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A B S T R A C T

Electron beam welding is an autogenous welding process that leads to microstructural hetero-
geneities; crystallographic texture, elongated and larger grain size relative to the surrounding
parent material. The goal of this study is to predict the changes in mechanical response of
the weld fusion zone as a function of grain morphology and texture by using the parent
material properties to avoid extensive and costly experimental campaigns. For this reason,
a crystal plasticity solver, ‘‘University of BRIstol cryStal plasTicity sOLver’’ (BRISTOL), is
implemented in a finite element framework with new constitutive laws to account for the
length-scale dependence considering the size and shape of the grains. It is found that the
crystallographic texture governs the orientation specific elastic stiffness and yield stress having
the most dominant effect on the macroscopic response of the weldment at the grain size scales
considered. Crucially the length-scale dependent model allows accurate prediction of the yield
strength of the weldment over a range of microstructures, also highlighting the presence of
other factors such as prior strain hardening during the welding process and residual stresses.

. Introduction

Electron beam welding (EBW) is being considered for use in the nuclear industry for joining key components because of its
otential for high productivity and efficiency. Besides the beneficial characteristic features of EBW; uniform energy density and
arrow heat affected zone, EBW can lead to relatively low residual stresses and distortion (Chowdhury et al., 2018). EBW can join
hick pieces togehter with uniform chemistry (Vasileiou et al., 2017) but it can result in significantly different crystallographic
exture in the weldment zone which give rise to highly directional properties. In addition, grain growth results in a morphological
exture, significantly elongated and relatively large grains in comparison to the parent (conventionally manufactured) material (Wu
t al., 2016; Das et al., 2021). These microstructural features have previously been measured to generate realistic polycrystal
epresentations for simulations in order to predict the mechanical response (i.e. stiffness, yield strength, strain hardening behavior,
nd residual stresses) of weldments or additively manufactured materials (Kapoor et al., 2018).
rystal plasticity-based finite element (CPFEM) approaches have been used extensively for prediction of microstructure sensitive
echanical properties at a local grain level. Furthermore, dislocation density based models have been used to incorporate

emperature dependent aspects in constitutive laws; such as thermally-activated glide, cross-slip, dipole formation, etc. (Ardeljan
t al., 2014). Current focus has been the application of CPFEM together with artificial neural-networks, machine-learning and
ncertainty quantification within the scope of data-driven modeling and simulation (Karapiperis et al., 2021).
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The length-scale dependence of deformation such as yield strength has been a long-standing issue in understanding and modeling
mechanical behavior of metals (Hutchinson, 2000). The physical source of the length-scale dependence was linked with the presence
of grain boundaries in polycrystals, multi-phase, hard phase particles, dislocation cell substructures (Fleck et al., 1994). All these
affect the mean-free-path of dislocations correlated to the strength through Taylor’s relation for the dislocation strength (Roters
et al., 2000).
A polycrystal aggregate behavior differs from the responses of columnar grains or surface grains due to the compatibility and
equilibrium constraints imposed by the neighboring grains (Kocks and Mecking, 2003). Therefore, a surface grain cannot really
represent bulk polycrystal behavior. Oligocrystal (few crystal) (Zhao et al., 2008; Demir and Gutierrez-Urrutia, 2021) and bi-crystal
studies (Zaefferer et al., 2003) were useful to understand grain boundary behavior while those may not reflect the true polycrystal
material behavior because the relatively different stress states of grains than a grain constrained in a polycrystal aggregate. For this
reason crystal plasticity-based finite element simulation is an essential tool to accurately represent the stress states in the polycrystals.
Currently there is software available (e.g. Dream3D and Neper) to generate representative volume elements (RVEs) for crystal
plasticity. Experimental measurements such as grain size, aspect ratio of grains, or crystal orientations could enter as inputs
to these synthetic microstructure generator tools to create an RVE directly from 2D or 3D microstructure maps. Accordingly,
Dream3D® has the capability to create RVEs with hexahedron elements using flexible statistical tools for grain size and orientation
distribution (Groeber and Jackson, 2014). Similarly, Neper® uses tessellation method that reveals grains with continuous edges and
element type can be defined hexahedron or tetrahedrons (Quey et al., 2011). Investigations on the RVE selection by using those
microstructure generators have been conducted recently (Lim et al., 2019; Chen et al., 2022). The RVE size and resolution were
identified as the two important factors that significantly effect the convergence of Von Mises stress which is also a funcion of the
applied strain (Lim et al., 2019). Accordingly, the average value of engineering stresses over an RVE, differ almost 100% through
ramping up the total number of grains in the RVE from 10 to 1000 (Chen et al., 2022).
The Hall–Petch method is an empirical approach to correlate the inverse square root of the grain size to the mechanical yield
strength (Hall, 1954). The experimental macroscopic yield stresses correlate reasonably well with the inverse square root of the
magnitude of the grain size (Hansen, 2004). Therefore, the Hall–Petch equation has been used to incorporate grain size dependence
for polycrystal models in various crystal plasticity frameworks (Mu et al., 2014; Liu et al., 2020).
Strain gradients have been used to incorporate the length-scale into crystal plasticity. Slip gradients were expressed in terms of Geo-
metrically Necessary Dislocations (GND) to correlate with the flow strength of grains through the Taylor relation (Fleck et al., 1994).
This method has been implemented in crystal plasticity-based finite element models to incorporate length-scale dependence (Dai,
1997). Therefore, dislocation density based constitutive laws that use GNDs as state variables were developed (Arsenlis and Parks,
2002; Cheong et al., 2005). Polycrystal models that were based on slip gradients and micro forces allowed modeling size dependence
including backstress effects (Klusemann and Yalçinkaya, 2013; Yalçinkaya et al., 2021). Strain gradient models that were used in
conjunction with crystal plasticity-based finite element framework had various applications; i.e. plastic behavior of bi-crystals (Liang
and Dunne, 2009) and slip hardening interactions for a multi-phase alloys (Lu et al., 2020; Sun et al., 2019b). Among the many
strain gradient models, only a few consistently update GNDs (Evers et al., 2004; Ma, 2006; Gerken and Dawson, 2008) using a
non-local iterative loop to ensure consistency condition.
Gurtin’s microstress model (Gurtin, 2002) has been used to incorporate long-range stress or backstress effects due to GNDs.
Accordingly, a mean-field approach was developed (Acharya and Roy, 2006) and used in conjunction with a J2 model to predict
distribution of dislocations (Arora and Acharya, 2020). Strain gradient approaches using slip rates as a separate field variable and
that relied on macro and micro force equilibrium were also available to model length-scale size dependence (Niordson and Kysar,
2014). A similar micro-stress approach was used for backstress to predict shear banding of copper-niobium laminate (Zecevic et al.,
2023). The strain-gradient formulation revealed an increase in the yield stress as a function of size (Wulfinghoff et al., 2015).
Less intricate approaches than strain gradient models were introduced to incorporate grain size effects. For example, a grain size
dependent yield function with a phenomenological expression was used as a relatively simple alternative model to the strain gradient
models (Cruzado et al., 2018). Similarly, a physically-based relationship was used through correlating grain size to the mean-free-
path of dislocations to include the grain size dependence of flow stress (Haouala et al., 2018). Accordingly, a grain size dependent
flow stress model to correlate slip resistance to the slip distance at the nearest neighbor grain and as a function of misorientation
between the grains was employed recently to predict the non-local size dependent behavior of grains (Agius et al., 2022). However,
this method suffered from the requirement of a large RVE due to consideration of adjacent grains which hinders the calibration
process.

In this study, a length-scale dependent model is developed and implemented in a crystal plasticity-based framework to predict
mechanical properties of stainless steel 316L weldment. The aim of this study is to predict the mechanical properties of the weldment
using experimental data available for the non-welded (parent) material thereby to avoid rigorous and costly experiments to qualify
the weldment. In the proposed model, grain dimensions are determined in a unique way through fitting ellipsoids to each grain hence
the effect of grain morphology and grain size on the slip distance are both represented in the model. The proposed approach reveals
an increase in the initial yield strength of the smaller grains unlike strain gradient models that require prior slip to get strengthening
from the length-scale dependent strain hardening. In addition, a unique projection is used to compute the length-scale parameter
defining the effect of grain size on each slip system considering the grain morphology. The model findings are compared to the
experimental macroscopic mechanical response considering crystallographic and morphological aspects of texture in the weldment
to better understand the major factors that control the mechanical behavior in a weldment.
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Fig. 1. (a) Parent material microstructure of SS316L after electrolytic etching in nitric acid 60% at 1 Volt for 60 s. The microstructure consists of austenite
matrix (regions with high contrast - white) with traces of retained 𝛿-ferrite (regions with low contrast - black), (b) parent and weld phase map.

Fig. 2. (a) Inverse Pole Figure map of electron beam welded sample. The cross-section of the test sample of the weldment is indicated with the black dash
line., (b) pole figures about RD.

2. Experiments

In this study, two plates of austenitic stainless steel type 316L (SS316L) with dimensions of 400 mm by 100 mm and thickness
of 25.4 mm were welded using autogeneous electron beam welding (EBW). The welding parameters and details of manufacturing
can be found elsewhere (Mokhtarishirazabad et al., 2019). The microstructural features of the parent metal and fusion zone were
revealed by electrolytic etching (nitric acid 60% under 1 V for 60 s) of a ground and polished sample, cut from the weld cross-
section, Fig. 1(a). The width of the fusion zone was about 4 mm. Optical images were acquired using a Zeiss Imager M2. Grain size
of the parent material was measured by analyzing the optical images taken from the etched specimen in accordance with ASTM
E112 standard (ASTM-E112-13, 2017). The average grain size was measured to be 20 ± 8 μm in the parent material of SS316L that
represents the equiaxed microstructure away from the weld using optical microscopy.

Fig. 1(b) shows the phase map of the parent and weld material. The retained 𝛿-ferrite phase (BCC) in the weld was approximately
1% in the weldment and 2% in parent material, thereby highlighting the dominant phase as FCC austenite.
3
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Fig. 3. (a) Grain aspect ratio distribution (A/B), and (b) grain size statistics obtained from the EBSD maps of the weldment. Plots are obtained using MTEX®

software.

Fig. 4. (a) Schematic of the location of the tensile samples extracted from the EB welded plate and (b) the corresponding stress–strain curve for each sample.

The weld region of SS316L was ground and polished again to remove the etched surface before the EBSD analysis, Fig. 2(a).
The final polishing was performed by a vibratory polisher for 12 h in 0.06 μm amorphous colloidal silica suspension (MasterMet
by Buehler Ltd). Zeiss SigmaVP scanning electron microscope was employed for EBSD examination, working at 30 kV, while the
specimen was tilted 70◦ with scanning step size of 2 μm. The weld region had a strong Cube and Goss texture indicated with the
red and green colors respectively, in the inverse pole figure map in Fig. 2(b).

The average aspect ratio (AR) of the grains was obtained by using MTEX® software by fitting ellipses which are prescribed by the
ratio of principal axes to the major axis A and B, Fig. 3(a). The grains with dimensions greater than 100 μm were considered in this
analysis only. The aspect ratio of grains had a significant variation. Therefore, two different average aspect ratios were computed as
8.2 (for grains with A/B ≥ 5) and 4.8 (for grains with A/B < 5). Similarly, the average grain sizes were measured as 392 ± 233 μm,
Fig. 13(a), and 194 ± 233 μm, Fig. 13(b), respectively for the two aspect ratios.

Cross-head displacement-controlled tensile tests were performed on round samples extracted along the weld-line from the fusion
zone and parent material using an Instron 5969 universal testing machine at a rate of 0.5 mm/min, following ASTM E8M (ASTM-E8,
2001). The elongation of the tensile samples was measured by mounting an axial clip-on extensometer on their gauge length. The
gauge length and diameter of the specimens were 20 mm and 4 mm, respectively. Fig. 4 shows the location from which the tensile
samples were extracted from the weldment and the corresponding stress–strain curve for each sample. Fig. 2(a) indicated the size
and location of the longitudinally extracted samples on the EBSD map with the black circular dash line.

3. Method

This section includes a brief review of crystal plasticity, length-scale dependent constitutive laws, and the methodology used to
model the shape and size of the grains, respectively.
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Table 1
Slip vectors in the crystal reference frame for fcc materials; 𝐬𝑎 and 𝐧𝑎 denote slip direction and slip plane normal, respectively.
The transverse direction, 𝐭𝑎, is obtained by the cross-product of the slip direction and the slip plane normal.
𝐧𝑎 (111) (1̄1̄1) (11̄1̄) (1̄11̄)

𝐬𝑎 [011̄] [1̄01] [11̄0] [01̄1̄] [101] [1̄10] [01̄1] [1̄01̄] [110] [011] [101̄] [1̄1̄0]

3.1. Crystal plasticity

The total deformation, 𝐅, is decomposed into its elastic, 𝐅𝐞, and volume conserving plastic, 𝐅𝐩, parts using Eq. (1):

𝐅 = 𝐅𝐞 𝐅𝐩, det(𝐅𝐩) = 1. (1)

Green–Lagrange strain is used to calculate the elastic strain, 𝐄𝐞 for large displacements from Eq. (2) in which 𝐈 is the 2nd rank
identity tensor:

𝐄𝐞 = 𝐅𝐞𝑇 𝐅𝐞 − 𝐈
2

. (2)

𝐏 is 2nd Piola–Kirchoff (PK2) stress that is obtained using elasticity matrix of cubic crystal, 𝐃, Eq. (3). Note that all of the calculations
were performed in the crystal reference using the sample to crystal transformation in Appendix A that is explained in Appendix B:

𝐏 = 𝐃 ∶𝐄𝐞. (3)

Resolved shear stress on a slip system is obtained by projecting PK2 stress on the slip the systems. By assuming small elastic strains
for metals, Eq. (4) is obtained:

𝜏𝑎 = 𝐅𝐞𝐓 𝐅𝐞 𝐏 ∶ 𝐒𝑎 ≈ 𝐏 ∶ 𝐒𝑎. (4)

Schmid tensor transforms the slip (simple shear) from respective slip system prescribed by its slip direction, 𝐬𝑎, and slip plane normal,
𝐧𝑎 which reveals the dyadic product in Eq. (5):

𝐒𝑎 = 𝐬𝑎 ⊗ 𝐧𝑎. (5)

Table 1 shows the slip direction and slip plane normals for FCC type materials. The parent and weld materials contain approximately
98% and 99% of austenite volume fraction with FCC structure. The retained 𝛿-ferrite phase in the weldment had relatively low
volume fraction (<1.2% of the overall), Fig. 1(b), hence only FCC structure was considered in this study.
The sum of the slip rates on each slip system using the corresponding shear transformation using Schmid tensor, 𝐒𝑎, reveals the
plastic velocity gradient, 𝐋𝐩, Eq. (6):

𝐋𝐩 =
∑

𝑎
𝐒𝑎�̇�𝑎. (6)

Cauchy stress, 𝝈, is calculated by transforming PK2 stress, 𝐏, to the deformed configuration using Nanson’s relation as in Eq. (7):

𝝈 = 𝐅𝐞 𝐏𝐅𝐞𝑇 ∕ det 𝐅𝐞. (7)

The output quantities are computed at the end of the increment such as cumulative slip, 𝛤 , according to Eq. (8):

𝛤 =
∑

𝑎 ∫

𝑡

0
�̇�𝑎d𝑡. (8)

The two level semi-implicit crystal plasticity time integration scheme of Kalidindi et al. is adopted in this study (Kalidindi et al.,
1992). The solution method is briefly explained in Appendix C.

3.2. Finite element solver

The crystal plasticity approach is implemented in a finite element framework in ABAQUS® with the user subroutine functions
UMAT, UEXTERNALDB, and UVARM for defining the material mechanical response, to perform relevant initializations, and to
output the results, respectively. UMAT returns the total deformation gradient while requesting two entries; the Cauchy stress (𝝈)
and material tangent stiffness ( 𝜕𝝈𝜕𝝐 ) in order to perform the displacement field iteration (Hibbitt et al., 2014).

The crystal plasticity solver, BRISTOL,1 based on a semi-implicit solver for PK2 stress was developed during this study. The
roposed apporach is completely different from the earlier crystal plasticity solver that was based on single level forward-gradient
ethod based on the solution for the slip increments (Huang, 1991). A working version of BRISTOL with example input files,
BAQUS® environment files, and a user documentation is provided within this study. A maintained version will be available publicly

1 Fortran implementation of this study is termed as BRISTOL that stands for ‘‘University of BRIstol cryStal plasTicity sOLver’’.
5
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Fig. 5. Calculation of second moment of an element ‘‘i’’ about the centre of mass of a grain.

https://github.com/smrg-uob). The two-level scheme and modular implementation allows a relatively easy way to develop new
onstitutive models compared to the single-level schemes that require all the differential terms including state variables.

The Jacobian (or material tangent) was computed analytically because the inefficiency of the perturbation method in that was
utlined in the Ref. Kalidindi et al. (1992). To better explain that, for a material point crystal plasticity needs to be solved six more
imes in the case of perturbation making it inefficient. In addition, the perturbed strain increments, that are slightly larger than
he total strain increments, that may give rise to convergence issues resulting in significant number of time cut-backs. For all these
easons, a slightly modified version of the analytical Jacobian in Ref. Balasubramanian (1995) and Lieou and Bronkhorst (2020) is
mplemented Appendix D.

.3. Constitutive laws

The cubic elasticity matrix, 𝐃, was constructed using three independent constants 𝐶11, 𝐶12, and 𝐶44. Power law was used
o calculate slip rates per slip systems, �̇�𝑎, because of its computational efficiency over more physics-based sine-hyperbolic or
xponential laws, Eq. (9). �̇�0 and 𝑚 were reference slip rate and rate sensitivity exponent that need to be determined by calibration:

�̇�𝑎 = �̇�0

(

|𝜏𝑎 − 𝑋𝑎
|

𝜏𝑎𝑐

)1∕𝑚
sign(𝜏𝑎 −𝑋𝑎). (9)

The critical resolved shear stress (CRSS) is a function of initial strength, 𝜏0𝑐 , and dislocation density, 𝜚𝑎 through Taylor’s strength
relation, Eq. (10). The length-scale term, 𝐿𝑎, incorporates the grain size dependent portion of strength on the slip systems through
an adjusting parameter 𝐶:

𝜏𝑎𝑐 = 𝜏0𝑐 + 𝛼 𝐺 𝑏
(

√

𝜚𝑎 + 𝐶
𝐿𝑎

)

. (10)

The model uses two state variables; dislocation density, 𝜚𝑎,and backstress, 𝑋𝑎, for each slip system. The dislocation density evolution
as governed by Kocks–Mecking type of strain hardening rule (Mecking and Kocks, 1981), Eq. (11), with hardening and softening
arameters of 𝐾 and 𝑦𝑐 , respectively. 𝑦𝑐 represents the temperature and strain-rate dependent annihilation events. The grain size
ependence of strain hardening effects were introduced through the mean-free-path parameter, 𝐿𝑎, using the same scaling constant,
, as in the strength similar to Cruzado et al. (2018) and Haouala et al. (2018):

�̇�𝑎 =
[

𝐾
(

√

𝜚𝑎 + 𝐶
𝐿𝑎

)

− 2𝑦𝑐 𝜚𝑎
]
|

|

̇𝛾𝑎|
|

𝑏
. (11)

The length-scale parameter effects yield strength through Eq. (10), and strain hardening (or state evolution) through Eq. (11). The
same constant, 𝐶, was used in both expressions for simplicity. The relative effect of the length-scale parameter on the yield strength
and strain hardening are adjusted by the calibration factors 𝛼 and 𝐾, respectively.
Backstress was defined as another state variable and its evolution rate, �̇�𝑎, for each slip system, 𝑎, is computed by Eq. (12).

he phenomenological expression for the backstress allows relatively robust solution unlike other methods that require additional
terative loops (Zecevic et al., 2023).

�̇�𝑎 = ℎ ̇𝛾𝑎 − ℎ𝐷 𝑋𝑎
|
̇𝛾𝑎|. (12)

.4. Grain size and shape

Initially, the elements that belong to each grain was obtained. Then the centre of mass of a grain was calculated simply by taking
he average of the center coordinates of the finite elements or voxels that belong to that grain.

The second moment, 𝐦𝑖, about the centre of mass of a grain was then calculated by Eq. (13) using the elements inside the grain
6

nd their centre coordinates. Fig. 5 shows the schematic sketch of centre of mass of a grain and an example finite element ‘‘i’’ within
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Fig. 6. Example ellipsoid fit to a grain with an aspect ratio of 5: (a) RVE and the selected grain (grain-A), (b) the finite elements in the selected grain, (c) the
fitted ellipsoid (blue color) by using the centre coordinates of the elements of grain-A (red color).

that grain. 𝑑𝑥, 𝑑𝑦, and 𝑑𝑧 represent the moment arms from the centre of the element ‘‘i’’ to the centre of mass of the grain that the
element belongs to:

𝐦𝑖 =
⎡

⎢

⎢

⎣

𝑑𝑥2 𝑑𝑥𝑑𝑦 𝑑𝑥𝑑𝑧
𝑑𝑦𝑑𝑥 𝑑𝑦2 𝑑𝑦𝑑𝑧
𝑑𝑧𝑑𝑥 𝑑𝑧𝑑𝑦 𝑑𝑧2

⎤

⎥

⎥

⎦

. (13)

The second moments of each element of a grain were summed up to obtain the overall second moment tensor, 𝐌 as in Eq. (14):

𝐌 =
∑

𝑖
𝐦𝑖. (14)

The eigenvalues, 𝜆𝑘, of the second moment tensor reveal the principal dimensions of the ellipsoid while the eigenvectors, �̂�𝑘,
give the principal directions denoted with the subscript 𝑘 using Eq. (15):

(

𝐌 − 𝜆𝑘𝐈
)

�̂�𝑘 = 𝟎. (15)

Eq. (16) defines the ellipsoid orientation and dimensions. For example, the major (1st) axis of the ellipsoid is given by 𝐝1 = 𝜆1 �̂�1:

𝐝𝑘 = 𝜆𝑘 �̂�𝑘 , (𝑘 = 1, 2, 3). (16)

Fig. 6 shows an example grain in a polycrystal RVE and the ellipsoid fit to that grain using the proposed approach. Various
different geometries can be accurately represented using the ellipsoids. The principal axes of the ellipsoid need not necessarily
coincide with the sample reference axes (X, Y, Z) meaning that the ellipsoid can be oriented in any direction.

The length-scale parameter for each slip system was obtained by using the component of the principal axes of the ellipsoid
and the slip plane normals. The dislocation motion occurs by expansion of dislocation loops within the slip planes. Therefore, the
projection Eq. (17) calculates the in-slip-plane components of the principal axes of the ellipsoids. This is similar to the projection
for the irradiated dislocation loops in the Ref. Barton et al. (2013). The length-scale, 𝐿𝑎

𝑖 , for a grain with ‘‘i’’th principal axis, 𝐝𝑖,
was computed using the projection in Eq. (17) to find the component of 𝐝𝑖 vector on the slip plane, 𝐧𝑎:

𝐿𝑎
𝑖 = ‖

‖

(𝐈 − 𝐧𝑎 ⊗ 𝐧𝑎) ⋅ 𝐝𝑖‖‖ . (17)

The grain size effect was incorporated by the calculation of the effective slip distance individually for each slip system. The
slip distance can be different depending on the orientation of the slip plane, 𝐧𝑎, and on the shape of a grain (that is prescribed by
an ellipsoid geometry with its principal axes in three directions, 𝐝𝑖. Therefore, the projection in Eq. (17) was used to reveal the
mean-free-path dimension on a slip system of a grain. Fig. 7 shows the projection schematically.

The projection in Eq. (17) takes into account the effect of grain dimensions along both the slip direction and transverse slip
direction. Because slip shall be considered as the uniform expansion of a dislocation loop in all directions on the slip plane,
considering the presence of both edge and screw type of dislocations.

Overall length-scale parameter was computed by using the norm of the length-scale projections for all of the principal directions,
Eq. (18):

𝐿𝑎 =
√

(𝐿𝑎
1)

2 + (𝐿𝑎
2)

2 + (𝐿𝑎
3)

2. (18)

The length-scale analysis was performed only during initialization of the calculations. At first, the dimensions (eigenvalues) and
principal directions (eigenvectors) of the ellipsoids for each grain were computed outside the finite element analysis(FEA) using
MATLAB®. An input file for the FEA containing the principal axes of the ellipsoid fits in the sample reference, 𝐝𝑖, along each
principal direction for each grain was created. Note that, 𝐝𝑖 were not unit vectors. For example, the length of 𝐝1 represents the
dimension of the ellipsoid along its 1st principal axis. The projected lengths, 𝐿𝑎, for each slip system 𝑎 and for each grain were
7
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Fig. 7. Schematic sketch of a slip plane normal, 𝐧𝑎, and an expanding dislocation loop. The projection is shown with for an example illustration for a grain
with a principal axis vector +𝐝1.

Fig. 8. Stress strain response for an equiaxed microstructure with various average grain sizes: 1 μm, 2 μm, 5 μm, 10 μm, 20 μm, and 100 μm. (a) stress–strain
response up to 1.5% strain, (b) flow stress values obtained by 0.2% yield offset method, and (c) RVE with 40 × 40 × 40 grid with a total of 75 number of
grains. Loading was along 𝑥-direction.

calculated within the initialization user subroutines once at the beginning of the crystal plasticity calculations. The same value of
𝐿𝑎 was assigned to all integration points in the corresponding grain. The shape of the grains were insensitive to the deformation at
low strains with tensile strains of 1.5%. However, the method can be generalized to large deformation processes.

The sensitivity of the model to the length-scale dependence of the grains was investigated by testing on an RVE with different
average grain sizes. The RVE in Fig. 8(c) with 40 × 40 × 40 grids containing a total of 75 grains. The same RVE with different
dimensional scaling was used in order eliminate the effect of the orientation scatter and grain geometries. Therefore the dimensions
of the same RVE was scaled to give models with average grain sizes of 1 μm, 2 μm, 5 μm, 10 μm, 20 μm, and 100 μm. Fig. 8(a)–
(b) show the engineering stress–strain curves that correspond to each grain and its extracted yield stresses using the yield-offset
method, respectively. The length-scale dependence starts to become noticeable below 20 μm which is similar to the findings of Hall
for mild-steel (Hall, 1954). Because the grain size becomes comparable to the mean-spacing of dislocations below this scale only.
The value for the length-scale parameter, 𝐶, was found to be 10 based on the expected size scale transition below 20 μm grain size.

The yield strength in the proposed approach increases with decreasing grain size. The shift of yield strength is a salient feature of
this model different from other strain gradient models. Because in strain gradient models, slip is required to develop slip gradients
thereby leading to strain hardening or strengthening (Fleck and Hutchinson, 2001). The model presented here can reveal both the
increase in the yield stress and the increase in strain hardening with a decrease in the grain dimensions.

4. Results and discussion

The effect of RVE resolution and RVE size on the stress–strain response was investigated using the equiaxed microstructure with
uniform texture to check the representability of the RVE for the constitutive model used and for the strain levels considered in
this study. The model was then used to simulate the tensile response of the weldment to further investigate the sensitivity of the
results on the grain size statistics and crystallographic texture. The effect of pre-strains during welding process was approximately
simulated and compared with the experimental response. Finally, the simulation results of the parent and weldment were analyzed.

The 3D synthetic microstructures were generated using Dream3D® software (Groeber and Jackson, 2014). Table 2 shows the
properties of the different synthetic microstuctures that were used in the simulations. RVEs (0–6 and 10) represent the parent
microstructure that were used to determine the RVE sensitivity to macroscopic stress. The remaining RVEs (7–9) were constructed
using the microstructural properties of the weldment; using the statistics of grain size, morphological and crystallographic texture.
RVE-7 neglects the presence of the crystallographic texture which was included in RVE-8 and RVE-9. The grains that were larger
than 100 μm size were used to construct both RVE-8 and RVE-9. The grains with the aspect ratio greater than five (AR > 5) were
selected for RVE-8 as shown in Fig. 13(a) while the grains with the smaller aspect ratio (AR < 5) were used for the grain size statistics
of RVE-9, Fig. 13(b). This resulted in RVE-8 consisting of grains within the majority of the weld metal, while RVE-9 contains grains
near the center-line of the weld. The minimum limit (min. lim.) of the grain size distribution restricts the size of the smallest grain
8
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Table 2
Statistical parameters used with Dream3D® software. Average grain size (av. GS) and its standard deviation (std. GS) were the two major parameters. Equiaxed
(equ.) and columnar (col.) indicates the grain morphology with the corresponding aspect ratios (AR). Voxel (vox.) size and number of divisions (div.) were
uniform in all three directions. L, W, and H refer to the length width and height of the RVE along X, Y, and Z directions, respectively. The maximum (max.
lim.) and minimum (min. lim.) limits represent the upper and lower cut-off values for the grain size distributions, respectively. Total number of grains (grain
no.) and total number of finite elements (ele. no.) of each RVE are indicated.

RVE Type av.
GS
[μm]

std.
GS
[μm]

min.
lim.

max.
lim.

bin
size

AR vox.
size

div. ele.
no.

L
[μm]

W
[μm]

H
[μm]

Grain
no.

0 equ. 20 8 0.15 0.04 1 1 1.25 32 32 768 40 40 40 26
1 equ. 20 8 0.15 0.04 1 1 2 20 8000 40 40 40 25
2 equ. 20 8 0.15 0.04 1 1 1 40 64 000 40 40 40 26
3 equ. 20 8 0.15 0.04 1 1 0.667 60 216 000 40 40 40 25
4 equ. 20 8 0.15 0.04 1 1 1.25 40 64 000 50 50 50 50
5 equ. 20 8 0.15 0.04 1 1 1.25 60 216 000 75 75 75 156
6 equ. 20 8 0.15 0.04 1 1 1.25 90 729 000 112.5 112.5 112.5 517
7 col. 392 233 0.001 0.1 50 8.2 30 80 512 000 2400 2400 2400 211
8 col. 392 233 0.001 0.1 50 8.2 30 80 512 000 2400 2400 2400 211
9 col. 194 117 0.001 0.1 20 4.8 30 80 512 000 2400 2400 2400 1760
10 equ. 20 8 0.15 0.04 1 1 1 80 512 000 80 80 80 189

Table 3
Calibrated model parameters and their description.
Description Constant Value Unit

Cubic elastic constant 𝐶11 204.6 × 103 MPa
Cubic elastic constant 𝐶12 137.7 × 103 MPa
Cubic elastic constant 𝐶44 126.6 × 103 MPa
Burgers vector 𝑏 0.256 × 10−6 mm
Reference slip rate �̇�0 0.01 s−1

Rate sensitivity exp. 𝑚 0.05 –
Initial slip strength 𝜏0𝑐 75 MPa
Initial dislocation density 𝜚0 3 × 107 1/mm2

Hardening constant 𝐾 0.035 –
Softening constant 𝑦𝑐 0.6 × 10−7 mm
Geometric constant 𝛼 0.45 –
Kinematic hardening ℎ 6555 MPa
Kinematic softening ℎ𝐷 245 –
Length-scale constant 𝐶 10 –

in the RVE to avoid misrepresentation of a grain with a few number of elements. Similarly, the maximum limit (max. lim.) avoids
the presence of very large grains that leads to under-representation of a polycrystal.

The effect of secondary phase delta-ferrite particles was neglected in this study. These second phases will give rise to local stress
oncentrations at the grain boundaries which act as potential sites for failure initiation (Sun et al., 2019a). However, the effect of
elta-ferrite on the macroscopic stress of the electron beam welded SS316L was limited due to its low volume fraction (less than 1%),
ig. 1. Besides, the representatives of the polycrystal becomes computationally inefficient when the relatively small dimensions of
he second-phase particles were considered. For these reasons, the delta-ferrite was not represented in the synthetic microstructures.

The uni-axial tensile test in the experiments was simulated by fixing the displacements that are normal to the three exterior
urfaces. Uniform displacements to the nodes of one of the face of the RVE was employed as the tensile displacements. The
imulations were performed up to 1.5% strain with a strain rate of 5×10−4 s−1. Macroscopic stress in the simulations were computed
y averaging the normal Cauchy (true) stress component along the loading direction amongst all of the elements in the mesh. The
ngineering strain was obtained by normalizing the displacements by the initial length of the RVE along loading direction which
as later converted to true strain conventionally (𝜖𝑡𝑟𝑢𝑒 = ln(𝜖𝑒𝑛𝑔 + 1)).

.1. Calibration (parent material)

Calibration was performed with respect to the mechanical response of the parent microstructure with homogeneous equiaxed
rain structure and uniform crystallographic texture. The average microstructural response of the overall RVE was used for
alibration with respect to the tensile experiments. A two stage calibration method was employed; at low strain and large strains to
nsure the true behavior. Firstly, the calibration was performed up to 1.5% axial strain. Secondly, the fine tuning of the parameters
as conducted using the experimental stress–strain curve up to 15% axial strain which was essential to ensure the matching strain
ardening behavior.

The model calibration was accomplished iteratively by adjusting model parameters to match the experimental tensile test results
or the parent material. Firstly, the yield strength was adjusted using the model constants of CRSS (𝜏0𝑐 ) and statistically stored
islocation density (𝜚0). Both parameters have the same effect on the yield strength, the latter effecting the strain hardening response
9
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Fig. 9. Stress strain response for parent material, experiments (exp.) and simulations (sim.), after calibration up to the axial strains of (a) 1.5% and (b) 15%
using (c) RVE-0 with a 32 × 32 × 32 grid. Loading was along 𝑥-direction.

Fig. 10. Effect of RVE resolution (number of elements per grain) on the uni-axial stress–strain response; experiments (exp.) vs. simulations (sim.). Total number
of elements are indicated in parentheses. RVE-0 refers to the reference RVE used for calibration. Loading was along 𝑥-axis.

as well. The initial value of CRSS shall not be confused with the lattice friction, rather it represents the initial strength of a slip
system considering the overall effect of the microstructure, i.e. solid solution strengthening, hard obstacles, friction stress, etc.
Secondly, the strain hardening rate was calibrated using the model constants 𝐾 and 𝑦𝑐 . Elastic modulus of austenite at the room
temperature were used (Ledbetter, 1985). The reference slip rate and sensitivity exponent (�̇�0 and 𝑚) were assumed to be within the
widely-accepted range of values of 0.001–0.1 s−1 and 0.001–0.5, respectively. The backstress parameters (ℎ and ℎ𝐷) were obtained
from the Ref. Agius et al. (2020) that rely on the cyclic experimental response of a similar material (SS316H) which has a similar
cyclic behavior as the material of interest (SS316L) at room temperature. Table 3 shows the final calibrated model parameters.

Fig. 9 shows the macroscopic tensile stresses obtained by experiments and its comparison to the results obtained after the
calibration. The predicted and experimental curves were slightly different in the low strain regime up to 1.5% strain. The experiments
show transition to non-linear regime after approximately 200 MPa. This could be related with the residual stresses present in the
weldment. Calibration can be performed with better mesh refinement for accuracy but then it becomes extremely time consuming.
Therefore, we used an inverse approach to check the representability of the RVE and validate the calibration by further investigating
the sensitivity of stress–strain curve to the RVE resolution and RVE size.

4.2. RVE resolution (parent material)

The effect of RVE resolution was investigated by changing the voxel size while keeping the overall dimensions of the RVE and the
grain size statistics constant. Therefore, in this analysis the number of grains within the RVEs remains nearly the same because grain
size statistics are kept the same for all RVEs, Table 2. But the orientations were different due to random generation of microstructures
everytime.
10
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Fig. 11. Effect of RVE size (total number of grains) on uni-axial stress–strain response; experiments (exp.) vs. simulations (sim.). The edge length of each RVE
is indicated in parentheses. Loading was along 𝑥-axis.

Fig. 10 shows the comparison of macroscopic stress–strain response of different RVEs. The difference between the flow stresses
for case with the lowest resolution (RVE-2) and the highest resolution (RVE-3) is negligible at the considered low strain level.
RVE-0, RVE-1, RVE-2, and RVE-3 have 1260, 320, 2462, and 8640 elements per grain on average, respectively. RVE-0 contains over
a thousand elements per grain revealing a converged response. This value is consistent with the findings in the Ref. Lim et al. (2019),
which gives approximately 1% variation among the results for RVE having less than 1000 elements per grain for the uni-axial strain
of 1%. The scatter in the stress–strain curves is reasonable considering the randomly generated orientations for each RVE thereby
leading to a different response.

4.3. RVE size (parent material)

Four different RVEs with different dimensions were examined in an effort to find the appropriate synthetic representation of a
polycrystal. All four RVEs have the same grain size statistics and RVE resolution, Table 2. Therefore, RVE-4, RVE-5 and RVE-6 were
obtained by simply increasing the dimensions by increasing the number of divisions while keeping the voxel size constant.

Fig. 11 shows the stress–strain response of RVEs with different sizes. RVE-0, RVE-4, RVE-5 and RVE-6 contain 26, 50, 156,
and 517 total number of grains, respectively. The difference between using an RVE containing 26 grains and 517 grains was
approximately only 5 MPa at 1.5% strain revealing RVE-0 being adequately representative of the parent material in the absence of
morphological and crystallographic texture. Lim et al. (2019). A greater number of grains is expected to represent the weldment in
the presence of crystallographic texture. However, the representatives also depends on the strain levels and low number of grains
are representative of a textured polycrystal at low strains (<2%).

4.4. Crystallographic texture (weldment)

The crystallographic texture obtained from the EBSD measurements of the weld, Fig. 2(a), were incorporated to RVE-8/9 that
represent the weld. The grains having dimensions greater than 100 μm were identified using MTEX® and exported as a text file
input suitable for the synthetic microstructure generator, Dream3D® software. Fig. 12 shows the pole figures of the exported and
imported grain orientations both having the same sample directions for consistency.

The crystallographic texture shall be considered in the weld models for accurate mechanical predictions. The elastic stiffness of
RVE-7, without considering the crystallographic texture, was quite different than that of the weld. The presence of crystallographic
texture in RVE-8 leads to a significantly better match with the weld response. Therefore, the lower elastic stiffness and the reduced
yield stresses in the weld than the parent material is strongly linked with the presence of the crystallographic texture consisting of
mainly Goss and Cube (rotated Cube) texture components, Fig. 12(a)–(b).

Morphological texture and grain size have a relatively lower effect on the mechanical response of the weld. This can be clearly
concluded from the stress–strain response of RVE-7 which does not posses crystallographic texture but has large grains relative to
the parent. However, the subtantial change in the grain size and morphology, did not significantly influence the yield response with
respect to the parent material. It would appear that, the grain size and morphology have a secondary effect in comparison to the
crystallographic texture at the considered scale of grain dimensions.
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Fig. 12. (a) Experimental texture in MTEX® for grain with sizes larger than 100 μm, (b) imported texture pole figures in DREAM3D®, (c) uni-axial stress–strain
curve of experiments (exp.) and simulations (sim.). Loading was along 𝑧-axis.

Fig. 13. The effect of grain aspect ratio on the uni-axial stress–strain response for weldment. The highlighted regions in blue color on the EBSD map shows
(a) grains AR > 5, (b) grains with AR < 5. Synthetic RVEs generated using the two different grain size statistics obtained from the EBSD map including the
crystallographic texture; (c) RVE-8, (d) RVE-9. Corresponding (e) experimental (exp.) and simulated (sim.) stress–strain curves for the weldment. Loading was
along 𝑧-axis.

4.5. Grain aspect ratio (weldment)

Fig. 13 shows the comparison of different grain families with different aspect ratios. RVE-8 and RVE-9 well represent the
mechanical behavior of the weld. Although we used aspect ratios to differentiate different grain families, the selection of grains
with two different aspect ratios indeed also reveals different average grain sizes. Comparison of stress–strain response of RVE-8 and
RVE-9 with different grain sizes reveals the relatively weak effect of the grain size at this scale, Fig. 8. The slight increase in the
flow stress of as the average grain size decreases (RVE-8 with respect to RVE-9) is consistent with Hall–Petch type models. The
mechanical behavior at considered scale is mainly governed by the crystallographic texture. Similarly, the difference in the grain
size and morphology has a secondary effect which can also be concluded by comparing the stress–strain curves for RVE-8 and RVE-9,
Fig. 13.

4.6. Prior strains due to welding process

The lower yield stress and higher strain hardening predicted by the weld material simulations than that of the experiments can
be a consequence of pre-strains which take place during the welding process. Weld pre-strain history has not been included in the
simulations meaning that the material was treated undeformed without any prior strain in the simulations. Ignoring the effect of
prestrain has led to an approximate 7% mismatch in the predicted flow stress. The difference in the strain hardening rate is greater;
approximately 3489 MPa in the experiments while it is 2567 MPa for RVE-8, which makes 26% mismatch of approximately, Fig. 13.
12
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Fig. 14. Stress–strain curves of the approximated welding process (black dots) followed by tensile testing (red dots).

Fig. 15. Equivalent Von Mises stress distributions on (a) RVE-8 (weld) and (b) RVE-10 (parent) after loading up to 1.5% strain. Loading is along z and 𝑥
directions for RVE-8 and RVE-10, respectively.

To further investigate the effect weld process strains, the weldment was preloaded up to 1.5% pre-strain, which is the expected
strain tensile strain level after welding along longitudinal or welding direction (z-axis) (Smith and Smith, 2018), and then the loading
was released. After the application of this pre-strain, the tensile experiments on the weld was simulated for RVE-8, Fig. 14 in the
same way as described previously. The simulation of the weld process strains by this approximation revealed over prediction of the
yield strength and under prediction of the strain hardening in comparison to the experiments.

The mismatch in the simulated flow stresses and the experimental stress could be due to various reasons: i. The process strains
are far more complicated than uni-axial strain state. Shear strains can be ignored at the centerline of the weld, however, the presence
of the normal strain components along the transverse directions (x and 𝑦 directions) cannot be neglected. In addition, the strains
during welding change their sign upon cooling. ii. The strain rate is expected to be different in welding than the uni-axial tests
with 5 × 10−4 s−1. iii. The presence of residual stresses may be reason in the decreased flow stresses measured in the experiments.
iv. Neglecting the high temperatures and temperature dependent material properties; lower elasticity and lower yield stress, during
welding also leads to the overestimation of flow stress in the simulations. v. The stress relaxation effects during welding were also
neglected that would lower the flow stresses. Therefore, the simulation of welding process requires temperature dependent material
properties and coupling with welding process simulations to accurately predict the weldment response by incorporating process
strains, strain-rates, temperatures and stress relaxation effects to the model.
13
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e

Fig. 16. Von Mises stress: (a) frequency distribution over the RVE, (b) mean value over each grain vs. average grain diameter. The dark region indicates the
intersection of the two distributions.

Fig. 17. Cumulative slip, 𝛤 : (a) frequency distribution over the RVE, (b) mean value over each grain vs. grain average diameter. The dark region indicates the
intersection of the two distributions.

4.7. Parent vs. weldment

Von Mises stress distributions of parent and weldment after 1.5% tensile strain and unloading reveal a quantitatively higher stress
levels in the parent than the weldment, Fig. 15. However, large stresses are also present in the weldments. The stress gradients at the
grain boundary interfaces were larger for the weldment than the parent material thereby making weldment more prone to failure.

Fig. 16 shows a comparison of Von Mises stresses averaged over each grain of the weld (RVE-8) and parent (RVE-10)
microstructures. The mean Von Mises stress in the parent material (428.1 MPa) is higher than that of the weld (351.6 MPa),
Fig. 16(a). The mean Von-Mises stress distribution in the parent material has a wider range with respect to the weld with the
standard deviations of 66.1 MPa and 51.8 MPa, respectively, Fig. 16(b), that indicates a greater local variation of stresses within
the grains of parent material.

Similarly, average cumulative slip amongst the grains was investigated for the parent and weldment. The frequency plots in
Fig. 17(a) show a wider range of values for parent material indicating a greater variation of slip amongst grains of the parent
material than the weldment. The crystallographic texture in the weldment has 43.6% less variation in mean cumulative slip relative
to the parent material. The mean value of the cumulative slip in Fig. 17(b) has a wider range of values than the parent material
due to the presence of relatively random crystal orientations of parent grains in comparison to the sharp texture in the weldment.

In summary the grain-size dependent model was implemented in a modular crystal plasticity framework to simulate the
polycrystal mechanical response accurately and efficiently. The model reveals a higher yield stress for smaller grains without any
prior slip which is the major difference from the strain gradient models. The model requiring only a few parameters for calibration
makes it quite efficient. However the calibration of length-scale adjusting parameter, 𝐶, needs further investigation including
xperiments on polycrystals with a range of average grain sizes. The model is computationally efficient since it does not require a
14
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non-local calculation and the related calculations need to be performed only once at the beginning of the analysis. Therefore, the
computational times were approximately the same as using a size-independent model, making this model extremely efficient. Besides,
the size dependent model increases the CRSS based on the projected grain size on the slip distance having a different influence on
slip systems. Increasing the CRSS, is seen to improve the convergence revealing the robustness of the proposed length-scale model for
polycrystals. To conclude, the model presents a robust and numerically efficient alternative method to incorporate size dependence
for large scale polycrystal applications.

5. Conclusions

This study presents a relatively straightforward and consistent way to incorporate grain size and shape dependence to the crystal
lasticity based finite element methods. Several important conclusions are listed in the below:

• The effect of grain size and morphology on the yield strength and strain hardening rate were successfully included by
representation of grains with ellipsoids and considering the effect of grain shape on the mean-free-path of dislocations.

• The proposed length-scale model changes both the yield strength and strain hardening as a function of grain size unlike strain
gradient methods that cause strengthening by strain hardening.

• The observed grain size dependence is low but still present for the size regime considered in this study.
• Crystallographic texture is the most important factor to accurately model mechanical response of electron-beam welded

material microstructure and must be included the models.
• At the low strain levels (1.5% axial strain), the RVE becomes statistically representative of a polycrystal as the number of

elements per grain becomes more than 1000 and total number of grains becomes more than 25 number of grains for an
equiaxed microstructure without texture.

Future studies include a more detailed microstructural characterization of the weld using 3D-EBSD technique over a large region
o have a more accurate representation of crystallographic texture. Furthermore, the proposed crystal plasticity approach will be
oupled to the weld process simulations to incorporate the effect of strain history of the weldment prior to the tensile simulations.
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ppendix A. Crystal orientation

Crystal orientation matrix, 𝐠, defines the passive transformation from the sample to the crystal reference frame, Eq. (A.1). 𝐠 is
omputed by Bunge angles (𝜑1, 𝛷, 𝜑2).

𝐠 =
⎡

⎢

⎢

cos𝜑1 cos𝜑2 − sin𝜑1 sin𝜑2 cos𝛷 sin𝜑1 cos𝜑2 − cos𝜑1 sin𝜑2 cos𝛷 sin𝜑2 sin𝛷
−cos𝜑1 sin𝜑2 − sin𝜑1 cos𝜑2 cos𝛷 − sin𝜑1 sin𝜑2 + cos𝜑1 cos𝜑2 cos𝛷 cos𝜑2 sin𝛷

⎤

⎥

⎥

. (A.1)
15

⎣ sin𝜑1 sin𝛷 −cos𝜑1 sin𝛷 cos𝛷 ⎦



Journal of the Mechanics and Physics of Solids 178 (2023) 105331E. Demir et al.

t
a

E

A

g

t

Appendix B. Crystal orientations as initial rotations

The crystal orientations are assigned as initial plastic part of the deformation gradient, 𝐅𝐩
𝑡0 (Ma, 2006). Eq. (B.1) allows direct

ransformation of a vector in the sample reference to crystal reference thereby eliminating the need for transformation of elasticity
nd slip vectors:

𝐅𝐩
𝑡0 = 𝐠. (B.1)

The transpose (inverse) of the crystal orientation is assigned as the initial (at 𝑡 = 0 s) elastic deformation gradient, 𝐅𝐞
𝑡0, using

q. (B.2):

𝐅𝐞
𝑡0 = 𝐠𝑇 . (B.2)

So that, there is no initial deformation, Eq. (B.3):

𝐅𝑡0 = 𝐅𝐞
𝑡0 𝐅𝐩

𝑡0 = 𝐈. (B.3)

ppendix C. Crystal plasticity time integration scheme

Time integration of evolution of 𝐅𝐩 gives approximately the expression in Eq. (C.1) in terms of the plastic velocity gradient, 𝐋𝐩,
and plastic deformation gradient at the former time step, 𝐅𝐩

𝑡:

𝐋𝐩 =
𝐅𝐩 − 𝐅𝐩

𝑡
𝛥𝑡

𝐅𝐩−1. (C.1)

Rearranging terms in Eq. (C.1) and using Eq. (6) gives Eq. (C.2):

𝐅𝐩−1 = 𝐅𝐩−1
𝑡

(

𝐈 −
∑

𝑎
𝐒𝑎𝛥𝛾𝑎

)

. (C.2)

Using Eq. (1) and Green–Lagrange expression in Eq. (2) reveals elastic strains in terms of the plastic part of the deformation
radient, Eq. (C.3):

𝐏 = 𝐃 ∶
(

𝐅𝐩−𝑇 𝐅𝑇 𝐅𝐅𝐩−1 − 𝐈
)

∕2. (C.3)

Substituting Eq. (C.2) into Eq. (C.3) and neglecting higher order shear terms gives the relation of 2nd PK stress in which 𝐏𝑡𝑟 is
the trial stress and a plastic corrector term, Eq. (C.4):

𝐏 = 𝐏𝑡𝑟 −
∑

𝑎
𝛥𝛾𝑎 𝐂𝑎. (C.4)

in which 𝐏𝑡𝑟 is given by Eq. (C.5):

𝐏𝑡𝑟 = 𝐃 ∶ (𝐀 − 𝐈) ∕2. (C.5)

𝐂𝑎 is defined by Eq. (C.6):

𝐂𝑎 = 𝐃 ∶ 𝐁𝑎∕2. (C.6)

𝐀 is computed from the given quantities using Eq. (C.7):

𝐀 = 𝐅𝐩−𝑇
𝑡 𝐅𝑇 𝐅𝐅𝐩−1

𝑡 . (C.7)

𝐁𝑎 is computed from Eq. (C.8) which reads:

𝐁𝑎 = 𝐀𝐒𝑎 + (𝐒𝑎)𝑇 𝐀. (C.8)

The residual in Eq. (C.9) is formulated and its iterative solution is performed by using a two level scheme:

𝜳 = 𝐏 − 𝐏𝑡𝑟 +
∑

𝑎
𝛥𝛾𝑎 𝐂𝑎. (C.9)

In the inner level Eq. (C.9) is solved by Newton–Raphson method using the tangent in Eq. (C.10). The derivative expression,
𝜕�̇�𝑎

𝜕𝜏𝑎 , in the tangent calculation is obtained by the constitutive coupling:

𝜕𝜳
𝜕𝐏

= 𝐈 +
∑

𝑎

𝜕�̇�𝑎

𝜕𝜏𝑎
𝐒𝑎 𝛥𝑡. (C.10)

The updated value of stresses at the next inner iteration cycle, (𝑖 + 1), are obtained by Eq. (C.11). The iteration continues until
he residual becomes smaller than a tolerance (‖𝜳‖ < 10−6 × 𝜏0𝑐 ):

𝐏(𝑖+1) = 𝐏(𝑖) −
( 𝜕𝜳 )−1

𝜳 (𝑖). (C.11)
16
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Once the inner level converges, the converged slip rates are used in conjunction with the constitutive relations in Eqs. (11) and
12) to update the corresponding state variables using Euler integration. In this study, dislocation density and backstress were used
s the state variables. However, to keep the generality, Eq. (C.12) exemplifies a generalized state update in which [𝑌 𝑎

(𝑗+1)]𝑛 and
𝑌 𝑎
(𝑗)]𝑛 represent current and former values of the states per slip system 𝑎 at the ‘‘j’’th outer level iteration. The subscript 𝑛 represents

he number of independent state variables. The outer level iteration continues until the residual for each state variables becomes
maller than a tolerance (| [�̇� 𝑎

(𝑗)]𝑛 𝛥𝑡 | < 10−5 × 𝑌 0
𝑛 ):

[

𝑌 𝑎
(𝑗+1)

]

𝑛
=

[

�̇� 𝑎
(𝑗)

]

𝑛
𝛥𝑡 +

[

𝑌 𝑎
(𝑗)

]

𝑛
. (C.12)

Single level iterative schemes as suggested by Meissonnier et al. was also tested using a material point application of crystal
lasticity solver. However, it did not provide a significant saving in the computation times as per suggested in the Meissonnier et al.
2001) and Ha et al. (2017).

ppendix D. Analytical material tangent calculation

Material tangent in ABAQUS® uses the engineering strains, 𝝐, and Cauchy stress components, 𝝈, Eq. (D.1):

𝝐 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑧𝑧
2𝜖𝑥𝑦
2𝜖𝑥𝑧
2𝜖𝑦𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝝈 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (D.1)

The fourth order Jacobian or the material tangent tensor, 𝐉, is given by Eq. (D.2):

𝜕𝝈 = 𝐉 ∶ 𝜕∆𝐄. (D.2)

The variation of Cauchy stress is computed by differentiating the expression for Cauchy stress in Eq. (7) to obtain Eq. (D.3):

𝜕𝝈 = 1
det𝐅𝐞

[

𝜕𝐅𝐞 𝐏𝐅𝐞𝑇 + 𝐅𝐞 𝜕𝐏𝐅𝐞𝑇 + 𝐅𝐞 𝐏 𝜕𝐅𝐞𝑇 − 𝐅𝐞 𝐏𝐅𝐞𝑇 𝜕𝐅𝐞 ∶ 𝐅𝐞−𝑇
]

. (D.3)

The relative strain, 𝛥𝐄, is obtained from the relative stretch, 𝛥𝐔, using Eq. (D.4):

𝛥𝐄 = ln(𝛥𝐔) ≈ 𝛥𝐔 − 𝟏. (D.4)

The variation of relative strains becomes as in Eq. (D.5):

𝜕𝛥𝐄 = 𝜕𝛥𝐔. (D.5)

The relative stretch is computed first by obtaining the relative deformation gradient, 𝛥𝐅, from the total deformation gradients
at the current and former time steps using Eq. (D.6):

𝛥𝐅 = 𝐅𝐅−1
𝑡 . (D.6)

The polar decomposition of the relative deformation gradient, 𝛥𝐅, is used to give the relative stretch, 𝛥𝐔, and relative rotation,
𝛥𝐑.

(i) Calculation of 𝜕𝐅𝐞

𝜕𝛥𝐔
Elastic part of the deformation gradient can be written as in Eq. (D.7) using Eqs. (1) and (C.2):

𝐅𝐞 = ∆𝐑 ∆𝐔 𝐅𝐞
𝑡

(

1 −
∑

𝑎
𝛥𝛾𝑎 𝐒𝑎

)

. (D.7)

Differentiation reveals Eq. (D.8):

𝜕𝐅𝐞 = ∆𝐑 𝜕∆𝐔 𝐅𝐞
𝑡

(

1 −
∑

𝑎
𝛥𝛾𝑎 𝐒𝑎

)

− ∆𝐑 ∆𝐔 𝐅𝐞
𝑡
∑

𝑎
𝜕𝛥𝛾𝑎 𝐒𝑎. (D.8)

(ii) Calculation of 𝜕𝛥𝛾𝑎

𝜕𝛥𝐔
Using chain rule of differentiation Eq. (D.9) is calculated:

𝜕𝛥𝛾𝑎

𝜕𝛥𝐔
=

𝜕𝛥𝛾𝑎

𝜕𝐏
𝜕𝐏
𝜕𝛥𝐔

. (D.9)

(iii) Calculation of 𝜕𝛥𝛾𝑎

𝜕𝐏
Using chain rule Eq. (D.10) can be obtained in which the term 𝜕𝛥𝛾𝑎

𝜕𝜏𝑎
is obtained by the constitutive law:

𝜕𝛥𝛾𝑎
=

𝜕𝛥𝛾𝑎 𝜕𝜏𝑎 . (D.10)
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Resolved shear stress is related 2nd PK stress through Eq. (4) which takes the form in Eq. (D.11) after differentiation:
𝜕𝜏𝑎

𝜕𝐏
= 1

2
[

𝐒𝑎 + (𝐒𝑎)𝑇
]

. (D.11)

(iv) Calculation of 𝜕𝐏
𝜕𝛥𝐔

Differentiating Eq. (C.4), gives two other differentials to be computed as in Eq. (D.12):

𝜕𝐏 = 𝜕𝐏𝑡𝑟 −
∑

𝑎
𝜕𝛥𝛾𝑎 𝐂𝑎 −

∑

𝑎
𝛥𝛾𝑎 𝜕𝐂𝑎. (D.12)

(v) Calculation of 𝜕𝐂𝑎

𝜕𝛥𝐔
Taking derivative of the expression in Eq. (C.6) gives Eq. (D.13):

𝜕𝐂𝑎 = 1
2
𝐃 ∶ 𝜕𝐁𝑎. (D.13)

(vi) Calculation of 𝜕𝐁𝑎

𝜕𝛥𝐔
The expression for 𝐁𝑎 in Eq. (C.8) is differentiated as in Eq. (D.14):

𝜕𝐁𝑎 = 𝜕𝐀𝐒𝑎 + (𝐒𝑎)𝑇 𝜕𝐀. (D.14)

(vii) Calculation of 𝜕𝐏𝑡𝑟

𝜕𝛥𝐔
Using chain rule and differentiating Eq. (C.5), the derivative of trial stress is obtained, Eq. (D.15):

𝜕𝐏𝑡𝑟 = 1
2
𝐃 ∶ 𝜕𝐀. (D.15)

(viii) Calculation of 𝜕𝐀
𝜕𝛥𝐔

𝜕𝐀 is necessary for calculation of differentials in both Eqs. (D.14) and (D.15). The derivative of the expression for 𝐀 in Eq. (C.7)
is used together with Eqs. (1) and (D.6) to give Eq. (D.16):

𝜕𝐀 = 𝐅𝐞𝑇
𝑡 𝜕∆𝐔 ∆𝐔 𝐅𝐞

𝑡 + 𝐅𝐞𝑇
𝑡 ∆𝐔 𝜕∆𝐔 𝐅𝐞

𝑡. (D.16)

Once these differentials in steps (i)–(viii) are completed, the Jacobian is calculated using Eq. (D.3). The index notation is not
hown here to avoid complexity, readers shall refer to the Dai (1997) and Balasubramanian (1995) for further details.

The assignment of crystal orientations to the initial plastic deformation gradient (Eq. (B.2)) and its inverse to the elastic
eformation gradient (Eq. (B.3)) eliminates the transformation of cubic elasticity (Step-2 in Balasubramanian, 1995) as well as
he transformation of slip vectors and Schmid tensor.

ppendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2023.105331.
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