animal facility as well as variation within a single laboratory strain 

(C57BL/6) from different animal facilities, similar to previous findings (Bowerman et al. 

2021), further highlighting the importance of controlling for such covariates to ensure 

experimental reproducibility (Ericsson et al., 2021). The number of unique functional pathways 

was higher in wild compared to lab mice, independent of alpha diversity of taxa. We 

hypothesise this may arise from wild mice likely having a more diverse diet, which may favour 

microbial taxa with a wider range of functional properties that can effectively utilise different 

substrates (Frese et al., 2015). Further, exposure of wild mice to a wider range of environmental 

conditions, such as temperature, water availability or salinity at varying levels may also have 

contributed to higher number of functional pathways (Chevalier et al., 2015; Sepulveda & 

Moeller, 2020). 

 

As in other mammals, the predominant phyla in both wild and laboratory mice were Firmicutes 

and Bacteroidota, a ratio of which is often used as a key feature of the gut microbiota (Ley et 

al., 2005). Wild mice had a higher ratio of Firmicutes to Bacteroidota, contradicting findings 

from Rosshart et al. (2017) where the relative abundance of Firmicutes was higher in lab 

compared to wild house mice. One possible contributing factor to this difference is that our 

wild mouse samples come from higher latitudes that those used in Rosshart et al. (2017), 

and previous work in humans has shown a positive relationship between the 

Firmicutes:Bacteroidota ratio and latitude in the human gut microbiota (Suzuki & Worobey, 

2014). However, the relative abundance of Firmicutes in the Midway Atoll population was 
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comparable to our other populations from higher latitudes, proving other factors besides 

latitude must also play a role in shaping the relative abundance of these two dominant phyla. 

Wild mice had a higher abundance of Proteobacteria than lab mice (in line with Rosshart et al., 

2017), a phylum containing various common pathogens, such as Salmonella and Escherichia, 

often excluded in the commonly used specific-pathogen-free (SPF) laboratory mouse facilities, 

which may partly explain the lower relative abundance of Proteobacteria in lab mice. 

 

Contrary to observations in Thomson et al. (2022), we detected Akkermansiaceae, 

Streptococcaceae, and Enterobacteriaceae in wild mice as well as lab mice. Streptococcaceae 

and Enterobacteriaceae occurred at high prevalence across wild mouse samples (~76% and 

~59%, respectively). A closer investigation of population differences revealed that these 

families had low relative abundance in most wild populations (0.004–3.0%), but were more 

common in others (16.7% and 10.7% in Espelette and Midway Atoll populations, respectively). 

These findings illustrate the vast cross-populational variation seen in wild house mouse gut 

microbiota and highlight the advantage of including multiple populations from a range of 

locations for more comprehensive understanding of the wild mouse gut microbiota (Weldon et 

al., 2015; Suzuki et al., 2019). 

 

At the family level, the lab mouse gut microbiota was dominated by Muribaculaceae (mean 

relative abundance 46.7%), which is considered an important family in the mouse gut 

(Lagkouvardos et al., 2016; Lagkouvardos et al., 2019; Ormerod et al., 2016) but was present 

at 17% relative abundance on average in our wild mouse samples. Consistent with this, 

muribaculaceaen taxa were key in driving microbiota differences between lab and wild mice, 

in line findings from Bowerman et al. (2021). One such taxon was Muribaculum intestinale, 

which was omnipresent in lab mice but very rare in wild mice (detected in 6% of all wild mouse 
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samples with <1% relative abundance). Identification of taxa conserved across house mice 

across laboratories and wild populations could provide indication of taxa that may provide 

important, conserved functions for this host species, or functions that may have been lost with 

domestication. 

 

As could be expected from exposure to a larger and more variable pool of microbes and 

environmental conditions, the gut microbiota showed more inter-individual variation among 

wild mouse populations compared to lab mouse colonies, and wild mice showed a much faster 

within-host turnover of gut microbial taxa, with far fewer ASVs stably persisting over an 

approximate 40-day period. We found that taxa that persist within individuals over time are 

also those that are prevalent across individuals, and that this pool of ‘core’ microbes was larger 

in lab than in wild mice, further reflecting limited and more stable microbial exposure patterns 

in the lab. Temporal dynamics were investigated within a single wild mouse population and a 

single lab mouse colony, and further work is required to investigate whether the observed 

dynamics are representative of wild and lab mice in general. 

 

We next investigated whether wild mice from mainland and island populations harbour unique 

gut microbiota characteristics that could arise from diet differences on islands, or the closed 

nature of island ecosystems where influx of new microbes may be more limited than in 

mainland ecosystems. Overall, wild mice across mainland and island populations harboured 

similar gut microbiotas both in terms of composition and within-population dissimilarity. 

Remarkably, samples from Midway Atoll (North Pacific Ocean) where house mice were 

introduced over 75 years ago (Duhr et al., 2019), did not cluster separately from other 

populations despite their extreme geographic isolation (>10,000 km from all other sampled 

populations). However, we did detect subtle differences between mainland and island 
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microbiotas, with setting (mainland/island) explaining a small proportion (~0.5–1%) of gut 

microbiota variation, and certain ASVs distinguishing mainland mice from island mice. 

 

In particular, Muribaculum intestinale, a typical member of the laboratory gut microbiota 

(Lagkouvardos et al., 2016; Lagkouvardos et al., 2019), was a key taxon driving this 

distinction, with a higher relative abundance in mainland mice (although mean relative 

abundance was very low (<1%) in both mainland and island mice). The same bacterium 

distinguished lab mice from wild mice, with lab mice having a higher relative abundance. As 

such, the differences in the relative abundance of M. intestinale could reflect more limited 

anthropogenic interference of island rather than mainland mice included in this study. Overall, 

gut microbiota differences between mainland and island mice were subtle; however, even small 

taxonomic differences may be functionally important. Further work would be required to test 

whether the island syndrome, where species (including house mice) on islands are predictably 

different from their mainland counterparts (Gray et al., 2015), applies to or is affected by the 

gut microbiota. 

 

Finally, we investigated gut microbiota variation within an extensively sampled population 

from Skokholm Island, Wales. In our previous analyses, we demonstrated that this population 

was similar to other wild populations, thus confirming it to be relatively representative of wild 

mice. In line with a previous wild house mouse study (Goertz et al., 2019), we detected fine-

scale spatial effects on gut microbiota composition, although these were relatively weak and 

intriguingly, spatial effects were stronger for the fungal rather than the bacterial microbiota. 

As fungal DNA in faeces may originate from ingested macrofungi (Lavrinienko et al., 2021), 

we limited the analysis to fungi that had been previously identified as symbionts in human or 

laboratory mouse gut (see Methods). As such, it is more likely that with this filtering approach 
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we excessively removed fungal symbionts (as wild house mice may have fungal symbionts that 

have not been previously detected in humans or laboratory mice) rather than retained non-

symbiotic macrofungi, and that the results reflect spatial differences in symbiotic fungi rather 

than diet. Future work is needed to assess if the increased spatial variation in fungal 

communities is specific to the Skokholm population or general pattern seen in other wild mouse 

populations as well. 

 

To investigate whether exposure to environmental microbes might explain spatial variation in 

gut microbiota, we contrasted mouse gut and soil (bacterial) microbiotas. Overall mouse and 

soil microbiotas were drastically different and very few ASVs were detected in both habitats, 

similar to previous comparisons of host-associated and soil microbiotas (Li et al., 2016; Zhou 

et al., 2016; Brown et al., 2022). Still, spatial proximity increased microbial similarity between 

mouse and soil samples, suggesting environmental transmission of microbes from soil to 

mouse gut may contribute to within-population spatial variation of the gut microbiota. More 

investigation is required to determine the direction(s) of possible transmission, as well as to 

exclude the possibility that soil-associated microbes were detected in faecal samples through 

environmental contamination, as faecal samples were collected from live traps where mice had 

been overnight thus any soil on e.g., paws of mice may have mixed with faecal samples. 

 

Alongside spatial patterns, we did detect temporal changes with month predicting 

approximately 2% of gut microbiota variation. However, this dataset did not include sufficient 

resolution to test for repeatable seasonal shifts in the gut microbiota, as reported for other wild 

mammal species (Smits et al., 2017; Maurice et al., 2015; Marsh et al., 2022; Risely et al., 

2021). Similar to previous studies, we detected limited influences of individual-level variables 

such as sex and reproductive status (Weldon et al., 2015; Linnenbrink et al., 2013; Goertz et 
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al., 2019), though we did detect weak but significant effects of body mass and age on 

microbiota composition, that could benefit from more detailed investigation.  

 

Overall, we find clear differences between the gut microbiota of wild house mice and 

laboratory mice with differences seen in taxonomic composition, diversity, functionality as 

well as stability. An analysis of a large dataset from a representative wild mouse population 

demonstrates spatial effects on gut microbiota that are stronger on the fungal rather than 

bacterial component. Microbial transmission from soil was identified as a possible source of 

spatial influence on the gut microbiota. Still, the vast majority of variation continued to remain 

unexplained, highlighting the need for further research on gut microbiota variation in wild 

house mice. 

 

Funding 

This work was financially supported by The Osk. Huttunen Foundation studentship and the 

National Geographic Society (Early Career grant reference No. EC-58520R-19) to EH, the 

European Research Council under the European Union’s Horizon 2020 research and 

innovation programme (Grant agreement No. 851550) to SK, and the UKRI UKRI Medical 

Research Council (award MR/P012175/2) to SJ and MAC. 

 

Acknowledgements 

We thank Giselle Eagle and Richard Brown (wardens of Skokholm Island), the Friends of 

Skokholm and Skomer, the Wildlife Trust of South and West Wales and field assistants for 

their help in enabling the Skokholm wild mouse data collection. 

  

 



  Chapter I 

 65 

Author information 

Affiliations 

1Department of Biology, University of Oxford, UK 

2Centre for Host-Microbiome Interactions, King’s College London, UK 

3University of Tennessee, USA 

4U.S. Fish and Wildlife Service, Midway Atoll NWR, USA 

5Í Geilini, Nólsoy, Faroe Islands 

6Department of Computing, University of Turku, Finland 

7Kennedy Institute, University of Oxford, UK 

8Max Planck Institute for Evolutionary Biology, Plön, Germany 

9Department of Functional and Evolutionary Entomology, University of Liège, Belgium 

10Lydia Becker Institute of Immunology and Inflammation, University of Manchester, UK 

11School of Life Sciences, University of Nottingham, Nottingham, UK 

Contributions 

EH and SCLK set up the Skokholm mouse study system. EH, AR and SCLK collected the 

Skokholm mouse data, and WH, JHP, JJ, JFB, MQ, KJE and JEB collected wild mouse samples 

from other populations. EH, SJ, MAC, and JS contributed to the lab mouse samples. EH 

collected the soil samples. EH conducted the laboratory work, analysed the data, and wrote the 

manuscript. All authors contributed to the final manuscript. 

 

 

 

 

 



  Chapter I 

 66 

References  

Amato KR, Leigh SR, Kent A, et al. The gut microbiota appears to compensate for seasonal 
diet variation in the wild black howler monkey (Alouatta pigra). Microb Ecol. 
2015;69(2):434-443. doi:10.1007/s00248-014-0554-7 

Anders JL, Moustafa MAM, Mohamed WMA, Hayakawa T, Nakao R, Koizumi I. 
Comparing the gut microbiome along the gastrointestinal tract of three sympatric 
species of wild rodents. Sci Rep. 2021;11(1):19929. Published 2021 Oct 7. 
doi:10.1038/s41598-021-99379-6 

Berry RJ, Tricker BJK. Competition and extinction: the mice of Foula, with notes on those of 
Fair Isle and St Kilda. J Zool. 1969. doi:10.1111/j.1469-7998.1969.tb02145.x 

Berry RJ. The ecology of an island population of the house mouse. J Anim Ecol 1968; 37: 
445–470. 

Bowerman, K.L., Knowles, S.C.L., Bradley, J.E. et al. Effects of laboratory domestication on 
the rodent gut microbiome. ISME COMMUN. 1, 49 (2021). 
https://doi.org/10.1038/s43705-021-00053-9 

Brown MD, Shinn LM, Reeser G, et al. Fecal and soil microbiota composition of gardening 
and non-gardening families. Sci Rep. 2022;12(1):1595. Published 2022 Jan 31. 
doi:10.1038/s41598-022-05387-5 

Bürkner P (2017). “brms: An R Package for Bayesian Multilevel Models Using Stan.” 
Journal of Statistical Software, 80(1), 1–28. doi:10.18637/jss.v080.i01. 

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016). 
“DADA2: High-resolution sample inference from Illumina amplicon data.” Nature 
Methods, 13, 581-583. doi: 10.1038/nmeth.3869. 

Chang CS, Liao YC, Huang CT, et al. Identification of a gut microbiota member that 
ameliorates DSS-induced colitis in intestinal barrier enhanced Dusp6-deficient mice. 
Cell Rep. 2021;37(8):110016. doi:10.1016/j.celrep.2021.110016 

Chao A, Gotelli NJ, Hsieh TC, Sande EL, Ma KH, Colwell RK, Ellison AM (2014). 
“Rarefaction and extrapolation with Hill numbers: a framework for sampling and 
estimation in species diversity studies.” Ecological Monographs, 84, 45–67. 

Chevalier C, Stojanović O, Colin DJ, et al. Gut Microbiota Orchestrates Energy Homeostasis 
during Cold. Cell. 2015;163(6):1360-1374 

Chung H, Pamp SJ, Hill JA, et al. Gut immune maturation depends on colonization with a 
host-specific microbiota. Cell. 2012;149(7):1578-1593. 
doi:10.1016/j.cell.2012.04.037 

Comeau AM, Douglas GM, Langille MG. Microbiome Helper: a Custom and Streamlined 
Workflow for Microbiome Research. mSystems. 2017;2(1):e00127-16. Published 
2017 Jan 3. doi:10.1128/mSystems.00127-16 

Cuthbert R, Hilton G. Introduced house mice Mus musculus: a significant predator of 
threatened and endemic birds on Gough Island, South Atlantic Ocean? Biol 
Conservation. 2004;117:483-489. doi:10.1016/j.biocon.2003.08.007 

Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbiota during the first 
year of life contributes to the protective farm effect on childhood asthma. Nat Med. 
2020;26(11):1766-1775. doi:10.1038/s41591-020-1095-x 

Douglas GM, Maffei VJ, Zaneveld JR, et al. PICRUSt2 for prediction of metagenome 
functions. Nat Biotechnol. 2020;38(6):685-688. doi:10.1038/s41587-020-0548-6 

Douglas GM, Maffei VJ, Zaneveld JR, et al. PICRUSt2 for prediction of metagenome 
functions. Nat Biotechnol. 2020;38(6):685-688. doi:10.1038/s41587-020-0548-6 

Duhr M, Flint EN, Hunter SA, et al. Control of house mice preying on adult albatrosses at 
Midway Atoll National Wildlife Refuge. 2019. Available here: 



  Chapter I 

 67 

https://www.sprep.org/attachments/Publications/articles/control-house-mice-preying-
adult-albatrosses-midway-atoll-national-wildlife-refuge.pdf Accessed on 4.12.2022. 

Ericsson AC, Franklin CL. The gut microbiome of laboratory mice: considerations and best 
practices for translational research. Mamm Genome. 2021;32(4):239-250. 
doi:10.1007/s00335-021-09863-7 

Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev 
Microbiol. 2021;19(1):55-71. doi:10.1038/s41579-020-0433-9 

Frese SA, Parker K, Calvert CC, Mills DA. Diet shapes the gut microbiome of pigs during 
nursing and weaning. Microbiome. 2015;3:28. Published 2015 Jul 1. 
doi:10.1186/s40168-015-0091-8 

Goertz S, de Menezes AB, Birtles RJ, et al. Geographical location influences the composition 
of the gut microbiota in wild house mice (Mus musculus domesticus) at a fine spatial 
scale. PLoS One. 2019;14(9):e0222501. Published 2019 Sep 26. 
doi:10.1371/journal.pone.0222501 

Gray MM, Parmenter MD, Hogan CA, et al. Genetics of Rapid and Extreme Size Evolution 
in Island Mice. Genetics. 2015;201(1):213-228. doi:10.1534/genetics.115.177790 

Hsieh TC, Ma KH, Chao A (2022). iNEXT: Interpolation and Extrapolation for Species 
Diversity. R package version 3.0.0, 
http://chao.stat.nthu.edu.tw/wordpress/software_download/. 

Jari Oksanen, Gavin L. Simpson, F. Guillaume Blanchet, et al (2022). vegan: Community 
Ecology Package. R package version 2.6-2. https://CRAN.R-
project.org/package=vegan 

Kappes PJ, Siers SR, Leinbach I, et al. Relative palatability and efficacy of brodifacoum-25D 
conservation rodenticide pellets for mouse eradication on Midway Atoll. Biol 
Invasions 24, 1375–1392 (2022). https://doi.org/10.1007/s10530-021-02714-1 

Knowles SCL, Eccles RM, Baltrūnaitė L. Species identity dominates over environment in 
shaping the microbiota of small mammals. Ecol Lett. 2019;22(5):826-837. 
doi:10.1111/ele.13240 

Kohl KD, Dearing MD, Bordenstein SR. Microbial communities exhibit host species 
distinguishability and phylosymbiosis along the length of the gastrointestinal tract. 
Mol Ecol. 2018;27(8):1874-1883. doi:10.1111/mec.14460 

Kreisinger J, Cížková D, Vohánka J, Piálek J. Gastrointestinal microbiota of wild and inbred 
individuals of two house mouse subspecies assessed using high-throughput parallel 
pyrosequencing. Mol Ecol. 2014;23(20):5048-5060. doi:10.1111/mec.12909 

Lagkouvardos I, Pukall R, Abt B, et al. The Mouse Intestinal Bacterial Collection (miBC) 
provides host-specific insight into cultured diversity and functional potential of the 
gut microbiota [published correction appears in Nat Microbiol. 2016 Oct 
17;1(11):16219]. Nat Microbiol. 2016;1(10):16131. Published 2016 Aug 8. 
doi:10.1038/nmicrobiol.2016.131 

Lagkouvardos, I., Lesker, T.R., Hitch, T.C.A. et al. Sequence and cultivation study of 
Muribaculaceae reveals novel species, host preference, and functional potential of 
this yet undescribed family. Microbiome 7, 28 (2019). https://doi.org/10.1186/s40168-
019-0637-2 

Lavrinienko, A., Scholier, T., Bates, S.T. et al. Defining gut mycobiota for wild animals: a 
need for caution in assigning authentic resident fungal taxa. anim microbiome 3, 75 
(2021). https://doi.org/10.1186/s42523-021-00134-z 

Leo Lahti, Sudarshan Shetty et al. (2017). Tools for microbiota analysis in R. URL: 
http://microbiota.github.com/microbiota.  



  Chapter I 

 68 

Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut 
microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070-11075. 
doi:10.1073/pnas.0504978102 

 Li H, Li T, Yao M, et al. Pika Gut May Select for Rare but Diverse Environmental Bacteria. 
Front Microbiol. 2016;7:1269. Published 2016 Aug 17. 
doi:10.3389/fmicb.2016.01269 

Linnenbrink M, Wang J, Hardouin EA, Künzel S, Metzler D, Baines JF. The role of 
biogeography in shaping diversity of the intestinal microbiota in house mice. Mol 
Ecol. 2013;22(7):1904-1916. doi:10.1111/mec.12206 

Marsh KJ, Raulo AM, Brouard M, et al. Synchronous Seasonality in the Gut Microbiota of 
Wild Mouse Populations. Front Microbiol. 2022;13:809735. Published 2022 Apr 25. 
doi:10.3389/fmicb.2022.809735 

Maurice CF, Knowles SC, Ladau J, et al. Marked seasonal variation in the wild mouse gut 
microbiota. ISME J. 2015;9(11):2423-2434. doi:10.1038/ismej.2015.53 

McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and 
graphics of microbiota census data. PLoS One. 2013;8(4):e61217. Published 2013 
Apr 22. doi:10.1371/journal.pone.0061217 

Merrill BD, Carter MM, Olm MR, et al. Ultra-deep sequencing of Hadza hunter-gatherers 
recovers vanishing microbes. bioRxiv. Accessed 1.12.2022. 
doi:10.1101/2022.03.30.486478 

Ochman H, Worobey M, Kuo CH, et al. Evolutionary relationships of wild hominids 
recapitulated by gut microbial communities. PLoS Biol. 2010;8(11):e1000546. 
Published 2010 Nov 16. doi:10.1371/journal.pbio.1000546 

Op De Beeck M, Lievens B, Busschaert P, Declerck S, Vangronsveld J, Colpaert JV. 
Comparison and validation of some ITS primer pairs useful for fungal metabarcoding 
studies. PLoS One. 2014;9(6):e97629. Published 2014 Jun 16. 
doi:10.1371/journal.pone.0097629 

Orkin JD, Campos FA, Myers MS, Cheves Hernandez SE, Guadamuz A, Melin AD. 
Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical 
dry forest. ISME J. 2019;13(1):183-196. doi:10.1038/s41396-018-0256-0 

Ormerod, K.L., Wood, D.L.A., Lachner, N. et al. Genomic characterization of the uncultured 
Bacteroidales family S24-7 inhabiting the guts of homeothermic animals.Microbiome 
4, 36 (2016). https://doi.org/10.1186/s40168-016-0181-2 

Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA 
primers for marine microbiomes with mock communities, time series and global field 
samples. Environ Microbiol. 2016;18(5):1403-1414. doi:10.1111/1462-2920.13023 

Perl AK, Zhang L, Whitsett JA. Conditional expression of genes in the respiratory epithelium 
in transgenic mice: cautionary notes and toward building a better mouse trap. Am J 
Respir Cell Mol Biol. 2009;40(1):1-3. doi:10.1165/rcmb.2008-0011ED 

Phifer-Rixey M, Nachman MW. Insights into mammalian biology from the wild house 
mouse Mus musculus. Elife 2015; 2015: 1–13. 

Phillips CD, Phelan G, Dowd SE, et al. Microbiome analysis among bats describes influences 
of host phylogeny, life history, physiology and geography. Mol Ecol. 
2012;21(11):2617-2627. doi:10.1111/j.1365-294X.2012.05568.x 

Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, 
immune responses, and inflammatory disease. Immunol Rev. 2017;279(1):70-89. 
doi:10.1111/imr.12567 

R Core Team (2021). R: A language and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 



  Chapter I 

 69 

Reese AT, Chadaideh KS, Diggins CE, et al. Effects of domestication on the gut microbiota 
parallel those of human industrialization. Elife. 2021;10:e60197. Published 2021 Mar 
23. doi:10.7554/eLife.60197 

Rehaume LM, Mondot S, Aguirre de Cárcer D, et al. ZAP-70 genotype disrupts the 
relationship between microbiota and host, leading to spondyloarthritis and ileitis in 
SKG mice. Arthritis Rheumatol. 2014;66(10):2780-2792. doi:10.1002/art.38773 

Ren T, Boutin S, Humphries MM, et al. Seasonal, spatial, and maternal effects on gut 
microbiome in wild red squirrels. Microbiome. 2017;5(1):163. Published 2017 Dec 
21. doi:10.1186/s40168-017-0382-3 

Risely A, Wilhelm K, Clutton-Brock T, Manser MB, Sommer S. Diurnal oscillations in gut 
bacterial load and composition eclipse seasonal and lifetime dynamics in wild 
meerkats. Nat Commun. 2021;12(1):6017. Published 2021 Oct 14. 
doi:10.1038/s41467-021-26298-5 

Rosshart SP, Herz J, Vassallo BG, et al. Laboratory mice born to wild mice have natural 
microbiota and model human immune responses. Science. 2019;365(6452):eaaw4361. 
doi:10.1126/science.aaw4361 

Rosshart SP, Vassallo BG, Angeletti D, et al. Wild Mouse Gut Microbiota Promotes Host 
Fitness and Improves Disease Resistance. Cell. 2017;171(5):1015-1028.e13. 
doi:10.1016/j.cell.2017.09.016 

Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during 
health and disease [published correction appears in Nat Rev Immunol. 2009 
Aug;9(8):600]. Nat Rev Immunol. 2009;9(5):313-323. doi:10.1038/nri2515 

Schnorr SL, Candela M, Rampelli S, et al. Gut microbiome of the Hadza hunter-gatherers. 
Nat Commun. 2014;5:3654. Published 2014 Apr 15. doi:10.1038/ncomms4654 

Sepulveda J, Moeller AH. The Effects of Temperature on Animal Gut Microbiomes. Front 
Microbiol. 2020;11:384. Published 2020 Mar 10. doi:10.3389/fmicb.2020.00384 

Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The Central Nervous System and 
the Gut Microbiome. Cell. 2016;167(4):915-932. doi:10.1016/j.cell.2016.10.027 

Smits SA, Leach J, Sonnenburg ED, et al. Seasonal cycling in the gut microbiome of the 
Hadza hunter-gatherers of Tanzania. Science. 2017;357(6353):802-806. 
doi:10.1126/science.aan4834 

Stewart CJ, Ajami NJ, O'Brien JL, et al. Temporal development of the gut microbiota in early 
childhood from the TEDDY study. Nature. 2018;562(7728):583-588. 
doi:10.1038/s41586-018-0617-x 

Suzuki TA, Martins FM, Nachman MW. Altitudinal variation of the gut microbiota in wild 
house mice. Mol Ecol. 2019;28(9):2378-2390. doi:10.1111/mec.14905 

Suzuki TA, Nachman MW. Spatial Heterogeneity of Gut Microbial Composition along the 
Gastrointestinal Tract in Natural Populations of House Mice. PLoS One. 
2016;11(9):e0163720. Published 2016 Sep 26. doi:10.1371/journal.pone.0163720 

Suzuki TA, Worobey M. Geographical variation of human gut microbial composition. Biol 
Lett. 2014;10(2):20131037. Published 2014 Feb 12. doi:10.1098/rsbl.2013.1037 

Thomson CA, Morgan SC, Ohland C, McCoy KD. From germ-free to wild: modulating 
microbiome complexity to understand mucosal immunology. Mucosal Immunol. 
2022;15(6):1085-1094. doi:10.1038/s41385-022-00562-3 

Walters W, Hyde ER, Berg-Lyons D, et al. Improved Bacterial 16S rRNA Gene (V4 and V4-
5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial 
Community Surveys. mSystems. 2015;1(1):e00009-15. Published 2015 Dec 22. 
doi:10.1128/mSystems.00009-15 



  Chapter I 

 70 

Wang J, Kalyan S, Steck N, et al. Analysis of intestinal microbiota in hybrid house mice 
reveals evolutionary divergence in a vertebrate hologenome. Nat Commun. 
2015;6:6440. Published 2015 Mar 4. doi:10.1038/ncomms7440 

Wang J, Linnenbrink M, Künzel S, et al. Dietary history contributes to enterotype-like 
clustering and functional metagenomic content in the intestinal microbiota of wild 
mice. Proc Natl Acad Sci U S A. 2014;111(26):E2703-E2710. 
doi:10.1073/pnas.1402342111 

Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M. The Gut Microbiota of Wild 
Mice. PLoS One. 2015;10(8):e0134643. Published 2015 Aug 10. 
doi:10.1371/journal.pone.0134643 

Yan J, Herzog JW, Tsang K, et al. Gut microbiota induce IGF-1 and promote bone formation 
and growth. Proc Natl Acad Sci U S A. 2016;113(47):E7554-E7563. 
doi:10.1073/pnas.1607235113 

Yassour M, Vatanen T, Siljander H, et al. Natural history of the infant gut microbiota and 
impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl 
Med. 2016;8(343):343ra81. doi:10.1126/scitranslmed.aad0917 

Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and 
geography. Nature. 2012;486(7402):222-227. Published 2012 May 9. 
doi:10.1038/nature11053 

Zhou D, Zhang H, Bai Z, et al. Exposure to soil, house dust and decaying plants increases gut 
microbial diversity and decreases serum immunoglobulin E levels in BALB/c 
mice. Environ Microbiol. 2016;18(5):1326-1337. doi:10.1111/1462-2920.12895 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



  Chapter I 

 71 

Supplementary data 

 

Supplementary Table 1. Origin, sample type and preservation of samples used in the study. Samples were 

shipped on dry ice unless preservative allowed sample shipping at room temperature (DNA/RNA Shield). 

Source Strain 
(abbreviation) 

Facility/population Sample 
type 

Preservative, storage 
temperature 

Sample 
size 

Laboratory C57BL/6 Animal facility A 
(BMS, Oxford, UK) 

Faeces DNA/RNA Shield, -80oC 39 

Laboratory C57BL/6 Animal facility B 
(Kennedy Institute, 
Oxford, UK) 

Faeces DNA/RNA Shield, -80oC 6 

Laboratory C57BL/6 Animal facility C 
(King’s College, 
London, UK) 

Faeces DNA/RNA Shield, -80oC 123 

Laboratory SKG Animal facility B 
(Kennedy Institute, 
Oxford, UK) 

Faeces DNA/RNA Shield, -80oC 3 

Laboratory Pdgfra-CreER 
(Pdgfra) 

Animal facility A 
(BMS, Oxford, UK) 

Faeces DNA/RNA Shield, -80oC 6 

Laboratory CCSP-rtTA 
(CCSP) 

Animal facility A 
(BMS, Oxford, UK) 

Faeces DNA/RNA Shield, -80oC 7 

Wild N/A Wytham Field Station, 
Oxford, UK 

Faeces DNA/RNA Shield, -80oC 12 

Wild N/A Skokholm Island, 
Wales, UK 

Faeces DNA/RNA Shield, -
20oC/-80oC 

948 

Wild N/A Isle of May, Scotland, 
UK 

Faeces None, -80oC 10 

Wild N/A Cologne, Germany Faeces RNAlater, -80oC 11 

Wild N/A Espelette, France Faeces PBS, -80oC 8 

Wild N/A Midway Atoll, North 
Pacific Ocean 

Intestinal 
contents 
(colon) 

70% isopropyl alcohol 
until moved to 
DNA/RNA Shield for 
shipping from US to UK, 
-20oC/-80oC 

20 

Wild N/A Faroe Islands, North 
Atlantic Ocean 

Intestinal 
contents 
(colon) 

DNA/RNA Shield, -20oC 38 
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Supplementary Figure 1.  Principal coordinate analysis of four aliquots from 15 Skokholm mice on 

Aitchison distances. Aliquots were stored in DNA/RNA Shield, RNAlater, absolute ethanol or without 

preservation buffer. Colours represent individual mice, points are different aliquots. 
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Supplementary Figure 2. Jaccard dissimilarity between laboratory-wild mouse sample pairs across six different 

sampling months. Laboratory samples include samples from six colonies and wild mouse samples are from 

Skokholm Island population (Supplementary Table 1). Only samples from adult mice (>3 months of age in 

laboratory, >17g of body mass in wild mice).  
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Supplementary Figure 3. Asymptotic ASV richness in wild (n=436) and laboratory (n=146) mice. Boxplots are 

individual wild mouse populations (mainland populations, green; island populations, blue) or laboratory mouse 

colonies (pink). Empty boxplots are all wild (blue) or laboratory (pink) mouse samples together. Statistical 

differences between lab and wild mice were tested with permutational Wilcoxon rank sum tests (***; p<0.001). 
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Supplementary Figure 4. (A–C) Principal coordinate analysis (PCoA) of wild and laboratory samples on (A) 

Jaccard, (B) Aitchison, and (C) unweighted UniFrac distances from seven wild populations and six laboratory 

colonies. 
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Supplementary Figure 5. Relative abundance of top ten amplicon sequence variants (ASVs) predicting source 

(lab/wild), ordered in decreasing order of importance from left to right. ASVs were identified with Random Forest 

regressions, with mean decrease in Gini used as a measure of importance, such that the higher the score, the higher 

the importance (OOB estimate of error = 0%). 
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Supplementary Figure 6. Within-individual microbiota dissimilarity on Aitchison distance (log-transformed) 

between sample pairs from the same (A) laboratory or (B) wild mouse (99 samples from 16 laboratory mice, 5–7 

samples per mouse; 762 samples from 217 wild mice, 2–12 samples per mouse) against time between samples. 

Laboratory mice were from a single C57BL/6 colony (King’s College). The relationship is fitted with (A) a log-

linear model (lab mice; F254=130.0, adjusted R2=0.3359, p<0.001) and (B) a quadratic plateau model (wild mice; 

adjusted R2=0.4394, critical point of inflexion=20.1 days). Note the distinct y-axes scales to aid visibility of 

dissimilarity patterns across time. 
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Supplementary Figure 7. Principal coordinate analysis of mainland (green) and island (blue) mouse samples on 

(A) Jaccard and (B) unweighted UniFrac distances. 

 

Supplementary Figure 8. Relative abundance of top ten amplicon sequence variants (ASVs) predicting setting 

(island/mainland), ordered in decreasing order of importance from left to right. ASVs were identified with 

Random Forest regressions, with mean decrease in Gini used as a measure of importance (the higher the score, 

the higher the importance; OOB estimate of error = 3.9%). 
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Supplementary Figure 9. Principal coordinates analysis (PCoA) on Aitchison distance based on (A) bacteria and 

(B) fungi in wild mice from two geographically distinct sampling sites on Skokhlm Island (yellow = Observatory, 

blue = Quarry). 
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Abstract 

Myriad biological processes from immune maturation to chronic diseases are tied to age. Most 

insights into age-related processes come from humans or laboratory animals. Wild animals 

have been the target of fewer studies, and one barrier is that the precise age of wild animals is 

often unknown. One approach for estimating age in wild individuals takes advantage of age-

related changes in DNA methylation. Here, we built an epigenetic clock using faecal samples, 

which have the benefit of being non-invasive, from standard laboratory house mice (C57BL/6, 

Mus musculus) and then used it to gain age estimates for wild mice of unknown age. We show 

that this clock accurately predicts adult wild mice to be older than juveniles, and that wild mice 

typically increase in epigenetic age over time, although the rate of epigenetic aging varies 

widely between individuals. Further, we demonstrate that from early life onwards wild mice 

are epigenetically older than lab mice, and that this is not explained by accelerated aging post-

capture. This suggests these different epigenetic age profiles in mice from different genetic and 

environmental backgrounds arise very early in life and may be driven by peri- and postnatal 

effects on offspring DNA methylation. 
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Introduction 

Age is a key characteristic for any organism, with various biological processes from immune 

maturation to reproduction being age-related. Most insights on age-related processes come 

from human or laboratory animal studies, both of which have limitations. Humans are long-

lived and exposed to environmental factors that are difficult to disentangle. On the other hand, 

typically short-lived laboratory animals are often inbred and live in an artificial world that lacks 

natural environmental variation and stress. Studying outbred wild animals has the potential to 

overcome some of these limitations and complement previous findings from humans and 

laboratory animals. Wild populations may prove particularly powerful study systems for 

understanding age-related processes such as immune maturation or senescence at the level of 

both individual and population. 

  

Yet, measuring age in wild individuals can be challenging as date of birth is often unknown 

and alternative measures of age are often imprecise (e.g., body size) or destructive (e.g., post 

mortem measurement of eye lens weight), raising ethical concerns and preventing longitudinal 

studies. An alternative approach for measuring age in the wild lies in the concept of epigenetic 

age (Jarman et al., 2015; Anderson et al., 2021; Pinho et al., 2022; De Paoli-Iseppi et al., 2017; 

Polanowski et al., 2014; Thompson et al., 2017; Wright et al., 2018; Mayne et al., 2022; Larison 

et al., 2021; Bors et al., 2021; Sullivan et al., 2022). Epigenetic age can be estimated by 

measuring DNA methylation rates across or at specific sites in the genome. DNA methylation 

refers to the addition of methyl groups to DNA molecules, usually at CpG sites (those where a 

cytosine is followed by a guanine; Moore et al., 2013). At some CpG sites, the proportion of 

methylated cytosines appears to change linearly with age, and together these sites can be used 

to derive an ‘epigenetic clock’. By training a clock with samples from individuals of known 

age, the clock can then be used to predict age in individuals of unknown age, possibly providing 
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a more accurate estimate of chronological age than is otherwise obtainable from visible 

characteristics in the wild (Mayne et al., 2022; Larison et al., 2021). 

  

Alongside tracking chronological age, epigenetic clocks also appear to capture signals of 

biological age. Accelerated epigenetic aging has been linked to various communicable and 

non-communicable diseases in both humans and laboratory mice (Joyce et al., 2021; Morales 

Berstein et al., 2022; Ambatipudi et al., 2017; Harvanek et al., 2021; Cao et al., 2022; Peng et 

al., 2019). Insights also come from the wild: high social rank is associated with accelerated 

epigenetic aging in wild baboons (Anderson et al., 2021), and hibernation slows down aging 

in marmots and bats (Pinho et al., 2022; Sullivan et al., 2022). Thus, the use of epigenetic 

clocks may provide a means of estimating chronological age in wild animals while 

simultaneously providing insight into biological aging in a natural setting. 

 

Previous studies using epigenetic clocks have focused on humans (Joyce et al., 2021; Morales 

Berstein et al., 2022; Ambatipudi et al., 2017; Harvanek et al., 2021; Cao et al., 2022; Peng et 

al., 2019) or either laboratory (Han et al., 2018; Kerepesi et al., 2022) or wild animals (Prado 

et al., 2021; Polanowski et al., 2014; Anderson et al., 2021; De Paoli-Iseppi et al., 2018; 

Lemaître et al., 2022), rather than integrating the two. Studying epigenetic age in both lab and 

wild animals of the same species in a comparative manner could help us understand drivers of 

biological aging and its variability in individuals from contrasting genetic and environmental 

backgrounds. Further, using faecal samples as a source of DNA would make the method non-

invasive, allowing longitudinal sampling without ethical limitations to sampling frequency, 

and enable epigenetic age estimation even in species that are hard to capture. 
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Here, we hypothesised that both laboratory and wild house mice undergo age-related DNA 

methylation, possibly allowing application of a lab-based epigenetic clock in age prediction of 

wild mice. Thus, we set out to test whether we could develop a method of accurately aging 

wild house mice of unknown age, and compare epigenetic age and aging patterns across 

laboratory and wild settings. We used faecal samples to do this, in order to minimise ethical 

and logistical barriers of collecting data for these purposes. We built an epigenetic clock using 

samples from laboratory mice and used this lab-based clock to predict age in house mice from 

a wild population. Our results show the potential of such an approach but also indicate 

contrasting genetic and environmental backgrounds between lab and wild individuals limit 

accuracy in predicted age. 

 

Methods 

Sample collection 

A total of 137 faecal samples were collected from 65 individual Mus musculus C57BL/6 

laboratory mice (30 females, 35 males) from two animal facilities. The samples were collected 

in May–November 2021 at the Biomedical Services Building, Oxford, UK (Animal facility A), 

and King’s College, London, UK (Animal facility B). The chronological age of the mice varied 

from 7 to 339 days. The mice were kept in standard housing and were not subject to any 

interventions before or during sampling. Body mass was recorded for mice from Animal 

facility B during sample collection. Body mass was estimated for 25 lab mice (from Animal 

facility A) under seven weeks of chronological age for which body mass was not recorded 

during sample collection. Body mass estimation was done based on Spangenberg et al. (2014) 

for 7–20-day old pups and The Jackson Laboratory C57BL/6 body mass references for 3–7-

week-old pups (Jax, 2022a; Jax, 2022b). For the latter age group, estimation was done 

separately for females and males. To collect faecal samples, mice were briefly placed on a 
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sterile surface until defecation. Faecal pellets were collected in a sterile manner, immediately 

preserved in DNA/RNA Shield, and stored frozen at -80°C until further processing. 

 

Wild house mouse (Mus musculus domesticus) sampling was conducted in April–May 2019, 

July 2019, September–October 2019, August–September 2020, and April–May 2021 on 

Skokholm Island, Wales, UK. Mice were trapped overnight using small Sherman live traps 

baited with peanuts and non-absorbent cotton wool for bedding, and with a spray of sesame oil 

outside the trap as a lure. Across each of two broad sampling sites (one near the coast and one 

in the island interior), on each trapping night 150 traps were set at dusk and checked at dawn. 

To prevent cross-contamination, any traps showing signs of mouse presence were washed and 

sterilised before being reset using bleach solution (including a ≥60 min soak in 20% bleach) to 

destroy bacterial cells and DNA. 

 

All newly captured mice were permanently identified by subcutaneous injection of a passive 

integrated transponder (PIT) tag. Upon each capture, each mouse was either tagged or 

identified (if a recapture), aged, sexed, and measured before being released at its trapping point. 

Age category was determined based on size and pelage characteristics: small (typically <15g 

of mass and <80mm of length) mice were classified as juveniles and full-sized mice (typically 

>20g and >80mm of length) were classified as adults. Mice falling between the two categories 

were ranked as sub-adults. Sex was determined using anogenital distance and reproductive 

state. At each capture, body mass and body condition were recorded. Body condition was 

scored from 1 to 4 by palpating the lower back area to estimate the amount of subcutaneous 

fat. 
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Faecal samples were collected from traps in a sterile manner, preserved in DNA/RNA Shield 

and stored in a -20°C freezer until returned to the laboratory frozen (maximum 6 weeks after 

sample collection). Collected faecal samples were then stored in -80°C until DNA extraction. 

A total of 215 samples were selected from all collected samples (>900) for further processing 

by first selecting a longitudinal dataset (mice sampled ≥2 over time) with as much variation as 

possible in morphometric variables (age, body mass, sex, and reproductive status), as well as 

environmental variables (sampling season and sampling site) and then supplementing this with 

additional (equally variable) cross-sectional samples to increase number of individuals for 

cross-sectional analyses. Variation in variables was achieved by randomly selecting 

approximately equal numbers of samples e.g., across juvenile, sub-adult and adult mice. 

 

DNA extraction, bisulfite conversion and PCR amplification 

DNA was extracted from faecal samples using the ZymoBIOMICS DNA MiniPrep Kit 

according to the manufacturer's protocol (Zymo Research, Irvine, California, USA). DNA was 

then bisulfite-converted using the Zymo EZ DNA Methylation-Gold Kit to convert 

unmethylated cytosines to urasil and then thymine (Zymo Research, Irvine, California, USA). 

PCR amplification was conducted for five genes previously reported to correlate with 

chronological age in Mus musculus; Prima1, Hsf4, Kcns1, Gm9312, and Gm7325 (Han et al., 

2018). Amplification was conducted using the PyroMark PCR Kit according to manufacturer’s 

instructions and primers for the five genes (QIAGEN, Hilden, Germany; Supplementary Table 

2; Han et al., 2018). Amplification success was confirmed using gel electrophoresis. The five 

amplicons (PCR products) were pooled for each sample into 5-gene libraries. DNA was 

quantified with Qubit Fluorometer High Sensitivity dsDNA kit and normalised to 6.25 ng/μl 

(Thermo Fisher Scientific, Waltham, Massachusetts, USA). 
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Sequencing, basecalling, and demultiplexing 

The Oxford Nanopore Technology (ONT) platform was used for sequencing of the libraries 

(Oxford Nanopore Technologies, Oxford, UK). We first used the ONT Ligation Sequencing 

Kit (SQK-LSK109), to repair and dA-tail the DNA ends, followed by ligation of sequencing 

adaptors to the prepared ends. We then barcoded libraries using the ONT Native Barcoding 

Expansion kit (EXP-NBD104 or EXP-NBD196). Approximately 15 ng of the prepared library 

was loaded onto a prepared ONT MinION Mk1B R9.4.1 flow cell and sequenced using the 

ONT MinKNOW software v21.10.4. 

 

Libraries were sequenced across a total of six runs resulting in a mean of 49,969 reads per 

sample. A negative control (where DNAse free H2O was used instead of pooled amplicons at 

the start of Nanopore pipeline) was included in three sequencing runs, and these generated a 

mean of 200 (range 17–519) reads. One flow cell was used twice, and washed between runs 

with the ONT Flow Cell Wash kit (EXP-WSH003). Different barcodes were used for negative 

controls across the two sequencing runs where the same flow cell was used to enable testing 

for carry-over of reads (17 potential carry-over reads). All ONT procedures were conducted 

according to manufacturer’s instructions (Oxford Nanopore Technologies, Oxford, UK). 

 

Raw sequencing data was basecalled and demultiplexed using High Accuracy basecalling on 

the ONT Guppy software v5.0.11. The basecalled fastq files were then run through the Apollo 

software v0.1 (https://github.com/WildANimalClocks/apollo) to acquire methylation rates for 

each CpG site within the five genes. Using the alignment with the reference genes, target sites 

(cytosines within CpGs) were identified in each read and determined as either methylated 

(cytosine) or unmethylated (urasil). The process was continued for each read, resulting in a 

proportion of methylated cytosines at each CpG site. 
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Analyses 

The data was analysed and visualised in R (v4.1.2). The epigenetic clock was built using a 

cross-sectional dataset from C57BL/6 mice from two facilities (n=50). We performed 

generalized linear regression with the package glmnet v4.1–3 (Friedman et al., 2010) to identify 

CpG sites whose methylation is predicted by chronological age, using a LASSO model (mixing 

parameter alpha=1) and a leave-one-out cross validation (nfolds=nrow). We failed to acquire 

sufficient read counts and thus methylation rates for CpG sites from the gene Gm7325 in 20 

wild mouse samples (9% of all wild mouse samples). Inclusion of CpG sites from this gene 

appeared to have little effect when building the epigenetic clock (Pearson’s r=0.996 when 

included and r=0.994 when excluded), hence we did not include CpG sites from Gm7325 

(n=11) in the final clock. The CpG-specific weights from the clock were then used to predict 

epigenetic age in 30 additional samples from C57BL/6 mice (n=15, two samples per animal) 

as well as in wild house mice for which methylation rates at the CpG sites included in the clock 

were successfully measured (n=201; 93% of all wild mouse samples) using linear modeling. 

Relationship between epigenetic age and chronological age was tested with a Pearson’s 

correlation test. 

 

To test for the effect of covariates on predicted epigenetic age in the validation dataset, we fit 

a linear model with epigenetic age as the dependent variable and chronological age, sex, cage, 

and sequencing run ID as predictor variables. Wilcoxon rank sum test with 1,000 permutations 

was used to test whether the predicted epigenetic age of wild mice ranked as adults was older 

than that of wild mice ranked as juveniles. The ability of the clock to predict increases in 

epigenetic age in mice sampled over time was tested with a binomial test, with probability of 

predicted age at second timepoint being older than at first timepoint being 0.5. Linear modeling 

was used to test whether increase in time predicted increase in epigenetic age. Age category 
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and sex at first timepoint were included as predictor variables. Mice with less than 25 days 

between timepoints were excluded from the longitudinal analysis based on the mean absolute 

error (MAE) between predicted epigenetic and chronological age in validation dataset 

(MAE=25 days, Fig. 1B). 

 

To test whether source (lab/wild) predicted epigenetic age when controlling for the effects of 

body mass, we fit a linear model with epigenetic age as the dependent variable and source and 

an interaction of body mass and sex as predictor variables. For this analysis, wild mice with 

recordings of pregnancy or prominent nipples (indication of ongoing/recent pregnancy) were 

excluded as these significantly predicted body mass. Lastly, to study the rate of epigenetic 

aging across the two mouse systems we used (1) linear modeling to test whether the rate of 

epigenetic aging varied between lab and wild mice with increase in epigenetic age as response 

variable and interaction of increase in time and source as explanatory variable, and (2) Levene’s 

test to investigate whether rate of epigenetic aging is more variable within wild mice. Here, we 

used the ratio between change in epigenetic age and change in time as response variable and 

source (lab/wild) as the explanatory variable. 

 

Ethical statement 

Wild mouse work was conducted under Home Office license PPL PB0178858 held at the 

University of Oxford, and with a research permit from the Islands Conservation Advisory 

Committee (ICAC), and Natural Resources Wales. No mice were subject to intervention for 

the purposes of this study. 
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Results 

Construction of a non-invasive epigenetic clock 

We used faecal samples from C57BL/6 laboratory mice (Mus musculus, n=50, one sample per 

animal) from two animal facilities to generate a DNA methylation-based epigenetic clock. The 

chronological age of the mice ranged from 7 to 339 days (mean 96, median 40), covering life 

stages from the pre-weaning postnatal phase to middle-age (Flurkey et al., 2007). We focused 

on five genes containing CpG sites whose degree of methylation has previously been shown to 

correlate with chronological age in laboratory mice (Suppl. Fig. 1; Han et al., 2018; Petkovich 

et al., 2017; Stubbs et al., 2017). We measured methylation at all 73 CpG sites in these genes 

by first bisulphite treating DNA, PCR amplifying the focal genes, and then sequencing using 

the Nanopore MinION platform. 

 

An epigenetic clock was ultimately built using 62 of these CpG sites from four genes (Hsf4, 

Gm9312, Kcns1, and Prima1) in which methylation rate was successfully measured across the 

majority of laboratory and wild mouse samples (see Methods). Elastic net regression identified 

18 CpG sites from three of the targeted genes, two from Hsf4, five from Gm9312, and eleven 

from Kcns1 (Suppl. Table 2), that showed a positive linear relationship with chronological age 

with a mean absolute error (MAE) of 7 days (Pearson’s r=0.996, p<0.001; Fig. 1A). We 

validated the clock by applying it to a set of C57BL/6 mice not used in training the clock (n=15, 

one sample per animal). Predicted age was strongly correlated with chronological age 

(Pearson’s r=0.933, p<0.001, MAE=25 days; Fig. 1B). Neither sex, cage nor sequencing run 

had a significant effect on predicted age (linear model; F8=12.3, chronological age, p<0.001; 

other variables, p>0.1). This demonstrates that non-invasive faecal samples can be used to 

generate an epigenetic clock in laboratory mice with equivalent or higher accuracy in 
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estimating chronological age as a clock previously derived using blood samples (Han et al., 

2018; MAE=35–41 days in two validation datasets). 

 

 
Figure 1. (A) DNA methylation-based epigenetic age in relation to chronological age in C57BL/6 mice from two 

animal facilities (slope estimate = 0.97 ± 0.02 standard error, p<0.001, mean absolute error (MAE) = 7 days, 

n=50). Circles are individual mice with colour indicating animal facility (grey = Animal facility A, black = Animal 

facility B). Solid line is a linear regression line (R2=0.99). Dashed line is a reference line (y=x). (B) The epigenetic 

clock was used to predict age in 15 validation samples from C57BL/6 mice from Animal facility B (slope estimate 

= 0.97 ± 0.10 standard error, p<0.001, MAE=25 days). Filled circles are mice from clock training set (n=50, Fig. 

1A), empty circles are mice from validation set (n=15). Lines are linear regression lines (solid = training set, 

R2=0.99; long dash = validation set, R2=0.86; short dash = reference line (y=x)). 

 

Chronological age prediction in wild mice 

We next applied this lab-mouse derived epigenetic clock to 199 faecal samples from 116 wild 

house mice to test if we can use it to estimate chronological age in wild individuals of unknown 

age. Mice of all available body sizes were included with the aim of capturing as much age 

variation as possible (body mass range 5.9–43.0g, mean 19.1, median 20.1). The epigenetic 

age of wild mice varied from -20 to 659 days (mean 273, median 260; 2 out of 199 samples 

(1%) had a negative epigenetic age). To assess the performance of the clock on these wild mice, 

we first asked if the clock predicted whether a mouse had been categorised as ‘adult’ or 

‘juvenile’ when captured (see Methods). ‘Adult’ mice were estimated to be significantly older 
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than ‘juvenile’ mice using the epigenetic clock (permutational Wilcoxon rank sum test, 

p<0.001, n=163; Fig. 2A).  

 

We then used data from wild mice that were repeat-captured to test whether they increased in 

epigenetic age over time. Among 34 wild mice sampled twice between 30 and 340 days apart 

(mean 129, median 81), 30 (88%) were epigenetically older at the latter timepoint (binomial 

test for H0: p=0.5; p<0.001); however, the slope of this relationship varied among wild mice 

(Fig. 2B). Still, the number of days between sampling points positively predicted change in 

epigenetic age (linear model, F1,28=2.2, p=0.0162; Pearson’s r=0.451, p=0.007, n=34), and 

this relationship was stronger when excluding the four mice whose epigenetic age estimates 

decreased over time (linear model, F1,24=5.6, p<0.001; Pearson’s r=0.609, p<0.001, n=30). We 

did not detect significant effects from investigated covariates (sex, reproductive status, body 

mass, or season at first sampling point; linear model, F18=2.044, p>0.05 for all). These results 

indicate an epigenetic clock trained with samples from inbred lab mice can be used to provide 

an estimate of chronological age in outbred wild mice, though not one that is highly precise. 
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Figure 2. (A) Epigenetic age of wild mice phenotypically characterised as adult (n=107) and juvenile (n=56) 

predicted with a lab-based epigenetic clock. Age category was based on body size and appearance (see Methods). 

Median epigenetic age was 391 days in adults and 107 days in juveniles. Circles are individual samples. (B) 

Change in epigenetic age between two timepoints in wild mice sampled twice 30–340 days apart (n=34). Lines 

represent individual mice. Epigenetic age increased with time for 30 out of 34 (88%) mice. 

 

Wild mice are multiple times older epigenetically than laboratory mice 

We next assessed whether epigenetic age for a given chronological age differed between wild 

and laboratory mice. In the absence of known chronological age for wild mice, we used body 

mass to provide an upper limit age estimate for individuals classed as juveniles. In mice, body 

mass in very early life largely reflects developmental stage and therefore age (Gerber et al., 

2021; Ferrari et al., 2015), and is less influenced by factors, such as reproductive state, which 

can drive mass variation among adults. Others have reported that 12–13-day-old wild house 

mice from mainland Europe weigh around 7g (range 3.6–10.5g, mean 6.8; Gerber et al., 2021) 

and another study has shown that 14-day-old wild-derived house mice from Gough Island 

(home to the largest wild house mice recorded; data is from pups born in laboratory) weigh 

around 8.5g (range ~7–10.5g, raw data not available; Gray et al., 2015; Suppl. Fig. 1). We 

examined epigenetic age from a set of juvenile wild Skokholm Island mice that fall within this 
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body mass range and thus which we expect to be no more than 25 days old (n=20, body mass 

5.9–10.3g with a mean of 8.5g). Among these individuals, the mean epigenetic age estimate 

was 120 days (range 50–368, median 96), which is more than four times the expected 

chronological age (Suppl. Fig. 1). 

 

To explore whether wild mice were epigenetically older than lab mice beyond early life, we 

explored the relationship between epigenetic age and body mass across mice of all sizes. While 

the reliability of body mass as an indicator of age declines after initial growth during first few 

weeks of life, it continues to increase with chronological age in both C57BL/6 lab and wild 

mice beyond this time and thus can be used as a rough estimate of age in adults as well (Jax, 

2022a; Jax, 2022b; Gerber et al., 2021; Gray et al., 2015). In a cross-sectional subset of 43 lab 

and 112 wild mice (wild mice with visual indication of ongoing/recent pregnancy were 

excluded, see Methods), animal source (lab/wild) predicted epigenetic age (linear model, 

F1,140=14.69, p<0.001; model included an interaction term between sex and body mass), with 

wild mice being several times epigenetically older on average than lab mice (Fig. 3A). In line, 

wild mice had higher rates of DNA methylation across mice of all sizes, particularly at CpG 

sites within the Gm9312 gene (Suppl. Fig. 2), explaining the higher epigenetic age profile. 

 

To further examine whether older epigenetic age profiles among wild mice might be due to 

accelerated aging through exposure to environmental stressors, such as food shortage and 

climate variation, we studied the rate of epigenetic aging ( !"#$%&	($	&)(%&$&*(!	#%&
+#,-	&.#)-&+

	) across lab 

and wild mice for which two timepoints were available. In lab mice, the rate of epigenetic aging 

was again close to 1 (slope estimate = 1.08 ± 0.19 standard error) as observed when originally 

validating the clock using cross-sectional data (slope estimate = 0.97 ± 0.10 standard error; 

Fig. 1B). This rate appeared lower in wild mice (slope estimate = 0.60 ± 0.21 standard error); 
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however, it was not statistically different from that seen in lab mice (linear model, F1,45=7.49, 

p=0.195, an interaction term between source and change in time was used to predict change in 

epigenetic age; Fig. 3B). 

 

Further, although the rate of epigenetic aging appeared to be more variable among wild than 

lab mice, the variance in epigenetic aging rate did not differ statistically across settings 

(Levene’s test, F1,47=0.1333, p=0.7167; correlation between change in epigenetic age and days 

elapsed: lab mice, Pearson’s r=0.85, p<0.001; wild mice, Pearson’s r=0.57, p<0.001; Fig. 3B). 

Overall, these results suggest that wild mice undergo more intensive DNA methylation and 

thus epigenetic aging in very early life compared to lab mice. 

 

Figure 3. (A) Epigenetic age of wild (n=112) and laboratory mice (n=43) in relation to body mass. Empty circles 

are wild mice and filled circles are lab mice; black circles are lab mice for which body mass was recorded during 

sample collection, and grey circles are lab mice for which body mass was estimated post hoc (see Methods). Lines 

are linear regression lines (dashed = wild mice, solid = lab mice) with 95% confidence interval bands. (B) Change 

in epigenetic age in relation to time elapsed in laboratory (n=15) and wild mice (n=28) sampled twice minimum 

25 days apart. Empty circles are wild mice and filled circles are lab mice. Lines are linear regression lines (dashed 

= wild mice, solid = lab mice) with 95% confidence interval bands. 



Chapter II 

 96 

Discussion 

Here, we present an approach for estimating age in wild mice, by building an epigenetic clock 

using samples from inbred C57BL/6 laboratory mice and using it to estimate age in outbred 

wild mice of unknown chronological age. The clock could effectively distinguish wild 

juveniles from adult mice, and typically predicted increases in age in individuals sampled over 

time (predicted age was older in 88.0%) wild mice, showing a similar success to the wild 

baboon study of Anderson et al (2021)). 

 

However, while the clock accurately predicted age in an independent set of laboratory mice, it 

struggled to provide an accurate estimate of chronological age when applied to mice from an 

entirely different ecological context. Others have had better success in applying clocks built 

with captive individuals to wild individuals (Mayne et al., 2022; Robeck et al., 2021; 

correlation between chronological and epigenetic age in these studies 0.67–0.98 vs 0.45–0.61 

correlation between change in time and change in epigenetic age in our study). However, these 

studies have built epigenetic clocks using samples from captive individuals where there is 

genetic and environmental variation, such as zoos or outdoor enclosures. Our clock was built 

with samples from inbred lab mice housed under very stable environmental conditions, but 

applied to wild mice that are outbred and exposed to a highly variable temperate climate. 

Studies of different lab strains have confirmed that epigenetic clocks may behave differently 

in different genetic backgrounds. For instance, Han et al demonstrated DBA/2 mice to be up 

to twice as old epigenetically as C57BL/6 mice (Han et al., 2018). 

 

Moreover, DNA methylation may be influenced by environmental factors (Zocher et al., 2021; 

Parrott et al., 2014; Viitaniemi et al., 2019). As such, the contrasting genetic and environmental 

backgrounds in our mouse systems may partly explain why age estimates in wild mice had low 
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accuracy. Finally, while all samples from lab mice were preserved immediately after 

defecation, the time between defecation and sample preservation varied in wild mice for which 

samples were collected from traps where the mice had been up to a few hours. It is possible 

some DNA degradation by nuclease and gut microbes occurred before the samples were 

preserved (in DNA/RNA Shield, which inactivates microbes and preserves DNA integrity), 

affecting the methylation profiles. 

 

The predicted (epigenetic) age of wild mice from Skokholm Island varied from 21 to 659 days 

(mean 275, median 267; excluding 2 (1% of all 199) samples which had negative epigenetic 

ages, -12 and -20 days). Despite our epigenetic clock having a 1:1 relationship with 

chronological age in laboratory mice, several lines of evidence suggest these epigenetic age 

estimates for wild mice are overestimates. First, when investigating juveniles, in which body 

mass is an accurate predictor of age (Jax, 2022a; Jax, 2022b; Gerber et al., 2021; Gray et al., 

2015), we found that wild juveniles were predicted to be several times older than their expected 

chronological age from body mass (Gerber et al., 2021; Gray et al., 2015). Second, by 

comparing the epigenetic age estimates to body mass in mice of all sizes, we found that wild 

mice were several times epigenetically older at any given body mass than lab mice, with similar 

patterns seen in CpG site methylation rates. While accelerated weight gain in ad libitum-fed 

lab mice may contribute to a lower epigenetic age among adult lab mice compared to wild 

mice, these findings suggested that the more challenging environment experienced by wild 

mice may accelerate epigenetic clocks. 

 

To test whether the older epigenetic age profile of wild mice could be explained by accelerated 

aging post-weaning (i.e., from when they are trappable) we investigated the rate of epigenetic 

aging using individuals captured and sampled twice over time. If anything, the rate of 
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epigenetic age appeared slightly slower and more variable in wild mice, though this observation 

relied on a relatively small sample size and was not statistically significant. Moreover, as we 

observed heightened epigenetic age in wild compared to lab mice even during the first ~2 

weeks of life, we hypothesize that peri- and early postnatal effects on offspring DNA 

methylation may vary between laboratory and wild mice and contribute to their different 

epigenetic age profiles. Various human, mouse, and other animal studies have demonstrated 

the association between prenatal maternal experience (such as food shortage, diet, infection, 

substance exposure, and stress) and offspring DNA methylation patterns, with differences 

detectable from the prenatal (foetal) phase into later life (Tobi et al., 2009; Heijmans et al., 

2008; Lan et al., 2013; Richetto et al., 2017; Camerota et al., 2021; Joubert et al., 2016; Kertes 

et al., 2016; Vangeel et al., 2017). 

  

While our approach of training an epigenetic clock with lab individuals and using it to estimate 

age in wild individuals does not allow precise estimation of chronological age, our results 

demonstrate such an approach can still be effective in distinguishing between juvenile and adult 

individuals at the very least. Such information may be useful in contexts where a faecal deposit 

is found but the individual is not observed, such as in field-based projects of animals that are 

hard or impossible to capture. At the same time, this method can provide interesting insights 

into biological aging when applied to wild animals of known chronological age or to 

individuals sampled longitudinally (De Paoli-Iseppi et al., 2017; Powell & Proulx, 2003; Brivio 

et al., 2015). Considering the much greater variability in epigenetic aging rates we observed in 

wild compared to laboratory animals, our results suggest wild systems may provide a better 

environment in which to study drivers of epigenetic age acceleration. In the present study we 

were not able to identify drivers of epigenetic aging rates in the wild. However, given the wide 
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variation in epigenetic aging rates observed, our sample size may not have provided sufficient 

power to do this, and future studies with this goal would need to be larger.   

 

We used faeces as a source of host DNA and demonstrated that an epigenetic clock can be built 

with faecal samples at a similar or even improved accuracy to a previously published blood-

based mouse epigenetic clock (Han et al., 2018). As faecal samples can be collected non-

invasively, a given individual can be sampled over time without limitations to sampling 

frequency. Further, it may be possible to collect faecal samples without capturing the animal, 

thus the method may be particularly useful when estimating age in wild species hard to capture 

or even detect. 

 

In summary, our data indicate the potential to use a non-invasive, DNA methylation-based 

epigenetic clock built with samples from laboratory mice to estimate the age of entirely wild 

mice. This approach does not provide highly precise estimates of chronological age, but may 

capture signals of biological aging in longitudinal studies, making it a promising tool for 

studies of ontogeny and senescence in wild settings.  
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Supplementary material 

 
Supplementary Table 1. Primers used to target five Mus musculus genes (Hsf4, Gm9312, Fm7325, Kcns1, 

Prima1), generated based on Han et al (2018). 

Gene Primer sequence 

Hsf4 GTGAGTAGTAAGGTGGGATAAATTGTAGAAAAAATG (Forward), 
TCCCTACTCTCCTACACTCCTCTCAAAACTTA (Reverse) 

Gm9312 TTGTTTTGGGGTATTAGAAATTTTTTT (Forward), 
CCTAACCATACTAAACCAAATCTCTATATCTAAAT (Reverse) 

Gm7325 TGTTGGTTGAGGATAAAGAGTAGATAGTTTAGTAGAGT (Forward), 
TTCCCTTTACAAATACAAATCCTACCATA (Reverse) 

Kcns1 GGTTGAGAGGGTGGTAGAAGAAGTTG (Forward), 
ACTCCCCTCCATCCCTACCATATACATCCA (Reverse) 

Prima1 TTGTGTTTAATTAGGAGAGGTAAATTATGAATTAGGTTTATA (Forward), 
CAAAATTAATTACACCAACTTATAACCTACTATTC (Reverse) 

 
 
Supplementary Table 2. Elastic net regression used to build an epigenetic clock identified 18 CpG sites (in red) 

from three of five targeted genes (Hsf4, Gm9312, Fm7325, Kcns1, Prima1): two from Hsf4, five from Gm9312, 

and eleven from Kcns1. 

Gene Sequence  

Hsf4 GGAAGGTATTAATGTTGGTATTTTTGGTTTTGTTTATGTGTTTCGGATGGTGTTTTTT
GTTTGTAGGTATTTGCGTTGCGAGGCGATGATAGTCGATGGCGTTCGGAAGATTTG
AGTCGATTGTTGGGAGAGGTG 

Gm9312 AGGTGTGGGCGTAGTCGGAGGGTATTGGGTATCGGGTATTAAGCGCGGAAGTTTA
TTAGGTGTTTAGGGCGTAGCGCGATTTTCGCGATTTTAGTTTTTCGTTCGTTGCGGG
TTACGTTATCGTTTATTTTTTCGATGGTCGTCGCGGTGTTTCGGTATTGGGTCGAGC
GCGTGGTGAAATTAGAGGTCGTGGGCGTTTTGTAGTTTTTAAGGGTTTCGGTTACG
A 

Kcns1 CGCGTGTTGGGAGTTAGTAGTAGGCGCGACGATATTTCGAAGTTGAATTAAGCGAT
GTAGAAGTATTTTAGGCGGCGTAGTATCGGGTCGTCGCGTATTTTTTTTGCGTTGCG
ATTCGCGGTTATTGTAGTTATCGTCGTCGTCGTTTTTCGAGTTTGGTATTTCGGTAG
GTTG 
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Supplementary Figure 1. Relationship between body mass and chronological age during early life in two wild 

house mouse populations. The black solid line shows the mean body mass for wild-derived (Gough Island) mice 

born in laboratory of a given age with shading indicating lower and upper limits (data reproduced from Figure 3 

in Gray et al., 2015). The violin plot indicates body mass distribution in 12–13-day old mice (mean 12.8 days, 

median 13.0 days, n=438) from Zurich, Switzerland (Gerber et al., 2021). The point indicates average body mass 

in Zurich mice (6.8g; ranges 3.6–10.5g, median 6.7g). Dashed lines indicate the upper limit of body mass (10.5g) 

for a set of juvenile Skokholm Island mice for which epigenetic age was estimated. According to age-mass 

relationships in Zurich and Gough, these Skokholm Island mice are estimated to be under 25 days old. 
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Supplementary Figure 2. Methylation rate at 18 CpG sites included in the epigenetic clock across body mass in 

laboratory and wild mice. Gene and CpG start position are indicated as panel titles. R2-values are presented for 

each CpG site for wild (top) and lab (bottom) mice. 
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Abstract 

The gut microbiota is a dynamic ecosystem that varies between individuals and populations 

but also within an individual over time. Changes in the gut microbiota have been linked to 

various age-related processes such as growth, immune maturation, and reproduction, making 

age an intriguing variable in the investigation of ecological dynamics of the microbiota. Studies 

investigating how the gut microbiota develops in early life and changes with age have been 

limited to either laboratory or wild animals. However, we have little understanding of how age-

related dynamics compare across these two contexts, where many key factors will vary, 

including environmental exposures, social contacts, diet, and even the microbial taxa that 

colonise the gut. Importantly, it remains unclear how representative laboratory mouse models 

can be of ecological processes in the gut microbiota, considering their microbiota is markedly 

different from wild mice. Here, we used a standardised pipeline to directly compare early life 

gut microbiota assembly patterns in laboratory-reared and wild house mice (Mus musculus 

domesticus). We found that despite having contrasting genetic and environmental backgrounds 

and compositionally distinct gut microbiotas, lab and wild mice share several common features 

of gut microbiota assembly. Specifically, both alpha and beta diversity as well as changes in 

the relative abundance of predominant phyla – Firmicutes, Bacteroidota, and Proteobacteria – 

followed remarkably similar, and similarly timed, temporal patterns in lab and wild mice, 

independent of the different lower-level taxa present in these systems. These results support 
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the notion that early life gut microbiota dynamics observed in laboratory settings are 

representative of the ecological processes at play in the wild. Our results indicate some degree 

of intrinsic host programme in gut microbiota assembly that transcends very different 

taxonomic profiles as well as genetic and environmental backgrounds of the host, and suggest 

age-related microbiota changes consider the emergent community properties of the microbiota. 

Thus, despite their artificial environment, lab models can provide meaningful insights into 

these dynamics. 

 

Introduction 

The mammalian gut is densely inhabited by a diverse collection of microbial organisms, 

collectively referred to as the gut microbiota. The gut microbiota is an important factor for host 

biology with conserved roles in host processes ranging from metabolism to behaviour (Visconti 

et al., 2019; Turnbaugh et al., 2006; Liberti et al., 2022). Composition and diversity of this 

miniature ecosystem varies not only between individuals, populations, and species but also 

within an individual over time (Rudolph et al., 2022; Nishida & Ochman, 2018; Vandeputte et 

al., 2017). In particular, at the beginning of a host’s life, the gut microbiota undergoes a period 

of maturation with changes in composition and diversity (Stewart et al., 2018; Yassour et al., 

2016; Depner et al., 2020), guided by both intrinsic ecological processes (Gonze et al., 2018) 

as well as selective processes imposed by the physiology of the host, as it undergoes various 

developmental processes, such as immune maturation and the development of the central 

nervous system (Chung et al., 2012; Sharon et al., 2016). Perturbation of the gut microbiota 

during this critical time of development has been linked to developmental alterations (Olin et 

al., 2018; Darabi et al., 2019), indicating an active role for the gut microbiota in host 

development. Thus, a detailed understanding of the gut microbiota maturation process is 

essential for comprehensive understanding of host development. 
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Many human studies have provided valuable insights into maturation of the human gut 

microbiota in early life (Stewart et al., 2018; Niu et al., 2020; Bäckhead et al., 2015; Ferretti et 

al., 2018; Shao et al., 2019). During this maturation process, the gut is first colonised by 

microbes from the mother (through birth and breastfeeding) and the environment. After the 

initial colonisation, the gut microbiota undergoes compositional changes through which it 

becomes more diverse within an individual but more homogenous across individuals 

(Bäckhead et al., 2015; Ferretti et al., 2018). 

 

Alteration of the general maturation trajectory can happen at various stages and may have long-

lasting consequences (Olin et al., 2018; Darabi et al., 2019). Firstly, transmission of maternal 

microbes can be disrupted at birth leading to primary colonisation by generalist pathogens from 

the environment instead of specialist symbionts from the mother. For example, relative 

abundance of pathogens associated with hospital environment, e.g., Klebsiella, has been shown 

to be elevated in infants delivered via caesarean section (CS) (Bäckhead et al., 2015; Shao et 

al., 2019). Further, CS infants have lower levels of bacteria from the genus Bacteroides, a trait 

associated with lower gut microbiota diversity and slower maturation rate (Stewart et al., 2018). 

After the initial colonisation, the stereotypic gut microbiota maturation trajectory can be further 

altered by care practises, such as types of feeding (breastfeeding vs formula feeding) and timing 

of breastfeeding cessation (Bäckhead et al., 2015; Stewart et al., 2018; Shao et al., 2019). 

Particularly, breastfeeding cessation can accelerate gut microbiota maturation, marked by an 

increase in Firmicutes (Stewart et al., 2018). 

 

Similar patterns of gut microbiota maturation have been observed in some, but perhaps not all, 

wild primates (Baniel et al., 2022; Petrullo et al., 2022; Reese et al., 2021). However, previous 

animal studies have focused on a single population, wild or laboratory, with little direct 
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comparison across populations. For laboratory model species, a key gap in understanding is 

whether the patterns and processes of microbiota maturation observed in laboratory settings 

are representative of those occurring in natural populations. In the wild, several factors such as 

genetic background, diet, environmental, and social exposures will show much greater 

variation, with potentially important implications for gut microbiota composition, diversity, 

and function. While the house mouse (Mus musculus) is the mammalian model species of 

choice in microbiota research, little is known about gut microbiota dynamics in this species 

outside of the lab. In particular, it remains unknown whether fundamental age-related dynamics 

in the mouse gut observed in the lab are paralleled in natural populations, despite markedly 

different gut microbiota compositions (Rosshart et al., 2019; Wang et al., 2014; Kreisinger et 

al., 2014; Wang et al., 2015). 

 

Here, we directly compare early life gut microbiota assembly dynamics in laboratory and wild 

house mice, using a standardised 16S-pipeline. Given the proposed key role of gut microbiota 

in developmental processes that are expected to be conserved across contexts, we hypothesise 

that despite differentiation in community composition and diversity, some broad trends of gut 

microbiota assembly will be conserved between lab and wild settings. In particular, based on 

findings from previous studies (Bäckhead et al., 2015; Wang et al., 2020; Stewart et al., 2018; 

Baniel et al., 2022; Derrien et al., 2019), we hypothesise that gut microbiota diversity increases 

in early life within-individuals but decreases between individuals, and that the ratio between 

aerotolerant and anaerobic taxa change in favour of anaerobes. 
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Methods 

Sample collection 

Faecal samples were collected from 7–81-day old C57BL/6 laboratory mice (Mus musculus, 

n=40) in November 2020 and October 2021 at the Biomedical Services Building, Oxford, UK 

(the colony is originally from Jackson Laboratories but bred at the facility for the last 17 years). 

Mice were housed in a specific-pathogen-free (SPF) facility, where the following pathogenic 

taxa were excluded: Helicobacter species, Pasteurella pneumotropica, beta-haemolytic 

streptococci, Streptococcus pneumoniae, Citrobacter rodentium, Corynebacterium kutscheri, 

Salmonella species, and Streptobacillus moniliformis. Mice were not subject to any 

interventions before or during sample collection. Mice were placed on a sterile surface for 

faecal collection. Faecal pellets were preserved in Zymo DNA/RNA Shield and stored at -80°C 

until DNA extraction (up to 12 months). 

 

Wild house mice (Mus musculus domesticus) were live-trapped on Skokholm Island (Wales, 

UK), in April–May 2019, July 2019, September–October 2019, August–September 2020, and 

April–May 2021. Trapping was carried out using small Sherman traps provisioned with 

peanuts, non-absorbent cotton wool for bedding, and with a spray of sesame oil outside the trap 

as a lure. Trapping was conducted in two broad sampling sites on the island (‘Observatory’ and 

‘Quarry’). On each trapping night, 150 traps were set at dusk and checked at dawn at one of 

the sampling sites. Used traps (where signs of a visiting animal were detected, whether captured 

or not) were washed and sterilised with 20% bleach solution before re-use. Upon first capture, 

mice were either tagged with a subcutaneous passive integrated transponder (PIT) tag for 

permanent identification. All captures were therefore individually identified, sexed, and 

weighed to the nearest 0.1g before release within 2m of their trapping point. Sex was 

determined based on visual inspection, anogenital distance, and reproductive state. Faecal 
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pellets were collected from traps, and preserved in DNA/RNA Shield. Samples were stored at 

-20°C until return to the laboratory (within 6 weeks), after which they were stored at -80°C 

until DNA extraction (up to 17 months). 

  

DNA extraction, library preparation, and sequencing 

DNA extraction was performed using ZymoBIOMICS DNA MiniPrep Kit (spin-column 

format) according to manufacturer’s instructions (Zymo Research, Irvine, California, USA). 

Samples were randomised into 53 extraction batches of up to 23 samples. A negative extraction 

control (DNAse-free H2O) was included in each extraction batch at a varying position with the 

exception of one extraction batch, in which a negative control was not included. The microbiota 

of each faecal sample was characterised using amplicon sequencing, targeting the V4–V5 

region of the 16S rRNA gene using the 515F–926R primers (Parada et al., 2016; Walters et al., 

2015). Samples were amplified and sequenced in 16 sequencing runs of up to 95 samples using 

the Illumina MiSeq platform (Reagent kit v3, 2x300 bp chemistry). Library preparation and 

sequencing was conducted at the Integrated Microbiome Resource, Dalhousie University, 

using the protocol described in Comeau et al. (2017). Each sequencing run included a negative 

control for PCR reaction and a separate negative control for sequencing. Additionally, all 

extraction controls (n=52) were sequenced amongst the true samples (extraction controls were 

randomised into batches of true samples). 

  

Data selection 

The lab mouse dataset was restricted to mice under 91 days of age in order to focus on the early 

life phase when individuals are still developing (lab mice are considered ‘adult’ from 3 months 

onwards; Flurkey et al., 2007). The wild mouse samples analysed here were processed and 

sequenced as part of a larger sample set. While it is impossible to precisely age wild mice, in 
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order to focus on the early life stage we excluded from analyses any captures we could 

confidently predict to be over 90 days old (those recaptured a minimum 76 days after first being 

captured, as trappable mice are likely to be at least 14 days old). Further, only samples from 

September and October (from the years 2019 and 2020) were included to minimise seasonal 

effects on the gut microbiota (Maurice et al., 2015; Marsh et al., 2022). 

 

Further, female wild mice with signs of ongoing or recent pregnancy (bulging central body, 

enlarged/prominent nipples) as well as male wild mice with large or extra-large testes (testes 

were classified as abdominal, small, large or extra-large based on appearance and size), as these 

had significant effects on body mass, which was used as a proxy of age. We further excluded 

captures with a missing body mass measurement. Only mice under 25 grams were included 

with the aim of excluding pregnant females that may not have been recognised as such. 

Applying these criteria resulted in a set of 315 wild mouse samples from 199 individual mice. 

Body mass ranged from 5.4 to 24.9 grams (mean 16.8, median 17.2) among these captures. 

 

Data processing 

Data processing and subsequent analysis was done using R version 4.1.2 (R Core Team, 2021). 

Demultiplexed sequencing reads were processed through the DADA2 pipeline (Callahan et al., 

2016) to infer amplicon sequence variants (ASVs) and assign taxonomy using the SILVA 

rRNA database version 138. A phylogenetic tree was built using R packages DECIPHER and 

phangorn. R package iNEXT (Hsieh et al., 2016) was used to generate sample completeness 

and rarefaction curves and the read depth threshold was set where these curves plateaued, at 

4,000. Samples with a lower read depth were excluded from further analysis. Data were not 

rarefied. iNEXT was further used to measure asymptotic ASV richness and Shannon diversity. 

Singleton, doubleton, and non-gut microbial ASVs (mitochondria, chloroplasts) were removed 
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separately for lab and wild mouse datasets (sample selection for these datasets is described 

below). ASV counts were normalised to proportional abundance using R package phyloseq 

(McMurdie et al., 2013). Aerotolerance and sporulation capacity of bacterial genera were 

extracted from Bergey’s Manual of Systematics of Archaea and Bacteria and additional 

references where information was not available in the manual (Supplementary Table 1). 

Bacteria were categorised into either aerotolerants or obligate anaerobes; the latter only when 

explicitly listed obligate anaerobes. Aerotolerance and spore-forming ability were determined 

based on genus-level taxonomy, unless information was not available, in which case family-

level information was inspected and used if all genera were stated to have same aerotolerance 

and/or sporulation ability. 

 

A total of 41 unique ASVs were detected in negative controls for DNA extraction (n=52) and 

library preparation (n=14) with a maximum read count of 363 for any given control, with the 

exception of one library preparation control. This control had 255 unique ASVs and 29,300 

reads, while mean read count of biological samples was 29,235 (range 5,662–232,225, median 

26,097). All extraction controls (n=5) from the same 96-well plate had <20 reads each, 

indicating the entire plate was not contaminated during library preparation (extraction and 

library preparation negative controls were included on the plate in a randomised order, thus 

several rows and columns had negative controls). Instead, the most likely explanation is that a 

biological sample was mistakenly pipetted into the control well in addition to its designated 

well. As all extraction controls on this plate were considered negative, we retained this plate of 

samples in our analyses. 

 

We tested for the presence of any potential contaminants using the R package decontam using 

the ‘prevalence’ (presence/absence) method, in which each sequence in biological samples is 
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compared to the prevalence in negative controls (excluding the library preparation control that 

was contaminated with a biological sample, see above). A sequence was considered a 

contaminant if it reached a probability of 0.1 in the Fisher’s exact test used in decontam. 31 

contaminants were identified with this method, and filtered from the data before subsequent 

analysis. These included 10 ASVs that belonged to Muribaculaceae (unknown genus for all; 

other contaminants belonged to 14 families with 1–3 ASVs per family). 

 

Functional profiles 

MetaCyc pathways were predicted from the 16S rRNA data using Phylogenetic Investigation 

of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) version 2.5.0 pipeline 

(picrust2_pipeline.py) using default options (Douglas et al., 2020). Read counts of functional 

pathways were normalised to proportional abundance. Analysis of functional profiles was 

restricted to pathway-level due to discrepancies between functional profiles at category level 

depending on which database was used to assign functional categories. 

 

Analysis 

Differences in alpha diversity across lab and wild mice were tested with Wilcoxon rank sum 

tests with 1,000 permutations. Principal coordinate analysis was used to investigate (1) 

compositional difference of lab and wild mouse microbiotas and (2) relationship between age 

and gut microbiota composition in lab and wild mice separately using four distances: Jaccard, 

Aitchison, unweighted UniFrac and weighted UniFrac. For Aitchison distance, a centered log-

ratio (clr) transformation was performed before ordination using the R package microbiome 

(Lahti & Shetty, 2017), where zero relative abundances were replaced with a pseudocount 

(min(relative abundance/2)). 
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Beta diversity was measured with (1) marginal permutational multivariate analysis of variance 

(PERMANOVA) from the R package vegan (Oksanen et al., 2017) and (2) pairwise 

dissimilarity among samples, using R package microbiome (Lahti & Shetty, 2017). Quadratic 

plateau models from the R package easynls (Arnhold, 2017) were used to assess the 

relationship between age/body mass and (1) alpha diversity, (2) first or second axis from 

principal coordinate analyses, or (3) distance to reference early life microbiota. Reference early 

life microbiota was estimated separately for laboratory and wild mice by taking the mean 

abundance in mice under 14 days of age (lab mice) or under 10 grams of body mass (wild 

mice). 

 

Statistical differences in pairwise dissimilarity of different age groups were tested with 

Wilcoxon rank sum tests with 1,000 permutations. Taxonomic and phenotypic abundance of 

bacteria were modelled and plotted using locally weighted scatterplot smoothing (LOESS) 

regression from the R package ggplot2 (Wickham, 2016). NCBI Nucleotide Basic Local 

Alignment Search Tool (Nucleotide BLAST) was used to BLAST a single ASV that had been 

assigned taxonomy at family (Enterobacteriaceae) but not at genus level using SILVA database 

(Suppl. Table 2, Suppl. Fig. 6B).  

 

Ethical statement 

Wild mouse data collection was done under Home Office license PPL PB0178858 held at the 

University of Oxford, and with a research permit from the Islands Conservation Advisory 

Committee (ICAC), and Natural Resources Wales. Mice were not subject to intervention as 

part of this study. 
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Results and discussion 

To investigate whether trends of gut microbiota assembly are conserved between lab and wild 

settings despite differentiation in community composition and diversity, we compared early 

life gut microbiota dynamics in the widely used laboratory mouse strain C57BL/6 to that of 

wild individuals of the same species (Mus musculus), from a single well-studied population, 

living a feral existence on the Skokholm Island in Wales, UK. These wild mice are outbred and 

exposed to highly variable environmental conditions in contrast to inbred lab mice living under 

highly stable environmental conditions. We used 16S rRNA amplicon sequencing to 

characterise gut microbiota composition and predicted function from 355 faecal samples from 

40 laboratory mice (one sample per individual) and 199 wild mice (315 samples; 1–8 samples 

per individual). After removal of singletons and doubletons, a total of 7,649 amplicon sequence 

variants (ASVs) were recovered. Taxonomic assignment using SILVA rRNA gene database 

was successful for 6,481 ASVs (84.7%) at family level and 3,935 ASVs (51.4%) at genus level. 

These rates were comparable across the two systems, indicating lab and wild mice have similar 

numbers of known bacterial genera (90.0% and 84.2% ASVs assigned to family, 50.3% and 

51.7% assigned to genus, for lab and wild mice respectively). 

 

Laboratory and wild mice have distinct gut microbiotas 

First, using a randomly selected cross-sectional subset of the data, we demonstrate that 

laboratory and wild mice have taxonomically distinct gut microbiotas, as previously reported 

(Rosshart et al., 2019; Wang et al., 2014; Kreisinger et al., 2014; Wang et al., 2015). Wild mice 

had higher alpha diversity in terms of both estimated ASV richness and Shannon diversity 

(permutational Wilcoxon rank sum tests, p<0.001 for both, Fig. 1A–B). Only 7.8% of ASVs 

(484 out of 6,235 in the dataset) were detected in both lab and wild mice; however, these 

comprised on average 42.7% of wild mouse microbiota and 48.2% of lab mouse microbiota 
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(standard deviation 10.5% and 22.5%, respectively), indicating microbes shared between lab 

and wild mice form a large proportion of gut microbiota in both systems. 

 

Still, as observed in previous studies (Rosshart et al., 2019; Kreisinger et al., 2014), gut 

microbiota composition significantly differed between lab and wild mice, with samples 

clustering based on source using both non-phylogenetic (Jaccard, Aitchison) and phylogenetic 

(weighted and unweighted UniFrac) community distance metrics and on various levels of 

taxonomic resolution (Fig. 1C, Suppl. Fig. 1). Despite this, source (lab/wild) explained a very 

small amount of compositional variation in the dataset overall (0.9% in Aitchison dissimilarity, 

PERMANOVA, p=0.001; beta dispersion, F=0.0329, p=0.855), lending to the high variability 

of especially the wild mouse samples (Fig. 1C–D). 

 

Lab and wild mouse gut microbiotas resembled each other at phylum level with Firmicutes and 

Bacteroidota forming 92.9–94.0% of relative abundance in both settings at approximately 1:1 

ratio (Fig. 1E). However, compositional similarity decreased at lower taxonomic levels, such 

as family and genus (Fig. 1F–G), in line with previous work (Rosshart et al., 2019). It is 

plausible that some of these differences were driven by differential age distribution across the 

two systems. In particular, the lab mouse dataset included samples from pre-weaned 

individuals with strikingly different gut microbiota from weaned individuals (Suppl. Fig. 7A), 

while the wild mice were presumably weaned at the time of capture as they were independent 

and entering live traps (precise age and weaning status unknown). However, samples continued 

to cluster by source when excluding pre-weaned lab mice (mice <22 days of age, Suppl. Fig. 

2). Together, these data show that while a large proportion of lab and wild mouse gut 

microbiotas is formed by taxa found in both systems, compositionally these mice harbour 
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distinct gut microbiotas. Further, wild mice have higher gut microbial diversity, as expected 

from their greater environmental exposure and genetic variance. 

 

Figure 1. Comparison of laboratory and wild mouse gut microbiotas using 239 faecal samples from 40 laboratory 

and 199 wild mice (1 sample per mouse). (A–B) Alpha diversity; (A) asymptotic ASV richness and (B) asymptotic 

Shannon diversity. Statistical differences between lab and wild mice were tested with permutational Wilcoxon 

rank sum tests (***; p<0.001). (C) Principal coordinates analysis (PCoA) on weighted UniFrac distance. (D) 

Pairwise comparison on gut microbial dissimilarity on Aitchison distance in lab-lab (L-L), lab-wild (L-W) and 

wild-wild (W-W) sample pairs. (E–G) Mean relative abundance of bacterial (E) phyla, (F) families and (G) genera 

in laboratory (L) and wild (W) mice. Colour in figures A–D indicates sample source: blue = laboratory, green = 

wild, teal = lab/wild. 
 

Conserved taxon-independent gut microbiota assembly patterns 

Considering an increase in gut microbial diversity in early life has been detected in various 

host species (Bäckhead et al., 2015; Baniel et al., 2022; Frese et al., 2015; Janiak et al., 2021), 

we predicted an increase in alpha diversity during early life for both laboratory and wild mice. 

Since wild-caught mice cannot be precisely aged, we used body mass as a proxy as it has 
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previously been shown to predict age relatively accurately in wild mice, especially among very 

young individuals (Gerber et al., 2021; Gray et al., 2015; Ferrari et al., 2015). 

 

In the wild mice studied here, body mass ranged from 5.4g to 24.9g. Based on previously 

published age-mass relationships in wild or wild-derived mice (Gray et al., 2015; Ferrari et al., 

2015), the youngest wild mice in this data are estimated to be ≤13 days old. The age of 

laboratory mice in the present study ranged from 7 to 81 days. Body mass is associated with 

age also in laboratory mice (Jax, 2022a; Jax, 2022b; Spangenberg et al., 2014); however, lab 

mice are fed ad libitum and housed in an environment that is free of several common pathogens 

while wild mice are likely to undergo food shortages and infections with possible effects on 

body mass, thus age-body mass relationship varies between lab and wild mice (Jax, 2022a; Jax, 

2022b; Spangenberg et al., 2014; Ferrari et al., 2015; Gray et al., 2015). As such, use of body 

mass as a proxy of age in lab mice would not inherently make the lab and wild mouse data 

more comparable. Hence, age-related dynamics in lab mice were investigated using actual age 

rather than body mass. 

 

Age/body mass was strongly associated with alpha diversity in both lab and wild mice, with 

ASV richness increasing to a plateau by adulthood in both systems, similar to findings in Baniel 

et al. (2022). In lab mice, a noticeable plateau was detected at approximately 30 days of age 

(Fig. 2A). The plateau in ASV richness was more subtle in wild mice, occurring at around 20 

grams of body mass (Fig. 2B), corresponding to an estimated ≥23 days of age (Ferrari et al., 

2015). We then asked whether age is associated with gut microbial composition in addition to 

alpha diversity. Microbiota variability among individuals (the average Jaccard dissimilarity 

within a given age or body mass class) decreased with age in both systems; however, the 
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decrease between first and last age class was only significant in wild mice (Wilcoxon rank sum 

test, lab, p=0.2035; wild, p<0.001, Fig. 2C). 

 

An Aitchison dissimilarity ordination performed separately for lab and wild mice suggested 

age (body mass in wild mice) to be associated with the first or second axis of variation, 

explaining 22.1% and 3.4% of all gut microbial variation in lab and wild mice, respectively 

(PCoA; PCo1 for laboratory mice, PCo2 for wild mice, Fig. 2D–F; distance measure was 

selected based on which one (Jaccard/Aitchison) was most strongly associated with age in both 

lab and wild mice, Suppl. Fig. 3). Age was strongly associated with gut microbiota composition 

in lab mice up to 26 days of age (Fig. 2D), similar to that seen in alpha diversity (Fig. 2A). In 

wild mice, on the other hand, gut microbiota composition was associated with body mass up 

to around 23 grams (Fig. 2E), again closely in line with alpha diversity dynamics (Fig. 2B). 

The lower explanatory power of ‘age’ (body mass) in gut microbial variation of wild mice 

might be partly driven by the inaccuracy of body mass as an age proxy (for instance, heavier 

mice may not be older but could also be pregnant, and likewise lighter mice may have suffered 

from food shortage rather than be young), but it could also be that age signal on gut microbiota 

is weaker in the wild, where individuals are genetically diverse and exposed to variable 

environment. 

 

We further investigated gut microbiota maturation by measuring compositional dissimilarity 

to a reference microbiota of juvenile mice (measured by taking the mean of all taxa abundances 

in lab mice <14 days of age (n=5), or wild mice ≤9g of body mass (n=16), which is the 

estimated equivalent of 14 days of age; Ferrari et al., 2015; Gerber et al., 2021; Gray et al., 

2015). Dissimilarity to this token of early life increased with age, with a plateau reached at 

around 28 days of age in lab mice and around 14 grams in wild mice (corresponding to ≥23 
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days of age, Fig. 1F–G). These trends in diversity and composition suggest that gut microbiotas 

become richer within individuals but more homogenous across individuals with age in both lab 

and wild mice, consistent with findings in humans (Derrien et al., 2019) and gelada baboons 

(Baniel et al., 2022) but potentially not all mammals (Reese et al., 2021). 
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Figure 2. Taxon-independent trends in laboratory and wild mouse gut microbiota. (A–B) Quadratic plateau 

models on asymptotic ASV richness. Vertical lines indicate critical points of plateau. (A) Lab mice: R2=0.515, 

critical point of inflexion=30.2d. (B) Wild mice: R2=0.069, critical point of inflexion=21.2g. (C) Beta diversity 

(based on Jaccard dissimilarity) in lab and wild mice. Samples were assigned into three age/body mass classes at 

equal intervals. Significance was tested with permutational Wilcoxon rank sum test (***; p<0.001; ns, p=0.216). 

(D–E) Quadratic plateau models on the relationship between first (lab mice, D) or second (wild mice, E) principal 

coordinates (PCo) and age (body mass for wild mice). Ordination was performed on Aitchison dissimilarity. Y-

axes are not comparable in D and E as datasets were ordinated separately. Vertical lines indicate critical points of 

inflexion. Lab mice: R2=0.303, critical point of inflexion=26.0d. Wild mice: R2=0.329, critical point of 

inflexion=22.9g. (F–G) Quadratic plateau models on the relationship between Aitchison dissimilarity to reference 

juvenile microbiota and age (body mass for wild mice). Reference juvenile microbiota was measured separately 

for laboratory and wild mice by taking the mean of all taxa abundances in mice <14 days of age (laboratory mice, 

n=5), or ≤9g of body mass (wild mice, n=16). Vertical lines indicate critical points of inflexion. Lab mice: 

R2=0.763, critical point of inflexion=27.8d. Wild mice: R2=0.301, critical point of inflexion=14.1g. (H–I) Relative 

abundance of aerotolerant and anaerobic bacteria across age/body mass in (H) lab and (I) wild mice respectively. 

Lines are locally estimated scatterplot smoothing (LOESS) lines with 95% confidence interval bands. Anaerobic 

= obligate anaerobes, aerotolerant = everything else with known aerotolerance, unknown = bacteria with 

unknown/mixed aerotolerance. 
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As the mammalian gut becomes increasingly anoxic in early life (Albenberg et al., 2014), we 

hypothesised that the ratio between aerotolerant and anaerobic bacteria would shift in early 

life, favouring anaerobes over aerotolerant bacteria, as shown in humans (Guittar et al., 2019; 

Bäckhead et al., 2015). In lab mice, we detected a clear pattern between age and bacterial 

aerotolerance consistent with this expectation. Over the first 30 days of life, aerotolerant 

bacteria initially dominated the gut microbiota but declined in relative abundance while 

anaerobic taxa increased, until they reached approximately 1:3 ratio with anaerobic taxa 

dominating (Fig. 2H). In wild mice, we similarly detected an increase in anaerobic taxa while 

the relative abundance of aerotolerant taxa did not change with age but retained a higher 

relative abundance than in lab mice (mean relative abundance of aerotolerant taxa 29.3% in 

wild mice >15g vs 17.4% in lab mice >20d; Fig. 2I). Further, taxa with unknown/mixed 

aerotolerance decreased, plateauing at around the same time with anaerobic taxa, at around 15 

grams of body mass (Fig. 2G). 

 

The less pronounced changes in the ratio of aerotolerant and anaerobic taxa might have been 

due to the likely absence of pre-weaned individuals in the wild mouse data (lab dataset included 

pre-weaned individuals). The higher relative abundance of genera for which aerotolerance 

could not be determined may also have contributed to these somewhat different patterns (mean 

7.9% in wild mice vs 1.7% in lab mice). The higher prevalence of aerotolerant bacteria in wild 

mice could be driven by distinct microbial exposure patterns between lab and wild mice. 

Laboratory mice were housed in individually ventilated cages with limited and invariable 

exposure to environmental microbes, whereas wild mice are exposed to a large, changing pool 

of microbes in their environment (Raulo et al., 2021). As environmental microbes can be 

expected to tolerate oxygen on some level or form aerotolerant spores, wild mice are likely to 

be exposed to a higher number of aerotolerant and/or sporulating microbes. 
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There were no clear age-related patterns in the proportion of spore-forming bacteria over time 

in either system, although data for making such inferences was more limited, with a high 

proportion of bacterial genera having unknown sporulation capacity (Suppl. Fig. 4, Suppl. 

Table 1). Overall, these results suggest that while the ratio between aerotolerant and anaerobic 

bacteria differs between lab and wild populations, the relative abundance of bacteria adapted 

for anoxic conditions increases with age in both lab and wild mouse gut microbiotas. This is in 

line with the development of the mammalian gut from an aerobic to increasingly anaerobic 

environment, potentially due to depletion of oxygen by aerobic microbes alongside chemical 

reactions of the host (e.g., lipid oxidation) (Albenberg et al., 2014; Friedman et al., 2018). 

 

Conserved taxon-dependent gut microbiota assembly patterns 

Despite harbouring gut microbiotas that clearly differed in diversity and composition at lower 

taxonomic levels (Fig. 1), at the phylum level gut microbial composition of laboratory and wild 

mice was very similar (Fig. 1E), in line with previous studies (Rosshart et al., 2019; Kreisinger 

et al., 2014). We therefore compared early life dynamics of the predominant phyla (Firmicutes, 

Bacteroidota, and Proteobacteria; phyla with >2% mean relative abundance in both systems) 

across both systems. Remarkably, these dominant phyla displayed very similar early life trends 

in both systems, with the relative abundances of Firmicutes and Proteobacteria decreasing and 

that of Bacteroidota increasing (Fig. 3A–B) in early life. The ratio between Firmicutes and 

Bacteroidota relative abundance became more equal at around 25–30 days for lab mice and at 

around 15–20 grams of body mass for wild mice (corresponding to ≥17 days of age; Ferrari et 

al., 2015). 

 

This phylum-level change coincided with the shift in abundance ratio between aerobic and 

anaerobic bacteria (Fig. 2F–G), suggesting it may be related to depletion of oxygen in the gut. 
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In line, reduction in the relative abundance of Firmicutes was driven by aerotolerant 

Ligilactobacillus particularly in lab mice (Suppl. Fig. 5A–B). This taxon has been found in 

milk (Quilodran-Vega et al., 2020), thus it may represent those vertically transmitted from 

female mice to pups during lactation and the reduction in its relative abundance may reflect 

cessation of milk consumption (Qi et al., 2022). Indeed, relative abundance of Ligilactobacillus 

decreased in lab mice from an average 73.7% (46.9–90.8%) at 7–14 days of age (n=5) to an 

average 1.2% (0.1–2.4%) at 19–21 days of age (n=2), when pups were weaned (Suppl. Fig. 

5A). In lab mice that had been weaned for a minimum of 7 days (n=17), relative abundance of 

Ligilactobacillus was on average 0.3% (0.0–0.8%). Relative abundance of Ligilactobacillus 

was substantially lower in wild mice of all ages (Suppl. Fig. 5B), which would be expected if 

the bacterium was primarily transmitted during lactation, as the wild mice were weaned at time 

of trapping. Anaerobic Muribaculaceae (previously known as S24–7; unknown genus-level 

taxonomy) was a key driver of Bacteroidota relative abundance increase in both lab and wild 

mice (Suppl. Fig. 5C–D). 

 

In line with patterns seen in humans and other primates (Jokela et al., 2022; Bäckhead et al., 

2015; Baniel et al., 2022), the relative abundance of Proteobacteria decreased in both systems 

and stabilised at around 25 days of age for lab mice and at 15 grams of body mass for wild 

mice (Fig. 3A–B). Shared patterns were also observed in ASV richness. In both lab and wild 

mice, the richness of ASVs in Firmicutes and Bacteroidota increased in early life while 

Proteobacteria ASV richness remained stable (Fig. 3C–D). The increase and subsequent 

decrease in relative abundance but consistently low diversity of Proteobacteria in early life  

may reflect immune maturation, since the phylum includes several common pathogens, such 

as Salmonella and Escherichia from the Enterobacteriaceae family, and early-life immune 

maturation increases the host’s ability to suppress such pathogenic taxa. 
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Indeed, changes in the relative abundance of Proteobacteria were driven by taxa belonging to 

the Enterobacteriaceae family in both laboratory and wild mice (Suppl. Fig. 6). In laboratory 

mice, these ASVs (n=2) were from Escherichia/Shigella and Muribacter genera. In wild mice, 

reduction in Proteobacteria relative abundance was driven by a single ASV; however, genus-

level taxonomy could not be assigned with the SILVA database for this ASV (see Methods). 

A Nucleotide BLAST search of the sequence produced 100% species identity match (with 

100% query cover and 0.0 E-value) with 99 species, 83 of which belonged to Enterobacter, a 

genus with several pathogenic strains (Davin-Regli et al., 2019; other genera included 

Raoultella, Kluyvera, Klebsiella, Erwinia, Pantoea, and Cedecea). Across all lab mouse 

samples, there were only three ASVs assigned to Enterobacteriaceae, while in wild mouse 

samples there were 35 such ASVs. The presence of Enterobacteriaceae and other 

proteobacterial taxa was limited in lab mice by selective exclusion of known pathogens as per 

common practice (see Methods; Dobson et al., 2019; Scavizzi et al., 2021), such as Citrobacter 

and Salmonella (from Enterobacteriaceae), both of which were detected in wild mouse 

samples. 
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Figure 3. Age-related dynamics in bacterial phyla in (A, C) lab and (B, D) wild mice. (A–B) Relative abundance 

of predominant phyla (only phyla with >2% mean relative abundance in both systems are presented; abundances 

were measured from all taxa). (C–D) ASV richness (total count of unique ASVs) in predominant phyla. Lines are 

locally estimated scatterplot smoothing (LOESS) lines with 95% confidence interval bands. 

 

Finally, we investigated predicted functional profiles of the gut microbiota. The relative 

abundance of functional pathways had a drastic shift at 17 days of age in lab mice (Suppl. Fig. 

7C). Similarly, a compositional restructuring of bacterial genera occurred at 17 days of age 

(Suppl. Fig. 7A). Given the timing, we hypothesize these changes in lab mice to be driven by 

the initiation of solid food consumption. As laboratory mice were weaned in this study at 19–
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21 days of age but these microbiota changes precede this, the cessation of milk consumption is 

unlikely the primary driver of this compositional change. Instead, laboratory mice begin eating 

solid food at 12 days of age, when their teeth begin to erupt and develop (Jax, 2022c). No clear 

shift in functional profile nor bacterial genus composition was detected in wild mice (Suppl. 

Fig. 7B, 7D), which were all weaned. Thus, any possible dynamics preceding weaning or 

initiation of solid food consumption would not necessarily be detectable in this wild mouse 

dataset. While initiation of solid food consumption appeared to drive some compositional and 

functional changes in lab mouse gut microbiota, most age-related microbiota changes were 

detected at 1–2 weeks post weaning (corresponding to 2–3 weeks since initiation of solid food 

consumption; Fig. 2A, 2D, 2F), indicating cessation of milk consumption – rather than 

initiation of solid food consumption alone – may be an important driver of gut microbiota 

maturation. This is in line with what has been demonstrated in humans and other primates 

(Bäckhead et al., 2015; Wang et al., 2020; Stewart et al., 2018; Baniel et al., 2022). 

 

Considering laboratory mice are widely used in research on gut microbiota and its links to host 

physiology, we set out to investigate whether dynamics of gut microbiota maturation in 

laboratory mice are relatable to that in a natural population. A comparison of age-related gut 

microbial dynamics across standard laboratory mice and entirely wild mice indicated that 

several gut microbial assembly patterns are conserved across mice from these two systems 

despite them having remarkably different gut microbiotas. Gut microbiota matured during the 

first month of life (by 15–20g of body mass in wild mice, which is estimated to correspond to 

≥17 days of age; Ferrari et al., 2015). Paralleling results from humans, during this time of 

maturation, gut microbiota became more diverse within individuals but at the same time more 

homogenous across individuals and bacteria adapted to the increasingly anaerobic conditions 

of the developing gut increased in relative abundance. 
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Despite having taxonomically distinct gut microbiotas, similar trends were detected in 

compositional changes of predominant phyla. In particular, changes in relative abundance and 

richness of proteobacterial taxa presented remarkably similar trends across lab and wild mice, 

potentially reflecting maturation of the immune system. Together these results indicate a level 

of an intrinsic host programme in early life succession of the gut microbiota that transcends 

contrasting genetic and environmental backgrounds. As such, our results demonstrate that in 

the context of early life meaningful insights can be drawn from lab models. 
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Supplementary data 

 

 

Supplementary Figure 1. Principal coordinates analysis (PCoA) of 239 faecal samples from 40 laboratory and 

199 wild mice using (A) Jaccard, (B) unweighted UniFrac, and (C–F) Aitchison distances at (A–C) amplicon 

sequence variant (ASV), (D) genus, (E) family, or (F) phylum level. Colour indicates sample source (blue = 

laboratory, green = wild). 
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Supplementary Figure 2. Principal coordinates analysis (PCoA) of 227 faecal samples from 28 laboratory and 

199 wild mice using (A) Jaccard, (B) Aitchison, (C) unweighted UniFrac, and (D) weighted UniFrac distances at 

amplicon sequence variant (ASV) level. Pre-weaned lab mice have been excluded. Colour indicates sample source 

(blue = laboratory, green = wild).  
 



  Chapter III 

 138 

 
Supplementary Figure 3. First and second principal coordinates on (A–D) Jaccard and (E–H) Aitchison distance 

plotted against age in laboratory mice (blue) and body mass in wild mice (green). Lines are locally estimated 

scatterplot smoothing (LOESS) lines with 95% confidence interval bands. 
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Supplementary Figure 4. Relative abundance of sporulating (yellow) and non-sporulating (red) bacteria. 

Bacterial genera with unknown sporulation ability (grey) made up 33.3% of microbial relative abundance in both 

systems (range 0.0–99.9% in individual laboratory mice and 0.2–96.1% in wild mice). Lines are locally estimated 

scatterplot smoothing (LOESS) lines with 95% confidence interval bands. 
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Supplementary Figure 5. Relative abundance of genera from predominant phyla, (A–B) Firmicutes and (C–D) 

Bacteroidota, in (A, C) laboratory and (B, D) wild mice. Relative abundances are from the whole microbiota, 

rather than within phylum. Lines are locally estimated scatterplot smoothing (LOESS) lines. Confidence intervals 

are not plotted for easier interpretation. Lines are coloured by genus aerotolerance (red = obligate anaerobes, blue 

= aerotolerant, grey = unknown/mixed aerotolerance). Note the variable y-axes scales to aid visibility of taxa with 

low abundance. 
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Supplementary Figure 6. Relative abundance of ASVs assigned to the phylum Proteobacteria in (A) lab and (B) 

wild mouse gut microbiota. E-S=Escherichia-Shigella, M=Muribacter. 
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Supplementary Figure 7. Composition of bacterial genera and functional pathways in laboratory and wild mice. 

(A–B) Mean relative abundance of bacterial genera across each available unit of age/body mass in (A) lab and 

(B) wild mice. (C–D) Mean relative abundance of predicted functional pathways across each available unit of 

age/body mass in (C) lab and (D) wild mice. Rows are unique pathways ordered by hierarchical clustering as 

indicated with dendrogram. Colour darkness increases with relative abundance (range 0.0–2.7%). 
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Supplementary Table 1. Aerotolerance and spore-forming ability of bacterial genera detected across 

laboratory and wild mice.  Bergey’s Manual of Systematics of Archae and Bacteria alongside additional 

references (listed below) were used to determine aerotolerance (A = aerotolerant, OA = obligate anaerobe) and 

spore-forming ability (SF= spore forming, NSF= nonsporeforming). Bacteria were classified as obligate 

anaerobes only when explicitly listed as obligate anaerobes. Aerotolerance and spore-forming ability were 

determined based on genus listed in Genus. If multiple genera were assigned for a given ASV (e.g., 

“Methylobacterium-Methylorubrum”, genus based on which aerotolerance and spore-forming ability were 

determined is listed in Comments. If genus-level information was not available, family-level information was 

inspected and used if all genera from a given family were stated to have same aerotolerance and sporulation ability 

(indicated in Comments as ‘Based on -ceae’). 
Family Genus Aerotolerance Sporulation Reference Comments 

[Clostridium] 
methylpentosum group Other Unknown Unknown    
[Eubacterium] 
coprostanoligenes group Other Unknown Unknown    
67-14 Other Unknown Unknown    
A4b Other Unknown Unknown    
Abditibacteriaceae Abditibacterium Unknown Unknown    
Acetobacteraceae Acetobacter A NSF Bergey's Manual  

Acetobacteraceae Acidicaldus A Unknown 
Johnson et al., 
2006  

Acetobacteraceae Acidiphilium A NSF Bergey's Manual  
Acetobacteraceae Acidisoma A NSF Bergey's Manual  

Acetobacteraceae Endobacter A Unknown Bergey's Manual 
Based on 
Acetobacteraceae 

Acetobacteraceae Gluconobacter A NSF Bergey's Manual  

Acetobacteraceae Other A Unknown Bergey's Manual 
Based on 
Acetobacteraceae 

Acetobacteraceae Rhodovastum A Unknown Bergey's Manual 
Based on 
Acetobacteraceae 

Acetobacteraceae Roseomonas A Unknown Bergey's Manual  
Acholeplasmataceae Anaeroplasma OA Unknown Bergey's Manual  
Acholeplasmataceae Other Unknown Unknown    

Acidaminococcaceae 
Phascolarctobact
erium OA NSF Bergey's Manual  

Acidobacteriaceae 
(Subgroup 1) Edaphobacter A NSF Bergey's Manual  
Acidothermaceae Acidothermus A NSF Bergey's Manual  
Actinomycetaceae Actinomyces A NSF Bergey's Manual  
Aerococcaceae Facklamia A NSF Bergey's Manual  
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Aerococcaceae Other A NSF Bergey's Manual 
Based on 
Aerococcaceae 

Aeromonadaceae Oceanisphaera A NSF Bergey's Manual 
Based on 
Aeromonadaceae 

Akkermansiaceae Akkermansia OA Unknown Bergey's Manual  
AKYG1722 Other Unknown Unknown    
Alcaligenaceae Achromobacter A NSF Bergey's Manual  

Alcaligenaceae Alcaligenes A Unknown Bergey's Manual 
Based on 
Alcaligenaceae 

Alcaligenaceae Candidimonas A NSF Bergey's Manual  

Alcaligenaceae Eoetvoesia A NSF Bergey's Manual 
Based on 
Alcaligenaceae 

Alcaligenaceae Other A NSF Bergey's Manual 
Based on 
Alcaligenaceae 

Alcaligenaceae Paenalcaligenes A Unknown Bergey's Manual  

Alcaligenaceae Verticiella A Unknown 
Vandamme et 
al., 2015 Based on Verticia 

Alicyclobacillaceae Tumebacillus A SF Bergey's Manual  

Amoebophilaceae 
Candidatus 
Cardinium Unknown Unknown   

Anaerofustaceae Anaerofustis OA NSF Bergey's Manual  

Anaerovoracaceae 
[Eubacterium] 
brachy group OA NSF Bergey's Manual 

Based on 
Eubacterium 

Anaerovoracaceae 
[Eubacterium] 
nodatum group OA NSF Bergey's Manual 

Based on 
Eubacterium 

Anaerovoracaceae Anaerovorax OA NSF Bergey's Manual  

Anaerovoracaceae 
Family XIII 
AD3011 group A NSF Bergey's Manual 

Based on 
Anaerovorax 

Anaerovoracaceae 
Family XIII 
UCG-001 A NSF Bergey's Manual 

Based on 
Anaerovorax 

Anaerovoracaceae Other Unknown Unknown    
Anaplasmataceae Wolbachia Unknown Unknown   

Atopobiaceae 
Coriobacteriacea
e UCG-002 A NSF Bergey's Manual 

Based on 
Atopobiaceae 

Atopobiaceae 
Coriobacteriacea
e UCG-003 A NSF Bergey's Manual 

Based on 
Atopobiaceae 

Azospirillaceae Skermanella A NSF Bergey's Manual  
Bacillaceae Allobacillus Unknown Unknown   
Bacillaceae Bacillus A SF Bergey's Manual  
Bacillaceae Falsibacillus Unknown Unknown   
Bacillaceae Microaerobacter Unknown Unknown   
Bacillaceae Natronobacillus Unknown Unknown   
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Bacillaceae Other Unknown Unknown    
Bacteroidaceae Bacteroides A NSF Bergey's Manual  

Bacteroidales RF16 
group Other A NSF Bergey's Manual 

Based on 
Bacteroidales RF16 
group 

Barnesiellaceae Barnesiella OA NSF Bergey's Manual  
Barnesiellaceae Coprobacter Unknown Unknown   
Barnesiellaceae Other Unknown Unknown    
Bdellovibrionaceae Bdellovibrio A Unknown Bergey's Manual  
Beijerinckiaceae 1174-901-12 Unknown Unknown    
Beijerinckiaceae Bosea A Unknown Bergey's Manual  

Beijerinckiaceae 

Methylobacteriu
m-
Methylorubrum A NSF Bergey's Manual 

Based on 
Methylobacterium 

Beijerinckiaceae Microvirga A NSF 
Kanso & Patel, 
2003  

Beijerinckiaceae Other A NSF Bergey's Manual 
Based on 
Beijerinckiaceae 

Beijerinckiaceae Roseiarcus Unknown Unknown   
Bifidobacteriaceae Bifidobacterium A NSF Bergey's Manual  
Bradymonadaceae Bradymonas Unknown Unknown   
Brevibacteriaceae Brevibacterium A Unknown Bergey's Manual  
Brevibacteriaceae Spelaeicoccus Unknown Unknown   
Bryobacteraceae Bryobacter A NSF Bergey's Manual  
Budviciaceae Budvicia A NSF Bergey's Manual  

Butyricicoccaceae Butyricicoccus OA Unknown 
Trachsel et al., 
2018  

Butyricicoccaceae Other Unknown Unknown    
Butyricicoccaceae UCG-008 Unknown Unknown    
Butyricicoccaceae UCG-009 OA SF Bergey's Manual Based on Clostridia 
Caldicoprobacteraceae Caldicoprobacter OA SF Bergey's Manual  
Candidatus Hepatincola Other Unknown Unknown    
Carnobacteriaceae Atopostipes A NSF Bergey's Manual  
Carnobacteriaceae Carnobacterium A NSF Bergey's Manual  
Carnobacteriaceae Granulicatella A NSF Bergey's Manual  

Carnobacteriaceae 
Marinilactibacill
us A NSF Bergey's Manual  

Catellicoccaceae Catellicoccus Unknown Unknown   
Caulobacteraceae Brevundimonas A NSF Bergey's Manual  
Caulobacteraceae Caulobacter A Unknown Bergey's Manual  
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Caulobacteraceae 
Phenylobacteriu
m A NSF Bergey's Manual  

Cellulomonadaceae Cellulomonas A NSF Bergey's Manual  
Cellulomonadaceae Oerskovia A NSF Bergey's Manual  
Cellulomonadaceae Paraoerskovia A NSF Bergey's Manual  
Cellulomonadaceae Pseudactinotalea Unknown Unknown   
Cellvibrionaceae Cellvibrio A Unknown Bergey's Manual  

Chitinophagaceae Chitinophaga A Unknown Bergey's Manual 
Based on 
Chitinophagaceae 

Chitinophagaceae Haoranjiania A Unknown Bergey's Manual  
Chitinophagaceae Other A Unknown Bergey's Manual  
Chitinophagaceae Segetibacter A Unknown Bergey's Manual  

Christensenellaceae Christensenella OA Unknown 
Morotomi et al., 
2012  

Christensenellaceae 
Christensenellac
eae R-7 group OA Unknown 

Morotomi et al., 
2013  

Christensenellaceae Other OA Unknown 
Morotomi et al., 
2014  

Chroococcidiopsaceae Aliterella OA Unknown   

Chthoniobacteraceae 
Candidatus 
Udaeobacter A NSF Bergey's Manual  

Clostridiaceae 
Candidatus 
Arthromitus OA SF 

Schnupf et al., 
2015  

Clostridiaceae 
Clostridium 
sensu stricto 1 OA SF Bergey's Manual 

Based on 
Clostridiaceae 

Clostridiaceae 
Clostridium 
sensu stricto 5 OA SF Bergey's Manual 

Based on 
Clostridiaceae 

Clostridiaceae 
Clostridium 
sensu stricto 6 OA SF Bergey's Manual 

Based on 
Clostridiaceae 

Clostridiaceae 
Clostridium 
sensu stricto 7 OA SF Bergey's Manual 

Based on 
Clostridiaceae 

Clostridiaceae Other OA SF Bergey's Manual 
Based on 
Clostridiaceae 

Comamonadaceae Comamonas A Unknown Bergey's Manual  
Comamonadaceae Lampropedia A Unknown Bergey's Manual  
Comamonadaceae Limnohabitans A Unknown Bergey's Manual  

Comamonadaceae Other Unknown NSF Bergey's Manual 
Based on 
Comamonadaceae 

Comamonadaceae Polaromonas A Unknown Bergey's Manual  

Comamonadaceae Simplicispira Unknown NSF Bergey's Manual 
Based on 
Comamonadaceae 

Comamonadaceae Variovorax A NSF Bergey's Manual  
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Comamonadaceae Xenophilus Unknown NSF Bergey's Manual 
Based on 
Comamonadaceae 

Coralloluteibacterium Other Unknown Unknown    
Coriobacteriaceae Collinsella OA NSF Bergey's Manual  
Coriobacteriales Incertae 
Sedis Other Unknown Unknown    
Corynebacteriaceae Corynebacterium A NSF Bergey's Manual  
Corynebacteriales 
Incertae Sedis Tomitella Unknown Unknown   
Crocinitomicaceae Fluviicola A Unknown Bergey's Manual  
Crocinitomicaceae Other Unknown Unknown    

Cryomorphaceae Other A NSF Bergey's Manual 
Based on 
Cryomorphaceae 

Cyanobiaceae 
Synechococcus 
CC9902 Unknown Unknown   

Cyclobacteriaceae Algoriphagus A Unknown Bergey's Manual  

Cyclobacteriaceae Other A NSF Bergey's Manual 
Based on 
Cyclobacteriaceae 

Deferribacteraceae Mucispirillum A NSF Bergey's Manual 
Based on 
Deferribacteraceae 

Defluviitaleaceae 
Defluviitaleacea
e UCG-011 A SF Bergey's Manual 

Based on 
Defluviitaleaceae 

Demequinaceae Demequina Unknown Unknown   
Dermabacteraceae Brachybacterium A NSF Bergey's Manual  

Dermabacteraceae Helcobacillus Unknown NSF Bergey's Manual 
Based on 
Dermabacteraceae 

Dermacoccaceae Flexivirga A NSF Bergey's Manual 
Based on 
Dermacoccaceae 

Dermacoccaceae Other A NSF Bergey's Manual 
Based on 
Dermacoccaceae 

Desulfovibrionaceae Bilophila OA NSF Bergey's Manual  
Desulfovibrionaceae Desulfovibrio OA NSF Bergey's Manual  
Desulfovibrionaceae Lawsonia OA NSF Bergey's Manual  

Desulfovibrionaceae Other OA NSF Bergey's Manual 

Based on 
Desulfovibrionacea
e 

DEV007 Other Unknown Unknown    
Devosiaceae Arsenicitalea Unknown Unknown   
Devosiaceae Devosia A NSF Bergey's Manual  
Devosiaceae Other Unknown Unknown    
Devosiaceae Pelagibacterium Unknown Unknown   
Dietziaceae Dietzia A NSF Bergey's Manual  



  Chapter III 

 148 

Diplorickettsiaceae Diplorickettsia A NSF 
Mediannikov et 
al., 2010  

Diplorickettsiaceae Other Unknown Unknown    
Diplorickettsiaceae Rickettsiella A NSF Bergey's Manual  
Dysgonomonadaceae Dysgonomonas A Unknown Bergey's Manual  
Eggerthellaceae Adlercreutzia OA NSF Bergey's Manual  

Eggerthellaceae Asaccharobacter A NSF Bergey's Manual 
Based on 
Eggerthellaceae 

Eggerthellaceae DNF00809 Unknown Unknown Bergey's Manual 
Based on 
Eggerthellaceae 

Eggerthellaceae Eggerthella OA NSF Bergey's Manual  

Eggerthellaceae Enterorhabdus A NSF 
Clavel et al., 
2009  

Eggerthellaceae Gordonibacter OA NSF 

Wurdemann et 
al., 2009, 
Bergey's Manual  

Eggerthellaceae Other A NSF Bergey's Manual 
Based on 
Eggerthellaceae 

Eggerthellaceae Parvibacter A NSF 
Clavel et al., 
2013  

Enterobacteriaceae Aquamonas Unknown NSF 

Bergey's 
manual, 
Dorlands 
medical 
dictionary 

Based on 
Enterobacteriaceae 

Enterobacteriaceae Atlantibacter Unknown NSF 

Bergey's 
manual, 
Dorlands 
medical 
dictionary 

Based on 
Enterobacteriaceae 

Enterobacteriaceae Buttiauxella A Unknown Bergey's Manual  
Enterobacteriaceae Cedecea A Unknown Bergey's Manual  
Enterobacteriaceae Citrobacter A Unknown Bergey's Manual  

Enterobacteriaceae 
Escherichia-
Shigella A NSF Bergey's Manual 

Based on 
Escherichia 

Enterobacteriaceae Klebsiella A Unknown Bergey's Manual  
Enterobacteriaceae Kluyvera A Unknown Bergey's Manual  

Enterobacteriaceae Kosakonia Unknown NSF 

Bergey's 
manual, 
Dorlands 
medical 
dictionary 

Based on 
Enterobacteriaceae 

Enterobacteriaceae Other Unknown NSF 

Bergey's 
manual, 
Dorlands 
medical 
dictionary 

Based on 
Enterobacteriaceae 
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Enterobacteriaceae Raoultella Unknown NSF 

Bergey's 
manual, 
Dorlands 
medical 
dictionary 

Based on 
Enterobacteriaceae 

Enterobacteriaceae Salmonella A Unknown Bergey's Manual  
Enterobacteriaceae Yokenella A NSF Bergey's Manual  
Enterococcaceae Enterococcus A NSF Bergey's Manual  
Enterococcaceae Other Unknown Unknown    
Entomoplasmatales 
Incertae Sedis 

Candidatus 
Hepatoplasma Unknown Unknown   

Erwiniaceae Erwinia A NSF Bergey's Manual  
Erwiniaceae Other Unknown Unknown    
Erwiniaceae Pantoea A NSF Bergey's Manual  
Erwiniaceae Siccibacter Unknown Unknown   
Erwiniaceae Tatumella A NSF Bergey's Manual  

Erysipelatoclostridiaceae 
Candidatus 
Stoquefichus A NSF Bergey's Manual 

Based on 
Erysipelatoclostridi
aceae 

Erysipelatoclostridiaceae Catenibacterium OA NSF Bergey's Manual  
Erysipelatoclostridiaceae Coprobacillus OA NSF Bergey's Manual  

Erysipelatoclostridiaceae 
Erysipelatoclostr
idium OA NSF 

Yutin & 
Galperin, 2013  

Erysipelatoclostridiaceae 
Erysipelotrichac
eae UCG-003 A NSF Bergey's Manual 

Based on 
Erysipelatoclostridi
aceae 

Erysipelatoclostridiaceae Other A NSF Bergey's Manual 

Based on 
Erysipelatoclostridi
aceae 

Erysipelotrichaceae 
[Clostridium] 
innocuum group A NSF Bergey's Manual 

Based on 
Erysipelotrichaceae 

Erysipelotrichaceae Dubosiella OA NSF Cox et al., 2017  

Erysipelotrichaceae 
Erysipelotrichac
eae UCG-008 A NSF Bergey's Manual 

Based on 
Erysipelotrichaceae 

Erysipelotrichaceae Faecalibaculum OA NSF 
Chang et al., 
2015  

Erysipelotrichaceae Faecalitalea A NSF Bergey's Manual 
Based on 
Erysipelotrichaceae 

Erysipelotrichaceae Holdemanella A NSF Bergey's Manual 
Based on 
Erysipelotrichaceae 

Erysipelotrichaceae Ileibacterium A NSF Bergey's Manual 
Based on 
Erysipelotrichaceae 

Erysipelotrichaceae Other A NSF Bergey's Manual 
Based on 
Erysipelotrichaceae 
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Erysipelotrichaceae Turicibacter A NSF Bergey's Manual  

Erysipelotrichaceae ZOR0006 A NSF Bergey's Manual 
Based on 
Erysipelotrichaceae 

Eubacteriaceae Other OA NSF Bergey's Manual 
Based on 
Eubacteriaceae 

Euzebyaceae Other Unknown Unknown    
Exiguobacteraceae Exiguobacterium A NSF Bergey's Manual  
Family XI Other Unknown Unknown    
Family XI Tissierella OA NSF Bergey's Manual  
Flavobacteriaceae Aequorivita A NSF Bergey's Manual  

Flavobacteriaceae Aquibacter A NSF Bergey's Manual 
Based on 
Flavobacteriaceae 

Flavobacteriaceae Arenibacter A NSF Bergey's Manual  

Flavobacteriaceae Aurantiacicella A NSF Bergey's Manual 
Based on 
Flavobacteriaceae 

Flavobacteriaceae Flavobacterium A NSF Bergey's Manual  
Flavobacteriaceae Gelidibacter A NSF Bergey's Manual  
Flavobacteriaceae Gillisia A NSF Bergey's Manual  

Flavobacteriaceae Imtechella A NSF Bergey's Manual 
Based on 
Flavobacteriaceae 

Flavobacteriaceae 
Leeuwenhoekiell
a A Unknown Bergey's Manual  

Flavobacteriaceae Muricauda A NSF Bergey's Manual  
Flavobacteriaceae Myroides A NSF Bergey's Manual  

Flavobacteriaceae Other A NSF Bergey's Manual 
Based on 
Flavobacteriaceae 

Flavobacteriaceae Subsaxibacter A NSF Bergey's Manual  
Frankiaceae Frankia A SF Bergey's Manual  
Frankiaceae Jatrophihabitans A NSF Bergey's Manual  
Fusobacteriaceae Cetobacterium A NSF Bergey's Manual  
Fusobacteriaceae Fusobacterium OA NSF Bergey's Manual  
Gaiellaceae Gaiella A NSF Bergey's Manual  

Garciellaceae 
Rhabdanaerobiu
m OA SF Bergey's Manual  

Gemellaceae Gemella A NSF Bergey's Manual  

Geminicoccaceae 
Candidatus 
Alysiosphaera Unknown Unknown   

Geminicoccaceae Geminicoccus Unknown Unknown   
Geminicoccaceae Other Unknown Unknown    
Gemmataceae Fimbriiglobus A Unknown Bergey's Manual  
Gemmataceae Gemmata A Unknown Bergey's Manual  
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Gemmataceae Other A Unknown Bergey's Manual 
Based on 
Gemmataceae 

Gemmatimonadaceae Gemmatimonas A NSF Bergey's Manual  
Gemmatimonadaceae Other Unknown Unknown    

Geodermatophilaceae Antricoccus A SF Bergey's Manual 

Based on 
Geodermatophilace
ae 

Geodermatophilaceae Blastococcus A NSF Bergey's Manual  
Geodermatophilaceae Klenkia A NSF Bergey's Manual  
Geodermatophilaceae Modestobacter A NSF Bergey's Manual  
Gottschalkia Other Unknown Unknown    
Granulosicoccaceae Granulosicoccus Unknown Unknown   
Hafniaceae Edwardsiella A Unknown Bergey's Manual  

Hafniaceae 

Hafnia-
Obesumbacteriu
m A Unknown Bergey's Manual 

Based on 
Hafniaceae 

Halomonadaceae 
Chromohalobact
er A NSF Bergey's Manual  

Halomonadaceae Halomonas A NSF Bergey's Manual  
Halomonadaceae Salinicola A NSF Bergey's Manual  
Helicobacteraceae Helicobacter A NSF Bergey's Manual  
Hydrogenoanaerobacteri
um Other Unknown Unknown    

Hyphomicrobiaceae 
Hyphomicrobiu
m A NSF Bergey's Manual  

Hyphomicrobiaceae Pedomicrobium A Unknown Bergey's Manual  
Iamiaceae Iamia A Unknown Bergey's Manual  

Ilumatobacteraceae 
CL500-29 
marine group Unknown Unknown   

Ilumatobacteraceae Ilumatobacter Unknown Unknown   
Ilumatobacteraceae Other Unknown Unknown    
Intrasporangiaceae Humibacillus A NSF Bergey's Manual  
Intrasporangiaceae Intrasporangium A NSF Bergey's Manual  
Intrasporangiaceae Janibacter A NSF Bergey's Manual  
Intrasporangiaceae Knoellia A NSF Bergey's Manual  
Intrasporangiaceae Oryzihumus A NSF Bergey's Manual  

Intrasporangiaceae Other A NSF Bergey's Manual 
Based on 
Intrasporangiaceae 

Intrasporangiaceae 
Pedococcus-
Phycicoccus A NSF Bergey's Manual 

Based on 
Intrasporangiaceae 

Isosphaeraceae Aquisphaera A Unknown Bergey's Manual  
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Isosphaeraceae 
Candidatus 
Nostocoida A Unknown Bergey's Manual 

Based on 
Isosphaeraceae 

Isosphaeraceae Isosphaera A Unknown Bergey's Manual  

Isosphaeraceae Other A Unknown Bergey's Manual 
Based on 
Isosphaeraceae 

Isosphaeraceae Paludisphaera A Unknown Bergey's Manual  
Isosphaeraceae Singulisphaera A Unknown Bergey's Manual  

Isosphaeraceae Tundrisphaera A Unknown Bergey's Manual 
Based on 
Isosphaeraceae 

JG30-KF-CM45 Other Unknown Unknown    
Kaistiaceae Kaistia Unknown Unknown   
Kineosporiaceae Angustibacter A NSF Bergey's Manual  
Kineosporiaceae Other Unknown Unknown    
Kineosporiaceae Quadrisphaera Unknown NSF Bergey's Manual  

Ktedonobacteraceae G12-WMSP1 A SF Bergey's Manual 

Based on 
Ktedonobacteracea
e 

Ktedonobacteraceae HSB OF53-F07 A SF Bergey's Manual 

Based on 
Ktedonobacteracea
e 

Labraceae Labrys A Unknown Bergey's Manual  

Lachnospiraceae 28-Apr OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae 

[Acetivibrio] 
ethanolgignens 
group OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 
[Eubacterium] 
eligens group OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 
[Eubacterium] 
fissicatena group OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 
[Eubacterium] 
hallii group OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 

[Eubacterium] 
oxidoreducens 
group OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 

[Eubacterium] 
ventriosum 
group OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 

[Eubacterium] 
xylanophilum 
group OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 
[Ruminococcus] 
gauvreauii group OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 
[Ruminococcus] 
gnavus group OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 
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Lachnospiraceae 
[Ruminococcus] 
torques group OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae A2 OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Acetatifactor OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Agathobacter OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae 
Anaerosporobact
er OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae Anaerostipes OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae ASF356 OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Blautia OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Cellulosilyticum OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Coprococcus OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Cuneatibacter OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Dorea OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Eisenbergiella OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Epulopiscium OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Fusicatenibacter OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae GCA-900066575 OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Hungatella OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae 
Lachnoclostridiu
m OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 
Lachnospiraceae 
FCS020 group OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 
Lachnospiraceae 
NK4A136 group OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 
Lachnospiraceae 
NK4B4 group OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 
Lachnospiraceae 
UCG-001 OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 
Lachnospiraceae 
UCG-002 OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 
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Lachnospiraceae 
Lachnospiraceae 
UCG-004 OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 
Lachnospiraceae 
UCG-006 OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 
Lachnospiraceae 
UCG-008 OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae 
Lachnospiraceae 
UCG-010 OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae Marvinbryantia OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Murimonas OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Other OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae 
possible genus 
Sk018 OA Unknown Bergey's Manual 

Based on 
Lachnospiraceae 

Lachnospiraceae Robinsoniella OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Roseburia OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Sellimonas OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Tuzzerella OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lachnospiraceae Tyzzerella OA Unknown Bergey's Manual 
Based on 
Lachnospiraceae 

Lactobacillaceae Agrilactobacillus Unknown NSF Bergey's Manual 
Based on 
Lactobacillaceae 

Lactobacillaceae 
Bombilactobacill
us Unknown NSF Bergey's Manual 

Based on 
Lactobacillaceae 

Lactobacillaceae 
Companilactoba
cillus Unknown NSF Bergey's Manual 

Based on 
Lactobacillaceae 

Lactobacillaceae Dellaglioa Unknown NSF Bergey's Manual 
Based on 
Lactobacillaceae 

Lactobacillaceae HT002 Unknown NSF Bergey's Manual 
Based on 
Lactobacillaceae 

Lactobacillaceae 
Lacticaseibacillu
s Unknown NSF Bergey's Manual 

Based on 
Lactobacillaceae 

Lactobacillaceae 
Lactiplantibacill
us Unknown NSF Bergey's Manual 

Based on 
Lactobacillaceae 

Lactobacillaceae Lactobacillus A NSF Bergey's Manual  

Lactobacillaceae Latilactobacillus Unknown NSF Bergey's Manual 
Based on 
Lactobacillaceae 

Lactobacillaceae Leuconostoc Unknown NSF Bergey's Manual  

Lactobacillaceae Levilactobacillus Unknown NSF Bergey's Manual 
Based on 
Lactobacillaceae 
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Lactobacillaceae Ligilactobacillus A Mixed 

Marta et al., 
2021; Zheng et 
al., 2020; 
Mozota et al., 
2021  

Lactobacillaceae 
Limosilactobacil
lus Unknown Unknown 

Zheng et a., 
2020  

Lactobacillaceae Other Unknown NSF Bergey's Manual 
Based on 
Lactobacillaceae 

Lactobacillaceae 
Paucilactobacillu
s Unknown NSF Bergey's Manual 

Based on 
Lactobacillaceae 

Lactobacillaceae Weissella A NSF Bergey's Manual  
Legionellaceae Legionella A SF Bergey's Manual  

Leptolyngbyaceae 
Leptolyngbya 
PCC-6306 Unknown Unknown   

Listeriaceae Listeria A NSF Bergey's Manual 
Based on 
Listeriaceae 

Marinifilaceae Butyricimonas Unknown Unknown    

Marinifilaceae Odoribacter OA unknown 
Hardham et al., 
2008  

Marinifilaceae Other Unknown Unknown    

Marinifilaceae 
Sanguibacteroide
s Unknown Unknown   

Marinilabiliaceae Natronoflexus Unknown Unknown Bergey's Manual 
Based on 
Marinilabiliaceae 

Marinilabiliaceae Other Unknown Unknown Bergey's Manual 
Based on 
Marinilabiliaceae 

Marinobacteraceae Marinobacter A NSF Bergey's Manual  
Methyloligellaceae Methyloligella Unknown Unknown   
Methyloligellaceae Other Unknown Unknown    
Microbacteriaceae Agrococcus A NSF Bergey's Manual  
Microbacteriaceae Amnibacterium A NSF Bergey's Manual  
Microbacteriaceae Curtobacterium A SF Bergey's Manual  
Microbacteriaceae Frigoribacterium A NSF Bergey's Manual  

Microbacteriaceae 
Homoserinibacte
r A NSF Bergey's Manual  

Microbacteriaceae Leucobacter Unknown NSF Bergey's Manual  
Microbacteriaceae Lysinimonas A NSF Bergey's Manual  
Microbacteriaceae Microbacterium A NSF Bergey's Manual  
Microbacteriaceae Microterricola A Unknown Bergey's Manual  
Microbacteriaceae Mycetocola A NSF Bergey's Manual  

Microbacteriaceae Other A NSF Bergey's Manual 
Based on 
Microbacteriaceae 
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Microbacteriaceae 
Parafrigoribacter
ium A NSF Bergey's Manual 

Based on 
Microbacteriaceae 

Microbacteriaceae Plantibacter A NSF Bergey's Manual  

Microbacteriaceae 
Pseudoclavibacte
r A NSF Bergey's Manual  

Micrococcaceae Arthrobacter A NSF Bergey's Manual  
Micrococcaceae Glutamicibacter A NSF Bergey's Manual  
Micrococcaceae Kocuria A NSF Bergey's Manual  
Micrococcaceae Nesterenkonia A NSF Bergey's Manual  
Micrococcaceae Other Unknown Unknown    

Micrococcaceae 
Paeniglutamiciba
cter A NSF Bergey's Manual  

Micrococcaceae 
Pseudarthrobacte
r A NSF Bergey's Manual  

Micromonosporaceae Actinoplanes A SF Bergey's Manual  
Micromonosporaceae Micromonospora A SF Bergey's Manual  

Micromonosporaceae Other A SF Bergey's Manual 

Based on 
Micromonosporace
ae 

Micromonosporaceae Xiangella A Unknown Bergey's Manual  
Monoglobaceae Monoglobus OA NSF Kim et al., 2017  
Moraxellaceae Acinetobacter A NSF Bergey's Manual  

Moraxellaceae Alkanindiges A NSF Bergey's Manual 
Based on 
Moraxellaceae 

Moraxellaceae Enhydrobacter A NSF Bergey's Manual  
Moraxellaceae Psychrobacter A Unknown Bergey's Manual  
Morganellaceae Cosenzaea Unknown Unknown   
Morganellaceae Moellerella A Unknown Bergey's Manual  
Morganellaceae Morganella A NSF Bergey's Manual  
Morganellaceae Other Unknown Unknown    
Morganellaceae Proteus A Unknown Bergey's Manual  
Morganellaceae Providencia A Unknown Bergey's Manual  
Muribaculaceae Muribaculum OA NSF Bergey's Manual  

Muribaculaceae Other OA Unknown 
Lagkouvardos et 
al., 2019  

MWH-CFBk5 Other Unknown Unknown    
Mycobacteriaceae Mycobacterium A NSF Bergey's Manual  
Mycobacteriaceae Other Unknown Unknown   

Mycoplasmataceae 
Candidatus 
Bacilloplasma A Unknown Bergey's Manual 

Based on 
Mycoplasmataceae 

Mycoplasmataceae Mycoplasma Unknown Unknown Bergey's Manual  
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Mycoplasmataceae Other A Unknown Bergey's Manual 
Based on 
Mycoplasmataceae 

Myxococcaceae P3OB-42 Unknown Unknown   
Nakamurellaceae Nakamurella A NSF Bergey's Manual  
Nannocystaceae Enhygromyxa Unknown Unknown   

Neisseriaceae Other A Unknown Bergey's Manual 
Based on 
Neisseriaceae 

Neisseriaceae Vitreoscilla A NSF Bergey's Manual  
Nitrospiraceae Nitrospira A Unknown Bergey's Manual  
Nocardiaceae Gordonia A NSF Bergey's Manual  
Nocardiaceae Nocardia A SF Bergey's Manual  

Nocardiaceae Other A Unknown Bergey's Manual 
Based on 
Nocardiaceae 

Nocardiaceae Rhodococcus A Unknown Bergey's Manual  
Nocardiaceae Williamsia A NSF Bergey's Manual  
Nocardioidaceae Aeromicrobium A NSF Bergey's Manual  
Nocardioidaceae Marmoricola A NSF Bergey's Manual  

Nocardioidaceae Mumia A SF Bergey's Manual 
Based on 
Nocardioidaceae 

Nocardioidaceae Nocardioides A NSF Bergey's Manual  

Nocardioidaceae Other A Unknown Bergey's Manual 
Based on 
Nocardioidaceae 

Nocardiopsaceae Nocardiopsis A SF Bergey's Manual  

Nostocaceae 
Calothrix PCC-
6303 Unknown Unknown   

Nostocaceae Other Unknown Unknown    

Nostocaceae 
Rivularia PCC-
7116 Unknown Unknown Bergey's Manual Based on Rivularia 

Oligoflexaceae Oligoflexus Unknown Unknown   

Oscillospiraceae Colidextribacter OA NSF 
Ricaboni et al., 
2017  

Oscillospiraceae Flavonifractor OA SF Bergey's Manual 
Based on 
Eubacterium 

Oscillospiraceae Intestinimonas OA SF 

Kläring et al., 
2013, Bergey's 
manual  

Oscillospiraceae NK4A214 group OA Unknown 
Tindal et al., 
2019  

Oscillospiraceae Oscillibacter OA NSF Iino et al., 2007  
Oscillospiraceae Oscillospira OA SF Bergey's Manual  

Oscillospiraceae Other A Unknown Bergey's Manual 
Based on 
Oscillospiraceae 
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Oscillospiraceae Papillibacter OA NSF Bergey's Manual  

Oscillospiraceae 
Pseudoflavonifra
ctor Unknown Unknown   

Oscillospiraceae UCG-002 Unknown Unknown    
Oscillospiraceae UCG-003 Unknown Unknown    

Oscillospiraceae UCG-005 OA Unknown Bergey's Manual 
Based on 
Oscillospiraceae 

Oscillospiraceae UCG-007 Unknown Unknown    
Oxalobacteraceae Duganella A NSF Bergey's Manual  
Oxalobacteraceae Massilia A NSF Bergey's Manual  

Oxalobacteraceae 
Noviherbaspirill
um A Unknown Bergey's Manual 

Based on 
Oxalobacteraceae 

Oxalobacteraceae Oxalicibacterium A Unknown Bergey's Manual 
Based on 
Oxalobacteraceae 

Oxalobacteraceae Oxalobacter OA NSF Bergey's Manual  

Oxalobacteraceae 
Paraherbaspirillu
m A Unknown Bergey's Manual 

Based on 
Oxalobacteraceae 

Paenibacillaceae Ammoniphilus A NSF Bergey's Manual  
Paenibacillaceae Paenibacillus A SF Bergey's Manual  
Paludibacteraceae H1 Unknown Unknown   
Pasteurellaceae Conservatibacter Unknown Unknown Bergey's Manual  

Pasteurellaceae 
Mesocricetibacte
r A Unknown Bergey's Manual  

Pasteurellaceae Muribacter Unknown Unknown Bergey's Manual  

Pasteurellaceae Rodentibacter A unknown 

Bergey's 
Manual, Benga, 
Sager & 
Christensen 
2018  

Pectobacteriaceae Nissabacter Unknown Unknown   

Peptococcaceae Other OA Unknown Bergey's Manual 
Based on 
Peptococcaceae 

Peptococcaceae Peptococcus OA NSF Bergey's Manual  

Peptostreptococcaceae 
[Eubacterium] 
tenue group Unknown Unknown    

Peptostreptococcaceae Clostridioides A Unknown Bergey's Manual 

Based on 
Peptostreptococcac
eae 

Peptostreptococcaceae Intestinibacter A Unknown Bergey's Manual 

Based on 
Peptostreptococcac
eae 

Peptostreptococcaceae Paeniclostridium A Unknown Bergey's Manual 

Based on 
Peptostreptococcac
eae 
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Peptostreptococcaceae Paraclostridium A SF Bergey's Manual  

Peptostreptococcaceae Romboutsia OA Unknown 
Gerritsen et al., 
BioRxiv 2019  

Peptostreptococcaceae Sporacetigenium OA NSF Bergey's Manual  

Peptostreptococcaceae Terrisporobacter A Unknown Bergey's Manual 

Based on 
Peptostreptococcac
eae 

Phormidesmiaceae 
Phormidesmis 
ANT.LACV5.1 Unknown Unknown   

Phormidiaceae Other Unknown Unknown    

Phormidiaceae 
Tychonema 
CCAP 1459-11B Unknown Unknown    

Pirellulaceae Blastopirellula A NSF Bergey's Manual  
Pirellulaceae Bythopirellula Unknown Unknown    
Pirellulaceae Other Unknown Unknown    

Pirellulaceae Pir4 lineage Unknown Unknown Bergey's Manual 
Based on 
Pirellulaceae 

Pirellulaceae Pirellula A Unknown Bergey's Manual  
Pirellulaceae Rhodopirellula A NSF Bergey's Manual  
Pirellulaceae Rubripirellula A Unknown Bergey's Manual  
Planococcaceae Kurthia A NSF Bergey's Manual  
Planococcaceae Lysinibacillus A SF Bergey's Manual  
Planococcaceae Other Unknown Unknown   

Planococcaceae 
Paenisporosarcin
a A SF 

Krish murthi et 
al., 2009  

Planococcaceae Planomicrobium A NSF Bergey's Manual  

Planococcaceae Psychrobacillus A Unknown Bergey's Manual 
Based on 
Planococcaceae 

Planococcaceae Solibacillus A SF 
Krish murthi et 
al., 2009  

Planococcaceae Sporosarcina A SF Bergey's Manual  

Polyangiaceae Aetherobacter A Unknown 
Garcia et al. 
2016  

Porphyromonadaceae 
Falsiporphyromo
nas OA Unknown Bergey's Manual 

Based on 
Porphyromonadace
ae 

Porphyromonadaceae Other OA Unknown Bergey's Manual 

Based on 
Porphyromonadace
ae 

Prevotellaceae Alloprevotella OA NSF Bergey's Manual 
Based on 
Prevotellaceae 

Prevotellaceae Other A NSF Bergey's Manual 
Based on 
Prevotellaceae 
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Prevotellaceae Paraprevotella OA NSF Bergey's Manual 
Based on 
Prevotellaceae 

Prevotellaceae Prevotella_7 A NSF Bergey's Manual 
Based on 
Prevotella 

Prevotellaceae Prevotella_9 A NSF    

Prevotellaceae 
Prevotellaceae 
UCG-001 A NSF Bergey's Manual 

Based on 
Prevotellaceae 

Prevotellaceae 
Prevotellaceae 
UCG-004 A NSF Bergey's Manual 

Based on 
Prevotellaceae 

Promicromonosporaceae Isoptericola A NSF Bergey's Manual  
Propionibacteriaceae Friedmanniella A NSF Bergey's Manual  
Propionibacteriaceae Marinilutecoccus Unknown Unknown   
Propionibacteriaceae Microlunatus A NSF Bergey's Manual  
Propionibacteriaceae Other Unknown Unknown    
Propionibacteriaceae Tessaracoccus A NSF Bergey's Manual  
Pseudomonadaceae Pseudomonas A Unknown Bergey's Manual  

Pseudonocardiaceae 
Actinomycetosp
ora A SF Bergey's Manual  

Pseudonocardiaceae Actinophytocola A Unknown Bergey's Manual 

Based on 
Pseudonocardiacea
e 

Pseudonocardiaceae Crossiella A Unknown Bergey's Manual 

Based on 
Pseudonocardiacea
e 

Pseudonocardiaceae 
Kibdelosporangi
um A Unknown Bergey's Manual  

Pseudonocardiaceae Other A Unknown Bergey's Manual 

Based on 
Pseudonocardiacea
e 

Pseudonocardiaceae Pseudonocardia A SF Bergey's Manual  
Puniceicoccaceae Cerasicoccus A Unknown Bergey's Manual  
Reyranellaceae Reyranella Unknown Unknown   
Rhizobiaceae Ahrensia A NSF Bergey's Manual  

Rhizobiaceae Aliihoeflea A Unknown Bergey's Manual 
Based on 
Rhizobiaceae 

Rhizobiaceae 

Allorhizobium-
Neorhizobium-
Pararhizobium-
Rhizobium A NSF Bergey's Manual 

Based on 
Rhizobium and 
Allorhizobium 

Rhizobiaceae Aminobacter A NSF Bergey's Manual  
Rhizobiaceae Aquamicrobium Unknown NSF Bergey's Manual  

Rhizobiaceae Aurantimonas A Unknown Bergey's Manual 
Based on 
Rhizobiaceae 
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Rhizobiaceae Aureimonas A Unknown Bergey's Manual 
Based on 
Rhizobiaceae 

Rhizobiaceae Brucella A NSF Bergey's Manual  

Rhizobiaceae Corticibacterium A Unknown Bergey's Manual 
Based on 
Rhizobiaceae 

Rhizobiaceae 
Falsochrobactru
m Unknown NSF Bergey's Manual  

Rhizobiaceae Hoeflea A Unknown Bergey's Manual 
Based on 
Rhizobiaceae 

Rhizobiaceae Jiella A Unknown Bergey's Manual 
Based on 
Rhizobiaceae 

Rhizobiaceae Mesorhizobium A NSF Bergey's Manual  

Rhizobiaceae Neorhizobium A Unknown Bergey's Manual 
Based on 
Rhizobiaceae 

Rhizobiaceae Ochrobactrum A Unknown Bergey's Manual  

Rhizobiaceae Other A Unknown Bergey's Manual 
Based on 
Rhizobiaceae 

Rhizobiaceae 
Paenochrobactru
m A NSF Bergey's Manual  

Rhizobiaceae Phyllobacterium A Unknown Bergey's Manual  

Rhizobiaceae 
Pseudaminobact
er A Unknown Bergey's Manual  

Rhizobiaceae Shinella A Unknown Bergey's Manual 
Based on 
Rhizobiaceae 

Rhizobiaceae Tianweitania A Unknown Bergey's Manual 
Based on 
Rhizobiaceae 

Rhodanobacteraceae Chujaibacter Unknown Unknown   
Rhodanobacteraceae Dokdonella Unknown Unknown   
Rhodanobacteraceae Luteibacter Unknown Unknown   
Rhodanobacteraceae Mizugakiibacter Unknown Unknown   
Rhodanobacteraceae Oleiagrimonas Unknown Unknown   
Rhodanobacteraceae Rhodanobacter A NSF Bergey's Manual  

Rhodobacteraceae Actibacterium A Unknown Bergey's Manual 
Based on 
Rhodobacteraceae 

Rhodobacteraceae Albirhodobacter A Unknown Bergey's Manual 
Based on 
Rhodobacteraceae 

Rhodobacteraceae Amaricoccus A NSF Bergey's Manual  

Rhodobacteraceae Boseongicola A Unknown Bergey's Manual 
Based on 
Rhodobacteraceae 

Rhodobacteraceae Defluviimonas A Unknown Bergey's Manual 
Based on 
Rhodobacteraceae 

Rhodobacteraceae Falsirhodobacter A Unknown Bergey's Manual 
Based on 
Rhodobacteraceae 
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Rhodobacteraceae Gemmobacter A NSF Bergey's Manual  

Rhodobacteraceae Jannaschia A Unknown Bergey's Manual 
Based on 
Rhodobacteraceae 

Rhodobacteraceae Limibaculum A Unknown Bergey's Manual 
Based on 
Rhodobacteraceae 

Rhodobacteraceae Maribius A Unknown Bergey's Manual 
Based on 
Rhodobacteraceae 

Rhodobacteraceae Oceaniovalibus A Unknown Bergey's Manual 
Based on 
Rhodobacteraceae 

Rhodobacteraceae Octadecabacter A Unknown Bergey's Manual  

Rhodobacteraceae Other A Unknown Bergey's Manual 
Based on 
Rhodobacteraceae 

Rhodobacteraceae 
Paenirhodobacte
r A Unknown Bergey's Manual 

Based on 
Rhodobacteraceae 

Rhodobacteraceae Paracoccus A NSF Bergey's Manual  

Rhodobacteraceae 
Plastorhodobacte
r A Unknown Bergey's Manual 

Based on 
Rhodobacteraceae 

Rhodobacteraceae 
Pseudorhodobact
er A Unknown Bergey's Manual 

Based on 
Rhodobacteraceae 

Rhodobacteraceae Pseudoruegeria A Unknown Bergey's Manual 
Based on 
Rhodobacteraceae 

Rhodobacteraceae Rhodobacter Unknown Unknown Bergey's Manual  

Rhodobacteraceae Rhodobaculum A Unknown Bergey's Manual 
Based on 
Rhodobacteraceae 

Rhodobacteraceae Roseivivax A Unknown Bergey's Manual  
Rhodobacteraceae Roseovarius A Unknown Bergey's Manual  

Rhodobacteraceae 
Rubellimicrobiu
m A Unknown Bergey's Manual 

Based on 
Rhodobacteraceae 

Rhodobacteraceae Sulfitobacter A NSF Bergey's Manual  

Rhodobacteraceae Thioclava A Unknown Bergey's Manual 
Based on 
Rhodobacteraceae 

Rhodobacteraceae 
Yoonia-
Loktanella A NSF Bergey's Manual Based on Yoonia 

Rhodocyclaceae Azovibrio A Unknown Bergey's Manual  
Rhodocyclaceae Thauera A NSF Bergey's Manual  

Rhodomicrobiaceae 
Rhodomicrobiu
m A Unknown Bergey's Manual  

Rhodothermaceae Rubrivirga A Unknown Bergey's Manual 
Based on 
Rhodothermaceae 

Rickettsiaceae Rickettsia Unknown Unknown Bergey's Manual  
Rikenellaceae Alistipes OA NSF Bergey's Manual  
Rikenellaceae Other Unknown Unknown    
Rikenellaceae Rikenella OA NSF Bergey's Manual  
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Rikenellaceae 
Rikenellaceae 
RC9 gut group A unknown Bergey's Manual 

Based on 
Rikenellaceae 

Rs-E47 termite group Other Unknown Unknown    

Rubinisphaeraceae 
Planctomicrobiu
m Unknown Unknown   

Rubinisphaeraceae SH-PL14 Unknown Unknown   

Rubritaleaceae Luteolibacter A Unknown Bergey's Manual 
Based on 
Rubritaleaceae 

Ruminococcaceae 
[Eubacterium] 
siraeum group OA NSF Bergey's Manual 

Based on 
Eubacterium 

Ruminococcaceae Anaerotruncus OA SF Bergey's Manual  

Ruminococcaceae Angelakisella OA Unknown Bergey's Manual 
Based on 
Ruminococcaceae 

Ruminococcaceae 
Candidatus 
Soleaferrea OA Unknown Bergey's Manual 

Based on 
Ruminococcaceae 

Ruminococcaceae 
Caproiciproduce
ns OA Unknown Bergey's Manual 

Based on 
Ruminococcaceae 

Ruminococcaceae DTU089 OA Unknown Bergey's Manual 
Based on 
Ruminococcaceae 

Ruminococcaceae Faecalibacterium OA NSF Bergey's Manual  

Ruminococcaceae Fournierella OA Unknown Bergey's Manual 
Based on 
Ruminococcaceae 

Ruminococcaceae Harryflintia OA Unknown Bergey's Manual 
Based on 
Ruminococcaceae 

Ruminococcaceae Incertae Sedis OA SF 

Bergey's 
Manual, Browne 
et al., 2016 

Based on 
Ruminococcaceae 

Ruminococcaceae Negativibacillus OA Unknown Bergey's Manual 
Based on 
Ruminococcaceae 

Ruminococcaceae Other OA Unknown Bergey's Manual 
Based on 
Ruminococcaceae 

Ruminococcaceae Paludicola OA Unknown Bergey's Manual 
Based on 
Ruminococcaceae 

Ruminococcaceae Pygmaiobacter OA Unknown Bergey's Manual 
Based on 
Ruminococcaceae 

Ruminococcaceae Ruminococcus OA NSF 

Bergey's 
Manual, Browne 
et al., 2016   

Ruminococcaceae Subdoligranulum OA NSF Bergey's Manual  

Ruminococcaceae UBA1819 OA NSF Bergey's Manual 
Based on 
Faecalibacterium 

Salinisphaeraceae Salinisphaera A NSF Bergey's Manual  
Sandaracinaceae Other Unknown Unknown    

Sanguibacteraceae 
Sanguibacter-
Flavimobilis Unknown NSF Bergey's Manual 

Based on 
Sanguibacter 
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Saprospiraceae Lewinella A NSF Bergey's Manual 
Based on 
Saprospiraceae 

Saprospiraceae Other A NSF Bergey's Manual 
Based on 
Saprospiraceae 

SC-I-84 Other Unknown Unknown    
Schlesneriaceae Planctopirus Unknown Unknown   
Schlesneriaceae Schlesneria A Unknown Bergey's Manual  
Shewanellaceae Shewanella A NSF Bergey's Manual  
Solirubrobacteraceae Conexibacter A NSF Bergey's Manual  

Solirubrobacteraceae Other Unknown Unknown Bergey's Manual 

Based on 
Solirubrobacterace
ae 

Solirubrobacteraceae Parviterribacter Unknown Unknown    
Solirubrobacteraceae Patulibacter A NSF Bergey's Manual  
Solirubrobacteraceae Solirubrobacter A NSF Bergey's Manual  
Sphingobacteriaceae Pedobacter A NSF Bergey's Manual  

Sphingobacteriaceae 
Sphingobacteriu
m A NSF Bergey's Manual  

Sphingomonadaceae 
Altererythrobact
er Unknown Unknown   

Sphingomonadaceae Erythrobacter A Unknown Bergey's Manual  

Sphingomonadaceae 
Novosphingobiu
m A NSF 

Takeuchi et al., 
2001, Bergey's 
manual  

Sphingomonadaceae Qipengyuania Unknown Unknown   
Sphingomonadaceae Sphingomonas A NSF Bergey's Manual  
Sphingomonadaceae Sphingopyxis A NSF Bergey's Manual  
Spirosomaceae Persicitalea Unknown Unknown   
Spirosomaceae Rhabdobacter Unknown Unknown   

Sporichthyaceae Longivirga A Unknown Bergey's Manual 
Based on 
Sporichthyaceae 

Sporichthyaceae Other A Unknown Bergey's Manual 
Based on 
Sporichthyaceae 

Sporomusaceae 
Dendrosporobact
er OA SF Bergey's Manual  

Sporomusaceae Other Unknown Unknown    
Sporomusaceae Sporomusa A SF Bergey's Manual  
Staphylococcaceae Corticicoccus Unknown Unknown   
Staphylococcaceae Jeotgalicoccus A NSF Bergey's Manual  
Staphylococcaceae Macrococcus Unknown Unknown   
Staphylococcaceae Other Unknown Unknown    
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Staphylococcaceae Staphylococcus A NSF Bergey's Manual  
Stappiaceae Labrenzia Unknown Unknown   
Stappiaceae Other Unknown Unknown    
Streptococcaceae Lactococcus A NSF Bergey's Manual  

Streptococcaceae Other A NSF Bergey's Manual 
Based on 
Streptococcaceae 

Streptococcaceae Streptococcus A NSF Bergey's Manual  

Streptomycetaceae Kitasatospora A SF Bergey's Manual 
Based on 
Streptomycetaceae 

Streptomycetaceae Other A SF Bergey's Manual 
Based on 
Streptomycetaceae 

Streptomycetaceae Streptomyces A SF Bergey's Manual  

Streptosporangiaceae 
Streptosporangiu
m A SF Bergey's Manual  

Sulfobacillaceae Other Unknown Unknown    
Sumerlaeaceae Sumerlaea Unknown Unknown   
Sutterellaceae Other Unknown Unknown    

Sutterellaceae Parasutterella OA NSF 
Nagai et al., 
2009  

Sutterellaceae Sutterella A Unknown Bergey's Manual  

Tannerellaceae 
Candidatus 
Vestibaculum Unknown Unknown   

Tannerellaceae 
Macellibacteroid
es Unknown Unknown   

Tannerellaceae Other Unknown Unknown    

Tannerellaceae Parabacteroides OA NSF 
Sakamoto & 
Benno, 2006  

Thermoactinomycetaceae Other A SF Bergey's Manual 

Based on 
Thermoactinomyce
taceae 

Thermoactinomycetaceae Risungbinella A SF Bergey's Manual 

Based on 
Thermoactinomyce
taceae 

Trueperaceae Truepera A NSF Bergey's Manual  
Tsukamurellaceae Tsukamurella A NSF Bergey's Manual  
UCG-010 Other Unknown Unknown    
Vagococcaceae Vagococcus A NSF Bergey's Manual  
Veillonellaceae Dialister OA NSF Bergey's Manual  
Veillonellaceae Veillonella A NSF Bergey's Manual  
Vibrionaceae Vibrio A NSF Bergey's Manual  
WD2101 soil group Other Unknown Unknown    
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Weeksellaceae 
Candidatus 
Hemobacterium Unknown Unknown   

Weeksellaceae Chishuiella Unknown Unknown   

Weeksellaceae 
Chryseobacteriu
m A NSF Bergey's Manual  

Weeksellaceae Empedobacter A NSF Bergey's Manual  
Wohlfahrtiimonadaceae Ignatzschineria Unknown Unknown   

Wohlfahrtiimonadaceae 
Wohlfahrtiimona
s Unknown Unknown   

Xanthobacteraceae Afipia A Unknown    
Xanthobacteraceae Bradyrhizobium A NSF Bergey's Manual  
Xanthobacteraceae Other Unknown Unknown    
Xanthobacteraceae Pseudolabrys Unknown Unknown   

Xanthobacteraceae 
Pseudorhodoplan
es Unknown Unknown   

Xanthobacteraceae Rhodoplanes A NSF Bergey's Manual  

Xanthobacteraceae 
Rhodopseudomo
nas A Unknown Bergey's Manual  

Xanthomonadaceae Luteimonas A Unknown Bergey's Manual  
Xanthomonadaceae Lysobacter A Unknown Bergey's Manual  

Xanthomonadaceae 
Pseudoxanthomo
nas A NSF Bergey's Manual  

Xanthomonadaceae SN8 Unknown Unknown   

Xanthomonadaceae 
Stenotrophomon
as A NSF Bergey's Manual  

Xanthomonadaceae Thermomonas A NSF Bergey's Manual  

Xenococcaceae 
Pleurocapsa 
PCC-7319 A Unknown Bergey's Manual  

Yersiniaceae Other Unknown Unknown    
Yersiniaceae Rahnella A Unknown Bergey's Manual  
Yersiniaceae Serratia A Unknown Bergey's Manual  
Yersiniaceae Yersinia A NSF Bergey's Manual  
 

Supplementary Table 2. DNA sequence of an amplicon sequence variant (ASV) driving reduction in relative 

abundance of Proteobacteria in wild mice (Supplementary Figure 6B).  

ACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGT 
CGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATTCGAAACTGGCAGGCTAGAGTCTTGTA 
GAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCG 
AAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAG 
ATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCC 
GGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTA 
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Abstract 

The Saiga are migratory antelopes inhabiting the grasslands of Eurasia. Over the last century, 

Saiga have been pushed to the brink of extinction by mass mortality events and intense 

poaching. Yet, despite the high profile of the Saiga as an animal of conservation concern, little 

is known of its biology. The gut microbiota of Saiga has not been studied, despite its potential 

importance in health. Here, we characterise the gut microbiota of Saiga from two 

geographically distinct populations in Kazakhstan and compare it with that of other antelope 

species. We identified a consistent gut microbial diversity and composition among individuals 

and across two populations during a year without die-offs, with over 85% of bacterial genera 

being common to both populations. We further show that the Saiga gut microbiota resembled 

that of five other antelopes. The putative causative agent of mass die-offs, Pasteurella 

multocida, was not detected in the Saiga microbiota. Our findings provide the first description 

of the Saiga gut microbiota, generating a baseline for future work investigating the microbiota’s 

role in health and mass die-offs, and supporting the conservation of this critically endangered 

species.  
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Introduction 

The Saiga antelope (Saiga tatarica ssp.) is a long-distance migratory ungulate, famous for its 

distinctive pendulant nose (Figure 1A). Once ranging across nearly the whole of Eurasia, the 

majority of Saiga now inhabit Kazakhstan, the largest landlocked country in the world. The 

Kazakh Saiga (Saiga tatarica tatarica) is of particular interest due to its vulnerability to mass 

mortality events, seemingly caused by Pasteurella multocida (Kock et al., 2018). These mass 

mortality events, together with anthropogenic impacts such as poaching, have reduced the 

population of Kazakh Saiga by 95% in recent decades, from an estimated 1,200,000 to circa 

50,000 between mid-1970s and 2003 (Bekenov et al., 1998; IUCN, 2018). Since 2002, the 

Saiga has been listed as ‘critically endangered’ by the International Union for Conservation of 

Nature (IUCN, 2018); however, much about the biology of the Saiga remains unknown. They 

live out of sight in the remote grasslands and deserts of Kazakhstan and have proved 

challenging to keep in captivity (Rduch et al., 2016), making this species particularly difficult 

to study. Since the early 21st century, the Kazakh Saiga have been living as two geographically 

distinct populations in the Betpak-Dala and Ural regions, both of which have suffered from 

mass die-offs. 

  

A better understanding of the biology of the Saiga antelope could provide insights into their 

susceptibility to mass mortality events with potential conservation application. One key factor 

that can have important effects on mammal biology is the gut microbiota, the diverse 

community of microorganisms residing in the intestinal tract. While this community contains 

microorganisms that range from beneficial to pathogenic, as a whole it provides important 

functions for the host by regulating key physiological processes such as immune maturation 

and nutrient extraction (Semova et al., 2012; Chung et al., 2012). Correspondingly, disruption 
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of the gut microbiota can have adverse effects on the host and increase susceptibility to both 

infectious and non-infectious diseases (Clemente et al., 2012). 

 

Many natural factors can influence gut microbiota composition in mammals, including diet, 

social interactions, infection, and aging (David et al., 2014; Raulo et al., 2021; Knutie, 2018; 

Langille et al., 2014). A growing literature indicates how the microbiota of wild animals can 

be altered by changes to their environment such as exposure to chemicals, habitat destruction, 

infectious disease, urbanization, and housing in captivity (Kohl et al., 2015; Kakumanu et al., 

2016; Amato et al., 2013; Knutie et al., 2018; Dillard  et al., 2022; Teyssier et al., 2018; Gibson 

et al., 2019; McKenzie et al., 2017; Alberdi et al., 2021; Malukiewicz et al., 2022), yet 

knowledge about the implications for animal health remains limited. Given the lability and 

health impacts of the gut microbiota, an improved understanding of host-microbiota 

interactions also holds conservation potential (Trevelline et al., 2019; Diaz & Reese, 2021). 

For example, characterisation of the Saiga gut microbiota during a year without mass mortality 

will allow future investigation potential role of the microbiota in disease, and might inform the 

design of microbiota manipulation in captivity, e.g., through diet or faecal microbiota 

transplants, to facilitate captive breeding programmes for species recovery (Trevelline et al., 

2019).  

 

Here, to our knowledge, we provide the first characterisation of the Saiga gut microbiota during 

a year without die-offs, explore the extent of microbiota variation across two geographically 

distinct populations, and examine how the Saiga microbiota compares with that of other 

antelope species. We hypothesised that if gut microbiota is involved in making the Saiga 

susceptible to mass mortalities caused by a pathobiont, this may manifest in an ‘altered’ gut 

microbiota, such as one that has a lower diversity in comparison to other related antelopes. 
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These data provide a baseline understanding of the gut microbiota in this critically endangered 

species, which future work examining the potential significance of the microbiota for mass 

mortality events can build upon. 

 

Methods 

Sample collection 

Faecal samples were used to provide a non-invasive characterisation of the gut microbiota. 

Faecal samples of Saiga antelope were collected opportunistically from two populations in 

north-west (within 25 kilometres from 49°59′ N, 47°40′ E; ‘Ural population’) and central 

(within 25 kilometres from 49°30′ N, 61°51′ E; ‘Betpak-Dala population’) Kazakhstan in May 

2019, which is during and immediately after the peak calving period. 

 

Faecal samples were collected in a non-intrusive manner. Saiga individuals were located and 

observed (either directly or through binoculars) until defecation and once they moved on from 

that location, a fresh faecal sample was collected. The Saiga is the only wild ungulate in the 

region, with distinct pellet-shaped faeces, and tends to avoid livestock (Singh & Milner-

Gulland, 2011), minimising the risk of faeces mis-identification. During sampling, faecal 

matter was picked up using clean disposable gloves and dissected with sterile forceps in order 

to get two separate 100 mg aliquots from inside faecal pellets, to avoid environmental 

contamination. The time between defecation and collection of samples was within an hour in 

most cases. While it was not possible to ensure that every faecal sample was from a different 

individual as Saiga were not marked, our collection methodology made it unlikely to sample 

the same individual twice: faecal sampling was conducted at various locations over several 

days within the two sites (Ural, Betpak-Dala) where tens of thousands of Saigas had gathered 

to calve. 
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Faecal samples were immediately preserved in DNA/RNA Shield, a preservation solution that 

protects DNA against degradation and allows sample storage at ambient temperature (Zymo 

Research, Irvine, California, USA). After a maximum of 3 weeks at ambient temperature in the 

field, samples were kept at -20°C in Kazakhstan until shipping at ambient temperature to the 

UK in March 2020 (under an import permit from the UK Plant and Animal Health Agency). 

Upon receipt samples were kept at -80°C until DNA extraction. 

 

DNA extraction, PCR amplification, and amplicon sequencing 

Genomic DNA was extracted using the ZymoBIOMICS DNA Miniprep Kit, following the 

manufacturer’s protocol (Zymo Research, Irvine, California, USA). A total of 80 samples (32 

samples from the Ural population and 48 samples from the Betpak-Dala population) were 

randomised into four extraction batches. The 80 samples included 10 duplicate aliquots which 

were used to check the robustness of our sample and data processing pipeline.  DNA was eluted 

in 50 μL DNAse-free H2O, and one negative extraction control (DNAse-free H2O) was 

included in each extraction batch. Library preparation and sequencing was conducted at the 

Integrated Microbiome Resource, Dalhousie University, as described in Comeau et al. (2017). 

The V4–V5 region of the 16S rRNA gene was amplified by PCR using the 515F–926R primers 

(Parada et al., 2016; Walters et al., 2015). All samples were amplified and sequenced in one 

batch using the Illumina MiSeq platform (Reagent kit v3, 2x300 bp chemistry). The sequencing 

run included a negative control for the PCR reaction and a negative control for the sequencing. 

All four extraction controls were sequenced either on the sequencing run in question or on 

subsequent sequencing runs. 
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Online data acquisition 

A Web of Knowledge search was conducted in November 2021 to identify datasets which 

would allow comparison of the Saiga gut microbiota to that of other wild antelope species. 

Search keywords included gut microbiome, gut microbiota, antelope, and ungulate. Studies of 

captive animals were excluded. Only publicly available datasets for which V3–V4, V4, or V4–

V5 16S rRNA primers and the Illumina sequencing platform had been used were considered. 

The retrieved and included datasets include the following five antelope species: Tibetan 

antelope (Patholops hodgsonii), Przewalski’s gazelle (Procapra przewalskii), Impala 

(Aepyceros melampus), Springbok (Antidorcas masupialis), and Sable antelope (Hippotragus 

niger) (Supplementary Table 1). 

  

16S data processing 

To make all datasets fully comparable, publicly available antelope datasets were downloaded 

and the raw sequencing reads were processed together with the Saiga sequencing reads using 

a standardized pipeline, as follows. Downloaded files were converted to match a format that 

was compatible with Quantitative Insights into Microbial Ecology (QIIME2, 2020.11 

distribution) (zipped fastq files with a unique name). First, FastQC v0.11.9 (Andrews, 2010) 

and MultiQC v1.12 (Philip et al., 2016) were used to visualize read quality, before cutadapt 

v3.4 (Martin, 2011) was used to remove adapters and/or primers where still present. Due to 

differences in targeted 16S rRNA region(s) (Suppl. Table 1), for comparative analyses across 

antelope species, sequencing reads were trimmed to include the V4 region (515F-806R) only 

to make amplicon sequence variants comparable using cutadapt (Martin, 2011). In analyses of 

Saiga microbiota samples alone, such trimming was not performed, in order to provide as much 

resolution as possible. 
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Trimmed or original reads containing V4 region were then processed as follows. Low-quality 

reads were filtered using qiime2 quality-filter q-score (default settings, QIIME2 2020.11) 

before using the Deblur workflow (Amir et al., 2017) to denoise sequences into ASVs, as 

suggested by QIIME2 (Bolyen et al., 2019). Within Deblur, trimming length was determined 

by manually viewing the quality plot for each study. ASV taxonomy was assigned using a 

classifier trained on the full-length 16S rRNA gene SILVA v138.1 database (Quast et al., 

2013), and ASVs taxonomically assigned as ‘mitochondria’ or ‘chloroplast’ as well as those 

not identifiable at the kingdom level were removed. Phylogenetic trees of the remaining ASVs 

were built using the SEPP qiime2 plugin (https://github.com/bioshared/q2-fragment-insertion) 

with a reference phylogeny (sepp-refs-gg-13-8). 

 

Negative controls for DNA extraction (n=4) and library preparation (n=1) of Saiga antelope 

samples collectively contained 13 ASVs with a maximum read count for any given ASV per 

control of 9. The R package decontam was used to test for potential contaminants in the Saiga 

dataset, for which negative controls were available. The decontam test was conducted using 

the ‘prevalence’ (presence/absence) method, which compares each sequence in biological 

samples to the prevalence in negative extraction and PCR controls. A sequence was considered 

a contaminant if it reached a probability of 0.1 in the Fisher’s exact test used in decontam. No 

potential contaminants were identified in the Saiga dataset with this method. 

 

Sample completeness and rarefaction curves were generated with R package iNEXT (Hsieh et 

al., 2022; Chao et al., 2014) for all included datasets combined and the read depth threshold 

(below which samples were excluded from further analysis) was set at 4000, based on where 

these curves plateaued. Data were not rarefied. Singletons and doubletons (ASVs with a total 

of either one or two sequences across the dataset) were removed prior to beta (not alpha) 



  Chapter IV 

 179 

diversity analyses to guard against the possible influence of remaining contaminants and 

sequencing errors. Microbiome profiles from duplicate Saiga samples were inspected using a 

principal coordinate analysis (PCoA) based on Aitchison distance in package vegan, and the 

effect of sample ID for microbiota composition was tested using permutational multivariate 

analysis of variance (PERMANOVA) on Aitchison distance. Prior to ordination on Aitchison 

distance, a centered log-ratio (clr) transformation was performed using the package 

microbiome (Lahti & Shetty, 2017), with relative abundance values of zero replaced with a 

pseudocount (min(relative abundance/2)). Duplicates were removed from the dataset before 

further analysis. 

 

Analyses 

Data was analysed and visualised in R (v4.1.2) using packages phyloseq (McMurdie & 

Holmes, 2013), vegan (Oksanen et al., 2022), microbiome (Lahti & Shetty, 2017), ALDEx2 

(Fernandes et al., 2013), UpSetR (Conway et al., 2017), and ggplot2 (Wickham, 2016). For the 

inspection and comparison of taxonomic compositions, ASV counts were transformed into 

relative abundance per sample. We searched for the presence of Pasteurella multocida in the 

Saiga gut microbiota both by investigating taxonomic assignments from the SILVA database 

as well as by using the NCBI Nucleotide Basic Local Alignment Search Tool (Nucleotide 

BLAST). For the latter, we BLAST searched all ASVs either assigned to Gammaproteobacteria 

(the bacterial class containing P. multocida) or not assigned a class by SILVA, against the P. 

multocida type sequence (taxid: 747). 

 

Differential abundance testing of bacterial taxa across the two Saiga populations was conducted 

using package ALDEx2 (Fernandes et al., 2013). Monte-Carlo sampling (mc.samples=128) 

from a Dirichlet distribution was used to generate a distribution of clr transformed values for 
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all taxa. Welch’s and on rank sum tests were then performed on the clr transformed values. 

Taxa with a Benjamini-Hochberg corrected p-value (q-value) of less than 0.05 and an effect 

size greater than 1 were considered to have a significantly different abundance between the 

two populations. Asymptotic alpha diversity (ASV richness and Shannon diversity) was 

estimated using package iNEXT (Hsieh et al., 2022; Chao et al., 2014). Differences in alpha 

diversity and Jaccard dissimilarity among samples from each population were tested using 

Wilcoxon rank sum tests with 1,000 permutations. 

 

Beta diversity metrics were calculated with the package vegan, and PERMANOVA was 

performed using Aitchison and Jaccard distances. Ordination was conducted with the package 

vegan using PCoA. A clr transformation was conducted before ordination for Aitchison 

distance (zero relative abundances replaced with pseudocounts as described in Data 

processing). Ordination plots were produced using the phyloseq package (McMurdie & 

Holmes, 2013). A cladogram showing the phylogenetic relationships among the six antelope 

species was retrieved from the TimeTree database. 

 

Results 

Sequencing outcome of the Saiga antelope samples 

A total of 80 faecal DNA samples from 70 Saiga antelope (Kazakhstan) (Fig. 1A–B) were 

sequenced using the Illumina MiSeq platform. Eight Saiga samples were lost during read depth 

filtering. The remaining 72 samples included eight duplicate samples (duplicate samples from 

a single faecal deposition, see Methods) that were sequenced to assess the robustness of our 

pipeline. Duplicates generally clustered together with their corresponding samples (Suppl. Fig. 

1) and sample ID strongly predicted microbiota composition across these repeat samples, 

explaining 67.1% of all gut microbial variation (PERMANOVA based on Aitchison distance, 
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p<0.001), indicating the sampling method produced a repeatable representation of the faecal 

microbiota. These duplicates were removed from the dataset before further analysis. After 

filtering out singleton and doubleton amplicon sequence variants (ASVs) in the dataset, the 

two populations of Saiga collectively harboured a total of 4,036 unique ASVs, with a mean of 

743 ASVs per sample (range 470 to 1,057). Using the SILVA database (v138.1), 92.9% ASVs 

could be assigned to family level, 74.7% to genus level, and 0.7% to species level. Due to the 

low level of assignment to species level, the highest taxonomic level we considered in analyses 

was genus.  

  

Composition and diversity of the Saiga antelope gut microbiota 

Of the 4,036 ASVs found in Saiga, 2,689 (66.6%) were detected in both populations, while 

570 (14.1%) were unique to the Ural population (n=25) and 777 (19.3%) were unique to the 

Betpak-Dala population (n=39). Across both populations, 16 bacterial phyla, 24 classes, 47 

orders, 82 families, and 163 genera were identified (Fig. 1C). The two populations shared 15 

out of 16 phyla (93.8%) and 91.5–91.7% of classes and orders. When inspecting gut microbiota 

profiles at the family and genus level, 85.4% and 85.9% of taxa were shared between the two 

populations, respectively. The shared bacterial families and genera formed 93.4–96.1% and 

80.3–84.4%, respectively, of the total relative abundance in the Betpak-Dala and Ural 

populations, such that most bacteria in the Saiga microbiota belong to genera that are common 

to both populations. Unique genera in each population were not of any particular lower 

resolution taxa (such as family or class); instead, the Betpak-Dala population had 8 unique 

genera from 5 different classes. Similarly, the Ural population had 15 unique genera from 8 

different classes. 
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At the phylum level, the Saiga gut microbiota was heavily dominated by Firmicutes and 

Bacteroidota, which together comprised 94.9% of all reads on average per sample (Fig. 1D). 

The Ural population harboured one unique phylum, Campilobacterota, that was rare and 

formed just 0.00002% of total abundance in this population. The shared microbiota (comprised 

of ASVs found in both populations, irrespective of relative abundance and prevalence) was 

proportionately dominated by the bacterial families Oscillospiraceae (20.8% and 16.6% of total 

relative abundance of taxa in Betpak-Dala and Ural, respectively) and Rikenellaceae (15.6% 

and 9.9%%), followed by 68 additional shared families (Suppl. Fig. 2). The shared microbiota 

contained 140 genera, with the predominant genus being Oscillospiraceae UCG-005 (16.9% 

and 11.8%). A small number of individuals across the two populations had an increased relative 

abundance of Proteobacteria (Fig. 1D), which includes various common potentially pathogenic 

taxa, such as Salmonella, Escherichia, and Helicobacter. A genus-level inspection of the Saiga 

gut microbiota revealed Escherichia/Shigella to account for Proteobacteria overrepresentation 

in these samples (Suppl. Fig. 2). 
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Figure 1. (A) A female Saiga antelope (Saiga tatarica). Photo credit: Albert Salemgareyev. (B) Geographic 

ranges of the two sampled Saiga antelope populations (blue = Betpak-Dala population, green = Ural population). 

Overall migration directions are indicated with arrows (red = migration direction in spring, blue = migration 

direction in autumn). Approximate centroids of faecal sample collection sites are indicated with dark dots within 

the habitats. (C) Number of shared and unique taxa between the two populations at five taxonomic levels. 

Numbers on bars indicate how many taxa were unique to Ural (black), Betpak-Dala population (dark grey), or 

that were shared between the two populations (light grey). Number of unique/shared taxa is written when ≥3. (D) 

Gut microbiota composition of the Saiga antelope at phylum level. Rare taxa (mean relative abundance <0.03% 

and prevalence <0.10% across samples) are under ‘Other’. Stacked bars are individual samples. Horizontal bars 

indicate Saiga population. 
 

Gammaproteobacteria, the class containing P. multocida, the bacterium implicated in 

Saiga mass mortalities, was detected in both populations and formed 0.3% (Betpak-Dala) and 

2.9% (Ural) of total abundance at class level; however, no ASVs were assigned to the family 

Pasteurellaceae nor the genus Pasteurella. Furthermore, a Nucleotide BLAST search was 

conducted for ASVs for which SILVA had either assigned the class Gammaproteobacteria or 

had failed to assign a class. This search did not produce a ≥98% species identity match for P. 

multocida, further confirming this bacterium was not detected in this Saiga gut microbiota 

dataset. 
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Despite the high proportion of shared ASVs across the two populations (shared ASVs formed 

77.6% and 82.5% of all ASVs detected in the Betpak-Dala and Ural populations, respectively), 

the gut microbiota compositions of the two populations were detectably different, with 10.4% 

of variation in Aitchison dissimilarity being explained by population identity (PERMANOVA, 

p<0.0001; population identity explained 8.6% of Jaccard dissimilarity, p<0.001). Samples 

clustered by population when ordinated with the exception of 3 samples, and these patterns 

were consistent across categorical (Aitchison, Jaccard) and phylogenetic distances (weighted 

and unweighted UniFrac) (Fig. 2A, Suppl. Fig. 3), indicating consistently that the two 

populations have distinct gut microbial communities. The three samples that did not cluster by 

populations were not the samples with increased relative abundance of Proteobacteria (Fig. 

1D). 

 

To investigate whether the relative abundance of any specific taxa significantly differed 

between the two populations, we performed a differential abundance analysis across taxonomic 

levels from phylum to genus. A total of 14 taxa including three orders, five families, and six 

genera significantly differed in relative abundance between populations (Fig. 2B). In addition 

to the shared taxa with significantly different abundances, the Ural population had 9 unique 

bacterial families including Campylobacteraceae, Moraxellaceae, and Acetobacteraceae. The 

Betpak-Dala population had 3 unique families; Methanosarcinaceae, Oxalobacteraceae, and 

Microbacteriaceae. At genus level, the Ural population had 3 unique taxa while the Betpak-

Dala population had 9 unique taxa. 
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Figure 2. (A) Principal coordinate analysis of Betpak-Dala (green) and Ural (blue) Saiga gut microbiota 

(dis)similarity based on Aitchison distance. Circles are individual samples. (B) Bacterial taxa with significantly 

differing relative abundance between the Betpak-Dala and the Ural Saiga populations. Bars indicate the mean 

relative abundance in the Betpak-Dala population minus the mean relative abundance in the Ural population. Only 

taxa with a Benjamini-Hochberg corrected p-value of less than 0.05 and an effect size (standardized mean 

difference) greater than 1 are shown. (C) Sample-level asymptotic ASV richness (top) and Shannon diversity 

(bottom) of Betpak-Dala (green) and Ural (blue) Saiga. Circles are individual samples. Horizontal bar indicates 

median alpha diversity. Statistical differences between Betpak-Dala and Ural Saiga were tested with 

permutational Wilcoxon rank sum tests (p>0.05 for both ASV richness and Shannon diversity). 
  

The two Saiga populations had very similar ASV richness (permutational Wilcoxon rank sum 

test, p=0.978; estimated ASV richness range in Ural Saiga 475–994, mean 759, median 755; 

range in Betpak-Dala Saiga 498–1087, mean 763, median 761). Similarly, while the Ural Saiga 

had a slightly higher Shannon diversity index, this difference was not statistically significant 
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(permutational Wilcoxon rank sum test, p=0.262; range in Ural Saiga 113–397, mean 245, 

median 257; range in Betpak-Dala Saiga 116–325, mean 227, median 232; Fig. 2C).  

  

Comparison between Saiga antelope and five other antelope species 

The Saiga gut microbiota was compared with that of five other antelope species for which 

publicly available 16S rRNA microbiota data could be retrieved: the Tibetan antelope 

(Patholops hodgsonii), Przewalski’s gazelle (Procapra przewalskii), Impala (Aepyceros 

melampus), Springbok (Antidorcas masupialis), and Sable antelope (Hippotragus niger). The 

samples originated from China, South Africa, and Namibia (Suppl. Table 1). The investigated 

antelope species typically live in similar habitats namely deserts, grasslands, and shrublands 

(IUCN, 2018). The target region of 16S rRNA gene varied across the datasets, thus all 16S 

amplicon sequences were trimmed to the V4 region for this comparative analysis to make them 

comparable (see Methods). 

 

The gut microbiota composition of the Saiga was, at a high taxonomic level, broadly similar to 

that of the five other antelope species. The predominant phyla in all species were Firmicutes 

(54.1%–70.9% of total abundance) and Bacteroidota (23.8%–39.9%). At family level, 

Oscillospiraceae and Rikenellaceae formed the two predominant bacterial families (25.6%–

34.2%) in all antelope species except the Tibetan antelope, which had Oscillospiraceae and 

Lachnospiraceae as the most abundant families, followed by Rikenellaceae (Fig. 3A). At the 

ASV level, Saiga shared 13.6% and 14.2% of their ASVs with Tibetan antelope and 

Przewalski’s gazelle, respectively (Suppl. Fig. 4A), whereas no common ASVs were detected 

between Saiga (or the other two Asian antelopes, Przewalski’s gazelle and Tibetan antelope) 

and the African antelopes (Impala, Springbok, and Sable antelope). 
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Host species identity, which could not be distinguished from dataset identity, had a significant 

effect on gut microbiota composition explaining 24.1% of variation in bacterial community 

structure across the dataset (PERMANOVA based on Aitchison distance, p<0.001; host species 

identity explained 19.5% of Jaccard dissimilarity, p<0.001), although beta dispersion varied 

significantly among the datasets and could have affected these results (F=458.74, p=0.001). In 

ordination analyses, Saiga samples clustered separately from samples from all other antelopes 

on Jaccard, unweighted UniFrac and Aitchison distances but together with other samples on 

weighted UniFrac distance (Fig. 3B, Suppl. Fig. 4B–D). 
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Figure 3. (A) The gut microbiota composition of six antelope species at family level. Rare taxa (mean relative 

abundance <0.03% and prevalence <0.10% across samples) and taxa for which bacterial family could not be 

assigned are under ‘Other’. (B) Principal coordinate analysis of gut microbiota (dis)similarity of six antelope 

species based on Jaccard distance. Taxa have been agglomerated to the family level before ordination. Circles are 

individual samples. Colour indicates host species (green = Saiga antelope, yellow = Przewalski’s gazelle, blue = 

Tibetan antelope, orange = Springbok, pink = Impala, red = Sable antelope). (C) Pairwise dissimilarity of bacterial 

genera (Jaccard distance) between Saiga antelope and (left to right) Springbok, Przewalski’s gazelle, Sable 

antelope, Tibetan antelope, or Impala (antelopes ordered by phylogenetic relatedness to Saiga antelope starting 

with closest relative). Differences were tested with permutational Wilcoxon rank sum tests (***, p<0.001; ns, 

p>0.05). (D) A cladogram of six antelopes. The nodes indicate a common ancestor and the lines are relative to 

evolutionary timescale. The cladogram of the six antelopes was retrieved from the TimeTree database. 
 

The Saiga shared the majority of its gut microbial taxa with at least one antelope at all 

investigated taxonomic levels (phylum → family). It shared all of its 14 phyla with at least one 

other antelope species and 12 phyla (85.7%) with at least three other antelope species (Suppl. 

Fig. 5A). The other antelopes collectively harboured an additional eight phyla not found in the 
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Saiga (Patescibacteria, Campilobacterota, Myxococcota, Nitrospirota, Acidobacteriota, 

Chloroflexi, Fusobacteriota, and Synergistota). At class and order levels, the Saiga shared 

95.5% and 81.8% of its taxa, respectively, with at least three other antelope species. At family 

level, the Saiga shared 75.7% of taxa with at least three other antelopes (Suppl. Fig. 5B). These 

56 bacterial families formed 94.2% of the total relative abundance of the Saiga gut microbiota. 

The Saiga harboured two unique bacterial families not detected in any of the other antelope 

species. These families detected only in Saiga were rare, representing less than 1% of total 

relative abundance in both Saiga populations. 

 

In terms of shared genera (Jaccard dissimilarity measured at genus-level, due to lack of shared 

ASVs between Asian and African antelopes), the Saiga microbiota was more similar in 

composition to that of other Asian antelope species (Tibetan antelope, Przewalski’s gazelle) 

than African species (Sable antelope, Springbok, Impala), despite the Saiga being 

phylogenetically more closely related to the African species (Fig. 3C–D). However, when 

considering the phylogenetic distance between genera (unweighted UniFrac distance on 

genera), the Saiga microbiota was more similar to that of African, rather than Asian, antelope 

species (Suppl. Fig. 6). 

 

Compared to the other antelope species examined, Saiga had the highest alpha diversity (ASV 

richness and Shannon diversity; Suppl. Fig. 7). The difference was significant between Saiga 

and all other antelopes (permutational Wilcoxon rank sum tests, p<0.001 for all). However, the 

only significant difference in ASV richness was between Saiga and Tibetan antelope 

(permutational Wilcoxon rank sum test, p<0.001; p>0.06 for all other comparisons). 
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Discussion 

The critically endangered Saiga antelope is a species of interest because of its vulnerability to 

mass mortality events. Together with anthropogenic factors, such as poaching and agricultural, 

road infrastructure expansion, mass mortality events in Saiga can lead to the extinction of 

regional populations with observed losses of 75% and 88% of the affected population in 1988 

and 2015, respectively (Robinson et al., 2019). A better understanding of the baseline biology 

of the Saiga could provide insights into their susceptibility to mass mortality events and tools 

for more successful husbandry in captivity (Trevelline et al., 2019; Diaz & Reese, 2021). As a 

step towards this, we present a gut microbiota profile of the Saiga, the first to our knowledge, 

from samples taken in a year without mass mortality and compare it to the gut microbiota of 

five other antelope species. 

 

Similar to other mammals (Rojas et al., 2021), the gut microbiota of the Saiga was dominated 

by Firmicutes and Bacteroidota, which together formed 95% of total relative abundance. Two 

subpopulations of the Kazakh Saiga were sampled in the Betpak-Dala and Ural regions. These 

sampling locations were over 1,000 km apart and the estimated geographic ranges of these 

migrating populations are at least 500 km apart (ACBK, 2011). Despite the geographic 

separation, the two populations shared approximately 85–94% of taxa at all inspected 

taxonomic levels from phylum to genus, and the shared genera formed over 80% of total 

relative abundance in both populations. 

 

The Betpak-Dala and Ural Saiga populations displayed similar gut microbial alpha diversity, 

but differed in microbiota composition. Others investigating gut microbiota diversity across 

two wild populations of the Przewalski’s gazelle, a close relative of the Saiga, did not detect 

significant population differences in either alpha or beta diversity (Liu et al., 2021). These 



  Chapter IV 

 191 

populations are, however, geographically closer to each other (sampling locations <200 km 

apart) than the Betpak-Dala and Ural Saiga populations (sampling locations >1,000 km apart), 

which could contribute to the greater cross-population similarity in the gut microbiota of 

Przewalski’s gazelle compared to Saiga. Geographical proximity could affect gut microbiota 

similarity through, for instance, similar vegetation type and thus diet as well as population 

mixing and gut microbe transmission (Knowles et al., 2019; Raulo et al., 2021). 

 

Due to the opportunistic nature of sampling and the tendency of the Saiga to avoid people, we 

were unable to collect more information concerning the individual animals. Hence, it remains 

unknown how much of the variation within and across the populations was driven by factors 

such as age and sex. Similarly, while various steps were taken to minimise the potential effect 

of exposure to oxygen and environmental microbes (see Methods), it is possible that the 

microbial composition of faecal matter was altered by these factors. Considering the two 

populations inhabit different areas at least 500 km apart, it is likely some of the gut microbial 

variation was driven by differences in habitat and diet, as has been found in other wild 

mammalian species (Kartzinel et al., 2019). The faecal samples used in the study were collected 

during or shortly after the Saiga calving period in May. Hence, the gut microbiota profiles 

reflect those in the calving period. While this might vary from the Saiga gut microbiota outside 

calving period, for example due to differences in hormone levels (Mallott et al., 2020), this is 

a relevant time point for sampling the Saiga since the previous mass mortality events have 

occurred during calving (Kock et al., 2018), when the birthing females are likely to be stressed 

and potentially immunocompromised. 

 

As a commensal, Pasteurella multocida (the putative causative agent of the Saiga mass 

mortalities) is most often found in the oral, nasopharyngeal, and respiratory microbiota (Wilson 
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& Ho, 2013) and previous work has demonstrated the presence of the bacterium in the 

respiratory tract of healthy Saiga (Sanchez-Monge, 2016). Analysis of tissue samples from the 

2015 Saiga mass mortality event provided indication of a possible P. multocida invasion from 

the gut (the bacterium was detected in intestinal mucosa, alongside other body sites; Kock et 

al., 2018), thus we searched for the presence of this bacterium in our dataset. We did not detect 

P. multocida in the Saiga gut microbiota and the closest taxonomic rank was the class 

Gammaproteobacteria. 

 

The absence of P. multocida could be an artefact of the method since we characterised the gut 

microbiota by targeting a region of the 16S rRNA gene, a commonly used method that provides 

limited fine-scale taxonomic resolution, particularly at species level (Johnson et al., 2019). The 

method should provide a representative profiling at lower levels, such as at class and family 

levels (Heidrich et al., 2022). Considering the class Gammaproteobacteria was the closest 

taxonomic rank detected to P. multocida, our 16S data does suggest the bacterium was not 

present in the Saiga gut microbiota. Further, the primers used to amplify the V4–V5 region of 

the 16S rRNA gene (515F–926R) in the Saiga gut microbiota have detected Pasteurellaceae, 

the family under which P. multocida is classified, in another gut microbiota dataset (originating 

from wild Mus musculus faecal samples; mean relative abundance of Pasteurellaceae 0.01%; 

Hanski, unpublished). Considering this, the presence of P. multocida should have been 

captured at family level at least, further suggesting P. multocida was not present in the Saiga 

gut microbiota at the time of sampling, or alternatively its abundance was below the detection 

threshold of the methods used. 

 

To put the Saiga gut microbiota into a wider phylogenetic perspective, we compared it to that 

of five other antelope species (Tibetan antelope, Przewalski’s antelope, Sable antelope, 



  Chapter IV 

 193 

Springbok, and Impala) for which 16S rRNA V4 gut microbiota data from wild individuals 

was publicly available. Saiga shared the majority of its taxa with other antelope species across 

taxonomic levels from phylum to genus. Still, microbiota compositions varied significantly 

between Saiga and the other antelopes. This could have been affected by environmental factors, 

such as geographical location and diet, as well as experimental factors, such as DNA extraction 

kit and sequencing batch, which varied between the datasets and could not be controlled for 

due to small sample size (Knowles et al., 2019; Zhu 2022; Shaffer et al., 2022). The finding 

that the hosts shared a high number of taxa at the various taxonomic levels despite these 

methodological limitations suggests the Saiga does not present an outlier within antelopes from 

the gut microbiota perspective. 

 

In terms of shared taxa, the Saiga gut microbiota was more similar in composition to antelopes 

from the same rather than different continent when similarity was measured with non-

phylogenetically informed Jaccard distance, despite Saiga being phylogenetically more closely 

related to the African rather than Asian antelopes. However, this conclusion depended on the 

distance metric considered; when a phylogenetic distance metric was used (unweighted 

UniFrac), the Saiga microbiota was most similar to that of an African antelope species and its 

closest relative (Springbok), rather than geographically more proximate Asian antelope 

species. These results suggest that phylosymbiosis, under which microbiota similarity is 

expected to correlate with phylogenetic relatedness and which is observed in several (Song et 

al., 2020; Kohl et al., 2018; Weinstein et al., 2021; Ochman et al., 2010) but perhaps not all 

animals (Moeller et al., 2017), may be detected in the studied antelope species only when 

phylogenetic distance of gut microbes is considered. When phylogenetic relatedness of 

microbes is not considered, geography rather than host phylogeny appears to have a stronger 

influence on Saiga microbiota in relation to other antelopes. 
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Overall, our results indicate the gut microbiota of two geographically disparate Saiga antelope 

populations is taxonomically rather consistent, but varies in relative abundance of bacterial 

taxa. We did not detect Pasteurella multocida – the bacterium thought to cause Saiga mass 

mortalities – in the Saiga gut microbiota during this year without die-offs. Finally, we showed 

that the Saiga gut microbiota resembles that of other antelopes. With this, we provide a baseline 

description of the gut microbiota in this critically endangered species, on which future work 

examining the potential role of the microbiota in mass mortality events can build. 
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Supplementary material 

 

Supplementary Figure 1. Principal coordinate analysis (PCoA) on Aitchison distance for eight Saiga samples 

for which duplicates were included. Colour indicates sample ID (duplicates for each, connected with lines). 
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Supplementary Figure 2. Gut microbiota composition of the Saiga at family level. Stacked bars represent 

individual samples with horizontal bars indicating Saiga population. Rare taxa (mean relative abundance <0.03% 

and prevalence <0.10% across samples) and taxa for which bacterial family could not be assigned are under 

‘Other’. 
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Supplementary Figure 3. Principal coordinate analysis of Betpak-Dala (green) and Ural (blue) Saiga gut 

microbiota on (A) Jaccard, (B) weighted UniFrac, and (C) unweighted UniFrac distances. Circles are individual 

samples. 
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Supplementary Figure 4. (A) Euler diagram on shared and unique amplicon sequence variants in gut microbiota 

of six antelope species. (B-D) Principal coordinate analysis of gut microbiota (dis)similarity of six antelopes at 

amplicon sequence variants (ASV) level based on (B) Aitchison, (C) unweighted UniFrac, and (D) weighted 

UniFrac distances. Circles are individual samples. Colour indicates host species (green = Saiga antelope, yellow 

= Przewalski’s gazelle, blue = Tibetan antelope, orange = Springbok, pink = Impala, red = Sable antelope). 
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Supplementary Figure 5. UpSet plots showing quantitative intersections of bacterial (A) phyla and (B) families 

between six antelopes. The numbers above the vertical bars indicate the number of common taxa between host 

species. 
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Supplementary Figure 6. Pairwise dissimilarity of bacterial genera (unweighted UniFrac distance) between 

Saiga antelope and (from left to right:) Springbok, Przewalski’s gazelle, Sable antelope, Tibetan antelope, or 

Impala (antelopes ordered by phylogenetic relatedness to Saiga antelope starting with closest relative). Antelope 

species are ordered by phylogenetic relatedness to Saiga with alphabetical ordering where relatedness to Saiga 

cannot be distinguished (Sable antelope, Tibetan antelope). Differences were tested with permutational Wilcoxon 

rank sum tests (***, p<0.001; *, p=0.034; ns, p=0.998). 
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Supplementary Figure 7. Sample-level asymptotic estimates of ASV richness (top) and Shannon diversity 

(bottom) for six antelope species. Circles are individual samples. Antelope species are ordered by phylogenetic 

relatedness to Saiga with alphabetical ordering where relatedness to Saiga cannot be distinguished (Sable antelope, 

Tibetan antelope). 
  
Supplementary Table 1. Datasets included in cross-host species analyses.  
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In this thesis, I have explored how the mammalian gut microbiota varies across species, 

populations, and individuals as well as within individuals over time. Extensive within-species 

differences in the gut microbiota were detected between laboratory and wild mice, with wild 

mice having taxonomically and functionally more diverse gut microbiota with a faster turnover 

rate. Yet despite these differences, remarkably similar gut microbiota assembly patterns were 

detected in mice from these contrasting genetic and environmental backgrounds. As these age-

related dynamics suggest age is an important variable for gut microbiota research, I developed 

an epigenetic method for age estimation from faeces. This method was capable of providing 

an approximate age estimate, but may be more useful for investigating biological rather than 

chronological aging in wild populations. 

 

Gut microbiota differences between laboratory and wild house mice 

The vast majority of gut microbiota research on the house mouse (Mus musculus) model system 

comes from the laboratory, where mice live in an artificial world that does not exist outside the 

laboratory, raising concerns about the relevance of such studies. As such, studies investigating 

differences between laboratory and wild mice, as well as drivers of gut microbiota in natural 

settings can aid interpretation of findings from laboratory-based gut microbiota studies. In 

Chapters I and III, I conducted extensive comparative studies of the gut microbiota across 

laboratory and wild mice. In line with previous findings (Rosshart et al., 2019; Wang et al., 

2014; Kreisinger et al., 2014; Wang et al., 2015), the gut microbiota differed between lab and 

wild mice at nearly all levels of investigation, both taxonomically and in terms of diversity and 

functionality. 

 

I complemented previous studies investigating gut microbiota differences between laboratory 

and wild mice with two novel angles: within-individual temporal dynamics as well as 
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aerotolerance phenotypes of the gut microbiota. The gut microbiota of wild mice had a faster 

within-host turnover rate and lower number of taxa that persisted over time than that of lab 

mice (Chapter I, Fig. 3), and the relative abundance of bacteria that can tolerate oxygen was 

almost twice as high in wild than in lab mice (Chapter III, Fig. 2). These results suggest that 

wild mice are exposed to a larger and more variable pool of microbes than are lab mice, which 

are housed in small, individually ventilated cages with only up to a few cage mates and minimal 

environmental fluctuation. Considering the differences in relative abundance of aerotolerant 

taxa, it may be that environmentally rather than socially transmitted bacteria form a larger part 

of gut microbiota in the wild compared to lab mice, assuming environmentally transmitted 

bacteria tolerate oxygen. In Chapter I, I identified soil as a possible source of environmentally 

transmitted microbes in wild mice as microbial similarity between soil and faecal samples 

increased with geographic proximity. 

 

The different gut microbiota of the laboratory mouse from that of its wild relatives is the result 

of domestication; however, the move from the wild to the laboratory may have 

disproportionately affected certain features of the gut microbiota. Above I have discussed how 

the gut microbiota varies between lab and wild mice. I hypothesised that since the gut 

microbiota plays an important role in various developmental processes, patterns of gut 

microbiota assembly may be conserved across mice from these contrasting systems. In line 

with this idea, I found that laboratory and wild mice presented remarkably similar general 

patterns of gut microbiota assembly (Chapter III). For instance, as found in other mammalian 

species studies (Derrien et al., 2019; Baniel et al., 2022), as young mice developed the gut 

microbiota became more diverse within individuals but more homogenous across individuals 

in both lab and wild settings, and the relative abundance and richness of Proteobacteria showed 

highly similar changes across the two systems, despite lab mice having substantially fewer 
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proteobacterial taxa. These conserved assembly patterns illustrate the effect of host selection 

(such as depleting levels of oxygen in the gut, the shift from milk to solid food, and activation 

of the immune system) on gut microbial communities, which appear to be stronger than the 

effects of host genetics and environmental background.  

 

Ultimately, what the microbes living in the gut are capable of doing is likely to be more relevant 

for host biology than what specific taxa we find, as the microbiota is known to display a high 

degree of functional redundancy and plasticity (Tian et al., 2020). As such, future investigation 

of functional differences in the gut microbiota of wild and lab mice would be a useful next step 

to provide key information about the consequences of this gut microbial variation. For instance, 

despite sharing similar assembly patterns in terms of taxonomy, the gut microbiota of lab and 

wild mice may nonetheless undergo differential functional changes in early life. 

 

In this thesis, functionality of the gut microbiota was inspected using functional prediction 

from 16S data. In comparison to lab mice, wild mice had a higher number of unique functional 

pathways (Chapter I, Fig. 1). This is perhaps what one might expect given their more variable 

diet and abiotic environment. Diversity in diet can lead to diversity in gut microbial 

functionality since different functional pathways are required for utilisation of different dietary 

substrates. Variable abiotic conditions might also promote a higher number of functional 

pathways, as for instance cold temperature can increase a host’s need for thermoregulatory 

pathways, some of which may be provided by gut microbes (Chevalier et al., 2015). However, 

I also detected similarities in functional profiles of adult lab and wild mice, particularly in the 

relative abundance of functional pathways (limited to visual inspection; Chapter III, Suppl. 

Fig. 7). These functional pathways may represent those that are important for the host 
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regardless of setting (lab/wild); for instance, those that are important in developmental 

processes or reproduction. 

 

However, I limited analysis of the functional profiles to the level of pathways, as initial analysis 

suggested discrepancies between functional profiles at category level depending on which 

database was used to assign functional categories, highlighting limitations in the prediction 

based functional profiling used. Higher resolution functional profiling using e.g., metagenomic 

approaches would be needed for more thorough investigation of functional differences between 

laboratory and wild mice. This could allow us to identify functional implications of 

domestication of the house mouse (such as potential loss of functional pathways not needed in 

laboratory settings) and test whether functions that may have been lost during this process can 

be reacquired, e.g., when lab mice are exposed to dietary or abiotic changes. Future work could 

also investigate the degree of redundancy in the gut microbiota, and therefore the functional 

implications of lower diversity and altered composition in laboratory mice compared to their 

wild counterparts.  

 

Thus, despite their ‘altered’ gut microbiota, it is possible to draw conclusions from laboratory 

mouse microbiota studies that are also relevant in natural populations. However, this is likely 

to be true only for certain phenomena associated with the gut microbiota, such as those strongly 

influenced by host selection. Further, this may also be true only for the taxonomic rather than 

functional aspects of the gut microbiota. Considering findings from Chapters I and III, my 

results highlight the importance of wild house mouse studies for understanding the relevance 

of gut microbiota findings obtained in laboratory settings. 
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Gut microbiota variation in the wild 

Studying the gut microbiota of wild rather than laboratory mice has the advantage of 

representing the real world, where populations are genetically diverse, the environment 

changes, and space is shared with other animals; thus, findings can be easier to put into a wider 

ecological context. In line with previous work (Suzuki et al., 2020; Goertz et al., 2019; Weldon 

et al., 2015, Linnenbrink et al., 2013), I detected spatial influences on gut microbiota variation 

across and within wild house populations. In particular, broad and fine-scale spatial differences 

in the microbiota were detected within an extensively studied island mouse population (Chapter 

I, Fig. 5). 

 

Interestingly, spatial variation was stronger for the fungal than the bacterial microbiota, 

possibly explained by abiotic differences (such as water availability) with effects on fungal 

communities in the host and environment. As such, the fungal microbiota, or ‘mycobiota’, 

specifically may provide a sensitive system for capturing spatial variation and transmission of 

host-associated symbiotic communities. Various factors from food availability to social 

interaction and the presence of other host species could explain why the gut microbiota shows 

spatial variation. Microbial communities in soil may present one such factor. Indeed, I found 

that microbial similarity between mice and soil increases with geographical proximity, which 

suggests some transmission from soil to gut may occur (Chapter I, Fig. 6). As microbial 

similarity increased with proximity also within soil samples, spatially varying soil microbiota 

could indeed explain some of the spatial variation seen in the mouse gut microbiota. 

 

To separate microbial transmission from soil from other spatial factors shaping the gut 

microbiota, one could experimentally expose individuals from different environments to either 

standardised or different batches of soil, and characterise gut microbiota before, during, and 
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after the experiment. Alongside spatial influences on microbiota variation, weak effects of 

temporal and individual-level factors were detected. Particularly, influences from age-related 

factors were detected, in line with findings in Chapter III, although the effect size was smaller 

when contrasted against other possible drivers of gut microbiota. Despite the identified drivers 

of gut microbial composition across and within individuals, the vast majority of variation 

(>90%) remained unexplained. This may be due to the inability to identify other deterministic 

drivers (due to e.g., lack of data, such as temperature and diet, or bioinformatic approaches 

used), but it may also be that a substantial part of microbial variation arises from stochasticity. 

 

Studying ‘wild gut microbiota’ beyond model systems has potential to increase our 

understanding of microbiota’s role in ecology and provide important information of host 

biology with possible conservation applications. In the final chapter of my thesis, I 

characterised the gut microbiota of the critically endangered Saiga antelope, (in)famous for its 

distinctive pendulant nose as well as for suffering from recurring mass mortality events (Kock 

et al., 2018). It has been suspected that these mass mortalities are caused by outgrowth of P. 

multocida, a normally commensal symbiont of the Saiga. As such, the Saiga gut microbiota 

and the possible presence of this symbiont in healthy Saigas has been of interest. 

 

While I predicted that the Saiga microbiota might be atypical in some way (e.g., particularly 

low in diversity), if it has a role in allowing pathobiont outgrowth during die-offs, the Saiga 

gut microbiota was similar to that of other antelopes from Asia and Africa. This suggested no 

obvious sign that the baseline gut microbiota of the Saiga differed in ways that could predispose 

them to mass die-offs, although more work is needed to investigate the possible link between 

host-associated microbiota and susceptibility to mass mortalities more thoroughly, such as 

characterisation of respiratory microbiota, functional profiling and/or deeper sequencing of gut 
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microbiota, and importantly investigation of possible changes in gut microbiota during a mass 

mortality event. The gut microbiota profile of the Saiga during a year without die-offs provides 

a baseline for future work investigating the microbiota’s role in mass mortalities, and also more 

widely contributes to our understanding of the Saiga and its ecology. 

 

Estimating age in wild populations 

As seen in Chapter III, age is a key variable in gut microbiota dynamics. Thus, a downside of 

using wild mice as a model system is that their precise age is often unknown. In Chapter II, I 

attempted to overcome this limitation by predicting age in wild mice with an epigenetic clock 

built using calibrated age data from laboratory mice. This method worked to some extent, but 

it did not seem to provide more accurate estimates of age than e.g., body mass, thus the method 

was not used in other chapters. As others who have had better success predicting age in wild 

individuals of unknown age have used captive animals from zoos to build an epigenetic clock 

(Mayne et al., 2022; Robeck et al., 2021), I hypothesize the inaccuracy of my clock may arise 

from laboratory and wild mice being genetically too different and living in contrasting 

environments with laboratory mice lacking stressors like food shortage and disease, that may 

be important drivers of DNA methylation in the wild. To refine this method further and better 

predict chronological age in wild mice, it may be more fruitful to train an epigenetic clock 

using individuals from semi-natural settings rather than lab animals. For example, the barn-

dwelling mice that are intensively studied at the University of Zurich (Ferrari et al., 2022) 

provide a system where close monitoring of breeding attempts and individuals means age can 

often be known precisely, but individuals are outbred and the environment is variable, which 

may increase the clock’s accuracy for application in wild settings.  
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While the approach used did not provide an accurate estimate of chronological age, it may be 

that it captures useful signals of biological age (the ‘wear and tear’ of the body), which can be 

influenced by various genetic and environmental factors (Han et al., 2018; Joubert et al., 2016). 

As wild mice had substantially higher levels of DNA methylation in general (Chapter II, Suppl. 

Fig. 2), and experience far more varying environmental conditions that can affect their rate of 

biological aging, studying the drivers of biological aging could be powerfully addressed in the 

future with large datasets from wild mouse populations involving repeat captures to estimate 

change in epigenetic markers over time. Such studies may be more informative for 

understanding drivers of biological aging, or at least complement, those conducted in highly 

controlled lab environments. Perhaps future research will even identify links between the gut 

microbiota and biological aging. 

 

Final conclusions 

The mammalian gut microbiota is evidently important for the host, but many aspects of it 

remain poorly understood. In particular, what drives variation across and within individuals 

over time remains largely unknown. The laboratory mouse is widely used as a model system 

in gut microbiota research, despite its gut microbiota being distinct from that of wild house 

mice. In this thesis, I have illustrated how the setting (laboratory vs wild) can affect some but 

perhaps not all aspects of the gut microbiota and beyond. Laboratory and wild mice have gut 

microbiotas that are compositionally substantially different but these microbial communities 

undergo similar assembly processes in early life. Further, laboratory and wild mice age 

epigenetically at fairly similar rates, but on entirely different scales, with wild mice having 

remarkably higher levels of DNA methylation throughout life. I have further demonstrated that 

spatial influences on gut microbiota variation are stronger on the fungal than bacterial part of 

the microbiota, and that microbial transmission from soil may be one source of spatial 



General discussion 

 216 

variation. Together the results from this thesis advance gut microbiota research by aiding 

interpretation of lab-based studies as well as by highlighting the potential in using novel 

approaches informed by wild populations. 
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