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A B S T R A C T

The plane elastic problem of a circular disc shrink fitted into a hole in an elastically similar plane, with a
frictional interface, is studied. The disc is subject to a radial force and torque both of which vary with time.
In the steady-state the loads vary harmonically, and a relative phase shift is considered. Frictional slip is
accounted for by edge dislocations distributed along the interface. It is shown that the steady-state response,
which might, for example, be cyclic slip or full adhesion (shakedown) for a particular loading regime, depends
on the loading history before the steady-state loading regime is entered. This contrasts with Melan’s theorem
for elastic–plastic shakedown, and is a consequence of the normal–tangential coupling in this frictional system.
1. Introduction

Contacts in mechanical assemblies are often subject to a constant
primary load such as the centrifugal force in a gas turbine, and a
superimposed varying load that might stem from vibration. These loads
can cause regions of microslip to develop at the interface of a nominally
stationary contact. The contact is then said to be in a state of partial
slip. In the steady state, we distinguish between ‘cyclic slip’, where
the slip displacements are fully reversed in each loading cycle, and
‘ratchetting’ where an increment of rigid-body motion is accumulated
in each cycle, even though there is no instant in time at which the
whole contact slips. Examples of frictional ratchetting include a punch
‘walking’ along a half-plane (Mugadu et al., 2004) and the gradual
rotation of a bushing in a conrod end (Antoni et al., 2007).

1.1. Shakedown

In some circumstances, microslip during an initial transient phase
can generate residual tractions sufficient to inhibit microslip in the
steady state. This is analogous to the state of shakedown in an elastic–
plastic system, and for many years tribologists assumed that Melan’s
theorem (Melan, 1936) could be extended to frictional slip, implying
that shakedown will always occur if there exists a distribution of slip-
generated residual tractions sufficient to inhibit slip. However, Klar-
bring et al. (2007) showed that this is true if and only if the system
is ‘uncoupled’, meaning that slip displacements have no effect on the
normal tractions at any point on the contact interface. A more general
result due to Andersson et al. (2014) showed that for uncoupled systems
above the shakedown limit, the frictional energy dissipation per cycle
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is also independent of initial conditions. However, when the system
is coupled, we can expect a range of loading conditions in which the
occurrence of shakedown depends on the initial condition or on an
initial transient loading phase.

1.2. Load factor concept

The Coulomb friction law predicts that slip depends only on the
ratio between the tangential and normal tractions, so we should expect
that the occurrence of shakedown depends on an appropriate dimen-
sionless measure 𝜆 of the ratio between the periodic load and the
constant load. For coupled systems, we then anticipate the existence
of a finite range 𝜆1 < 𝜆 < 𝜆2 in which the occurrence of shakedown
depends on initial conditions, with shakedown always occurring for 𝜆 <
𝜆1. Jang and Barber (2011b) identified an additional range 𝜆2 < 𝜆 < 𝜆3
in which cyclic slip occurs in the steady state, but the energy dissipated
per cycle depends on initial conditions. This implies that the system has
‘memory’, which Barber (2011) argued must reside in the locked-in slip
displacements at points that do not slip in the steady state. Thus, the
upper limit 𝜆3 is defined by the condition that all points in the interface
slip at least once during each loading cycle. For systems possessing a
rigid-body motion degree of freedom this may lead to ratchetting in
𝜆 > 𝜆3.

The complexity of most frictional engineering contact problems does
not allow for an analytical solution, and hence illustrations of these
concepts have been largely restricted to discrete formulations such as
the finite element description of a complete contact due to like Flicek
et al. (2015). Also, classical half-space contact geometries are either
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𝑞

Fig. 1. Shrink-fitted disc in an infinite plane with a hole.

uncoupled or have relatively weak normal-tangential coupling. In the
present paper, we choose a simple circular geometry that lends itself
to analytical formulation and that involves strong coupling, so as to
highlight the effect of initial conditions on steady-state behaviour.

2. Problem statement

We consider the problem of Fig. 1 in which a disc of radius 𝑎
is shrink-fitted into a circular hole in an infinite plate of the same
material, resulting in a uniform interfacial contact pressure 𝑝0.

The disc is then subject to a radial force 𝑃 and a torque 𝑇 applied
at the origin in the sense shown in Fig. 1. In the absence of slip, these
loads cause contact tractions of the form

𝑝(𝜃) = −𝜎𝑟𝑟(𝑎, 𝜃) = 𝑝0 −
𝜅 + 3
𝜅 + 1

𝑃
2𝜋𝑎

sin 𝜃 (1)

𝑞(𝜃) = −𝜎𝑟𝜃(𝑎, 𝜃) = − 𝑇
2𝜋𝑎2

− 𝜅 − 1
𝜅 + 1

𝑃
2𝜋𝑎

cos 𝜃 (2)

where

𝜅 =

{

3 − 4𝜈 for plane strain,
3−𝜈
1+𝜈 for plane stress,

is Kolosov’s constant and 𝜈 is Poisson’s ratio.
Starting from the uniform pressure state at 𝑃 = 𝑇 = 0, the contact

interface will remain fully stuck as long as the normalised loads

𝑃 = 𝑃
𝑝0𝑎

; 𝑇 = 𝑇
𝑝0𝑎2

(3)

remain inside the square region in Fig. 2, where

𝜒 =

√

(𝜅 − 1
𝜅 + 1

)2
+ 𝑓 2

(𝜅 + 3
𝜅 + 1

)2
(4)

(Cwiekala et al., 2022).
If the loading point crosses the boundary of this region, parts of

the contact interface will experience slip. Cwiekala et al. (2022) repre-
sented the resulting stress field using arrays of distributed edge dislo-
cations 𝐵𝑟(𝜙), 𝐵𝜃(𝜙) at the interface, and used the resulting solution to
investigate the range of ‘memory-free’ loading conditions under which
the stress state depends only on the instantaneous values of 𝑃 , 𝑇 . Here
we shall use the same methodology to investigate history-dependent
loading scenarios, particularly those involving periodic loading.
2

Fig. 2. Cyclic variation of radial load and torque in normalised load space.

2.1. Locked-in slip displacements

The system memory resides in the locked-in slip displacements
ℎ(𝜃) = 𝑢𝜃(𝑎+, 𝜃) − 𝑢𝜃(𝑎−, 𝜃), which in turn are completely defined by
the instantaneous dislocation distributions 𝐵𝑟(𝜙), 𝐵𝜃(𝜙). The tractions
((1), (2)) are then modified by the addition of the residual tractions

𝑝̄(𝜃) =
2𝜇

𝜋(𝜅 + 1) ∫𝑆

[

𝐵𝜃(𝜙)𝐾𝑝𝜃(𝜃, 𝜙) + 𝐵𝑟(𝜙)𝐾𝑝𝑟(𝜃, 𝜙)
]

𝑑𝜙 (5)

̄(𝜃) =
2𝜇

𝜋(𝜅 + 1) ∫𝑆

[

𝐵𝜃(𝜙)𝐾𝑞𝜃(𝜃, 𝜙) + 𝐵𝑟(𝜙)𝐾𝑞𝑟(𝜃, 𝜙)
]

𝑑𝜙 , (6)

where 𝑆 defines the region in which slip has occurred and

𝐾𝑝𝜃(𝜃, 𝜙) =
1
2
cos (𝜃 − 𝜙) + 1

𝐾𝑞𝜃(𝜃, 𝜙) = 𝐾𝑝𝑟(𝜃, 𝜙) =
sin (𝜃 − 𝜙) cos (𝜃 − 𝜙)
2(1 − cos (𝜃 − 𝜙))

(7)

𝐾𝑞𝑟(𝜃, 𝜙) = −1
2
cos (𝜃 − 𝜙) .

Assuming 𝐵𝑟(𝜙), 𝐵𝜃(𝜙) are known at the start of a given loading step,
the values at the end of the same step can be found by solving an
incremental contact problem in which the incremental dislocation distri-
butions 𝛥𝐵𝑟(𝜙), 𝛥𝐵𝜃(𝜙) are zero in the stick region where |𝑞(𝜃)| < 𝑓𝑝(𝜃),
and 𝑞(𝜃) = ±𝑓𝑝(𝜃) in the current slip region 𝜂1 < 𝜃 < 𝜂2. This condition
leads to the singular integral equation

∫

𝜂2

𝜂1

[

𝛥𝐵𝜃(𝜙)
(

𝐾𝑞𝜃 ∓ 𝑓𝐾𝑝𝜃
)

+ 𝛥𝐵𝑟(𝜙)
(

𝐾𝑞𝑟 ∓ 𝑓𝐾𝑝𝑟
)]

𝑑𝜙

= −
(

𝑞0(𝜃) + 𝑞(𝜃)
)

± 𝑓
(

𝑝0(𝜃) + 𝑝̄(𝜃)
)

; 𝜂1 < 𝜃 < 𝜂2 , (8)

where 𝑝0(𝜃), 𝑞0(𝜃) represent the biaxial tractions of Eqs. (1), (2) and the
condition that there be no separation requires that

𝐵𝜃 +
𝑑𝐵𝑟
𝑑𝜙

= 0 . (9)

The incremental problem (8) was solved numerically at each time
step, using the procedure described in Cwiekala et al. (2022). The
dislocation distributions were then updated and the process repeated.
Notice however that if the incremental problem involves a transition
at any point from slip to stick (a state known as ‘advancing stick’), the
load increment must be sufficiently small to capture the profile of the
newly locked-in dislocation distributions.
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2.2. Initial conditions

Generally, the steady-state cyclic dissipation is expected to depend
on initial conditions, as described in Section 1. For example scenarios,
these can be realised by defining a non-zero initial dislocation distri-
bution, taking care that this does not lead to tractions that violate the
frictional condition |𝑞(𝜃)| ≤ 𝑓𝑝(𝜃) for all 𝜃. However, a more conve-
ient method which we use here is to define various initial transient
oading paths and use the present solution algorithm to determine the
orresponding dislocation distributions.

If the steady-state cycle contains a segment that lies inside the
quare ‘initial stick’ region in Fig. 2, and if the initial transient load
ath is totally included inside this region, it is clear that the resulting
teady state cycle must be unique. Thus to generate a range of dif-
erent solutions corresponding to the same steady-state loading cycle,
he initial loading paths must pass outside the initial stick region.
or this purpose, we defined a set of trajectories of the form 𝑂𝐼𝐴
n Fig. 2, where the points {𝜒𝑃𝐼∕𝑓, 𝑇𝐼∕𝑓} comprise the 24 crosses
n Fig. 2 whose coordinates are defined by various combinations of
3𝜋∕4,±5𝜋∕4,±7𝜋∕4. We also included the ‘full stick’ transient 𝑂𝐴.

This choice of initial transients is arbitrary and by no means compre-
hensive, but as we shall see it suffices to demonstrate various significant
features of the steady-state response.

2.3. Steady-state loading

We assume that the steady-state loading can be expressed in the
form

𝑃 (𝑡) = 𝑃0 + 𝑃1 sin(𝜔𝑡)

𝑇 (𝑡) = 𝑇0 + 𝑇1 sin(𝜔𝑡 + 𝜑) , (10)

where 𝑃0, 𝑇0 are the mean loads, 𝑃1, 𝑇1 are the amplitudes of the
periodic loads [e.g. due to vibration] and 𝑡 is time. If the periodic loads
are in phase (𝜑 = 0), the steady-state load path collapses to a straight
line in Fig. 2. For all other cases, Eqs. (10) define an elliptical load path
centred on the point {𝜒𝑃0∕𝑓, 𝑇0∕𝑓}.

In the spirit of Section 1.2, we write Eqs. (10) in the dimensionless
form

1
𝑓

[

𝜒𝑃 (𝑡)
𝑇 (𝑡)

]

= 1
𝑓

[

𝜒𝑃0
𝑇0

]

+ 𝜆
√

1 + 𝜓2

[

sin(𝜔𝑡)
𝜓 sin(𝜔𝑡 + 𝜑)

]

. (11)

where

𝜆 = 1
𝑓

√

(

𝜒𝑃1
)2

+
(

𝑇1
)2

, (12)

is a dimensionless load factor, and

𝜓 =
𝑇1
𝜒𝑃1

. (13)

n the special case where 𝜑 = 0, 𝜆 is half the length of the line defining
he load path in Fig. 2 and 𝜓 is its slope.

.4. Steady-state response

We choose to characterise the steady-state response in terms of the
otal energy dissipated per load cycle, since this is likely to correlate
ith the severity of fretting damage, and it provides a convenient

calar measure of the extent to which initial conditions influence the
teady-state.

The instantaneous rate of energy dissipation due to friction is given
y

̇ = −𝑎
2𝜋
𝑞(𝜃)ℎ̇(𝜃)𝑑𝜃 , (14)
3

∫0
Fig. 3. Normalised steady-state energy dissipation per cycle 𝑊 as a function of load
factor 𝜆 for in-phase loading with 𝜒𝑃0∕𝑓 = 𝜋, 𝑇0∕𝑓 = 3𝜋∕4, 𝜓 = 5∕8 and 𝑓 = 0.1. Results
are presented for all 25 initial loading conditions defined in Section 2.2 (plane strain
with 𝜈 = 0.3).

where ℎ̇(𝜃) is the instantaneous rate of local slip displacement which
is non-zero only in the current slip zone. The cyclic dissipation is then
obtained as

𝑊 = ∫cycle
𝑊̇ 𝑑𝑡 , (15)

and a convenient normalisation is

𝑊 =
𝑊 𝜇

(𝜅 + 1)𝑝20𝑎
2
. (16)

In some cases we found that the system approaches the steady state
asymptotically, as in the problem considered by Ahn and Barber (2008).
In these cases, the steady state was considered converged when the
change in 𝑊 relative to the previous cycle was less that 0.01%.

3. In-phase loading

When the periodic loads are in phase (𝜑 = 0), the load path in Fig. 2
is a straight line and we expect the bounding load factors 𝜆1,… , 𝜆4
described in Section 1.2 to depend on the slope of this line 𝜓 and the
mean values 𝜒𝑃0∕𝑓, 𝑇0∕𝑓 . Fig. 3 shows the normalised steady-state
energy dissipation per cycle for 25 different initial transients, for the
case where 𝜒𝑃0∕𝑓 = 𝜋, 𝑇0∕𝑓 = 3𝜋∕4 and 𝜓 = 5∕8. Shakedown cases are
represented by black circles, cyclic slip by red dots, and ratchetting by
red dots with a blue edge. The results follow the pattern described in
Section 1.2, notably that there exists a range of load factors 𝜆1 < 𝜆 < 𝜆2
in which the occurrence of shakedown depends on initial conditions,
and that the energy dissipation is non-zero but dependent on initial
conditions in the range 𝜆2 < 𝜆 < 𝜆3. Ratchetting occurs for 𝜆 > 𝜆3 and
gross slip (unbounded rigid-body rotation) at one point in the cycle for
a higher value of 𝜆 which we identify as 𝜆4.

The limiting value 𝜆2 can be regarded as the solution of an op-
timisation problem in which we seek a distribution of locked-in slip
displacements ℎ(𝜃) so as to just inhibit slip throughout the loading
cycle. For in-phase loading it is sufficient to apply this condition at the
two extreme conditions represented by the ends of the load line. For
this purpose, the continuum problem was first converted to a discrete
problem by discretising ℎ(𝜃), after which the optimal distribution was
obtained using the procedure described by Björkman and Klarbring
(1987) and Flicek et al. (2015).

This procedure was used to determine the boundary 𝜆2 shown in

Fig. 3. The optimal distribution was considered as an additional initial
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Fig. 4. Relative range of energy dissipation 𝑅 [Eq. (17)] for 𝜆2 < 𝜆 < 𝜆3 and the
parameters of Fig. 3, compared with the fraction 𝑟 of the interface that remains stuck
after the initial loading phase 𝑂𝐼𝐴 in Fig. 2.

condition and the corresponding values of steady-state dissipation com-
prise the outlying rightmost red dots in the range 𝜆2 < 𝜆 < 𝜆3. These
points lie significantly to the right of all those obtained using the 24
initial conditions defined in Section 2.2, which shows that this choice of
initial conditions was not sufficiently comprehensive to capture the full
range of history-dependent behaviour, both in regard to the possibility
of shakedown in 𝜆 < 𝜆2 and to the expected value of energy dissipation
in 𝜆2 < 𝜆 < 𝜆3. However, it remains an open question as to whether
there exists any transient loading path from the initial axisymmetric
state, sufficient to generate the optimal slip displacements. A related
problem for a simple frictional contact was considered by Barber (2018)
who showed that a desired distribution of residual stress in a one-
dimensional discrete system could be achieved by a finite sequence of
alternating loads of monotonically decreasing amplitude, but that for
the corresponding continuous system the desired value could generally
only be attained at a denumerable set of points.

3.1. System memory

We anticipate that memory of the initial conditions resides primarily
in regions that slipped during the initial transient loading phase, 𝑂𝐼𝐴 in
Fig. 2 and that subsequently remained permanently stuck. To confirm
this, Fig. 4 presents the proportion 𝑟 of these regions that remains stuck
after point 𝐴 in Fig. 2, and compares it with the relative range of energy
dissipation

𝑅 =
max(𝑊 ) − min(𝑊 )

mean(𝑊 )
, (17)

As expected, both measures tend monotonically to zero as 𝜆3 is
approached, since in ratchetting all points in the contact area slip at
least once per cycle and all memory of the initial conditions must
eventually be lost.

3.2. Ratchetting

Fig. 5 shows the time history of regions of forward and backward
slip for 𝜆 = 7, corresponding to the point 𝐵 in Fig. 3.

All the other parameters are the same as in Fig. 3. Notice that some
regions experience just a single period of forward slip during each
load cycle, whilst others experience alternating periods of forward and
backward slip. We describe this as non-monotonic ratchetting. Of course,
kinematic considerations dictate that the net slip displacement per cycle
be the same for all points in the interface.
4

Fig. 5. (a) Evolution of slip zones around the circumference for ratchetting with
parameters corresponding to point 𝐵 in Fig. 3, (b) the corresponding load variation.

Fig. 6. Normalised steady-state energy dissipation per cycle 𝑊 as a function of relative
phase 𝜑 for 𝜒𝑃0∕𝑓 = 𝜋, 𝑇0∕𝑓 = 3𝜋∕4, 𝜓 = 5∕8, 𝜆 = 5.1 and 𝑓 = 0.1. Results are presented
for all 25 initial loading conditions defined in Section 2.2 (plane strain with 𝜈 = 0.3).

4. Out-of-phase loading

Jang and Barber (2011a) and Kim et al. (2019) describe results for
frictional systems in which the relative phase of the periodic loads has
a significant effect on the frictional energy dissipation. For the present
system, the case 𝜑 ≠ 0 corresponds to an elliptical path in Fig. 2. Fig. 6
shows the dimensionless cyclic energy dissipation 𝑊 as a function of
𝜑 for the case 𝜒𝑃0∕𝑓 = 𝜋, 𝑇0∕𝑓 = 3𝜋∕4, 𝜓 = 5∕8 and 𝜆 = 5.1, for the 25
initial conditions defined in Fig. 2 and Section 2.2.
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Fig. 7. (a) Evolution of slip zones around the circumference for ratchetting with
parameters corresponding to point 𝐶 in Fig. 6, (b) the corresponding load variation.

Notice that changing only the relative phase of the oscillating torque
and force has a qualitative effect on the steady-state response, with
ranges of cyclic slip, shakedown and ratchetting. As in the in-phase
case, the initial conditions influence the location of the boundary
between shakedown and cyclic slip and also the energy dissipation in
cases of cyclic slip.

4.1. Monotonic ratchetting

Fig. 7 shows the extent of the slip region for a representative point
𝐶 in the ratchetting range of Fig. 6. In each load cycle a single slip
zone forms near 𝜃 = −3𝜋∕4, after which it bifurcates into two separate
slip zones. These slip zones then move away from each other around
the circumference, until they merge again near 𝜃 = 𝜋∕4. In contrast to
Fig. 5, no points experience slip opposite to the ratchetting direction,
so we refer to this steady state as monotonic ractchetting.

4.2. Memory-free steady states

Fig. 8 shows the steady-state dissipation and the corresponding state
as a function of the load factor 𝜆 for 𝜑 = 𝜋∕2 and the same parameters
as in Fig. 6 (𝜒𝑃0∕𝑓 = 𝜋, 𝑇0∕𝑓 = 3𝜋∕4, 𝜓 = 5∕8).

Notice that there is a sharp transition from shakedown to monotonic
ratchetting (blue circles) at 𝜆 = 5 (so 𝜆1 = 𝜆2 = 𝜆3), and that the
dissipation is independent of initial conditions for all 𝜆. However, for
𝜆 > 6.3, the behaviour transitions to non-monotonic ratchetting, as
defined in Section 3.2, here identified by blue circles with a red dot.

4.3. Effect of load factor

Fig. 9 shows the effect of a relative phase 𝜑 on the steady-state
dissipation for a range of load factors.

Here, in contrast to Figs. 3, 6 and 8, we consider only the direct
path 𝑂𝐴 to the load cycle. If other initial conditions were included,
5

Fig. 8. Normalised steady-state energy dissipation per cycle 𝑊 as a function of load
factor 𝜆 for out-of-phase loading (𝜑 = 𝜋∕2) with 𝜒𝑃0∕𝑓 = 𝜋, 𝑇0∕𝑓 = 3𝜋∕4, 𝜓 = 5∕8
and 𝑓 = 0.1. Results are the same for all the 25 initial loading conditions defined in
Section 2.2 (plane strain with 𝜈 = 0.3).

Fig. 9. Normalised steady-state energy dissipation per cycle 𝑊 as a function of relative
phase 𝜑 for 𝜒𝑃0∕𝑓 = 𝜋, 𝑇0∕𝑓 = 3𝜋∕4, 𝜓 = 5∕8, 𝑓 = 0.1 and a range of load factors 𝜆.
The initial transient is defined by a straight line from 𝑂 to 𝐴 in Fig. 2 (plane strain
with 𝜈 = 0.3).

the cyclic slip data points (red dots) would show some variability,
but the ratchetting results would remain unchanged. By tracking the
dissipation and state along a vertical line near 𝜑 = 0 or near 𝜑 = 𝜋∕2 it
is clear that figures similar to Fig. 3 and Fig. 6 respectively would be
obtained.

5. Conclusion

The steady-state frictional energy dissipation at the contact interface
generally increases if the load factor 𝜆 characterising the severity of
the periodic loading is increased. Depending on the parameter values
including the relative phase of the periodic force and torque, the
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following sequences of the steady-state mode can occur with increasing
𝜆

1. Shakedown → cyclic slip → non-monotonic ratchetting,
2. Shakedown → monotonic ratchetting → non-monotonic ratchet-

ting,

and the sequence can always be cut short by sliding or separation. Only
for load cases exhibiting the first sequence do we find a conditional
shakedown region 𝜆1 < 𝜆 < 𝜆2, as shown in Fig. 3, and we then also
ind that the frictional energy dissipation during cyclic slip depends on
nitial conditions.
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