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Abstract 

This thesis presents work on advanced optical surface metrology methods that enable extending 

the range of surface slopes that can be reliably measured by optical surface topography 

measurement instruments, and on investigating the reliability of the current capability. Optical 

instruments can only capture a limited portion of light scattered from an object’s surface, 

determined by the instrument’s numerical aperture. As the surface measured becomes steeper, 

less scatter is captured until all specular scatter is lost, referred to as the specular reflection limit 

(SRL). While surface measurement of slopes beyond the SRL by modern instruments is 

possible via the capture and detection of non-specular scatter, the instrument response to these 

slopes is not well understood. In addition, as the non-specular scatter has a low signal-to-noise 

ratio, data dropout can occur. Topography measurement of steep and complex surfaces using 

optical methods can therefore be challenging and have an unknown reliability, and can have 

significant errors when multiple scattering is present.  

The instrument modelling and experimental work focussed on coherence scanning 

interferometry (CSI). Through use of an approximate linear model the instrument response of 

a CSI instrument to various slope angles and spatial frequencies was described by a three-

dimensional (3D) surface transfer function (STF). This theory was experimentally verified by 

demonstrating that an experimental 3D STF obtained from measurement of microspheres can 

be used to generate a filter that can compensate for the effect of lens aberration at a fundamental 

level and consequently reduce errors in the topographies obtained, especially from surface 

slopes just below the SRL. Second, a rigorous two-dimensional boundary element method 

(BEM) model of electromagnetic surface scatter was verified through multiple comparisons 

including an exact analytical Mie scatter solution and through experimental comparison to 

measurement data from a laser scatterometer, providing evidence of the BEM model’s 

capability to accurately predict scatter from complex surfaces, including those that linear 

models cannot accurately model. A CSI model based on this BEM scattering model was then 

developed and verified, demonstrating the model’s capability to accurately model the CSI 

signal for complex surfaces which contain steep surfaces, including those that produce multiple 

scattering. Using this BEM-CSI model and experimental measurement, the capability of optical 

surface topography measurement methods for measurement of steep surfaces was investigated, 

illustrated for the first time with both fringe data and the resulting height estimates for a series 

of surfaces at slopes steeper than the SRL. At high tilt angles it was found that sharp edges with 

undercuts still provide strong signals which appear as plateaus in the topography data, with a 

width corresponding to the width of the point spread function of the instrument. While phase 

information was lost, part of the topography could still be obtained from the non-specular 

scatter. The BEM-CSI model’s results were accurate even for challenging surfaces beyond the 

capabilities of linear models, providing a tool for future investigation of other complex surfaces 

and providing progress towards evaluating the measurement uncertainty of complex surface 

measurements by optical instruments.
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“In science, if you know what you are doing, you should not be doing it.  

In engineering, if you do not know what you are doing, you should not be 

doing it. Of course, you seldom, if ever, see either pure state.” 

— Richard Hamming, The Art of Doing Science and Engineering (1997) 

 

 

 

Mac: “Let’s magnify, and see if we can get a reflection off her eye” 

Stella: “Magnification times 100, for starters” 

— CSI: NY - S1.E10 “Night, Mother” (2004) 
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Chapter 1: Introduction 

1.1 Background 

While the shape of manufactured parts typically dictates their function, for some parts 

the small-scale surface topography present on key surfaces critically determines the 

part’s capability [1], a principle also found in nature [2]. Advanced fabrication 

techniques that determine the small-scale surface topography, including new kinds of 

tools and techniques for surface grinding, polishing, finishing, etching, and coating, can 

be used to manufacture parts tailored for specific applications [1,3]. The surface 

topography present can determine properties related to tribology, such as friction, 

traction, lubrication, and wear [4–6]. They can affect physical properties, including 

optical properties such as reflectance and thermal properties such as those involved in 

passive and active cooling [1]. They can affect biological properties, involved in 

successful integration of manufactured parts with host physiology and extending part 

lifetime [7,8]. They can also control certain mechanical and hydrodynamic properties 

of the part [1,9,10]. Examples include wear-resistant cutting tools used for steel 

cutting [11,12], anti-reflective glazing coatings in the automotive industry [13], 

antiviral surfaces to suppress the spread of COVID-19 [14], aspherical microlens arrays 

in freeform optics manufacture [15], and fuel flow cavitation of a fuel injector 

nozzle [16]. Some examples are shown in Figure 1.1. 

 

Figure 1.1. (a) A milling cutter tool, (b) exploded-view of aspherical 

microlens arrays found in smart phone cameras, and (c) total knee 

replacement part mounted in a wear simulator from [17]. Copyright: (a) “10 

mm Ball End Milling Cutter” (https://flic.kr/p/2jgLFSm) by Tudor Barker 

under a CC BY-NC-SA 2.0 license. (b) Used with permission from ZYGO 

Corporation (AMETEK). (c) Reproduced from [17] with permission from 

Prof. Philippe Kretzer and Elsevier via CCC RightsLink publisher request 

(No. 5310851305781).  

https://www.flickr.com/photos/tudedude/50061580852/)
https://www.flickr.com/photos/tudedude/50061580852/)
https://flic.kr/p/2jgLFSm
https://creativecommons.org/licenses/by-nc-sa/2.0/
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To provide comprehensive information about a surface’s topography, or to conduct 

quality inspection of surface-engineered parts, surface topography measurement 

methods are required [18]. Compared to traditional mechanical contact methods, 

optical techniques have many advantages, such as their non-contact nature and the 

ability of areal optical methods to rapidly capture two-dimensional (2D) height 

information over an area of the surface [19,20]. Using interferometry for certain 

surfaces can even provide height data with sub-nanometre noise levels [21]. However, 

optical methods are typically more complex than contact methods due to the difficult-

to-model physics of the light-surface interaction and the optics of the instrument. The 

interaction between the instrument and the sample results in the instrument accuracy 

being partially dependent on the measured surface itself, connected to the distribution 

of spatial frequencies that comprise the surface and the surface slopes present.  

Engineered functional surfaces often feature varying slopes on macro- and micro-

scales. For a mirror-like surface that only reflects light in the specular direction, the 

highest surface slope that can be measured by a far-field three-dimensional (3D) optical 

surface measuring instrument is determined by the numerical aperture (NA) of the 

objective lens. Light that is specularly reflected by a surface that has a slope larger than 

one-half of the maximum reflected ray angle (𝜃𝑁𝐴 = sin−1𝐴𝑛, where 𝐴𝑛 is the NA) 

will fall outside of the acceptance cone of the instrument and not be captured [19], as 

shown in Figure 1.2. However, many surfaces are not mirror-like and produce a 

distribution of scatter when illuminated (see Figure 1.3); under the Abbe theory of 

image formation, it is the capture of this scatter that provides image contrast [22,23]. 

More information about the object being measured can be recorded in the image if more 

scattering/diffraction orders can be captured. The limited NA captures only a portion 

of the scatter, which determines the upper limit to both the resolution of the instrument 

and to the surface spatial frequencies transferred by the instrument. As a large amount 

of the scatter is still in the specular direction for many surfaces, measurement of 

surfaces tilted at angles greater than 𝜃𝑁𝐴 can be challenging, referred to as the specular 

NA slope limit or specular reflection limit (SRL).  
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Figure 1.2. Diagram of the measurement of a mirror-like surface which 

only specularly reflects, shown (a) untilted (surface normal parallel to the 

optical axis) and (b) tilted at angle 𝜃. In (b) it is the case that surface slope 

𝜃 ≥ 𝜃𝑁𝐴, causing all the specular scatter to be lost. 

 

Figure 1.3. Diagram of the measurement of a rough surface which produces 

some specular and diffuse scatter, with similar arrangement to Figure 

1.2(b).  

Using optical surface topography measuring instruments, information from tilted or 

steep surfaces beyond the specular limit can naturally be acquired by making the 

surfaces less steep (relative to the optical axis of the instrument). This can be done by 

adjusting or making use of multiple viewing angles with respect to the sample, through 
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the use of tilt or multi-axes stages [24–28], rotating both the sample and the sensor [29], 

or making use of multiple sensors [30,31]. Unfortunately, such approaches are 

comparatively expensive, due to the additional moving parts (or additional sensors), 

can be slower (moving stage and making multiple measurements), require an accurate 

combination of measurement data, and have increased difficulty in retaining stability 

during a measurement.  

Nonetheless, various instruments are capable of imaging and obtaining topography 

information from surfaces with slope angles well outside the specular acceptance cone, 

without repositioning the sample or instrument. This capability is attributed to the 

capture and detection of diffuse and back-scattered light from the microstructures found 

on the surface slopes [32–35], which is possible due to recent advances in instrument 

technology and design, including baseline sensitivity. Technology improvements for a 

coherence scanning interferometry (CSI) instrument include, e.g. dynamic noise 

reduction through signal oversampling, and high dynamic range measurement [35–37]. 

For a focus variation instrument, improvements include, e.g. the use of ring light 

illumination to essentially increase the illumination NA [33,38]. 

Typically, image formation from surface slopes that are steep enough that specular 

reflections are lost, obtain surface information with a low signal-to-noise ratio (SNR), 

which can lead to non-measured points [19,39] and high uncertainty. There is currently 

a lack of understanding about the instrument response to surfaces with steep slopes 

outside the NA cone. In particular, it is unclear over what surface spatial frequencies 

accurately reported surface texture and fine surface-feature details can be expected. The 

reliability of topography from these regions is unknown. Through theory, instrument 

modelling and experiment, measurement of steep surface slopes are investigated in this 

thesis. This is covered in more detail in the state-of-the-art review in section 2.6, and 

investigated in Chapter 6.  

Understanding the optical and topography response through both experiment and 

modelling is also of great value towards understanding measurement uncertainty, in the 

context of measurement traceability and calibration infrastructure for optical 

topography instruments. Accurate measurement for any instrument requires 

traceability, i.e., an unbroken series of calibrations that relate through comparison the 

measurement(s) of an instrument to stated references, such as national or international 
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standards. It is essential that each comparison have stated uncertainties for the 

comparison to be meaningful: traceability and uncertainty are inseparable [40]. 

However, uncertainty evaluation is difficult for optical instruments due to the 

complexity of the measurement process, especially for complex surfaces [32]. 

Calibration by material measures, such as a step height, while calibrating the scales of 

the instrument, alone reveals little about how the instrument responds to different slope 

angles, spatial frequencies, or surface reflectivities [41–43]. 

The International Organization for Standardization (ISO) have published numerous 

specification standards related to areal topography measurement methods under ISO 

25178, outlined in Table 1 of [41]. This includes ISO 25178-600 [44], titled “Nominal 

characteristics of areal surface topography instruments”, which covers the so-called 

metrological characteristics that are common (instrument-independent) across the 

different areal topography methods [45]. Under the ISO 25178 framework, through the 

quantitative determination of several metrological characteristics, each comprised of 

one or more underlying influence factors that affect the uncertainty, an evaluation of 

measurement uncertainty can in principle be obtained. The metrological characteristic 

that captures all the influence factors of the measurement uncertainty not already 

captured by other metrological characteristics is topography fidelity, which includes the 

majority of the surface-dependent errors such as surface slope-dependent errors [45]. 

Through understanding the results of optical topography measurement methods for 

complex and steep surfaces, the design of material measures for calibration of 

topography fidelity can in principle be better specified by making use of accurate 

modelling prior to artefact manufacture. Note that the ISO document that describes 

calibration and verification procedures using metrological characteristics is still under-

development and subject to change [46].  

In addition to the metrological characteristic framework, an alternative approach to 

measurement uncertainty evaluation that considers the results of a virtual instrument 

can be used [45,47], complimentary to the direct use of metrological characteristics. 

Through a stochastic method such as a Monte Carlo method, where for each influence 

factor appropriate probability distributions have been set, a virtual instrument can 

produce results across the range of input values and from these results a combined 

uncertainty can in principle be obtained [40,48]. In this thesis, for a specific optical 

measurement method an instrument model that accounts for multiple scattering and can 
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handle surface undercuts is developed and presented. Further development would allow 

for evaluating measurement uncertainty through stochastic virtual instrument 

modelling, even for complex surfaces. 

1.2 Aims and objectives 

The aim of the work in this thesis is to advance methods that enable extending the range 

of surface slopes that can be reliably measured by optical surface topography 

measurement, and to investigate the reliability of the current capability. This is to be 

done without altering instrument hardware or the use of rotation stages. The work 

focuses on topography measurement using a CSI instrument, and investigation of its 

response through the development and use of instrument modelling. Through the 

development of instrument models, the current understanding of topography errors and 

methods of evaluating measurement uncertainty can be improved. This work was 

inspired by a paper by Coupland et al. [49], which suggests that surface topography 

estimation methods for CSI could be improved through the use of rigorous CSI 

modelling. By iteratively adjusting a virtual surface, initially obtained from a priori 

manufacturing data, until differences between the experimental and modelled fringes 

are minimised, the surface topography can be obtained even for vertical surfaces or for 

surfaces that multiple scatter strongly when measured. 

To pursue this aim, the following objectives are considered: 

1. Characterise an instrument’s linear transfer characteristics to allow for 

compensating the effect of lens aberration, to enhance signal quality and reduce 

errors that occur where the surface slope is close to the SRL of the objective 

lens used, as defined in sections 1.1 and 2.6.  

2. Develop a computational CSI model to generate accurate fringes for complex 

surfaces which may contain slopes beyond the SRL. Experimental verification 

and demonstration of the model’s non-linear capability, e.g., accurately 

predicting multiple scattering, is required. Non-linear models are defined and 

described in section 2.4.3. 

3. Demonstrate the effect of surface slope on CSI fringes and topography, 

including slopes beyond the SRL, and improve the current understanding of the 

effect using both experimental measurement and the developed non-linear CSI 

model. 
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As part of following these objectives, publications were produced and are referred to in 

the thesis at the beginning of each chapter when relevant. A full list of publications by 

the author of this thesis can be seen at the end of the thesis prior to the appendices (pg. 

219). 

1.3 Novelty 

In this thesis, error correction of fringe data through instrument characterisation and 

linear modelling is first described. When measuring complex and rough surfaces, the 

errors in CSI can be several orders of magnitude larger than when measuring relatively 

flat and smooth surfaces. So far it appears that all previous error correction methods 

attempt to amend the measured surface topography, where the topography is derived 

from the fringe data. For the first time, an error correction method is demonstrated that 

acts on the raw fringe data without any digital data processing, and the method is 

developed into a practical solution for a state-of-the-art commercial CSI system. The 

error correction requires accurate information about the 3D surface transfer function of 

the CSI system. The first experimental verification of the characterisation of the 3D 

surface transfer function is provided by using two types of precision spheres, through 

comparison of measurements of these spheres to modelled fringes. Instrument 

manufacturers have shown interest in integrating this method into commercial CSI 

systems. 

Following the linear modelling methods for CSI, non-linear modelling methods are 

developed. Through advanced modelling of a CSI instrument and comparison to 

experiment, the instrument’s capability is investigated for the measurement of steep (or 

tilted) complex surfaces. To some degree, the capability of any optical surface 

topography instrument is also demonstrated. Of special interest is the effect on the 

interference signal and measured topography when tilting the object at angles larger 

than the SRL of the instrument. Traditionally, information could not be collected from 

such steep surfaces, but often modern instruments still collect scatter, attributed to 

small-scale surface topography present along the steep surface. There is a lack of 

understanding in the literature about the reliability of optical topography produced from 

these surfaces, which this thesis helps to address. Filling this gap is clearly of value and 

such work has high industrial impact to instrument manufacturers and users: by 

providing techniques and tools that can accurately predict the response of the 
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instrument, the reliability of proposed surface measurement configurations can be 

investigated in advance and measurement parameters optimised for the parts in 

question. The need to rapidly measure surface topography in industry and the value it 

brings has already been discussed: the functional properties of functional surfaces are 

affected significantly by their topographies and can have complex geometries and high 

surface slopes while needing measurement for quality inspection, e.g. the fuel 

cavitation of fuel injector nozzles [1,16]. For the first time to the author’s knowledge 

both fringe data and resulting height estimates are used to illustrate the capabilities and 

limitations of interference microscopy to measure beyond the SRL, accompanied with 

results from a suitable modelling method.  

The CSI model used, based on a rigorous boundary element method (BEM), has been 

presented previously in the following publications [50–52], and is to the author’s 

knowledge the only CSI model based on a BEM optical scattering model. Modelling 

results are verified directly with experimental measurements. For accurately handling 

arbitrary surface topography, BEMs are understood to be faster in principle than many 

alternative computational electromagnetic techniques, such as finite element methods 

(FEM), with more details given in section 2.4.3. 

1.4 Thesis structure 

In Chapter 1, the motivation of the thesis alongside a description of the problem it 

tackles is presented, the aims and objectives selected to investigate and address the 

problem are outlined, and the novelty of the chosen approach is stated.  

In Chapter 2, a review of relevant literature is presented, and an overview on 

appropriate background material is made. This covers topics such as metrology; surface 

topography metrology; the principles, instrument design, and capability of CSI; linear 

and non-linear modelling of CSI; and topography measurement of steep surfaces. 

In Chapter 3, through characterisation of a CSI instrument’s capability to transfer 

surface topography, the effect of lens aberration on topography results at steeper regions 

is mitigated. The characterisation follows an established 3D linear shift-invariant theory 

for optical imaging, called the “foil model”; an overview of this theory and how it is 

applied to compensate for aberrations is presented here.  
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In Chapter 4, a rigorous BEM-based optical scattering model is verified through 

experiment and theory. The theory, implementation, and limitations of the model are 

outlined here. 

In Chapter 5, the theory and implementation of a CSI model that uses this BEM model 

is described, and the model is verified against experimental results for both a range of 

gratings and a step height. Evidence of multiple scatter model capability is also shown 

for a vee-groove.  

In Chapter 6, measurements of steeply-sloped surfaces beyond the specular NA limit 

are presented, with experimental measurements and BEM-CSI modelling results 

compared. With a focus on blazed grating measurement, the effect of surface tilt on the 

CSI fringes and resulting topography is investigated. 

In Chapter 7, in the context of the aims and objectives set out above, the conclusions of 

the thesis are stated, and the possible future work discussed. 
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Chapter 2: Background & State 
of the art 
In this chapter, the state of the art relevant to this thesis is discussed, and where 

appropriate the accompanying background presented. The chapter begins with a brief 

overview on metrology and specifically surface topography metrology, which is 

followed by both the background and state of the art for coherence scanning 

interferometry (CSI), with a focus on instrument principles and capability. A review of 

CSI models in the literature is then given, to provide context for the modelling work 

presented in Chapter 3, Chapter 4, and Chapter 5, and why a non-linear model is 

developed for verification. An introduction to scalar scattering and imaging theory is 

also given, referenced in Chapter 3 and Chapter 5. Finally, the state-of-the-art on the 

capability of optical surface topography measurement methods for measurement of 

steep and tilted surfaces is reviewed, with a focus on CSI measurement and the effect 

on the measured topography when tilting the measured object at angles larger than the 

specular reflection slope limit (SRL) of the instrument, determined by the instrument’s 

numerical aperture (NA). This is investigated later in Chapter 6. 

2.1 Metrology 

Metrology is the science of measurement, encompassing the definition and realisation 

of units of measurement and the traceability chain that links measurements to these 

realisations, and is essential for manufacturing [53]. To quantify the otherwise 

qualitative difference between something short and something long, a standard of 

length is required to use as a unit for measurements. The metre is defined by the distance 

travelled by light in a vacuum in 1/299,792,458 of a second2, and from this any other 

measured lengths can simply be expressed as a scaling of this ‘unit’ length of 1 m. 

Using the same measurement units as others allows measurements and designs to be 

effectively communicated and worked on separately, so that different groups of people 

can accurately manufacture the same sized part or parts designed to fit together. Not 

following the same units when collaborating can lead to costly or even dangerous 

 

2 This definition, by definition, fixes the speed of light in vacuum at exactly 299,792,458 metres per second 
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incidents [54]. The units now used in almost all developed countries are the 

International System of Units (SI units) [55], which define base metric scaling units for 

distinct measurable quantities: time, length, mass, electric current, thermodynamic 

temperature, amount of substance, and luminous intensity. For example, time, length, 

and mass are given units of the second (s), metre (m), and kilogram (kg) respectively. 

Derived units are also defined in the SI units, e.g. frequency, force, and capacitance are 

given units of hertz (Hz), newton (N), and farad (F) respectively. The derived units can 

each be expressed in terms of combinations of the base units, such as [N] = [kg m s-2]. 

Once the definition of a unit can be realised, accurate artefacts (known as transfer 

artefacts) can be produced. These artefacts are more easily transported than the 

instruments that calibrated them and realised the unit, and are therefore used to calibrate 

measurement devices or to produce additional artefacts in other locations; this chain of 

comparisons that use calibration artefacts to link an instrument’s measuring scale back 

to the realisation of the definition of a unit is called traceability [56]. To calibrate an 

instrument and confirm its measurements are ‘correct’, we compare it against a more 

accurate instrument via measurement of such an artefact. To ensure the calibration is 

meaningful and to parameterise what is meant by “more accurate”, it is necessary for 

all measurements to have stated uncertainties [56,57]. Uncertainty is described in more 

detail in the context of virtual instruments and their significance to metrology and 

industry in section 1.1, with methods of uncertainty calculation described in [40,48], 

and an introduction to uncertainty as whole described elsewhere [58,59]. 

2.2 Surface metrology 

Information about how a surface was manufactured or processed can also be seen 

‘fingerprinted’ as part of the surface topography [60], and surface topography plays an 

important role in determining surface functional aspects such as friction, adhesion 

lubrication and wear [6,61,62]. Advanced production of surfaces with small scale form 

and height tolerances requires the ability to accurately measure these surface 

topographies as part of verifying the manufacturing process and the suitability of the 

parts. More information on this can be found in section 1.1. Surface metrology is the 

branch of metrology involved in obtaining this kind of information about a surface, 

typically involving the measurement of small surface features and information on 

surface texture, i.e., concerning topography measurement.  
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Surface topography measuring instruments may be separated into three broad classes 

as specified by ISO 25178 part 6 (2010) [63]: line profiling, areal topography 

measuring, and area-integrating. Line profiling methods produce a topographic 

profile 𝑧(𝑥), areal topography methods produce topographic images 𝑧(𝑥, 𝑦), and area-

integrating methods can produce numerical results that depend on area-integrating 

properties of the surface via measurement of a representative area. An overview of the 

categorisation of several surface topography measuring methods is given in Table 2.1. 

The categorisation presented in Table 2.1 has been changed slightly from that given in 

ISO 25178 part 6 [63], as in the ISO standard the majority of the measurement methods 

considered are given as areal topography methods, even when they obtain topography 

by combing multiple parallel profiles. Only a few methods are considered as line-

profiling, half of which are still also categorised as areal-topography methods; at the 

same time, no clear distinction is made between full-field areal-topography 

measurement methods and those that rely on combining sequential profiles, despite 

significant differences in measurement time. 

Table 2.1 Categorisation of a selection of surface topography measuring methods. 

Line-profiling methods 
(including areal methods that rely 

on taking sequential profiles)  

Areal-topography methods  
(full-field measurement) 

Area-integrating 

methods 

Contact stylus scanning 

Chromatic confocal probes 

Point autofocus profiling 

Phase-shifting 

interferometer (initial 

designs [64]) 

 

Imaging confocal microscopy 

Focus variation microscopy 

Phase-shifting interferometry 

Coherence scanning interferometry 

 

Total integrated scatter 

Angle-resolved scatter 

Stylus type instruments typically consist of a stylus in contact with the surface travelling 

across the surface in a line (profile), where the stylus’s vertical movements are recorded 

and used to obtain the topographic profile and describe the surface texture. While these 

instruments can act in an areal scanning mode, measurement can be time consuming 

due to the number of profiles that must be taken to produce high resolution topographic 

images [20], as detailed in the following paragraph. 

Stylus instruments are common for measuring surface texture and are trusted due to 

their relative simplicity and long-term usage in the industry [20,65]. However, they do 

suffer from a few disadvantages. By taking only profile measurements, i.e. 

measurement along a line, the instrument captures surface height from along only a 
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small proportion of the surface, from which surface parameters that characterise the 

surface texture can be derived. When a profile measurement of a functional surface is 

taken, it is possible that problems with the surface that lead to part failure can remain 

undetected, such as when the measurement axis does not intersect the surface 

defect [26]. As discussed above, measuring an areal topography is possible but time 

consuming. While measurement of a 1 mm profile sampled 1000 times may take only 

10 s to measure (0.1 mm s-1), measurement of a square grid of points for an areal 

measurement requires measurement of 1,000,000 points which can take several hours. 

The force applied to the surface during a measurement as part of the tactile (i.e. contact) 

nature of the instrument can also cause damage to the surface, and the finite size of the 

contacting tip acts as a filter for higher spatial frequency surface features [20]. In 

comparison, optical instruments can typically capture surface data from multiple 

positions simultaneously and with no contact with the surface. 

Optical instruments can be placed into two main groups: those that measure surface 

topography (profile or areal methods), and those that infer statistical parameters of the 

surface from the distribution of scattered light (area-integrating methods). Both 

approaches rely on the capture and analysis of optical far-field scatter. Scanning optical 

techniques typically scan a light spot across a surface to obtain topographical profiles; 

areal optical techniques measure the surface over a field of view (FOV), typically 

moving the focus by scanning vertically over the surface and taking full-field 

measurements to produce topographic images; and area-integrating methods typically 

illuminate a surface and analyse the distribution of scattered light to obtain statistical 

parameters [66]. A brief review of some of the common optical instruments and their 

measurement methods follows, with a more complete list found in ISO 25178 part 

6 [63] and the instruments discussed in detail in [19].  

Both point autofocus profiling and chromatic confocal probes operate in a similar way 

to a stylus instrument, obtaining the surface height at specific points on a surface one 

point at a time and moving a probe along the surface to form profiles. For point 

autofocus profiling, the point of focus for a laser beam at some coordinate is found 

automatically through a scanning process to determine the surface height [67]. 

Chromatic confocal probes in contrast require no vertical scanning, and instead detect 

height changes by the change in the peak of the spectral response focussed on the 
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sensor [68]. Both techniques obtain the surface height at a single position of the surface; 

by using motion stages both profile and areal surface height data can be obtained. 

Focus variation (FV) instruments use focus to ascertain the height of a surface but do 

so over the entire FOV by combining the vertical scanning of a microscope system with 

a small depth of focus. By continuously capturing image data as the instrument is 

vertically scanned, each region of the surface is captured in focus; analysing the 

variation of focus across the stack of image data for each imaged point allows for true 

colour full depth of field topographical images to be produced [69,70]. Imaging 

confocal microscopy similarly obtains a stack of areal image data; due to the 

instrument’s confocal aperture each image captured contains very little light not 

originating from the focal plane of the instrument, which is used to obtain surface height 

data [71]. Phase-shifting interferometry (PSI) uses an interferometric objective lens to 

split the light into two parts, illuminating both the surface and a reference surface. 

While this reference surface is typically a mirror, other options for the surface include 

a transmission flat or a sphere. By using a narrow-band source for illumination, the 

scattered light from the surface and reference surface interferes and forms fringes. By 

introducing several known shifts between the optical path to the measured surface and 

the optical path to the reference surface, changes in the fringe pattern are produced [72]. 

The ensuing phase map, constructed from the ensemble of shifted interferograms [73], 

can in general be analysed to deduce the vertical height data.  

However, unambiguous height measurement using PSI is limited to a range of one 

fringe, or approximately half the central wavelength of the light source. This is because 

the phase information is wrapped [72], making larger changes in height 

indistinguishable from smaller changes, i.e. 2𝜋 ambiguities. While phase unwrapping 

methods can allow for measurements of surfaces with overall height variations greater 

than this distance, local changes must remain small for these methods to remain 

accurate. Instruments therefore usual require that adjacent points on a surface have a 

height difference of less than 𝜆/4, for illumination wavelength 𝜆. With a similar design, 

coherence scanning interferometry (CSI) also uses an interferometric microscope 

objective and relies on the interference of light. However, the use of low-coherence 

broadband illumination localises the fringe pattern, removing the fringe order 

ambiguity and allowing for the measurement of rougher surfaces. A review on selected 
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topics in interferometric optical metrology, including discussion on PSI and CSI, can 

be found elsewhere [27]. 

CSI is specifically chosen for this thesis for further investigation into its steep slope 

capability. Because the steep slope problem has a wide scope, it is difficult to 

investigate without considering a specific measurement method, especially if 

development of a rigorous instrument model is desired; it is not feasible to investigate 

multiple measurement methods in parallel. The measurement method CSI is chosen 

over alternative methods for several reasons: CSI’s methods of surface height 

estimation rely on interferometric information such as coherence and phase and are well 

defined; the interferometric nature of CSI provides instruments with high accuracy 

height measurements to a high precision for several surfaces; recent publications 

present an apparent high capability of CSI instruments for steep slope measurement for 

certain surfaces, but the reliability of the results and the range of applicable surfaces are 

not entirely understood [35,36]; and because work on linear (non-rigorous) modelling 

of CSI instruments had already been undertaken by colleagues [74]. An overview on 

CSI including a more detailed description of its principles and operation is made in 

section 2.3, a summary and categorisation of existing CSI models including linear and 

rigorous modelling is made in section 2.4, and an introduction to the slope measurement 

problem for optical surface topography instruments is given in section 2.6. One linear 

method of modelling CSI is discussed in Chapter 3, and a non-linear rigorous method 

is discussed in Chapter 5.  

It is possible to apply summary statistics to these topographic profiles and topographic 

images, characterising a particular aspect of the surface by a single quantitative value. 

These are especially useful for surfaces textures that are relatively homogeneous across 

the overall surface, e.g., allowing for simple comparison of the texture of differently 

turned surfaces [75]. There are a wide variety of profile and areal surface texture 

parameters suited for emphasising and characterising slightly different surface texture 

properties; perhaps too many than is useful [76,77]. The most well-known profile 

parameters begin with the letter R, while areal parameters typically begin with the letter 

S. In this thesis the root mean square height Sq is used at times to parameterise the 

roughness of a surface; taking the Sq of a surface area is a simple extension to taking 

the Rq of a surface profile. The Sq gives a measure of the “deviation” of the surface 

from a perfectly flat plane in the same way that the standard deviation is a measure of 
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the dispersion of a set of values away from the mean value. Other common parameters 

include Sa, the arithmetic mean height, and Sz, the maximum surface height (from 

highest peak to lowest trough).  

All parameters should be calculated after appropriate filtering of the measured surface 

has been performed: always including the removal of short-scale components 

associated with the instrument or environmental noise and including the removal of a 

nominal surface shape or form. In addition, a low-pass filter or high-pass filter can be 

applied before parameter calculation to select the band of spatial frequencies from 

which the parameters are calculated from; it is therefore essential that when the 

parameters are calculated and presented that the filters used in the calculation are also 

stated. A more detailed discussion about profile and areal surface texture parameters 

and their filtering requirements is beyond the scope of this thesis. The majority of these 

parameters and the required filtering processes are defined in the ISO documents for 

profile measurements [78] and areal measurements [79], and are also described 

in [80,81], with further detail for areal parameters given in [82].  

2.3 Coherence scanning interferometry 

CSI is an interferometric surface topography measurement method, defined in ISO 

25178-604:2013 §2.5.1 as a “surface topography measurement method wherein the 

localisation of interference fringes during a scan of optical path length provides a means 

to determine a surface topography map” [83]. The term CSI collates older and more 

specific terms that share the basic functional principles of CSI; a list of alternative terms 

that relate to the definition of CSI can be seen in Table 3 of [83], and a list of recognised 

terms from technical, patent or commercial literature can be found in Table 9.1 of [84]. 

CSI primarily encompasses instruments with spectrally broadband and spatially 

extended light sources, wherein the limited coherence length of the illumination source 

leads to the localisation of the fringes. One of the more prevalent terms in older 

literature for CSI is “white light interferometry” (WLI) [49,85,86], or sometimes 

“scanning white light interferometry” (SWLI) [49,87,88].  

As described in section 2 of [89] and in [90], WLI has a long history. In 1665, Robert 

Hooke observed the variation of white light interference patterns with the different 

thicknesses of thin plates of muscovite (common mica or potash mica) [91], even before 

Isaac Newton demonstrated that white light is comprised of different colours [92] 
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(which Hooke disputed [93]). An article on using interferometry for metrology, 

including using white light, is also discussed by Albert Michelson in 1893 [94]. 

However, it took a long time for machine technology, electronics and precision 

mechanics to improve to a level where automated measurement devices utilising these 

principles could be realised (such as in [95]), with earlier interferometers simply being 

converted conventional microscopes via a change of objective [96]. It took until around 

1990 for what would now be recognised as CSI to be applied to profilometry, used for 

measuring surface topography [97–99]. More recent improvements in computer 

technology, such as processing power and random-access memory (RAM) capacity, 

have allowed for considerably sizeable arrays of signal data to be taken and rapidly 

processed by an instrument. Even in 1996 where sets of 4MB data arrays required what 

was then a significant memory storage capacity, memory was getting cheaper fast 

enough to stimulate renewed interest in WLI [85]3. The incorporation of digital 

instrumentation for CSI was further assisted by development of computationally 

efficient theoretical signal models [101]. CSI instruments’ uses are varied: CSI 

instruments have been shown to be capable as a flexible measurement instrument for 

in-line metrology for semiconductor manufacturing [102]; can be used for measuring 

silicon photovoltaic cells over a wide range using stitching, while handling thin and 

thick film thickness [103]; can be used to measure steep-surface fuel injection nozzles 

for maintaining quality control [104]; and can be used to fingerprint manufacturing 

processes used via measurement of surface texture [60]. More examples are given in a 

recent review [105]. 

The following subsections are primarily background on CSI. Section 2.3.5 focuses on 

the current capability of CSI instruments and is of some value even to the familiar 

reader, with some aspects directly connected to the topic of outside-NA measurement 

discussed in section 2.6. 

2.3.1 Principles of CSI 

Described simply, CSI is a technique that can measure how an object’s surface 

topography varies by utilising the interference of light. In the same way as a Michelson 

interferometer, the light amplitude is divided into two beams by a beam splitter, and 

 

3 In 1995 costs for RAM were roughly $30 per MB, while in 2021 they are roughly $0.003 per MB ($3.07 per GB), smaller by a 

factor of 104 [100]. 
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these two beams separate and travel to the object’s surface and a reference surface 

respectively. The light that scatters from the object’s surface and from the reference 

surface are collected and recombined, leading them to interfere at the image plane. The 

intensity recorded by each imaging pixel due to this interference is determined by the 

group-velocity optical path difference (OPD) between these two beams for some region 

of the surface. A scan of the measuring instrument along the axial direction changes 

this OPD by bringing the sample closer or further away from the objective lens of the 

instrument, resulting in each pixel’s intensity varying up and down, mapping out a 

fringe pattern. This fringe pattern is localised around the position of zero OPD due to 

the use of the broadband illumination source and/or the illumination source’s spatial 

extent, allowing for the height of the surface imaged by each pixel to be determined 

from both phase and coherence information. The use of coherence information is an 

improvement over PSI, which only has access to phase information.  

Basics of interferometry – the two-beam interferometer 

As an interferometric device, CSI relies on the wave phenomena known as interference. 

This is the phenomenon where two waves that pass through each other “superpose”, 

producing a wave with an amplitude larger or smaller than the original wave, i.e. 

constructive and destructive interference. The amplitude ΨT where the waves overlap 

is given by the (vector) sum of the amplitudes of the individual waves at that point, due 

to the principle of superposition: 

 ΨT = Ψ1 + Ψ2. (2-1) 

A monochromatic electromagnetic (EM) plane wave that has propagated over distance 

𝑧𝑗 can be described by a cosine function 

 Ψ𝑗 = 𝐴𝑗 cos(𝑘𝑧𝑗 − 𝜔𝑡) , (2-2) 

where 𝐴𝑗 is the maximum amplitude of the wave, the angular wavenumber 𝑘 is a 

function of wavelength 𝜆 given by 𝑘 = 2𝜋/𝜆, 𝜔 is the angular wavenumber given by 

𝜔 = 2𝜋𝑓 for wave frequency 𝑓, and 𝑡 is time. The rate at which the crest of this plane 

wave propagates, i.e. the phase velocity, is given by 𝑣𝑝 = 𝜔/𝑘, which can be seen 

readily from Eq. (2-2).Note that the arbitrary phase offset 𝜙𝑗 that is often included has 

been left out for simplicity.  



20 Chapter 2: Background & State of the art 

Eq. (2-2) can conveniently be described as the real part of a complex function, such that  

 Ψ𝑗 = ℜ{𝐴𝑗𝑒𝑖𝑘𝑧𝑗𝑒−𝑖𝜔𝑡} = ℜ{𝑈𝑗𝑒−𝑖𝜔𝑡}, (2-3) 

where 𝑖 = √−1 is the imaginary number, ℜ{ } denotes taking the real part of a 

complex number, and the complex wave amplitude 𝑈𝑗(𝑧𝑗) is defined, given by the 

phasor 𝑈𝑗 = 𝐴𝑗𝑒𝑖𝑘𝑧𝑗 , where the time and position dependency are separated into two 

terms. This formulation is convenient because operations on the electric field Ψ𝑗 that 

are linear end up operating directly on the complex amplitude 𝑈(𝑧𝑗); due to this, the 

expression for taking the real part is sometimes omitted.  

The intensity of light 𝐼 at the detector, defined as the mean rate of energy flow per unit 

area, can be shown to be related to the complex amplitude of a single wave by  

 𝐼𝑗 = |𝑈𝑗|
2
, (2-4) 

where | |2 is the absolute square, and the associated scaling constant and the vector 

aspects of energy flow have both been omitted for clarity [106]. Let us then consider 

two plane waves Ψ1 and Ψ2 with the same polarisation, which have complex amplitudes 

𝑈1(𝑧1) and 𝑈2(𝑧2) at the detector, having travelled distances 𝑧1 and 𝑧2 respectively to 

reach it. It is assumed that the two paths taken have the same optical properties such 

that only the path difference, Δ𝑧 = 𝑧2 − 𝑧1 need be considered. The intensity of light 𝐼 

at the detector, due to the principle of superposition, can be shown to be related to these 

two complex amplitudes by 

 𝐼 = |𝑈1 + 𝑈2|2 = |𝑈1|2 + |𝑈2|2 + 2|𝑈1||𝑈2| cos(𝑘Δ𝑧) , (2-5) 

which can also be expressed in terms of either the waves’ maximum amplitudes 𝐴𝑗, i.e., 

the norms (magnitudes) of the phasors 

 𝐼 = 𝐴1
2 + 𝐴2

2 + 2𝐴1𝐴2 cos(𝑘Δ𝑧), (2-6) 

or by the expected intensity of each independent beam 𝐼𝑗 by using Eq. (2-4), given by 

 𝐼 = 𝐼1 + 𝐼2 + 2√𝐼1𝐼2 cos(𝑘Δ𝑧). (2-7) 

When 𝐼1 and 𝐼2 are equal, Eq. (2-7) simplifies further to  

 𝐼 = 2𝐼1(1 + cos(𝑘Δ𝑧)) = 4𝐼1 cos2(𝑘Δ𝑧/2) . (2-8) 
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From Eq. (2-7), it is clear that small variations in path difference Δ𝑧 map out a fringe 

pattern for the measured intensity at the detector.  

The description of the wave propagation can also be extended by considering the waves 

travelling through a homogeneous media of refractive index 𝑛. When travelling through 

a vacuum, the phase velocity is equal to the speed of light in a vacuum 𝑐, i.e., 𝑣𝑝 = 𝑐, 

but when travelling through a material like air or glass, the phase velocity is reduced, 

such that the refractive index is (by definition) given by 𝑛 = 𝑐/𝑣𝑝. As the frequency 𝑓 

(and therefore angular frequency 𝜔) of the light must remain constant when light travels 

from one media to another, such as from a vacuum to glass, the reduced phase velocity 

must be accounted for by a reduction in the wavelength of the light. Therefore, the 

wavelength 𝜆 can be made a function of vacuum wavelength 𝜆0 and refractive index 𝑛, 

where 𝜆 = 𝜆0/𝑛, such that the wavenumber is given by 𝑘 = 2𝜋𝑛/𝜆0. Then, the 

variation of the fringe pattern can be better described as being based on the OPD 𝑛Δ𝑧.  

An in-depth derivation for the expression for the interference of two monochromatic 

waves which properly treats the waves as vector quantities can be found in Born and 

Wolf [106,107], which also rigorously explores interference with partially coherent 

light, including that from spatially extended sources [108]. A detailed treatment of the 

coherence of extended sources and partial coherence under statistical optics is given by 

Goodman [109]. 

Optical principles of CSI 

The use of a broadband light source, potentially one that is also spatially extended, 

results in the short coherence length of the light. This in turn localises the fringes around 

the point of zero OPD, the so-called “stationary phase position” [89], with an envelope 

width that scales with coherence length. The resulting fringe pattern can be considered 

to be comprised of an incoherent superposition of many independent fringe patterns, 

each formed by a specific wavelength of light within the broadband light 

source [101,110]. Such a superposition causes the fringes to destructively interfere 

everywhere except near the point of zero OPD, forming the interferogram around this 

location, i.e., the localised fringes. This is shown in Figure 2.1. In a general sense, the 

localisation is a consequence of the fringes unavoidably containing spatial frequency 

content related directly to the illumination spectrum, and therefore the extent of the real 

space fringes scales inversely with that of the illumination spectrum. For example, a 
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single wavelength laser (monochromatic) produces fringes across all space, while a 

broadband source limits the extent of the fringes. Why this occurs can be understood 

through the results and theory of a simple model, presented in section 2.4.1.  

 

Figure 2.1. Modelled interferogram using a simple model based on that 

in [101] and described in section 2.4. 

CSI actively utilises this property of fringe localisation, using the localisation of the 

amplitude modulated fringes, i.e., using the fringe contrast, in order to derive the height 

of the object at each point imaged by the detector pixels. While phase information is 

also used to calculate the topography, being able to utilise the localisation of the fringes 

allows CSI to avoid 2𝜋 ambiguity errors common in other types of coherent 

interferometry, such as PSI, resulting in it being better suited for scanning rough 

surfaces and large steps. The process of height estimation is described in section 2.3.4, 

while information about surface suitability and instrument capability is discussed 

further in section 2.3.5. 

With the exception of the interferometric elements, the instrument images in the same 

way as a widefield optical microscope and follows the same overall design. Information 

on microscope imaging is given in [111], and information on microscopy in general 

in [112].  

2.3.2 Instrument design 

CSI encompasses a variety of different design approaches that utilise localised fringes 

to acquire topographical information, with examples of three very different designs 

described in [86]. The device used in this project was the ZYGO NewView 8300 CSI 

system [113], and later replaced by the Nexview NX2 [114], both of which mostly 

follow the common vertical scanning interferometer design schematically displayed in 

Figure 2.2 (based on figures in the literature including [84,105,110]). As stated earlier, 
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all interferometric microscope systems require the replacement of a regular 

microscope’s primary objective with an interferometric objective, within which a beam 

splitter and reference surface must be present. It is the combination of the reference 

beams (which reflect from the reference surface) and the object beams (which reflect 

from the object being measured) that produce interference at the camera detector as the 

OPD of these beams varies.  

 

Figure 2.2. Schema of a vertical scanning style CSI instrument, equipped 

here with a Mirau-type interferometric microscope objective. Not to scale. 

Lens shapes are for illustration and are not accurate. Note that it is possible 

for the lateral and vertical motion stages to be positioned differently, so that 

either the object’s stage or the microscope assembly would be completely 

immobile.  

There are two primary designs for interference objectives: the Michelson-type which 

uses a reference arm perpendicular to the optical axis; and the more compact Mirau-

type [96] whose reference arm is within the objective’s assembly, with the reference 

mirror at the centre of the objective lens. Linnik-type interferometers do not use 

interference objectives: instead, the beam splitter is placed before the objective lens, 

and the interferometer uses two non-interferometric objective lenses, which are usually 

identical, to capture light from the object and reference surface [110,115].  

Mirau objectives are best suited for high magnifications (~10× to 100×) since the 

associated high NA and high acceptance angle under spatially extended illumination 

reduce the influence of the central obscuration of the in-line reference mirror. Linnik 
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interferometers are also well suited for high magnifications but are less frequently used 

than interferometers with a Mirau objective, for two main reasons: their relatively 

higher sensitivity to vibration, and due to the additional cost of needing two objective 

lenses. The higher sensitivity to vibration is caused by the comparatively longer path 

length between the beam splitter and the object or reference surface.  

At lower magnifications (~2× to 10×), Michelson objectives are typically used instead 

of Mirau objectives, due to the increased negative influence at lower NAs of the central 

obscuration present in Mirau objectives. In contrast, Michelson objectives are rarely 

used at higher magnifications due to design constraints that occur when attempting to 

combine a high NA with a perpendicular reference mirror arm. For magnifications 

below 2×, the geometry of the Michelson objectives becomes difficult to manage, and 

the recently developed wide-field objectives are more suitable [116,117]. These so-

called “de Groot-Biegen” objectives [105] follow a similar design to a Mirau-type, but 

the coaxial beam splitter plate and partially transparent reference mirror are both tilted 

slightly to prevent unwanted reflections from travelling through the imaging pupil, 

improving fringe contrast. This design is best used for NA<0.1, with the asymmetric 

design somewhat compromising the image quality at higher NAs. Different interference 

objectives are mounted on an automated turret and are made parfocal to allow for 

switching between different magnifications. For interference objectives, it is usually 

best that the optical focus and the so-called “interferometric focus” are made the same, 

to avoid errors associated with interferometric defocus [118,119]. Therefore, objectives 

are designed to allow the distance to the reference mirror to be adjustable, typically by 

hand. 

The illumination light source is incoherent (or has low coherence) due to both the 

broadband illumination spectrum and the illumination source’s spatial extent. 

Typically, the spectrum is produced by white-light light-emitting diodes (LED), and 

the LED spectrum is filtered with a yellow filter to remove the undesired blue peak and 

form the desired Gaussian spectral distribution [110]. Alternatively, LED sources with 

separate red, blue and green filters can be combined and balanced to produce the same 

distribution [120,121]. Additional filters can be applied to narrow the spectral 

bandwidth when a longer coherence length is desired [122]. As seen in Figure 2.2, 

Köhler illumination is used such that the surface is uniformly illuminated and the 

illumination source is imaged in the objective’s pupil plane. By filling the pupil plane, 
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the spatial coherence is reduced, resulting in a larger maximum lateral resolution 

compared to fully coherent illumination [84,123,124].  

The light illuminating the sample is scattered from the surface, and the scatter is 

captured by the objective lens and imaged onto the detector. This detector is typically 

a monochrome detector array, such as a CCD or CMOS sensor, as only the light’s 

intensity is necessary for CSI, and using equivalently sized colour sensitive sensors 

sacrifices sensor resolution [120]. Details about electronic image sensors, sensor 

resolution, and digitisation of image signal data can be found in [125]. 

Similar to typical microscopes, the axial distance z between the objective and the 

scanned object is varied, either via motion of the objective or the stage, until the object 

is brought into focus. Typically, this is along the vertical direction. To take a 

measurement, an axial scan moves the focus while capturing multiple images, resulting 

in information captured at the “best focus” for each pixel separately. Typically, 

piezoelectric transducers (PZTs) are used to make small scale adjustments precisely 

over a scan, but with a limited range (≈ 10 μm to 200 μm) [84]; sometimes a separate 

coarser adjustment mechanism can move the overall microscope assembly upwards or 

downwards over a larger range. Typically, the stage can be moved mechanically in 

either lateral (x-y) direction, i.e. the plane perpendicular to the axial optical axis, and 

can also be tilted slightly around these lateral axes. With this capability in place, a 

surface can automatically be scanned in its entirety by stitching multiple axial scans 

made at different x-y positions, however this can lead to error in the surface topography 

due to the lateral distortion of the system and the increased measurement uncertainty 

due to stitching [126,127].  

2.3.3 Fringe acquisition 

An instrument scan produces a sequence of images taken at known z positions, with the 

fringes forming in the images wherever the OPD is close to zero, almost as though the 

fringes are projected onto the surface only in regions that are in focus, producing surface 

contours. An example of how this appears is shown in Figure 2.3. 
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Figure 2.3. A subset of the images captured by a CSI instrument during a 

scan of a sinusoidal grating. Note that from these images we can tell that 

the sample is effectively flat relative to the lateral axes, and the midpoint 

between the two peaks is at about z = 0.6 µm. The same data is presented 

in Figure 2.4 

The resulting image frame data can be considered a three-dimensional (3D) cuboid of 

fringe data. Taking slices of this data parallel to the optical axis reveals clearly how the 

topography has been encoded into the signal data. This is displayed in Figure 2.4, using 

the same data set at Figure 2.3.  

 

Figure 2.4. Slices of the 3D fringe data obtained from measurement of a 

sinusoidal grating. Both plots have slices at x = 173 µm and y = 173 µm, 

while the plot on the right also has a slice at z = 0.6 µm, also seen in Figure 

2.3. This is to illustrate the connection between the vertically scanned 

images and the axial slices of data shown throughout this thesis.  
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Each data column of these axial fringe slices is effectively a single interferogram, like 

that in Figure 2.1, which has encoded the surface height for a location on the surface; 

this is shown in Figure 2.5. 

 

Figure 2.5. A diagram to present how the fringe data can be considered as 

columns of adjacent interferograms, each of which encode the surface 

height at a particular position. The same kind of axial slice can be seen in 

Figure 2.4, where the bright white and dark black fringes represent the 

peaks and troughs of the interferograms shown here. 

2.3.4 Surface reconstruction methods 

At one time circa 1977, interferometry for surface topography measurement was 

considered limited to polished optical surfaces that created simple interference patterns: 

such patterns could be interpreted with manual fringe tracing or by phase shifting 

methods [90]. However in the 1990s, interferometric methods based on optical 

coherence were shown to be capable of providing meaningful results from rough 

surface textures [98,99,110]. Improvements in technology since then have led to the 

development of CSI instruments as they currently appear, which capture fringe 

information digitally as a stack of image data. This 3D data is then processed by 

software or dedicated hardware to obtain a height estimation, with the quality of the 

analysis directly impacting the accuracy and capability of the instrument. Therefore, 

much work has been carried out on surface reconstruction and height estimation. 

The analysis of localised fringe patterns to obtain precise height information is a 

detailed topic of study, for which a full discussion is beyond the scope of this thesis. 

However, it appears simple to extract surface height information from a cross-section 
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of measured fringe data wherever fringes are present, such as in Figure 2.6, by finding 

the bright centre of the fringes (fringe centroid) for each pixel’s scan. The envelope that 

contains the fringes and limits their extent is called the coherence envelope. Generally, 

the position of the coherence envelope provides an estimate of the height and indicates 

the approximate location of the zeroth fringe order; the estimate can be further 

improved by considering phase information as in PSI.  

 

Figure 2.6. Axial cross section of fringe data from measurement of a 

microsphere. Above are the fringes alone, and below the same fringes with 

a simple height estimation overlayed.  

The presence of this surface information in the fringe data is by design as, through the 

optical principles of the CSI instrument, the surface height information is encoded in 

the fringe data produced. This ‘encoding’ can usually be reasonably assumed to be 

linear: each instrument pixel collects an interferogram over an axial scan that is 

considered as being determined only by the height of the surface at a single x-y position. 

This ‘pixel-by-pixel’ assumption is one that, to the author’s knowledge, all current 

height estimation algorithms rely on, but the exact method used to obtain the height for 

each pixel varies considerably. In section 9.5 of [84], an idealised expression for the 

interference signal is stated, where a cosine carrier signal with fringe frequency 𝐾0 is 

modulated by a slowly varying modulation envelope function. In the same section, it 

states that while only an approximation, this model is a useful starting point for many 

signal processing strategies, listing a series of approaches in the literature from 1982 to 

1997.  
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Surface height information can be obtained just from finding the position of the 

coherence envelope [85]. Initially, many height estimation methods relied on finding 

the position of maximum fringe contrast to obtain height information from the 

coherence envelope, but this method is computationally inefficient due to the large 

number of samples required and is sensitive to random noise (among other 

disadvantages). These disadvantages motivated the development of analysis in the 

spatial frequency domain [89]. Known as Fourier frequency-domain analysis (FDA), 

this analysis obtains phase and coherence information in the Fourier domain via Fourier 

transforming the signal data, from which surface height can be estimated. The FDA 

method is also capable of handling changes in the sample interval that occur due to 

environmental effects [89,128], and accurate height estimates can even be obtained 

from measurement data sampled at sub-Nyquist frequencies, so long as the sample rate 

chosen avoids segmenting or overlapping the frequency bandwidth [128,129].  

FDA provides two outputs from the measurement data: a coherence profile and a phase 

profile. The information from the coherence profile corresponds to that from the 

coherence envelope; the information from the phase profile corresponds to the phase 

information obtainable using PSI methods for many (20 to 30) data frames [110]. While 

height information from the coherence profile is connected to the scan velocity, phase 

information obtained from a PSI analysis relies on the fringe frequency, which is a 

function of the illumination wavelength(s) and optical geometry. Therefore, phase 

information has a different traceability chain to the metre than that of the coherence 

profile. This difference in traceability chains can be avoided with FDA, as the phase 

profile can be obtained without any assumptions about the fringe frequency, using the 

scan velocity as a fundamental metric [110].  

Calibration of the scan velocity for the instrument is typically performed via 

measurement of a material measure such as a step height standard [41,43,130,131]. 

However, an alternative method that uses a calibrated spectrometer to calibrate the 

microscope illumination, and from this the scan velocity, is also possible for 

CSI [132,133]. Such a method preserves the inherent high accuracy of interference 

microscopes through the traceability chain, and separates errors related to scanner 

linearity. This “wavelength standard” method can be used for traceable certification of 

step height standards, and for instruments calibrated in this way, step height artefacts 

can still be used for verification [43]. The method is used commercially: all interference 
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microscopes produced by Zygo are calibrated with the wavelength standard at their 

factory; NIST uses the wavelength standard when calibrating their Zygo interference 

microscope; and end users of Zygo Compass™ instruments who have demanding 

calibration requirements require calibration via the wavelength standard instead of step 

height standards due to the decreased uncertainty4. Alternative “self-calibration” 

approaches for the z-scale also acknowledge that a CSI instrument’s high repeatability 

and accuracy is undercut by the comparatively large uncertainties in traceable 

calibration artefacts [134]. 

FDA can be used to acquire just the coherence envelope for analysis, which is more 

robust to low signal-to-noise ratios (SNR) from rough surfaces [37,39,135]; equally 

FDA can obtain both phase and coherence information together, which can be 

combined while applying corrections for inconsistencies to give a more refined height 

value [87]. However, these inconsistencies when left uncorrected can lead to fringe 

order errors [87,136], discussed further in section 2.3.5. In addition, there is a difference 

between the coherence envelope’s peak position and the central bright fringe, called the 

phase gap. The phase gap is produced by the combined phase shifts from transmission 

and reflection properties of the components of the instrument, in addition to the effect 

of surface structures. Determining the phase gap across the entire FOV also increases 

the difficulty of combining coherence and phase information. Rather than using a mean 

phase gap everywhere, significant efforts in software development have been made to 

infer the specific phase gap at each pixel’s location [84,87,110]. One approach to obtain 

the phase gap across the FOV and resolve fringe order errors is to interpret the surface 

structure assuming some range of possible variability, from which the nominal phase 

gap can be assumed and the fringe order at each pixel obtained [87]. Of course, this is 

only relevant when at least phase information is considered in the height estimation, 

making coherence-only methods more reliable for rough and unusual surfaces for which 

the expected phase gap can be misleading. 

More recently, other techniques involving coherence correlation have been 

demonstrated [137], though this is not a new idea [138–140]. The spatial frequency-

domain can also be used for signal modelling, with an efficient theoretical model 

 

4 Source of commercial usage from correspondence with Peter de Groot, Chief Scientist at Zygo 

Corporation 
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predicting the expected fringes from low-coherence interference instruments outlined 

and explored in [101], and demonstrated in section 2.4.1. For further reading, including 

the mathematical foundations, a detailed explanation of the FDA technique is described 

as part of [87], and is also detailed within [84] and [105]. The quality of the surface 

reconstruction depends on the capability of the instrument to obtain information from 

the surfaces considered, on the impact of environmental effects, and on the real-world 

imperfections in the instrument such as optical aberrations. This is discussed in 

section 2.3.5. 

2.3.5 Current capability 

As an optical technique, CSI is a non-contacting method, capable of measuring 

materials too soft to be measured by contact methods. Its non-destructive nature also 

avoids damaging a surface during the scanning process. Usually, CSI obtains an areal 

scan of the surface from a full-field scan, allowing for fast scans over a wide FOV. 

Compared to non-interferometric optical surface topography methods, such as FV 

microscopy, CSI also has the advantage that the surface topography is found 

independently of the objective lens used. While many optical techniques must sacrifice 

their vertical sensitivity to increase the FOV, CSI retains the same vertical sensitivity 

at any FOV, allowing for wide-range surface height measurements [123]. Due to CSI’s 

interferometric nature, instruments can provide uncertainties of the order of 

nanometres [39] and sub-nanometre noise level for surface topography measurement of 

certain surfaces [21]. As an interferometer, CSI’s closer connection to the realisation of 

the metre can at least in principle be exploited to provide calibration to the metre 

through a wavelength standard, removing the dependency on material measures for the 

relevant metrological characteristic [132].  

However, compared to contact methods, CSI is more complex to model, and the fringe 

analysis required for high precision with a low measurement uncertainty has only 

become viable with improvements in computation. The complexity of the instrument 

modelling, combined with the high tolerances of the lenses used, leads to CSI typically 

being more expensive than contact methods. This complexity and sheer computational 

difficulty in modelling and analysing the light-matter interaction and scattering 

rigorously also means that various approximations are typically made when modelling 

the instrument, such as neglecting the effect of multiple scattering or considering less 
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spatial dimensions [141]. Reconstruction methods effectively rely on a simple 

optical/instrument model to make the mathematics of the height estimation tractable, 

which fortunately remains effective for many types of surfaces. 

Additionally, all optical systems have certain inherent limitations, which prevent them 

from fully determining the surface topography. An instrument’s lateral resolution is 

fundamentally limited by the diffraction limit: an inevitable blurring of lateral points 

due the wave nature of light and our limited ability to capture scatter. Imaging an ideal 

point-source of light produces an Airy disk, and our ability to distinguish one point-

source from two closely positioned point-sources in our image is what is meant by the 

diffraction limit. This is parameterised by criteria such as the Rayleigh criterion or 

Sparrow criterion, whose values differ between the coherent and incoherent 

illumination cases [123]. The amount of blurring that occurs for each wavelength of 

light is typically determined by the NA of the instrument’s objective lens used, as it is 

this aperture that restricts the range of angles of scattered light that the instrument can 

capture (see Figure 2.7). The capture of light scatter at larger angles is required to 

provide accurate height information for higher spatial frequency surface features. For 

incoherent imaging systems, the magnitude of the surface features obtained decreases 

as spatial frequency increases, effectively until the diffraction limit is reached. This is 

parameterised by the instrument transfer function (ITF) [142–146], and leads to an issue 

when measuring rough and steep surfaces. 



2.3 Coherence scanning interferometry  33 

 

Figure 2.7. Schematic illustrating the concept of a maximum collection 

angle for a microscope system (repeated from Figure 1.2). Note that it is 

conventional for the collection angle 𝜃NA to refer to the half-angle of the 

collection cone, as this angle is equal to the surface tilt at and above which 

a specular surface no longer scatters any light back into the objective. 

Re-entrant features (i.e. overhangs) cannot be imaged easily via optical 

instrumentation, due to the geometry of the applied illumination and the objective lens’ 

angle of acceptance (or “cut-off angle”) relative to the surface; however this difficulty 

is not unique to optical systems as contact probes struggle due to similar line-of-sight 

geometric reasons. Such re-entrant features are usually masked in surface scans, being 

difficult to differentiate from small surface steps. There is even some evidence to 

suggest that optical instruments with larger NAs can obtain information from vertical 

walls and re-entrant wall features [36,49,147,70], and this is discussed in more detail in 

section 2.6. 

In addition, real optical instruments inevitably suffer from some optical aberrations and 

other real-world imperfections. For the lens system these can be separated into 

monochromatic aberrations, higher-order aberrations and chromatic aberrations [148], 

derived from differences from the paraxial geometrical optics model of lenses. While 

some aberrations can be corrected, it is the case that lateral distortion [134,149,150], 

dispersion [151–153], retrace error [154–157], the effects of defocus and 

interferometric defocus [118,119,158], and higher-order aberrations can all contribute 

to errors in CSI, often errors dependent on the shape of the surface measured [159]. 

Real optical instruments also suffer for environmental noise such as vibration and air 
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turbulence, and have limitations in their sensor sensitivity and dynamic range; 

enhancements in technology and correct use of the instrument can reduce their impact 

on the measured topography [37,39,135,154,160,161]. 

Instrument errors and reducing them 

CSI is capable of being accurate with a high precision, with three measurements of the 

same step-height artefacts taken across a 3-year period providing an average standard 

deviation (i.e., repeatability) of 2.0 nm and 13.0 nm for 1.8 μm and 24 μm step-height 

artefacts respectively [133]. However, it is harder to retain this level of accuracy for 

any surface. This is because, among other things, the accuracy of CSI is dependent on 

the properties and attributes of the surface measured. Under a certain threshold, poor 

quality fringes lead to data dropout of the topographic map of the surface. This can be 

seen when using objective lenses with different NAs to measure a rough surface: lenses 

with a lower NA cannot capture enough light from the steeper areas of the surface to 

form visible fringe patterns from which height data can be confidently obtained; lenses 

with a higher NA have a wider acceptance angle and can capture light from steeper 

surfaces, reducing data dropout. This is discussed further in section 2.6, and an 

exploration of tilt and curvature dependent errors is carried out in [74]. Data dropout 

occurs not only when the fringe data’s SNR falls below some threshold, where a low 

SNR can be caused by the low proportion of scatter that can be captured when scattering 

from steep surfaces [37], but also due to misconfiguration of the optical components, 

such as a poor optical focus. The lower limit for such noise is derived in [162] using 

the Cramer-Rao inequality. For rough surfaces with heights that exceed the coherence 

length under a single pixel (i.e. low magnifications), narrowing the illumination 

bandwidth with filters increases the coherence length and therefore reduces data 

dropout, at the cost of a loss in precision related to obtaining height information from a 

wider coherence envelope [37,39,122]. An evaluation of the measurement uncertainty 

associated with surfaces with such high spatial frequency texture, i.e., those that have 

sufficient variation in surface height within a region of the surface that when imaged is 

smaller than a sensor pixel in the image plane, has also been made and compared to 

experiment [163]. An examination of CSI’s ability to complete a series of varied 

measurement tasks is carried out in [164]. 
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Data dropout is not the only result of low SNR, the effect of real-world imperfections, 

or other limitations of the instrument. In certain situations, the central fringe order can 

be misclassified, leading to a jump in the height data corresponding to half the mean 

effective wavelength of the illumination, i.e., a change in phase by 2𝜋. This kind of 

error is therefore called a 2𝜋 or fringe order error. The causes of fringe order errors are 

relatively diverse, with very smooth surfaces sometimes producing so-called “ghost 

steps” due to field dependent dispersive aberrations [160], and rough surfaces 

sometimes exhibiting the effect at regions of high surface gradient [39]. Fringe order 

errors can occur even when the surface tilt is within the angle of acceptance. Note that 

all fringe-order errors are fundamentally only present when analysis attempts to 

combine both the coherence envelope and phase information, so utilising only the 

coherence envelope for height analysis is an effective way of reducing data dropout and 

fringe-order errors for rough, low SNR, surfaces [37,135].  

Measurements of step discontinuities can produce the “batwing” effect. While similar 

looking to fringe order errors, the batwing effect occur due to interference of the step-

edge diffracted waves with the regular top and bottom surface reflected waves, 

alongside shadowing effects [39,165]. These erroneous height values near the step 

discontinuities occur even when the step is much taller than the coherence length, 

though these errors are usually smaller. While the batwing errors can be related to a 

shifted coherence envelope [165,166], they do not have to be, and can appear entirely 

from phase evaluation methods [167]. For step height structures, the batwing effect is 

strongly dependent on the height-to-wavelength ratio (HWR) of the surface, as well as 

the effective illumination wavelength used, determined by the instrument’s 

NA [168,169]. Rigorous modelling has also been performed to investigate these errors, 

comparing results against those from both simpler models and experiment [170]. With 

a choice of processing that depends more on the phase information, these batwing errors 

can be attenuated [166,171]. Furthermore, for certain step height geometries, careful 

tuning of the evaluation wavelength used in phase evaluation can also allow for accurate 

measurements of rectangular phase gratings, supressing the batwing artefacts and 

rounding of grating edges even when higher-order diffraction components are 

lost [167,172].  

In [173], some of the parameters and properties of CSI that affect measurement results 

are investigated across three categories: transfer characteristics and resolution limits; 
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dispersion effects; and temporal and spatial coherence effects. Diffraction and temporal 

coherence effects were simulated and experimentally measured, with strong non-linear 

transfer characteristics observed for rectangular gratings, dependent on both instrument 

configuration and surface structure, with batwings appearing and disappearing 

depending on the HWR of the rectangular gratings used, revealing that adapting the 

centre wavelength can reduce the strength of batwings seen [168]. Investigation into 

dispersion effects, i.e., chromatic aberration, show that while fringe contrast is 

weakened and the coherence envelope is shifted by dispersion, phase information is 

barely influenced. The low impact of dispersion on phase information allows accurate 

topography to be obtained if the surface height variation is small, i.e., no fringe order 

ambiguity is present. Dispersion errors can also be reduced by adding corrective lenses 

designed with ray tracing software next to the beam splitter cube. It is also possible to 

reduce the prevalence of 2𝜋 errors that occur due to dispersion effects and lateral 

chromatic aberrations of the imaging system by first measuring a known standard 

surface and capturing information on the effect of the dispersion on the envelope 

position and phase and compensating for it [174]. Finally, temporal and spatial 

coherence effects were studied, using more accurate modelling. Batwing effects can be 

more accurately studied and in more detail when the spatial coherence (and therefore 

the NA of the instrument) is better accounted for, revealing maximum batwings 

occurring at HWR = 0.25. Polarisation was also studied, with stronger batwings seen 

when using transverse electric (TE) polarisation. The underestimation of profile height 

from measurement of a chrome structure on a glass substrate was also accurately 

predicted, with the cause due to the different phase shifts between reflections for the 

two different media. 

As discussed earlier, all optical instruments are limited by their objective lens’s NA, 

which determines a maximum acceptance angle at which light scattered or reflected 

from the surface can be captured by the system (see Figure 2.7). For artefacts with 

inclines steeper than this angle, such as a 70° silicon vee-groove, widely inaccurate 

height values can be obtained rather than data dropout occurring [39]. Errors of several 

hundred micrometres can be found for the sloped region, the resulting topographical 

data unrecognisable as a vee-groove even with the lower error magnitudes present 

around the trough of the groove [175]. This effect is attributed to multiple reflections 

(scattering) off the two sides of the groove [176,177], and further work has been carried 
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out to utilise this phenomenon to measure the dihedral angle of the vee-grooves [178]. 

This error is due to the inherent assumption that only single scattering events take place 

in a CSI scan, i.e., the ‘pixel-by-pixel’ assumption. 

Relative to other types of surface measurement, CSI can sometimes overestimate the 

texture of rough surfaces. The reason for this can for example be explained by 

considering rough surfaces as being made up of differently orientated groove-like 

objects at the small-scale. Due to multiple scattering, each of these small-scale steep 

“grooves” that make up the rough surface are incorrectly interpreted as significantly 

modulating topography, increasing the apparent surface texture. Note that these surface 

texture effects are typically not a problem if coherence and phase information are both 

used [160]. In cases where the surface is simply tilted or has high slopes without 

significant texture, only a small proportion of the scattered light can be collected by the 

objective lens, leading to a low SNR and consequently data dropout. Capturing enough 

of the specular reflections from these surfaces to increase the SNR requires a larger 

NA, and for some surfaces is effectively impossible irrespective of the NA. A more 

detailed discussion on the optical measurement of surface topography for tilted and 

steep surfaces, especially with slopes or tilt angles beyond the acceptance angle of the 

objective lens, is given in section 2.6. 

2.4 Overview of CSI models 

Modelling is at the heart of understanding physical phenomena, and for CSI instruments 

is especially valuable due CSI’s complexity and the need to analyse signal data for 

height estimation. This thesis presents two main CSI modelling approaches: the foil 

model and the BEM-CSI model. The foil model treats the surface as a thin foil, which 

under certain approximations can be combined with an appropriate transfer function to 

generate CSI fringes for that surface. The BEM-CSI model instead calculates fringe 

data using a rigorous numerical boundary element method (BEM) of optical scatter, 

derived from Maxwell’s equations without significant approximation. The BEM 

method solves for a given illumination the surface boundary fields and surface-normal 

derivatives along a surface, and consequently can calculate the scatter from the surface, 

which can be used to produce fringes. A review on the state of art of CSI models 

including their limitations, as well as background on their assumptions and principles, 

is given in this section, while the foil model, BEM model, and BEM-CSI model are 



38 Chapter 2: Background & State of the art 

described later in their respective chapters (Chapter 3, Chapter 4, and Chapter 5). 

Several of the models discussed in this section are categorised in Table 2.2, though 

alternative categorisations by dimensionality can be found in [105,179]. Note that a 

simple one-dimensional (1D) model can be readily extended to produce virtual fringe 

data for an entire surface, and is therefore not limited to just 1D, but extending the 

model does not account for the real measurement method as well as a less-approximate 

higher-dimensional model can. In addition, the dimensionality of the surface and the 

imaging process can differ in general and between different models [179], and models 

can be comprised of a combination of approximate and rigorous parts, which 

complicates categorisation.  

Table 2.2 A categorisation of a selection of CSI models. 

Simple 1D signal modelling Cosine intensity with envelope [101,180] 

Numerical integration of a cosine intensity 

interference signal over parameter space [101] 

Linear two-dimensional (2D) 

and 3D modelling 

Cosine intensity with envelope, extended to higher 

dimensions, filtered by the traditional optical transfer 

function [181] 

Elementary Fourier optics (thin phase object 

approximation) [182] 

Extended Richards-Wolf model (Debye 

approximation, vectorial variant) [168,169,173,183] 

Kirchhoff approximation combined with filtering by 

coherent amplitude transfer function [168] 

Foil model (Kirchhoff approximation, transfer 

function model) [88,184–186] 

Double foil model (Kirchhoff approximation, transfer 

function model) [187] 

Non-linear modelling Finite element methods [49,179,188] 

Boundary element methods [51,52] 

Finite difference time domain methods [170] 

Rigorous-coupled wave-equation methods [179,189] 

2.4.1 A simple linear cosine intensity CSI model 

A CSI model that takes a cosine intensity function summed over multiple wavelengths 

and incident angles, can still predict the main features of an interference signal, 

including signals from thin films [101,180]. Effectively, both the surface-light 

interaction and resulting scatter are not considered in a cosine intensity model; instead, 

the height of the surface is included simply by setting the phase origin of the cosine to 

the height of the surface along the optical axis. To help explain this approach, its theory 
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and some simple results are outlined below, with more advanced linear models 

discussed in section 2.4.2. 

A basic CSI intensity signal for measurement of single surface point for a single sensor 

pixel is modelled, to examine some of the fundamental dependencies of the fringes on 

the optical configuration. This model follows that described in [101], an established 

method in older literature per section 3.2 of [110]. 

Starting from Eq. (4) of [101] 

 𝐼(ζ) = ∫ ∫ 𝑔(𝛽, 𝑘, 휁)𝑈(𝛽)𝑉(𝑘)𝛽
1

0

𝑑𝛽
∞

0

𝑑𝑘, (2-9) 

where 𝛽 = cos(𝜓) is the directional cosine for incident angle 𝜓; 𝑘 = 2𝜋𝜆 is the angular 

wave number for illumination wavelength 𝜆; 𝑔(𝛽, 𝑘, 휁) is the interference contribution 

for a single ray bundle, at some specific axial scan position 휁, for some directional 

cosine 𝛽 and some specific wave number 𝑘; 𝑈(𝛽) is the intensity distribution in the 

pupil plane of the objective lens, also known as apodization factor; and 𝑉(𝑘) is the 

optical spectrum distribution. The factor 𝑔(𝛽, 𝑘, 휁) is given by 

 𝑔(𝛽, 𝑘, 휁) = 𝑅 + 𝑍 + 2√𝑅𝑍 cos(2𝛽𝑘(ℎ − 휁) + (𝑣 − 𝜔)) , (2-10) 

where 𝑅 is the reference reflectivity, 𝑍 is the effective object intensity reflectivity, ℎ is 

the height of surface at the point considered, 𝑣 is the reference path phase contribution, 

and 𝜔 is the object path phase contribution. In general, 𝑍, 𝑅, 𝑣, 𝜔 all vary with a change 

in 𝛽. 

Next, Eq. (2-9) is simplified by reducing the intensity distribution profile to a point 

source at the centre of the pupil plane, such that 𝑈(𝛽) = 0 when 𝛽 ≠ 1, i.e., equivalent 

to low NA illumination. Furthermore, it is assumed that (𝑣 − 𝜔) = 0 for all 𝑘, and that 

reflectivities 𝑅 and 𝑍 are independent of both 𝑘 and 𝛽, so that these factors can be 

neglected in the analysis. This gives 

 𝐼(휁) = 𝑈1 ∫ 𝑔(1, 𝑘, 휁)𝑉(𝑘)
∞

0

𝑑𝑘, (2-11) 

where 𝑈1 = 𝑈(1). Substituting this equation into Eq. (2-10) gives 
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𝐼(휁) = 𝑈1(𝑅 + 𝑍) ∫ 𝑉(𝑘)
∞

0

𝑑𝑘

+ 2𝑈1√𝑅 + 𝑍 ∫ 𝑉(𝑘) cos(2𝑘(ℎ − 휁))
∞

0

𝑑𝑘. 

(2-12) 

As only the fringe patterns (produced as the axial scan position 휁 varies) are of interest, 

the first term can be neglected. The equation can then be evaluated numerically. 

The optical distribution 𝑉(𝑘) is modelled as a Gaussian with a full width at half 

maximum (FWHM) of 100 nm and mean of 500 nm, such that numerical integration of 

the cosine is achieved at each desired 휁. A height value ℎ of 1 µm was chosen and the 

results are displayed in Figure 2.8. Even with such a simple model, it is easy to see how 

the fringe envelope changes under a narrower bandwidth illumination, shown in Figure 

2.9. 

 

Figure 2.8. Modelled interference signal (interferogram) for CSI (right) 

using a Gaussian optical distribution with FWHM of 100 nm and mean of 

500 nm (left), where a point source is considered at the centre of the pupil 

plane. Note that the chosen surface height of 1 µm is clearly visible due to 

the localisation of the fringe pattern produced. 
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Figure 2.9. Modelled interferogram for CSI (right) using a Gaussian optical 

distribution with FWHM of 20 nm and mean of 500 nm (left). The fringe 

signal is visually cropped to preserve the same 8 μm scan range as in Figure 

2.8. 

Of course, when the illumination is not only normally incident, i.e. for NAs that are not 

small, the fringe spacing is also affected. In other models this aspect is captured and 

simplified by an NA-factor or “obliquity factor” [190]. A more general case using an 

extended light source, limited by the NA (𝐴𝑛) of the objective lens, can also be 

considered. Without the simplifying assumption of a central point source of light in the 

pupil plane, Eq. (2-9) is considered, where the intensity distribution 𝑈(𝛽) is chosen to 

be constant for 𝛽 < 𝜃NA where 𝜃NA = sin−1(𝐴𝑛 ), and zero elsewhere. While it is 

possible to evaluate Eq. (2-9) significantly more efficiently by combining 𝛽 and 𝑘 to a 

common spatial frequency parameter, and rewriting the equation in the Fourier 

domain [101], the equation can still be evaluated directly. Shown in Figure 2.10 are two 

interferograms calculated in this way with similar coherence lengths, despite the large 

differences in illumination bandwidth and NA. With comparison to Figure 2.9, it can 

be seen that a larger NA also causes the coherence envelope to shrink. Clearly a 

combination of temporal and spatial coherence together produces the localised fringes 

seen in CSI.  
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Figure 2.10. Modelled interferogram for CSI using a Gaussian optical 

distribution with a mean wavelength of 500 nm, where: (a) the FWHM is 

100 nm and the NA is 0.2, and (b) the FWHM is 20 nm and the NA is 0.6. 

In both cases the pupil plane is uniformly filled for the chosen NA.  

2.4.2 More advanced linear models 

A similar approach to the cosine intensity model described in section 2.4.1 was made 

to predict the effects of multiple reflections within a surface film [181], although a 

number of aspects, such as the variation of the angle of incidence, were neglected. The 

cosine intensity model has also been extended to a 2D model by others, combining a 

group of 1D interferograms for an areal region of surface heights with a traditional 2D 

optical transfer function (OTF), effectively accounting for the diffraction and spatial 

frequency filtering associated with the measurement instrument [191]. This is 

equivalent to convolving the intensity image at each scan position with the lateral 

optical point-spread function (PSF) of the instrument. Note that the surface here is 

effectively “2.5D”, in that each lateral coordinate (x,y) may have only one surface 

height (z). Rectangular gratings were considered in the referenced work, to investigate 

both the linear and non-linear transfer characteristics associated with the gratings, and 

with the OTF determined the ITF was evaluated by modelling a range of gratings with 

different grating heights and periods. 

The so-called “elementary Fourier optics” (EFO) approach instead treats the surface as 

a thin phase grating whose phase is linear with the surface height; valid only for surfaces 
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with heights small relative to the depth of field, referred to as the “thin phase object 

approximation” [182]. Image formation occurs using Fourier optics field propagation 

along the optical axis [192], with filtering by an ITF applied laterally to the spectrum. 

Unlike the simpler cosine intensity model, EFO requires a range of surface height 

points; each point of the scattered spectrum formed is comprised of scatter from points 

across the entire surface. Only the interferometric response is considered, with the 

conventional non-interferometric imaging of the object neglected. While not essential, 

an obliquity factor [190] is used to average the effect of different illumination angles 

and simplify the calculation; this reduces the accuracy of the model for high NAs. For 

surfaces with small heights that meet the thin phase object approximation, the model 

can rapidly predict the main features of surface topography measurements by CSI. 

The so-called “extended Richards-Wolf” model requires numerical integration similar 

to the cosine intensity model. The theory of the extended Richards-Wolf model is 

detailed in [168,169,173,183], the vectorial case explained further in [183], vectorial 

comparisons made to other linear models in [188], and the model used for instrument 

characterisation in [193]. The approach is based on the Debye approximation [194–

196], and the modelling method was first developed by Richards and Wolf [197]. The 

approach considers the distribution of the electromagnetic field due to diffraction at and 

near to the focus of an aberration-free system imaging a point source, for an incident 

field considering vectorial linear polarisation. This is then adapted and extended to an 

interferometric configuration with spatially incoherent illumination.  

Some CSI models are based on the Kirchhoff (or physical optics) approximation 

(KA) [141,198,199]. The KA primarily requires that surfaces vary slowly on the optical 

scale; more detail on the assumptions taken are given later in this section, including 

expressions such as Eq. (2-13) as criteria for the KA. One CSI model based on the KA, 

called the foil model, characterises the instrument’s imaging as a 3D linear filtering 

operation on surface spatial frequencies, and has been used to produce a virtual CSI 

instrument for instrument and error characterisation [186]. The foil model’s theory is 

presented in [185], and the exact approximations made listed in [184], following 

Beckmann and Spizzichino [141]. The foil model is used throughout Chapter 3 and 

detailed further there. Other CSI models based on the KA can be seen in [168,187], 

used to estimate the strength of the batwing effect for different configurations. In the 

case of [187], the foil model is modified and the so-called “double foil model” 



44 Chapter 2: Background & State of the art 

presented, named due to explicitly modelling the response of both the sample and the 

reference mirror. This modification has a larger impact for instrument modelling with 

larger NAs, and a smaller impact with lower NAs. Issues with the assumption that an 

instrument has a universal PSF independent of the surface are suggested and explored 

analytically, and issues demonstrated for several surfaces, which are further expanded 

on in more recent work [200].  

Both the foil model and double foil model are examples of 3D transfer function models, 

which model the interference response of the instrument as a filtering in frequency 

space of an object surface spectrum by a transfer function, equivalent to a convolution 

of an instrument intensity PSF with an object surface function (the so-called “foil”). 

The use of 3D transfer functions in the area of surface topography measuring 

instruments is reviewed in [201]. This review also clarifies the differences between the 

various lower-level kinds of transfer functions used in optics to transfer scattered 

optical field to the optical field measured by an instrument, such as the OTF. The ITF, 

which maps input surface to measured surface, can also be related to the 3D transfer 

function [144,146]. 

There are many publications on regions of validity of the KA for different scattering 

problems, often including modifications to account for neglected phenomena and widen 

the region of validity [198,199,202–207]. This can make recognising the limitations of 

some specific KA-based CSI models difficult, without looking in-depth at the specific 

implementation and through exploratory use of the model. An overview on the early 

history of analytical optical scattering models and associated approximations, the origin 

of the KA to the anglosphere, and certain empirical modifications to the classical 

Beckmann-Kirchhoff scattering model [208], can be found in [199]. In [199], the 

author states that the Beckmann-Kirchhoff model contains a paraxial assumption that 

confines its applicability to small incident and scattering angles, and with inspiration 

from the non-paraxial Harvey-Shack scattering theory, can be empirically modified to 

reduce the effect. 

In some of the earlier literature for the Brekhovskikh variant of the KA, it states that 

while the KA model used is valuable in predicting scatter for sinusoidal surfaces with 

small amplitude-to-period (ℎ/𝑑) ratios (i.e. shallow slopes), the model became less 

accurate with increasing angles of incidence, with the threshold of where this occurs 
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dependent on ℎ/𝑑 [198]. With some dependence on the ratio of period to illumination 

wavelength, the scattering theory was also shown to fail for any surface spatial 

frequency and incident angle for ℎ/𝑑 ≳ 0.13 (sinusoid maximum slope ≳ 47°) as an 

absolute upper limit; this was shown to be related to the predicted occurrence of 

multiple scattering under geometrical optics. A similar result on the differences 

between an analytical approach and a rigorous one with changing sinusoid slope, as 

well as the same geometrical optics upper limit, was shown in the author’s own 

work [209] and is briefly presented in Chapter 4.  

The primary limitation for the validity of the KA can be parametrised by the well-

known Brekhovskikh criterion [186,198,208,210]: 

 4𝜋𝑟𝑐 cos 𝜃 ≫ 𝜆 , (2-13) 

where 𝜆 is the wavelength of light, 𝑟𝑐 is the radius of curvature at some surface point, 

and 𝜃 is the local angle of illumination incidence, i.e. between the plane that the KA 

assumes and the incident wavevector. Other criteria that have been used are given in 

Ogilvy [211], including one criterion that depends on the cube of the cosine of the angle 

of incidence relative to the mean plane, and another simply stating 𝑟𝑐 ≤ 3𝜆. However, 

Ogilvy argues that these criteria are all the result of geometrical arguments, and 

therefore that more rigorous arguments are required for a more accurate understanding. 

Ogilvy states that the literature (up to 1991) demonstrated that the most important 

requirement is that the wavelength is much greater than the surface correlation length 

(𝜆/𝜆0 > 1), with the ratio of wavelength to surface root-mean-square deviation (RMS) 

also being important (𝜆/𝜎 > 1). In either case, while criteria can be useful, establishing 

the regions of validity of the KA for a range of surface geometries is best done by 

comparing results from a KA-based model to experimental measurements or to a 

rigorous model that has been verified experimentally. 

While the primary limitation of the KA is a lower limit to the surface’s radius of 

curvature, KA-based CSI modelling approaches almost always make some other 

simplifications to make the problem tractable and the model easier to calculate. They 

often neglect multiple scattering and cannot readily handle shadowing, cannot handle 

surface overhangs or undercuts, typically neglect angular and polarisation-dependence 

of the reflection coefficient (an acceptable assumption for a perfect conductor), and 

neglect for metals, metal-specific interactions such as surface plasmons. While 
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modifications can be made to compensate for some of these assumptions, they cannot 

fundamentally be overcome for all surfaces. For more complex or rough surfaces for 

which the KA is not entirely valid, the use of non-linear models based on Maxwell’s 

equations is necessary to obtain accurate scatter. 

2.4.3 Non-linear models 

The analysis applied to fringe patterns recorded by CSI instrumentation typically 

acquires the height at each point on the surface by assuming linear specular scattering 

of the illumination off the surface, collected by the objective optic and focussed onto a 

detector. This approach assumes that multiple scattering is negligible and ignores other 

wave effects that could occur; for some surfaces these effects can distort or mask the 

expected “linear” fringe pattern, leading to data dropout or erroneous height 

values [39]. One example of this is for vee-groove structures [49,175,178], with fringes 

shown in Figure 2.11. The inverted vee-shaped fringes are produced by multiple 

reflections and are misinterpreted by surface reconstruction methods [49]. For more 

advanced methods of surface reconstruction to be developed that can handle these 

surfaces, such as iteratively improving the estimate by minimising the difference 

between measured and modelled data [49], fast and accurate fringe models for such 

surfaces must first be developed. As described in Chapter 1, such a model is also 

valuable for evaluating measurement uncertainty. 
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Figure 2.11. Modelled CSI fringes using a rigorous method for a vee-

groove surface (Silicon vee-groove, 70° dihedral angle, 20 µm deep, NA = 

0.55, λ = 600 nm to 700 nm). Only the positive parts of the fringes are 

shown, with the dashed-white line marking the true surface topography. 

Figure first used in [49] and is re-used in [209]; reproduced here with 

permission. 

For complex arbitrary surfaces, including those with step heights or discontinuities, a 

rigorous model based on numerical techniques that solve Maxwell’s equations must be 

used, especially in the case where multiple scattering is not negligible. Here “rigorous” 

means “based on Maxwell’s equations, with solutions that converge towards those that 

Maxwell’s equations would predict as the number of sample points is increased towards 

infinity”. Using computational electromagnetic (CEM) approaches [212,213] such as 

finite element methods (FEM) [49,179,188], boundary element methods 

(BEM) [51,52], finite difference time domain methods (FDTD) [170], and rigorous-

coupled wave-equation methods (RCWA) [179,189], rigorous CSI models have been 

made to predict fringe data more accurately. Such models have been used as a reference 

to compare simpler analytical models against, and to investigate complex and high-

aspect ratio surfaces [49,170,188,179,189,214–216]. Rigorous models from other kinds 

of interferometry can also be adapted for CSI [217–219]5. Note that some of these CSI 

models have only been published in the last few years, and that each model tends to 

 

5 The cited references primarily cover rigorous modelling of phase-shifting polarization interferometry. 

Information concerning adaption of the RCWA model used there for CSI was provided in private 

correspondence with Peter de Groot. 
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come with certain fundamental or computational limitations: e.g., reduced 

dimensionality of input surfaces or the imaging process [188], which may include 

compensating for the missing dimensionality with a less-rigorous approach [179]. In 

some cases, the model may handle multiple dimensions and polychromatic CSI 

illumination in principle, but the calculation of scatter for the surfaces of interest can 

take too long without artificially limiting the scope of the model [179,188]. In other 

cases, dimensionality is intentionally reduced at the theory stage to make the 

computational modelling faster, such as considering the scalar Helmholtz 

equation [49,51]; extending these models to 3D requires further theory 

development [220]. Each model tends to handle scatter propagation and imaging 

slightly differently, implemented to differing degrees of rigour, suiting the specific 

problem considered. The modelling code used is also typically not publicly available.  

The work carried out by Coupland et al. [49] makes use of FEM to produce CSI 

interferograms expected for measuring vee-grooves and step artefacts, demonstrating 

the multiple scattering effect (seen in Figure 2.11). These predicted fringes are in good 

agreement with the measurements of real vee-grooves [175]. Other work has shown 

that analysis of the scattering can provide the dihedral angle of the vee-groove [178]. 

Similarly, diffraction effects found in CSI measurements of trenches have been 

examined in [221], with rigorous numerical evaluations of vector diffractions for a 

trench compared to experimental results. Later on in [49], from an initial FEM model 

of the horizontal parts of a step artefact, with the initial geometry of the artefact 

provided by a priori manufacturing data, a so-called “second order” interferogram can 

be calculated that is able to reveal the vertical wall of the step. Furthermore, this process 

can be applied iteratively to produce better estimates of the surface for more complex 

step artefact geometries.  

In work by de Groot et al. [189], CSI measurement of optically-unresolved features is 

achieved through the use of RCWA modelling, for etched silicon surfaces with depths 

and pitches less than the wavelength of light. In general, CSI measurement will 

underestimate the etch depth (or step height) for these high spatial frequency grating 

structures, but by predicting through modelling the measured step heights for a range 

of “true” etch depths, the relationship between them can be found and a look-up table 

produced. CSI measurements can be corrected using this look-up table, and these 
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corrected measurements are compared against atomic force microscopy (AFM) 

measurements with good agreement. 

In the last two years, a number of different approaches for modelling CSI have also 

been developed by Pahl et al. [170,188,179,216]. Both an FEM and RCWA scattering 

model are considered in [179], using the open source FEM software 

Netgen/NGSolve [222] and RCWA commercial software Unigit [223] to solve the 

surface-light interaction. The image formation in CSI is then calculated by an analytical 

approximation based on Kirchhoff’s diffraction integral. Results are compared to each 

other, to simpler models, and to measurement data for grating structures. They conclude 

that rigorous models can be more useful than analytical approaches even when the 

number of dimensions considered are limited.  

In [170], rigorous 2D modelling is used to compute the scattered near field, which is 

then combined with a Fourier optics treatment of image formation. FEM modelling is 

again achieved using NGSolve (but here for the near field), while a commercial FDTD 

called Lumerical [224] is used for comparison, with identical results obtained. The 

paper introduces models based on these two methods and points to potential areas of 

application, including for rectangular gratings. In [188] the work in [170] is improved 

on, with different CEM modelling approaches discussed in detail and comparisons 

made between different combinations of surface structure dimensionality and image 

formation dimensionality. The image formation approach is improved to 3D, and the 

FEM model extended to conical illumination and detection and for arbitrary materials, 

by considering the 2D case of the vector wave equation rather than the scalar Helmholtz 

equation. The near-field scatter is found using FEM along a line near to the surface, and 

the far-field scatter found through eigenvalue expansion (similar to a Fourier 

transform), though other methods are acknowledged. While the FEM model effectively 

remains 2D, by considering a prismatic grating surface, the vector electric field can still 

be considered, and the 3D problem tackled. In their latest relevant publication [216], 

the model is extended to describe the entire measuring process including the depth scan, 

and this extended model (alongside measurement data) is used as a reference for 

comparisons between three different analytical approaches previously mentioned in 

section 2.4.2 [183]. 
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Presented in this thesis is a new CSI model, based on a rigorous 2D BEM optical 

scattering model produced at Loughborough University. To synthesise CSI fringe 

images such as in Figure 2.6, this BEM-CSI model obtains the scatter from the BEM 

model for illumination from multiple angles and multiple wavelengths, combines them 

together, and considers some basic imaging theory. Publications involving the BEM 

model directly include [209,225–228], while publications that use the BEM model 

directly include [50–52]. Details about the BEM model are given in Chapter 4, while 

details about the CSI model are given in Chapter 5.  

2.5 Scalar scattering and imaging theory 

Scalar scattering theory is the common foundation of the foil model used in Chapter 3, 

the BEM model used in Chapter 4, and the imaging theory of the BEM-CSI model used 

in Chapter 5 and Chapter 6. In addition, the backpropagation imaging theory is for the 

most part common between the foil model and the BEM-CSI model. As such, the scalar 

scattering theory and imaging by backpropagation is outlined here, and the expressions 

given referred to across subsequent chapters. 

2.5.1 Scalar scattering theory 

Following the method outlined in [229] (and repeated partially in [88,184,185]), the 

scalar Helmholtz equation (aka the time independent wave equation) is taken as  

 ∇2𝐸(𝐫) + 𝑘0
2𝑛2(𝐫)𝐸(𝐫) = 0, (2-14) 

where the dependence on the wavelength of light for electric field 𝐸(𝐫) and refractive 

index 𝑛(𝐫) has been omitted, and where the angular wavenumber is given by 𝑘0 =
2𝜋

𝜆0
 

for illumination wavelength 𝜆0. This equation is found considering a monochromatic 

electromagnetic field incident on a linear isotropic nonmagnetic medium occupying 

some finite domain that contains no electromagnetic sources (the illuminated object), 

surrounded by a vacuum. The electric field 𝐸(𝐫) can without approximation be 

considered as the sum of two electric fields, the incident field 𝐸𝑟(𝐫) and the scattered 

field 𝐸𝑠(𝐫): 

 𝐸(𝐫) = 𝐸𝑟(𝐫) + 𝐸𝑠(𝐫). (2-15) 



2.5 Scalar scattering and imaging theory  51 

The incident field is chosen to be the field that would exist were the illuminated object 

to be absent, while the scattered field is defined directly by Eq. (2-15) and effectively 

represents the additional field produced by the presence of the illuminated object. From 

this description, the incident field 𝐸𝑟(𝐫) can be defined by  

 (∇2 + 𝑘0
2)𝐸𝑟(𝐫) = 0, (2-16) 

as 𝑛(𝐫) = 1 for all 𝐫 in the absence of the object. By also making the substitution  

 𝑛2(𝐫) = (1 − 2Δ(𝐫)), (2-17) 

 Δ(𝐫) = (1 − 𝑛2(𝐫))/2, (2-18) 

where Δ(𝐫) is the refractive index contrast, and substituting Eq. (2-16) and Eq. (2-17) 

into Eq. (2-14), the inhomogeneous Helmholtz equation is obtained 

 (∇2 + 𝑘0
2[1 − 2Δ(𝐫)])𝐸𝑠(𝐫) = 2𝑘0

2Δ(𝐫)𝐸𝑟(𝐫), (2-19) 

 (∇2 + 𝑘0
2)𝐸𝑠(𝐫) = 2𝑘0

2Δ(𝐫)(𝐸𝑟(𝐫) + 𝐸𝑠(𝐫)), (2-20) 

 (∇2 + 𝑘0
2)𝐸𝑠(𝐫) = −4𝜋𝐹(𝐫)𝐸(𝐫) = 𝑈(𝐫). (2-21) 

Note that Eq. (2-19), (2-20) and (2-21) are all the same equation written in different 

forms, where for Eq. (2-21) the scattering potential of the medium 𝐹(𝐫) is given by  

 
𝐹(𝐫) =

1

4𝜋
𝑘0

2[𝑛2(𝐫) − 1] = −
1

2𝜋
𝑘0

2Δ(𝐫). (2-22) 

In Eq. (2-21) the substitution 𝑈(𝐫) = −4𝜋𝐹(𝐫)𝐸(𝐫) is also introduced for 

convenience, as it can be considered the source term for a free-space scalar wave 

equation with source terms present. Also note that Δ(𝐫), and thus both 𝐹(𝐫) and 𝑈(𝐫), 

are 0 for values of 𝐫 not within the object. Next, the inhomogeneous Helmholtz equation 

is converted into an integral equation by making use of Green’s functions. First, the 

Green’s function 𝐺(𝐫) associated with the inhomogeneous Helmholtz equation is, by 

definition, a solution of  

 (∇2 + 𝑘0
2)𝐺(𝐫) = −𝛿(3)(𝐫), (2-23) 

where 𝛿(3)(𝐫) is the 3D Dirac delta function. By combining this with Eq. (2-21), 

considering the geometry described in Figure 2.12, and applying Green’s theorem 

(Green’s second identity), the expression 
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𝐸𝑠(𝐫) = +4𝜋 ∫ 𝐹(𝐫′)𝐸(𝐫′)𝐺(𝐫 − 𝐫′)

Ω

d3𝑟′ 

− ∫ [𝐸(𝐫′)
𝜕𝐺(𝐫 − 𝐫′)

𝜕𝑛′
− 𝐺(𝐫 − 𝐫′)

𝜕𝐸(𝐫′)

𝜕𝑛′
] d𝑆𝑅

𝑆𝑅

, 
(2-24) 

is obtained. Within the surface integral, 𝐫′ is limited to the boundary of 𝑆𝑅; within the 

volume integral, 𝐫′ is integrated over all space (denoted by d3𝑟′) but non-zero 

contributions to the integral occur only when 𝐹(𝐫′) ≠ 0, i.e., when 𝐫′ is inside the 

scatterer. Here the 
𝜕

𝜕𝑛′
 operator is an outward surface normal derivative. Note that 

Eq. (2-24) is strongly connected to Eq. (4-1) and Eq. (4-2).  

 

Figure 2.12. Geometry used for the derivation of Eq. (2-24) following the 

approach in [229], where a large sphere 𝑆𝑅 with radius 𝑅 and surface 

element 𝜕𝑆𝑅 contains a volume Ω + Ω̅ (which includes the scatterer volume 

Ω).  

As outlined in [229], by choosing a specific Green’s function that satisfies Eq. (2-23) 

and considering that the scattered field will act as a spherical wave sufficiently far away 

from the scatterer, i.e. by assuming the Sommerfeld radiation condition, this expression 

can be simplified to just  
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𝐸𝑠(𝐫) = 4𝜋 ∫ 𝐺(𝐫 − 𝐫′)𝐹(𝐫′)𝐸(𝐫′) d3𝑟′

+∞

−∞

 

= − ∫ 𝐺(𝐫 − 𝐫′)𝑈(𝐫′) d3𝑟′
+∞

−∞

 

= −𝐺(𝐫) ⊗ 𝑈(𝐫). 

(2-25) 

where here ⊗ is the operator for a convolution, and where 

 
𝐺(𝐫) =

𝑒𝑖𝑘0|𝐫|

4𝜋|𝐫|
 (2-26) 

was chosen, where 𝑖 = √−1. Eq. (2-26) is known as outgoing free-space Green’s 

function of the Helmholtz operator, as the phase increases as |𝐫| → ∞ . Note that the 

function is symmetrical, i.e., 𝐺(𝐫) = 𝐺(−𝐫). The form of this solution depends on the 

dimensions of space considered, with the 3D form given in Eq. (2-26). Note that despite 

this simpler expression, the scattered field (or total field) for some chosen incident 

illumination in general must first be found within the volume of the object, from which 

the field outside the volume can then be found. Also note that the 4𝜋 in the denominator 

is a consequence of choosing the RHS of Eq. (2-23) to be −𝛿(𝐫), rather than −4𝜋𝛿(𝐫) 

as seen elsewhere [229]; this is connected to choosing to neatly express the solution in 

terms of either 𝐹(𝐫)𝐸(𝐫) or in terms of 𝑈(𝐫).  

A far-field approximation for this Green’s function is then considered, shown in Figure 

2.13. First, the coordinate origin is chosen without loss of generality to lie within the 

object. Second, it is assumed that the object is small relative to the distance considered 

for the far field, i.e., all 𝐫 vectors that lie within the object are small relative to any 𝐫 

vectors to be chosen to calculate the scattered far field at. Then, for object coordinate 

𝐫′ and far field coordinate 𝐫 = 𝑟𝐬 from the origin (for scalar radius 𝑟 and unit vector 𝐬), 

then |𝐫 − 𝐫′| ≈ |𝐫| −
𝐫⋅𝐫′

|𝐫|
= 𝑟 − 𝐬 ⋅ 𝐫′.  
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Figure 2.13. Geometry used for the derivation of Eq. (2-27) , where 𝐫 is 

much larger than 𝐫′, showing geometrically how |𝐫 − 𝐫′| ≈ |𝐫| −
𝐫⋅𝐫′

|𝐫|
 for 

approximately parallel lines. 

From this approximation for |𝐫 − 𝐫′|, the Green’s function can be approximated to 

 
𝐺(𝐫 − 𝐫′) =

𝑒𝑖𝑘0|𝐫−𝐫′|

4𝜋|𝐫 − 𝐫′|
≈

𝑒𝑖𝑘0𝑟

4𝜋𝑟
𝑒−𝑖𝑘0𝐬⋅𝐫′

, (2-27) 

and therefore, from Eq. (2-25), under this far-field approximation, the far-field scatter 

can be described as 

 
𝐸𝑠(𝑟𝐬; 𝐬i) = −

𝑒𝑖𝑘0𝑟

4𝜋𝑟
∫ 𝑈(𝐫′; 𝐬, 𝐬i) 𝑒−𝑖𝑘0𝐬⋅𝐫′

d3𝑟′
+∞

−∞

 

=
𝑒𝑖𝑘0𝑟

𝑟
∫ 𝐹(𝐫′)𝐸(𝐫′; 𝐬, 𝐬i)𝑒−𝑖𝑘0𝐬⋅𝐫′

d3𝑟′
+∞

−∞

 

= 𝑓(𝐬, 𝐬i)
𝑒𝑖𝑘0𝑟

𝑟
, 

(2-28) 

where the single indefinite integral and d3𝑟′ represents a 3D integral of vector 𝐫′ over 

all space along the components of 𝐫′ (i.e. ∭⋅ dx dy dz), and where the scattering 

amplitude 𝑓(𝐬, 𝐬i) has been defined above as 
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𝑓(𝐬, 𝐬i) = −

1

4𝜋
∫ 𝑈(𝐫′; 𝐬, 𝐬i) 𝑒−𝑖𝑘0𝐬⋅𝐫′

d3𝑟′
+∞

−∞

 

= ∫ 𝐹(𝐫′)𝐸(𝐫′; 𝐬, 𝐬i)𝑒−𝑖𝑘0𝐬⋅𝐫′
 d3𝑟′

+∞

−∞

. 

(2-29) 

The parameter 𝐬i is introduced in Eq. (2-28) to denote that the scattering amplitude (and 

therefore the far-field scattered field) is dependent on the incident field chosen; here a 

plane wave incident field given by 𝐸𝑟(𝐫) = 𝑒𝑖𝑘0𝐬i⋅𝐫 with wavevector 𝐤inc = 𝑘0𝐬i has 

been reasonably assumed. This dependence originates simply because the total field 

𝐸(𝐫′; 𝐬, 𝐬i) is equal to the sum of the scattered field and the incident field per Eq. (2-15). 

Also note that 𝑘0𝐬 in Eq. (2-28) likewise can be considered as the observation 

wavevector 𝐤s = 𝑘0𝐬, and as such, the scattering amplitude 𝑓(𝐬, 𝐬i) can also equally be 

described using 𝑓′(𝐤s, 𝐤i) where 𝑓′ is defined by 𝑓′(𝑘0𝐬, 𝑘0𝐬i) = 𝑓(�̂�, 𝐬i).  

The approach that provides Eq. (2-25) and the resulting expression for the scattered 

field 𝐸𝑠(𝐫) given in Eq. (2-28) are not the only result for scattered field that can be 

obtained. By taking care to handle the Green’s function’s singularity at 𝐫 = 𝐫′ for 

Eq. (2-24) and considering different geometries, different expressions are obtained, 

given elsewhere [141,230]. Typically, these expressions describe the scattered field at 

a specific point inside a volume, determined by a surface integral over the surface 

boundary of the scatterer, or the specific field at some point in space by the boundary 

field. The approach taken to obtain Eq. (2-25) and Eq. (2-28) following that in [229] is 

nonetheless presented here as Eq. (2-25) remains the basis for much of the work that 

some of this thesis is based on, e.g. Chapter 3 and in [88,184,185].  

If Eq. (2-28) is considered in reverse, it states that from measurements of the scattered 

field, information about the source spectrum 𝑈(𝐫) or scattering amplitude 𝑓(�̂�, 𝐬i) can 

be obtained. Due to the presence of the exponential term 𝑒−𝑖𝑘0𝐬⋅𝐫′
, the integral can be 

considered a Fourier transform to k-space coordinate 𝐤s = 𝑘0𝐬 such that, from 

Eq. (2-28) the expression 

 
𝐸𝑠(𝑟𝐬; 𝐬i) = −

𝑒𝑖𝑘0𝑟

4𝜋𝑟
∫ 𝑈(𝐫′; 𝐬i) 𝑒−𝑖𝑘0𝐬⋅𝐫′

d3𝑟′
+∞

−∞

 

= −
𝑒𝑖𝑘0𝑟

4𝜋𝑟
�̃�(𝑘0𝐬; 𝐬i), 

(2-30) 

is obtained, which can be rewritten as 
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 �̃�(𝑘0𝐬; 𝐬i) = −4𝜋𝑟 𝑒−𝑖𝑘0𝑟𝐸𝑠(𝑟𝐬; 𝐬i). (2-31) 

Here the tilde over a function denotes the relationship �̃�(𝐤) = ℱ{𝐵(𝐫)}, where ℱ{⋅} 

denotes taking the Fourier transform. Clearly the function �̃�(𝐤; 𝐬i) for any 𝐤 is given 

values by Eq. (2-31) only along the surface of a sphere of radius 𝑘0 in k-space, and is 

undefined elsewhere. Note that Eq. (2-31) can also be expressed in terms of 𝑓(�̂�, 𝐬i) as 

 �̃�(𝑘0𝐬; 𝐬0) = −4𝜋𝑓(𝐬, 𝐬i) = −4𝜋𝑓′(𝑘0𝐬, 𝑘0𝐬i). (2-32) 

The approach taken in explaining the theory typically diverges here when considering 

an approximate linear model. For a linear model, an approximation such as the Born 

approximation or KA is taken, reducing the total field 𝐸(𝐫′; 𝐬, 𝐬i) present in Eq. (2-28) 

or (2-29) to remove its explicit dependence on the scattered field, from which further 

expressions and relations can be obtained. In the Kirchhoff case in particular, the 

integral theorem of Helmholtz and Kirchhoff is used to obtain an expression for the 

scattered field, instead of Eq. (2-28) [141,230]. Then the scattering potential 𝐹(𝐫), 

which is a function of the object only, can be related to the scattering amplitude 𝑓(𝐬, 𝐬i), 

such that the scattering amplitude in the direction 𝐬 for incident light 𝐬i is given entirely 

by 𝑓(𝐬, 𝐬i) = �̃�(𝐊) where 𝐊 = 𝑘0(𝐬 − 𝐬i) and �̃�(𝐤) = ℱ{𝐹(𝐫)}. In this case, the 

scattering amplitude is dependent only on the object function and on 𝐬 − 𝐬i, rather than 

on 𝐬 and 𝐬i separately. Some of this theory is given in Chapter 3. This k-space approach 

to describing the theory of optical instruments is similar to that used in optical 

coherence tomography, which is described in detail elsewhere [231].  

For non-linear models, the scattering amplitude cannot be so simply related to the object 

function, which prevents the combined scattering and imaging process from being 

simply described as just a linear filtering operation of instrument transfer function with 

object spectrum function, as in the linear case [185]. However, even without this 

capability, it is still possible to make use of the same scalar theory mathematical 

framework to describe the imaging of an object by an optical instrument in the non-

linear case where neither the Born or Kirchhoff approximations have been taken.  

2.5.2 Imaging theory by back-propagation of far-field scatter 

A reconstructed field 𝐸𝑚(𝐫m) can be considered to represent the measured field a 

microscope instrument can capture from the object. In other words, the measured field 

measured by a CCD sensor at the image plane of an instrument can be considered the 
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same as the reconstructed scattered field present at object plane. For an instrument that 

scans the object axially, the reconstructed scattered field at each scan location is 

collected in focus, so that the measured field across a scan can be obtained just by 

finding the reconstructed scattered field over the volume scanned, i.e., for each object 

plane considered. However, a filter must also be applied to the field to account for the 

limited NA of the instrument. The reconstructed scattered field, and therefore the 

measured field, is obtained through back-propagation of the far-field scattered field 

back to the object, while also accounting for this limited NA. The integral theorem of 

Helmholtz and Kirchhoff, also known as the Kirchhoff integral theorem, which can be 

derived from Eq. (2-24) through different geometric considerations [230], is given 

in [184] by the expression 

 
𝐸𝑚(𝐫m) = − ∫ [𝐸𝑠(𝐫s)

𝜕𝐺∗(𝐫m − 𝐫s)

𝜕𝑛
− 𝐺∗(𝐫m − 𝐫s)

𝜕𝐸𝑠(𝐫s)

𝜕𝑛
] dΣ

Σ

. (2-33) 

This expression describes the back-propagation for the geometry given in Figure 2.14, 

where 𝐫s is bound to the surface of sphere Σ and 𝐫m is a point near or within the 

scatterer. As back-propagation is considered from the far field, the complex conjugate 

of the outgoing Green’s function 𝐺∗(𝐫) is used, i.e., a point sink, given by  

 
𝐺∗(𝐫m − 𝐫s) = 𝐺∗(𝐫s − 𝐫m) =

𝑒−𝑖𝑘0𝑟s

4𝜋𝑟s
𝑒𝑖𝑘0𝐬s⋅𝐫m , (2-34) 

where 𝐫s = 𝑟s𝐬s. 
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Figure 2.14. Geometry used for the derivation of Eq. (2-33). Not to scale. 

Given the boundary surface Σ can be freely considered as a sphere with radius 𝑟s, i.e., 

𝐫s = 𝑟s𝐬s, and as |𝐫m| ≪ |𝐫s| = 𝑟s under the far-field approximation, then 

 𝜕𝐺∗(𝐫m − 𝐫s)

𝜕𝑛
= −𝑖𝑘0𝐺∗(𝐫m − 𝐫s), (2-35) 

 𝜕𝐸𝑠(𝐫s)

𝜕𝑛
= 𝑖𝑘0𝐸𝑠(𝐫s), (2-36) 

where in the far field, the expression 

 𝑑

𝑑𝑟
(

exp(𝑖𝑘0𝑟)

𝑟
) = 𝑖𝑘0

exp(𝑖𝑘0𝑟)

𝑟
−

exp(𝑖𝑘0𝑟)

𝑟2
 

≈ 𝑖𝑘0

exp(𝑖𝑘0𝑟)

𝑟
 as 𝑟 → ∞, 

(2-37) 

has been used, and the scattered field from Eq. (2-28) is given by 𝐸𝑠(𝐫s) =

𝑓(𝐬s, 𝐬i)
𝑒𝑖𝑘0𝑟s

𝑟s
. 

Substituting Eq. (2-35) and Eq. (2-36) into Eq. (2-33) gives 

 
𝐸𝑚(𝐫m) = 2𝑖𝑘0 ∫𝐺∗(𝐫m − 𝐫s)𝐸𝑠(𝐫s) dΣ

Σ

. (2-38) 
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Note that for an NA limited instrument, only a limited range of far-field scatter will be 

present, which can be described by modifying the Green’s function to describe only a 

cap of a spherical shell. However, doing this will be postponed. 

Substituting 𝐸𝑠(𝐫s) in terms of 𝑈(𝐫′; 𝐬i) as given in Eq. (2-30), and 𝐺∗(𝐫m − 𝐫s) given 

in Eq. (2-34), gives 

 
𝐸𝑚(𝐫m) = −

𝑖𝑘0

8𝜋2𝑟s
2

∫ [∫ 𝑈(𝐫′)𝑒−𝑖𝑘0𝐬s⋅𝐫′
d3𝑟′

+∞

−∞

] 𝑒𝑖𝑘0𝐬s⋅𝐫m  dΣ
Σ

. (2-39) 

Note that the dependence on the direction of incident illumination 𝐬i for 𝑈(𝐫′; 𝐬i) has 

been omitted for clarity. The integral of 𝐫s = 𝑟s𝐬s over the shell Σ can be more explicitly 

expressed as an indefinite integral, 

 𝐸𝑚(𝐫m)

= −
𝑖𝑘0

8𝜋2𝑟s
2

∫ [∫ 𝑈(𝐫′)𝑒−𝑖𝑘0𝐬𝑏⋅𝐫′
d3𝑟′

+∞

−∞

] 𝑒𝑖𝑘0𝐬𝑏⋅𝐫m𝛿(|𝐫𝑏| − 𝑟s) d3𝐫𝑏

+∞

−∞

, 
(2-40) 

where d3𝐫𝑏 has been used to represent the three-dimensional integral over all real space 

by parameter 𝐫𝑏, where the general position vector 𝐫𝑏 is a replacement to the limited 𝐫s 

(in general 𝐫𝑏 ≠ 𝑟𝑠𝐬s for constant 𝑟𝑠, and 𝐬s = 𝐬𝑏), and a 1D Dirac delta function is used 

to limit the contributing values of the integral to only 𝐫𝑏 that lie on the shell Σ. Note 

that 𝑟𝑏 in the polar representation of the coordinate 𝐫𝑏 = 𝑟𝑏𝐬𝑏 is not a constant. Also 

note that the 1D Dirac delta 𝛿(|𝐫|) takes only scalar arguments; when the arguments 

are exclusively the modulus of a vector then the function can be related to the 3D Dirac 

delta by 𝛿(3)(𝐫) = 𝛿(|𝐫|). 

By further making the substitution 𝐫𝑏 𝑟𝑠 =⁄ 𝐤′ 𝑘0⁄  (where in general 𝐫𝑏 𝑟𝑠 =⁄ 𝐤′ 𝑘0⁄ ≠

𝐬𝑏), which defines 𝐤′ and implies that 𝐫𝑏 |𝐫𝑏| = 𝐬𝑏 =⁄ 𝐤′ |𝐤′|⁄ , Eq. (2-40) becomes 

 
𝐸𝑚(𝐫m) = −

𝑖

8𝜋2𝑘0
∫ [∫ 𝑈(𝐫′)𝑒

−𝑖𝑘0
𝐤′

|𝐤′|
⋅𝐫′

d3𝑟′
+∞

−∞

] 𝑒
𝑖𝑘0

𝐤′

|𝐤′|
 ⋅𝐫m

𝛿(|𝐤′|
+∞

−∞

− 𝑘0) d3𝐤′. 

(2-41) 

Due to the Dirac delta function, the only values of 𝐤′ that provide contributions to the 

integral are when |𝐤′| = 𝑘0. Therefore, while retaining the Dirac delta function, 

Eq. (2-42) can equally be written as 
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𝐸𝑚(𝐫m) = −

𝑖

8𝜋2𝑘0
∫ [∫ 𝑈(𝐫′)𝑒−𝑖𝐤′⋅𝐫′

d3𝑟′
+∞

−∞

] 𝑒𝑖𝐤′⋅𝐫m𝛿(|𝐤′|
+∞

−∞

− 𝑘0) d3𝐤′ 

= −
𝑖

8𝜋2𝑘0
∫ �̃�(𝐤′)𝛿(|𝐤′| − 𝑘0)𝑒𝑖𝐤′⋅𝐫m  d3𝐤′

+∞

−∞

, 

(2-42) 

where the inner-most integral has been recognised as a Fourier transform of 𝑈(𝐫′) from 

𝐫′to 𝐤′. Taking the Fourier transform from 𝐫m to 𝐤 on both sides of the equation gives 

 
�̃�𝑚(𝐤) = −

𝑖

8𝜋2𝑘0
∫ [∫ �̃�(𝐤′)𝛿(|𝐤′|

+∞

−∞

+∞

−∞

− 𝑘0)𝑒𝑖𝐤′⋅𝐫m  d3𝐤′] 𝑒−𝑖𝐤⋅𝐫m d3𝐫m 

= −
𝑖

8𝜋2𝑘0
∫ �̃�(𝐤′)𝛿(|𝐤′| − 𝑘0)𝛿(|𝐤 − 𝐤′|) d3𝐤′

+∞

−∞

 

= −
𝑖

8𝜋2𝑘0
�̃�(𝐤)𝛿(|𝐤| − 𝑘0), 

(2-43) 

where ∫ 𝑒𝑖(𝐤−𝐤′)⋅𝐫 d3𝐫 = 𝛿(|𝐤 − 𝐤′|) and ∫ 𝑋(𝐤′)𝛿(|𝐤 − 𝐤′|)d3𝐤′ =
+∞

−∞
𝑋(𝐤) were 

used. This expression tells us that the spectrum of the measured field, assumed equal to 

the spectrum of the reconstructed scattered field, is the result of a linear filtering 

operation on the source spectrum. For an optical system limited by a NA, the expression 

𝛿(|𝐤| − 𝑘0) can be replaced by 𝛿(|𝐤| − 𝑘0)𝐻(�̂� ⋅ �̂� − √1 − 𝐴𝑛
2  ) , where 𝐻(𝑥) is the 

Heaviside step function and �̂� a unit vector parallel to the optical axis in the direction 

from the object towards the instrument. 

Given that �̃�(𝐤)𝛿(|𝐤| − 𝑘0) is non-zero only for specific 𝐤, then the far-field scattered 

field wavevector 𝐤s = 𝑘0𝐬s can once again be considered which satisfies 

�̃�(𝐤s)𝛿(|𝐤s| − 𝑘0) = �̃�(𝐤s) = �̃�(𝑘0𝐬s). Then, Eq. (2-43) can be given by 

 
�̃�𝑚(𝐤s) = −

𝑖

8𝜋2𝑘0
�̃�(𝐤s), (2-44) 

where, as in Eq. (2-31), the source spectrum at 𝐤s is given by 

 �̃�(𝑘0𝐬s) = −4𝜋𝑟𝑠𝑒−𝑖𝑘0𝑟𝑠𝐸𝑠(𝑟𝑠𝐬s). (2-45) 

Combining Eq. (2-44) and Eq. (2-45) gives  
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�̃�𝑚(𝑘0𝐬s) =

𝑖𝑟𝑠

2𝜋𝑘0
𝑒−𝑖𝑘0𝑟𝑠𝐸𝑠(𝑟𝑠𝐬s). (2-46) 

In summary, the measured field spectrum along a shell in k-space can be obtained from 

the scattered field from the object obtained along at arc in the far field. Note again that 

this expression is for some specific incident illumination with direction 𝐬i, which is a 

factor in the determining the values of 𝐸𝑠(𝑟𝑠𝐬s). This expression for the measured field 

spectrum underpins both the foil model and the BEM-CSI model. 

2.6 Outside-NA measurement 

Engineered functional surfaces often feature varying slopes on macro- and micro-

scales. For a mirror-like surface that only reflects light in the specular direction, the 

highest surface slope that can be measured by a far-field 3D optical surface measuring 

instrument is determined by the NA (𝐴𝑛) of the objective lens. Light that is specularly 

reflected by a surface that has a slope larger than one-half of the maximum reflected 

ray angle (𝜃NA = sin−1𝐴𝑛) will fall outside of the acceptance cone of the instrument 

and not be captured [19], shown previously in Figure 2.7. However, many surfaces are 

not mirror-like and produce an angular distribution of scatter when illuminated; under 

the Abbe theory of image formation, it is the capture of this scatter that provides image 

contrast [22,23]. This difference is shown in Figure 2.15, and has previously been 

shown elsewhere [39,110,177]. The slope angle at which all the specularly scattered 

light is lost is referred to here as the “specular reflection slope limit” or “specular 

reflection limit” (SRL) for short [52]. It has previously been referred to as the “NA 

slope limit”, “NA limit”, and “specular limit” [225]. More information about the object 

being measured can be recorded in the image if more scattering/diffraction orders can 

be captured. The limited NA captures only a portion of the scatter, which determines 

the upper limit to both the resolution of the instrument and to the surface spatial 

frequencies transferred by the instrument. For interferometry specifically, an additional 

slope effect related to the relative size of the fringe spacing to the Airy disk can also 

impact the modulation depth [232]. Steeper surface slopes can also lead to a shift of 

signal spectra to higher wavelengths due to the larger effective wavelength of light and 

increasing angles of incidence and reflection, which can negatively impact surface 

reconstruction methods [172]. Further information on the current capability of CSI is 

given in section 2.3.5. 
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Figure 2.15. Diagrams illustrating the concept of collection angle for a 

microscope system for a tilted surface tilted beyond the acceptance angle, 

for a perfectly flat surface that specularly scatters (left), and for a rough 

surface which produces some scatter that the objective can collect. See 

Figure 2.7 for a diagram illustrating the connection between collection 

angle and a maximum tilt angle. 

2.6.1 State of the art for outside-NA measurement 

It is more difficult to obtain information from surfaces with slopes steeper than the SRL 

using surface topography measuring instruments than those without, as described in the 

previous section. One approach to solving this problem and acquiring the missing 

surface information is by adjusting or making use of multiple viewing angles with 

respect to the sample, through the use of tilt or multi-axes stages [24–26,28,233], 

rotating both the sample and the sensor [29], and making use of multiple 

sensors [30,31]. Unfortunately, such approaches are comparatively expensive, due to 

the additional moving parts (or additional sensors), can be slower (moving stage and 

making multiple measurements), require an accurate combination of measurement data, 

and have increased difficulty in retaining stability during a measurement. The 

mathematical foundations of data fusion from multiple measurements in surface 

metrology, including some of the challenges involved and current solutions, is reviewed 

in [234].  

However, various instruments are capable of imaging and obtaining topography 

information from surfaces with slope angles well outside the specular acceptance cone, 

without repositioning the sample or instrument. This capability is attributed to the 

capture and detection of diffuse and back-scattered light from the microstructures found 
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on the surface slopes [32–35], which is possible due to recent advances in instrument 

technology and design. While this can include the capture of surface luminescence 

produced by, e.g. application of a fluorescent film [235], the scope here is limited to 

instruments that illuminate the surface and capture the resulting backscatter without the 

need for sample preparation. For a CSI instrument, high dynamic range measurement 

of parts with wide reflectance ranges can be performed through the alternation of light 

levels during a measurement or between sequential measurements, and dynamic noise 

reduction for detection of weak signals can be achieved through signal 

oversampling [35–37]. In [35], topography measurement of both a polymer micro-lens 

and a retroreflector array is achieved with measured slopes of up to 60° through the use 

of dynamic noise reduction, despite the 33° acceptance (half-)angle. In [36], an even 

wider range of surfaces with steep slopes are measured, with measurements made of a 

diamond-turned cone, a 3 mm diameter dealing ball, an end-mill, a fuel injector 

shoulder region, an electrical feed-through assembly, and a hypodermic needle. This 

included surfaces with recessed high slopes, and even those nearly vertical. 

Nevertheless, these measurements provided surface topography with slopes beyond the 

so-called “specular limit” of the objective lens used, for a range of different NAs. In a 

FV instrument, the use of ring light illumination can essentially increase the 

illumination NA, consequently extending the range of measurable slope 

angles [33,34,38]. FV instruments have also been used to measure lateral distances by 

detecting the location of a vertical wall precisely using a technology called “vertical 

focus probing” [70,147,236]. In section 3.3.2.1 and Figure 3.18 of [70], this technology 

is shown capturing surface texture information from a vertical wall, with results 

comparable to that obtained from the same surface when measured with the surface 

perpendicular to the optical axis.  

Typically, image formation from surface slopes that are steep enough that specular 

reflections are lost, obtain surface information with a low SNR, which can lead to non-

measured points [19,39] and high uncertainty. There is currently a lack of 

understanding about the instrument response to surfaces with steep slopes outside the 

NA cone, and in particular it is unclear over what surface spatial frequencies we can 

expect to accurately report texture and fine surface-feature details. The reliability of 

topography from regions with slopes near to and beyond the SRL is unknown [237].  
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Measurement of deep trenches (a.k.a. high-aspect ratio holes) is also related to outside-

NA measurement. For example, patterned wafers with trenches made up of different 

materials present a problem for CSI, which can be handled by matching signal patterns 

to libraries of modelled signal signatures associated with each material and 

compensating for their effects to give a “true” topography [238]. The correlation 

between interference microscopy and scanning electron microscope (SEM) 

measurement of semiconductor etch depth also allows interference measurements to be 

taken and corrected for during the manufacturing process, where use of SEM would not 

be suitable [102]. In both cases, knowledge of the expected instrument response, via 

modelling or comparative measurement, is used to improve instrument capabilities. 

Investigation through modelling 

In past literature, there has been interest in understanding the results produced from 

measurement of fine structures and steep surfaces, primarily through image modelling. 

For example, examining the diffraction orders produced from isolated step structures 

using a rigorous modal method, relating surface geometry parameters to the scatter 

produced [239]; applying the same method for square-wave gratings and isolated edges 

in the context of confocal imaging [240]; using a RCWA method and volume 

holography for image modelling of striated muscle fibres [241]; examination of 

periodic relief structures through differential modelling methods, improving 

understanding on the impact of shadowing, multiple scatter, and polarisation [242]; and 

generating monochromatic interferograms of step features by rigorous electromagnetic 

modelling, allegedly for the first time, to examine the resolution limit of interferometric 

measurement [243]. In particular, [243] focused on trapezoidal objects with non-

vertical edges and of other structures with slanted slopes, and considered the effect of 

limiting the collection NA.  

However, most of this older work typically involved only monochromatic, single 

incidence illumination, held back by the relatively limited computer hardware available 

in the 1990s and consequently relying on approximate first-order methods alongside 

the rigorous modelling. In addition, their focus was on the effect of changing the surface 

geometry parameters on the predominantly non-interferometric images generated by 

rigorous modelling, with the aim of allowing for information to be obtained from 

features below the lateral resolution of the instrument. A modern equivalent of this 
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work with less limitations considers CSI measurement of optically-unresolved features 

through the use of modelling in [189].  

This thesis is instead concerned more with the capability and reliability of surface 

topography obtained from surfaces with texture and steep slopes that are challenging to 

optical surface topography instruments, topographies with potentially any shape, and 

with a focus on obtaining topography using CSI specifically (as explained in section 

2.2). Capability here refers to the scope of the domain of surfaces and surface slopes 

for which a topography instrument can obtain accurate height information, while 

reliability here refers to how accurate the reported height data is for specific surfaces 

with varying surface slopes and spatial frequencies.  

A summary of CSI models is described in section 2.4. For complex arbitrary surfaces, 

including those with step heights or discontinuities, a rigorous model based on 

numerical techniques that solve Maxwell’s equations must be used, especially when 

multiple scattering is not negligible. Using CEM approaches such as FEM and RCWA, 

rigorous CSI models have been made to predict fringe data more accurately. They have 

been used as a reference to compare simpler analytical models against, and to 

investigate the fringes produced by complex and high-aspect ratio 

surfaces [49,170,188,179,189,214–216]. More information in the literature on CSI 

models and the underlying optical scattering models is given in section 2.4, with non-

linear modelling specifically in section 2.4.3. In [49], a method of obtaining 

information from vertical slopes using iterative rigorous modelling was suggested. The 

work in [49] is in part the inspiration for this PhD project, and is discussed in more 

detail in section 2.4.3. 

Presented in this thesis is a newly developed CSI model based on a rigorous BEM 

optical scattering model, referred to as BEM-CSI, which is used in [50–52]. In 

principle, BEM scales better with surface size compared to FEM and is therefore more 

readily extended to 3D surfaces, being better suited to the surface boundary scattering 

problem. The BEM and BEM-CSI models are discussed briefly in section 2.4.3 and are 

covered in more detail in Chapter 4 and Chapter 5 respectively. This model is used to 

investigate the scatter obtained by complex surfaces in Chapter 6. 
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2.7 Summary 

Interferometry for surface topography measurement was previously considered to be 

limited to polished optical surfaces that created simple interference patterns that could 

be interpreted with fringe tracing or by phase shifting methods [90]. This changed in 

the 1990s, when it was shown that interferometric methods based on optical coherence 

could provide meaningful results from rough surface textures [98,99,110]. This has led 

to impressive growth in applications for coherence scanning interferometry (CSI), 

today serving the needs of many industries that rely on quality control of parts ranging 

from machined automotive components to additively manufactured parts [37,104,105]. 

Qualifying CSI instruments for specific applications often involves an empirical 

evaluation of measurement capability, such as a gauge repeatability and reproducibility 

tests [133]. Such tests do not necessarily provide insight into the best configuration of 

the instrument for a given measurement, nor can they predict how accurate a 

measurement will be for a specific part type and measurand in advance of exhaustive 

testing. For this reason, there are on-going efforts to build theoretical 

models [51,184,185,188] that represent the physical principles of measurement well 

enough to serve as core engines for virtual instruments [186]. The resulting virtual 

instruments would duplicate the response of real instruments with enough confidence 

to pre-configure an instrument for optimum performance, and to evaluate the associated 

uncertainty of measurement without a potentially lengthy empirical test. Measurement 

capability for various surfaces can also be investigated and identified using the 

theoretical models, even without uncertainty calculation. These models can be based 

on analytical approximations of the optical scattering problem such as the Kirchhoff 

approximation, or be derived rigorously from Maxwell’s equations, providing greater 

accuracy for surfaces with sharp edges or with features that produce multiple scattering. 

In recent years, technological enhancements to measurement sensitivity have extended 

CSI measurement capabilities to parts having surface slope angles that exceed the 

specular acceptance angle, defined for incoherent microscope illumination by 𝜃NA =

sin−1 𝐴𝑛, where 𝐴𝑛 is the numerical aperture of the objective. This is a significant next 

step in the technology, allowing for measurements of spheres, cones and pyramidal 

structures, even with light directed at near normal incidence, using weakly-reflected 

light at high scattering angles [35,36]. This new practical capability poses a theoretical 
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challenge for researchers in an applications area where the requirement is clear: 

instrument users need to know under what circumstances measurement results for 

steeply-sloped surfaces are meaningful and have a quantifiable uncertainty. The answer 

to these questions will be highly dependent on the specific part type and measurement 

configuration, hence the need for appropriate physical models. 
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Chapter 3: Lens aberration 
compensation of CSI using the 
foil model 
In this chapter, an approximate coherence scanning interferometry (CSI) model is 

introduced, based on the Kirchhoff approximation (KA). The theory is first outlined, 

describing the optical process of a CSI instrument as a three-dimensional (3D) linear 

shift-invariant filtering operation that maps surface geometry to imaged fringes. Under 

this theory the instrument response of a CSI instrument is described by a 3D surface 

transfer function (STF). The 3D STF accounts for aspects of the optical system such as 

numerical aperture (NA), lens aberration, and reference mirror defocus [119,159]. A 

method to obtain an instrument’s 3D STF through measurement of a microsphere is 

described and the resulting experimental 3D STFs are presented. From these 

experimental 3D STFs, inverse filters (IF) are generated that should compensate for the 

effects of lens aberration when applied to signal data captured by the instrument. From 

measurements of a sinusoidal grating, the topographies obtained from before and after 

compensation by an IF are compared both to each other and to measurements of the 

grating by a traceable contract stylus instrument. 

Much of the work presented in this chapter was published in [159] (journal paper), with 

preliminary results presented earlier at SPIE Optical Engineering + Applications 

2019 [244]. This work for the first time provided experimental verification of the 

characterisation and correction of an instrument through use of the foil model theory, 

reducing measurement errors through fundamental correction of the fringes. While not 

presented here, supporting work on the effects of interferometric defocus and on 

determining the lateral resolution of an instrument was published in [119] (journal 

paper) and presented at the 33rd ASPE Annual Meeting [144], respectively. This work 

was performed in collaboration with Dr Rong Su, who was an author of these 

publication alongside the author of this thesis.  

Figures from [159] are reused here under a CC BY 4.0 license6 without modification.  

 

6 https://creativecommons.org/licenses/by/4.0/  

https://creativecommons.org/licenses/by/4.0/
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3.1 Introduction 

As discussed in section 2.3, interference microscopy is an effective measurement 

method for measuring surface topography for a range of surfaces of industrial interest. 

As given in section 2.4, various linear and non-linear models have been developed to 

model CSI instruments; modelling is at the heart of understanding physical phenomena, 

and for CSI instruments is especially valuable due CSI’s complexity and the need to 

analyse signal data for height estimation. For example, modelling can be used to 

investigate and potentially correct for instrument errors; potential instrument errors and 

approaches to mitigate them are discussed in section 2.3.5.  

While the simplest CSI models do not even explicitly consider the propagation of light, 

their results are nonetheless useful in understanding real instrument data and in 

informing the design of height estimation algorithms [101]; this method is described in 

section 2.4.1. In addition, while non-linear methods can accurately model the CSI 

response from the widest range of surfaces, including those that are complex and 

produce multiple scattering (section 2.4.3), these rigorous CSI models are accompanied 

by some practical challenges. Not only are rigorous optical instrument models difficult 

to develop and verify, but their computationally demanding nature and associated 

hardware requirements present a serious practical problem; a specific example is briefly 

discussed later in section 5.6. Consequently, rigorous models are frequently 

accompanied by fundamental or computational limitations: e.g., reduced 

dimensionality and/or the use of only a monochromatic light source. There is therefore 

still great value in developing linear modelling methods without these limitations, 

capable of accurately modelling instrument response for a more limited range of 

surfaces but in a fraction of the time a rigorous approach would take.  

More advanced linear methods, as discussed in section 2.4.2, include a method called 

elementary Fourier optics (EFO) [145,182,245,246], which models the scatter from a 

surface as the transmission of light though a thin phase grating with phase delay 

proportional to the corresponding surface topography. EFO is however valid only for 

surfaces with heights small relative to the depth of field, referred to as the “thin phase 

object approximation” [182]. A different linear method that is valid for a wider range 

of surfaces, referred to as the foil model, describes the optical process of CSI as a 3D 

linear shift-invariant filtering operation that maps surface geometry to imaged fringes 
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using a 3D STF as a filter. This filtering method is equivalent to a convolution of the 

surface geometry with a point spread function (PSF), obtained by a 3D inverse Fourier 

transform of the 3D STF. The name “foil model” is used as the surface is modelled 

using an infinitely thin foil-like object which follows the surface topography [88]. The 

foil model requires that the surface vary slowly, i.e. it relies on the KA and is based on 

scalar scattering theory, given in sections 2.4.2 and 2.5 respectively; the model’s theory 

is outlined later in section 3.2 and is given in detail elsewhere [88,184,185]. The 

specifics of the assumptions taken by the foil model follow those originally taken by 

Beckmann for the KA [208], which are also given elsewhere [184,185].  

Under the foil model, the effects of the instrument on the measurement process are 

entirely contained within a 3D STF. The 3D STF naturally includes the demodulation 

of the scatter from the object of interest by that from the reference mirror, producing 

fringes in the image plane. The values and passband (support) of the 3D STF are entirely 

determined by the optical system, including the illumination and collection NA (which 

may differ), and the spectral distribution of the illumination used in the instrument. In 

general, both the 3D STF and the surface spectrum can be complex valued. However, 

an ideal 3D STF will be exclusively real-valued, resulting in the phase of the fringe 

spectrum within the passband of the 3D STF matching the phase of the surface 

spectrum. In a real CSI instrument, problematic aspects such as optical aberration can 

cause retrace errors, dispersion errors, 2𝜋 errors and other slope- and spatial frequency-

dependent errors in the measured height data, given in section 2.3.5. The presence of 

lens aberration introduces phase variation across the passband of the 3D STF, altering 

the phase of the measured fringe spectrum compared to the ideal case. This change to 

the phase of the fringes can lead to errors in height reconstruction methods as previously 

described, especially in regions of high slopes and low signal-to-noise ratio 

(SNR) [159]. In addition, the effect of non-zero reference mirror defocus can also 

introduce undesired phase shifts and reduce the lateral resolution of fringe images, 

which can lead to errors in the height estimation; this effect has been predicted by the 

foil model and experimentally demonstrated [119]. 

By obtaining through experiment the 3D STF of a real instrument, it is in principle 

possible to compensate for these undesired phase effects at a fundamental level by 

removing them from measured signal data, before height estimation methods and post-

processing operations are applied [74,247]. In contrast, most error correction methods 
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that tackle errors such as 2𝜋 errors are applied only to the surface height data as post-

processing operations. One convenient method of obtaining an experimental 3D STF is 

by measurement of the spherical cap of a precision microsphere [247]. Information on 

the tolerances of the sphere chosen are given in [248], while the use of silica 

microspheres manufactured through different methods are compared in [159]. 

Obtaining the experimental 3D STF of an instrument through measurement of a 

precision microsphere has been used repeatedly by Rong Su et al. with 

success [74,119,144,159,186,185,244]; however, any surface can be used as long as it 

is well known and contains all possible spatial frequencies (at least up to those that are 

captured by the passband of the instrument). It is therefore essential that the spheres 

measured do not deviate significantly from an ideal sphere, are smooth, and can be 

measured to accurately obtain the sphere diameter. 

In this chapter, the use of the foil model to produce IFs from microsphere measurements 

to compensate for the phase effects of lens aberration in CSI signal data is 

demonstrated, including the resulting reduction of topography height errors. By 

capturing CSI signal data from measurements of precision microspheres and modelling 

the expected response using the foil model, experimental 3D STFs are generated. From 

these 3D STFs, an IF is formed that can compensate for the non-zero phase present in 

the experimental 3D STFs, attributed to lens aberration. Measurements of a sinusoidal 

grating are then taken, and the topographies obtained from before and after application 

of the IF. These topographies are compared to each other and to measurements of the 

grating by a traceable contract stylus instrument, to verify the foil model and CSI signal 

improvement by application of an IF. 

3.2 Theory 

3.2.1 Scattering under the KA 

The foil model relies on the assumptions described in [184,185,208], which allow the 

scattering process to be linearised and ultimately allow the overall scattering, 

demodulation and imaging process to be described by the filtering of the surface 

spectrum by a single 3D STF. As discussed in section 2.5.1, the total field present in 

Eq. (2-28) or Eq. (2-29) must be approximated to enable an analytical solution for the 

scattered field elsewhere to be obtained. The Born approximation, which assumes only 

weak scattering occurs and therefore requires that there are only small objects present 
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or only small changes in refractive index, is not applicable for the typical usage of CSI 

instruments [184]. Instead, the KA is taken, which assumes that the surface varies 

slowly compared to the wavelength of light, such that the total field at each point on 

the boundary surface can be approximated by that obtained by a tangent plane at each 

point, given by 

 𝐸(𝐫b) = (1 + 𝑅)𝐸𝑟(𝐫b), (3-1) 

where 𝐫b is a point on the surface boundary, 𝐸(𝐫b) is the total field at that point, 𝐸𝑟(𝐫b) 

the incident field at that point, and 𝑅 is a reflection coefficient, assumed constant over 

the range of scattering angles considered for all points on the boundary. The choice for 

the value of 𝑅 is given in detail in section 2.D. of [185], but in summary, is given by 

the Fresnel reflection coefficient or by an average of Fresnel reflection coefficients for 

different polarisations. An approximation for the Fresnel reflection coefficients in terms 

of the refractive index contrast across multiple angles of incidence can also be 

taken [185,249].  

The KA requires that the surface slowly varies, equally expressed as requiring the 

radius of curvature at each point of the surface being significantly greater than the 

wavelength of light, as discussed in section 2.4.2. However, the KA also requires the 

following: the reflection coefficient must be constant or approximately constant, and 

the shadowing and multiple scattering effects must be negligible or compensated 

for [184,185,208]. For illumination by a plane wave with angular wavevector 𝐤i such 

that 𝐸𝑟(𝐫) = 𝑒𝑖𝐤i⋅𝐫 (exponential function 𝑒(⋅), imaginary unit 𝑖 = √−1), the total field 

and the surface normal derivate of the total field along the boundary is given by 

 𝐸(𝐫b) = (1 + 𝑅)𝑒𝑖𝐤i⋅𝐫b , (3-2) 

 𝜕𝐸(𝐫b)

𝜕𝑛
= 𝑖𝐤i ⋅ �̂� (1 − 𝑅)𝑒𝑖𝐤i⋅𝐫b , (3-3) 

where �̂� is the unit surface normal vector at 𝐫b. Following the Beckmann–Kirchhoff 

solution to surface scattering [208], these KA boundary conditions can be combined 

with the integral theorem of Helmholtz and Kirchhoff (a.k.a. the Kirchhoff integral 

theorem)  

 
𝐸𝑠(𝐫s) = − ∫ [𝐸(𝐫b)

𝜕𝐺(𝐫s − 𝐫b)

𝜕𝑛
− 𝐺(𝐫s − 𝐫b)

𝜕𝐸(𝐫b)

𝜕𝑛
] dB

B

, (3-4) 
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where the scattered field 𝐸𝑠(𝐫s) at some far-field position 𝐫s is given by the summation 

of terms as 𝐫b varies over the surface B, where B represents the object’s surface 

boundary, and where 𝐺(𝐫s − 𝐫b) is the outgoing Green’s function for the Helmholtz 

equation given in Eq. (2-26). As in Eq. (2-27), a far-field approximation is taken such 

that  

 
𝐺(𝐫s − 𝐫b) =

𝑒𝑖𝑘0|𝐫s−𝐫b|

4𝜋|𝐫s − 𝐫b|
≈

𝑒𝑖𝑘0|𝐫s|

4𝜋|𝐫s|
𝑒

−𝑖𝑘0
𝐫s

|𝐫s|
⋅𝐫b , (3-5) 

and where 

 𝜕𝐺(𝐫s − 𝐫b)

𝜕𝑛
= −𝑖𝐤s ⋅ �̂� 𝐺(𝐫s − 𝐫b) (3-6) 

for 𝐤s = 𝑘0
𝐫s

|𝐫s|
. Substituting Eqs. (3-2), (3-3), and (3-6) into Eq. (3-4) gives 

 
𝐸𝑠(𝐫s) = 𝑖 ∫ 𝐺(𝐫s − 𝐫b)𝑒𝑖𝐤i⋅𝐫b[𝑅(𝐤s − 𝐤i) + (𝐤s + 𝐤i) ] ⋅ �̂� dB

B

. (3-7) 

For only a portion of the surface being illuminated, a function 𝐴(𝐫) is introduced to 

represent the upper surface of the object that is illuminated, given by 

 𝐴(𝐫) = 𝑊(𝐫) 𝛿[𝐫 ⋅ �̂� − 𝑠(𝑟𝑥, 𝑟𝑦)], (3-8) 

where 𝑊(𝐫) is a window function, 𝛿[⋅] a one-dimensional (1D) Dirac delta function, 

and 𝑠(𝑟𝑥, 𝑟𝑦) the height of the surface in the direction of the optical axis �̂� at each lateral 

coordinate (𝑟𝑥, 𝑟𝑦). This allows Eq. (3-5) to be converted into an indefinite volume 

integral given by 

From Eq. (3-9), the scattering amplitude for the foil model as given in Eq. (2-28) can 

be given as 

 
𝐸𝑠(𝐫s) = 𝑖 ∫ (𝐺(𝐫s − 𝐫b)𝑒𝑖𝐤i⋅𝐫b[𝑅(𝐤s − 𝐤i) + (𝐤s + 𝐤i) ]

+∞

−∞

⋅ �̂�
𝐴(𝐫b)

�̂� ⋅ �̂�
) d3𝑟𝑏 . 

(3-9) 
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 𝑓𝐾(𝐬, 𝐬i) = 𝑟𝑠 ⋅ 𝐸𝑠(𝑟𝑠𝐬)𝑒−𝑖𝑘0𝑟𝑠 

=
𝑖

4𝜋
∫ 𝑒−𝑖(𝐤s−𝐤i)⋅𝐫b[𝑅(𝐤s − 𝐤i) + (𝐤s + 𝐤i) ]

+∞

−∞

⋅ �̂�
𝐴(𝐫b)

�̂� ⋅ �̂�
d3𝑟𝑏 

(3-10) 

where the far-field Green’s function given by Eq. (3-5) has been used for 𝐫s = 𝑟𝑠𝐬. 

Under Eq. (2-29), the expression for the source term 𝑈𝐾(𝐫b; 𝐬, 𝐬i) is then given by 

3.2.2 Scalar theory imaging 

Imaging is then considered in the exact same way as in section 2.5.2, using the 

Kirchhoff integral theorem to apply back-propagation of the far-field scatter 𝐸𝑠(𝐫s) 

over the far-field surface Σ to some region of space near to or within the scattering 

object at position 𝐫m. This results in the expression 

 
𝐸𝑚(𝐫m) = 2𝑖𝑘0 ∫𝐺∗(𝐫m − 𝐫s)𝐸𝑠(𝐫s) dΣ

Σ

, (3-12) 

where Eq. (2-38) has been repeated for clarity. Just as in section 2.5.2, the far-field 

boundary Σ is assumed with no loss of generality to be a spherical shell with fixed 

sphere radius 𝑟s, such that |𝐫s| = 𝑟s for all 𝐫s. The integral over the spherical shell dΣ 

can then be replaced by an indefinite integral over the new parameter 𝐫s
′, by replacing 

all 𝐫s by 𝐫s
′ and by including a Dirac delta function 𝛿(|𝐫s

′| − 𝑟s) within the indefinite 

integral.  

 
𝐸𝑚(𝐫m) = 2𝑖𝑘0 ∫ 𝐺∗(𝐫m − 𝐫s

′)𝐸𝑠(𝐫s
′) 𝛿(|𝐫s

′| − 𝑟s) d3𝐫𝑠
′

+∞

−∞

. (3-13) 

Considering the combination of Eq. (3-9) and Eq. (3-13), the exponential term and the 

two Green’s functions can be reduced to 

 
𝑈𝐾(𝐫b; 𝐬, 𝐬i) = −𝑖 (𝑒𝑖𝐤i⋅𝐫b[𝑅(𝐤s − 𝐤i) + (𝐤s + 𝐤i) ] ⋅ �̂�

𝐴(𝐫b)

�̂� ⋅ �̂�
). (3-11) 
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(4𝜋|𝐫s|)2𝐺∗(𝐫m − 𝐫s

′)𝐺(𝐫s
′ − 𝐫b)𝑒𝑖𝐤i⋅𝐫b = 𝑒

𝑖𝑘0
𝐫s

′

|𝐫s
′|

⋅𝐫m
𝑒

−𝑖𝑘0
𝐫s

′

|𝐫s
′|

⋅𝐫b
𝑒𝑖𝐤i⋅𝐫b  

= 𝑒
−𝑖(𝑘0

𝐤s
′

|𝐤s
′ |

−𝐤i)⋅𝐫b
𝑒

𝑖𝑘0
𝐤s

′

|𝐤s
′ |

⋅𝐫m
 

= 𝑒−𝑖(𝐤s−𝐤i)⋅𝐫b𝑒𝑖𝐤s⋅𝐫m , 

(3-14) 

where just as in Eq. (2-41) and Eq. (2-42), the substitution 𝐫s
′ 𝑟𝑠⁄ = 𝐤s

′ 𝑘0⁄  is first made, 

which defines 𝐤s
′  and implies that 𝐫s

′ |𝐫s
′| = 𝐬𝑠 =⁄ 𝐤s

′ |𝐤s
′ |⁄ ; and second, that 𝑘0

𝐤s
′

|𝐤s
′ |

 can 

be replaced by 𝐤s where 𝐤s remains limited to only values with magnitude 𝑘0. While 

strictly this integration is still performed by 𝐤s
′  over infinity, the equality 𝛿(|𝐫s

′| − 𝑟s) =

𝑘0

𝑟𝑠
𝛿(|𝐤s

′ | − 𝑘0) results in only the values of 𝐤s
′  where |𝐤s

′ | = 𝑘0 contributing to the 

integral. 

The phase term 𝑒−𝑖(𝐤s−𝐤i)⋅𝐫b given in Eq. (3-14) changes phase in the direction of 𝐤s −

𝐤i as 𝐫b is varied, and therefore does not vary at all when 𝐫b varies in the direction 

perpendicular to 𝐤s − 𝐤i. When the terms in Eq. (3-13) are integrated over various 𝐫b 

and 𝐤s, many of the terms will add incoherently due to the rapidly changing phase of 

𝑒−𝑖(𝐤s−𝐤i)⋅𝐫b. Only regions of the surface where the surface normal is parallel to 𝐤s −

𝐤i will coherently contribute, as in these regions the vector difference between adjacent 

𝐫b surface vectors will be approximately parallel with the surface tangent at 𝐫b and 

therefore perpendicular to the surface normal at 𝐫b. This is known as the stationary 

phase approximation (or principle of stationary phase), and is particularly applicable 

under the KA where scattering is already assumed to come from a tangent plane; the 

stationary phase approximation assumes that the majority of the calculated scatter is 

from only the specular reflection from each tangent plane [184,208]. Under this 

approximation, the (𝐤s + 𝐤i) ⋅ �̂� from Eq. (3-9) is neglected, and the surface normal 

replaced with �̂� = 𝐤s − 𝐤i |𝐤s − 𝐤i|⁄ , giving 

 𝐸𝑚(𝐫m)

= −
𝑅

 8𝑘0𝜋2
∫ [∫ 𝑒−𝑖(𝐤s−𝐤i)⋅𝐫b (

|𝐤s − 𝐤i|
2

(𝐤s − 𝐤i) ⋅ �̂�
) 𝐴(𝐫b)

+∞

−∞

d3𝐫𝑏] 𝛿(|𝐤s|
+∞

−∞

− 𝑘0)𝑒𝑖𝐤s⋅𝐫m d3𝐤𝑠. 

(3-15) 

This is more compactly written as 
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𝐸𝑚(𝐫m) = ∫ 𝑓𝐾(𝐤s − 𝐤i) �̃�ideal(𝐤s)𝑒𝑖𝐤s⋅𝐫m

+∞

−∞

d3𝐤𝑠, (3-16) 

where 𝑓𝐾(𝐊) remains consistent with Eq. (3-10) and is given here under the stationary 

phase approximation by 

 
𝑓𝐾(𝐊) =

𝑖

2𝜋
(

𝐊2

2𝐊 ⋅ �̂�
) 𝑅 ∫ 𝐴(𝐫) 𝑒−𝑖𝐊⋅𝐫b

+∞

−∞

d3𝑟 

=
𝑖

2𝜋
(

𝐊2

2𝐊 ⋅ �̂�
) ∫ 𝐹𝐾(𝐫) 𝑒−𝑖𝐊⋅𝐫b

+∞

−∞

d3𝑟 

=
𝑖

2𝜋
(

𝐊2

2𝐊 ⋅ �̂�
) �̃�𝐾(𝐊), 

(3-17) 

for �̃�𝐾(𝐤) = ℱ{𝐹𝐾(𝐫)} for the Fourier transform operator ℱ{⋅}, and where 𝐹𝐾(𝐫) is the 

“foil” object function of the surface given by 

 𝐹𝐾(𝐫) = 𝑅 ⋅ 𝐴(𝐫) = 𝑅 𝑊′(𝐫) 𝛿[𝐫 ⋅ �̂� − 𝑠(𝑟𝑥, 𝑟𝑦)], (3-18) 

and where 

 
�̃�ideal(𝐤) =

𝑖

4𝜋𝑘0
𝛿(|𝐤s| − 𝑘0). (3-19) 

Here 𝑊′(𝐫) is used instead of 𝑊(𝐫) to denote that the window function can be 

combined with an appropriate shading function that may mitigate the impact of sharp 

points or the effect of shadowing at large angles to increase the accuracy of the 

model [185]. The function �̃�ideal(𝐤) can be considered the 3D transfer function of the 

out-going propagating waves captured by an optical system that collects light for an 

entire spherical shell surrounding the object, and can be replaced by the NA limited 

�̃�NA(𝐤) given by 

 
�̃�NA(𝐤) =

𝑖

4𝜋𝑘0
𝛿(|𝐤| − 𝑘0)𝐻 (�̂� ⋅ �̂� − √1 − 𝐴𝑛

2  ), (3-20) 

where 𝐻(𝑥) is the Heaviside step function, and 𝐴𝑛 the NA of the instrument. Eq. (3-19) 

and Eq. (3-20) are shown visually in Figure 3.1. 
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Figure 3.1. Visualisation in k-space of a kx-kz slice of a) the ideal 3D 

transfer function given by Eq. (3-19) and b) the NA limited 3D transfer 

function for a NA of 0.6, given by Eq. (3-20). In both plots black denotes a 

value of zero and white non-zero.  

Note that the exact forms of each of these equations varies between different 

publications [74,88,119,159,185,184] due to the ability to choose different Green’s 

functions, different object functions, the choice of using linear or angular wavevectors, 

and different choices of optical transfer functions. Also note that the term 3D STF has 

not been used here for this transfer function; it has been reserved for CSI transfer 

functions, i.e., transfer functions that include the interference effects of the light from 

the reference mirror and that are typically not monochromatic. 

The scattering amplitude that is in general dependent on 𝐤s and 𝐤i separately (as given 

in Eq. (2-29)) is shown in in Eq. (3-16) and Eq. (3-17) to depend only on 𝐤s − 𝐤i under 

the foil model. This scattering amplitude is linear with the foil object function spectrum 

�̃�𝐾(𝐊) evaluated only at 𝐊 = 𝐤s − 𝐤i, where the object spectrum is obtained from the 

foil object function 𝐹𝐾(𝐫) by Fourier transform. Notably, this foil function 𝐹𝐾(𝐫) is 

non-zero only along the surface boundary, i.e., where the refractive index changes 

rapidly, rather than the Born approximation, whose equivalent object function is non-

zero throughout the entire volume of the object imaged.  

3.2.3 Interferometric imaging 

The intensity measured by the CCD or CMOS sensor of an interferometer for a single 

incident reference field is given in [88,184,185] by 
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 𝐼𝑑(𝐫) = |𝐸𝑚(𝐫) + 𝐸𝑟(𝐫)|2 

= |𝐸𝑚(𝐫)|2 + |𝐸𝑟(𝐫)|2 + 𝐸𝑚(𝐫)∗𝐸𝑟(𝐫) + 𝐸𝑚(𝐫)𝐸𝑟(𝐫)∗ 
(3-21) 

where the measured scattered field 𝐸𝑚(𝐫) from the scattering object, for position vector 

𝐫, is combined with the reference field 𝐸𝑟(𝐫), where the reference field is the field 

reflected from the reference mirror in a real system. The fringes formed in the 

interferometer are caused by the last two terms of Eq. (3-21), which can be more 

concisely expressed as 2ℜ{𝐸𝑚(𝐫)𝐸𝑟(𝐫)∗} where ℜ{⋅} denotes taking the real part of a 

complex number. As such, the intensity of interest 𝐼(𝐫) is given by 

 𝐼(𝐫) = 2ℜ{𝑂(𝐫)} (3-22) 

 𝑂(𝐫) = 𝐸𝑚(𝐫)𝐸𝑟(𝐫)∗, (3-23) 

where the generally complex 𝑂(𝐫) is called the “fringe field” in this chapter. Only the 

fringe field spectrum �̃�(𝐤) is needed to calculate 𝐼(𝐫), where just as in Chapter 2, the 

tilde denotes the relationship �̃�(𝐤) = ℱ{𝑋(𝐫)} for any arbitrary function 𝑋(𝐫).  

As the reference mirror should receive the same illumination as the object does, the 

reference field scattered from the mirror can be assumed equal to the incident 

illumination, given by 𝐸𝑟
(i)(𝐫) = e𝑖𝐤i⋅𝐫 for illumination wavevector 𝐤i. Note that in the 

case where the sign of the 𝐸𝑟
(i)(𝐫) is made negative due to reflection from the reference 

mirror [88,184], the fringe pattern is the same but with the peaks and troughs flipped, 

which can be seen by considering Eq. (3-21) for |𝐸𝑚(𝐫) − 𝐸𝑟(𝐫)|2. From the reference 

field the fringe field can be given as 

 𝑂(i)(𝐫) = 𝐸𝑚
(i)(𝐫) e−𝑖𝐤i⋅𝐫. (3-24) 

Using Eq. (3-16), the expression 

 
𝑂𝐾

(i)(𝐫m) = ∫ 𝑓𝐾(𝐤s − 𝐤i) �̃�ideal(𝐤s)𝑒𝑖(𝐤s−𝐤i)⋅𝐫m

+∞

−∞

d3𝐤𝑠, (3-25) 

is obtained, where the exponential term is now also in terms of 𝐤s − 𝐤i. By considering 

the new coordinate 𝐊 = 𝐤s − 𝐤i, the integral can be rewritten as 

 
𝑂𝐾

(i)(𝐫m) = ∫ 𝑓𝐾(𝐊) �̃�ideal(𝐊 + 𝐤i)𝑒𝑖𝐊⋅𝐫m

+∞

−∞

d3𝐊, (3-26) 
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where the integral can be recognised as the inverse Fourier transform, i.e., 𝑂𝐾
(i)(𝐫m) =

ℱ−1{𝑓𝐾(𝐊) �̃�ideal(𝐊 + 𝐤i)}. Therefore, the fringe field spectrum �̃�𝐾
(𝑖)(𝐊) for a single 

incident plane wave can be given by  

 �̃�𝐾
(𝑖)(𝐊) = 𝑓𝐾(𝐊) �̃�ideal(𝐊 + 𝐤i), (3-27) 

while for multiple plane waves is given by 

 �̃�𝐾(𝐊) = 𝑓𝐾(𝐊) ∑ �̃�ideal(𝐊 + 𝐤i)

𝐤i

. (3-28) 

These equations state that the CSI fringe spectrum at the spatial-frequency (k-space) 

position 𝐊 is dependent only on the scattering amplitude at 𝐊 for values of 𝐊 that exist 

on a spherical shell with radius 𝑘0 and centre 𝐊 = −𝐤i for any acceptable 𝐤i. For 

example, for normal incidence where 𝐤i = −𝑘0�̂�z, the values of 𝐊 that contribute non-

zero field spectrum to �̃�𝐾
(𝑖)(𝐊) are those on the spherical shell circle centred at 𝐊 =

+𝑘0�̂�z with radius 𝑘0, such as 𝐊1 = 2𝑘0�̂�z, 𝐊2 = 𝑘0 (
1

√2
�̂�x + [1 +

1

√2
] �̂�z), 𝐊3 =

𝑘0(�̂�x + �̂�z), or 𝐊4 = 𝟎. When �̃�ideal is replaced by �̃�NA the spherical shell is truncated 

to a cap, limiting the range of contributing values further. 

3.2.4 3D transfer function 

It is now useful to consider Eq. (3-28) with the scattering amplitude replaced by the 

object spectrum function as given in (3-17), giving 

 �̃�𝐾(𝐊) = �̃�𝐾(𝐊) �̃�𝐾(𝐊), (3-29) 

where the 3D STF �̃�𝐾(𝐊) has been defined by 

 
�̃�𝐾(𝐊) =

𝑖

2𝜋
(

𝐊2

2𝐊 ⋅ �̂�
) ∑ �̃�NA(𝐊 + 𝐤i)

𝐤i

. (3-30) 

Eq. (3-29) states that the fringe field spectrum (and therefore the intensity fringes) can 

be found by a point-wise product in k-space of the object function �̃�𝐾(𝐊) with the 

instrument’s 3D STF �̃�𝐾(𝐊), equally expressed by the convolution of the real-space 

object function 𝐹𝐾(𝐫) with PSF 𝐻𝐾(𝐫), where 𝐻𝐾(𝐫) = ℱ−1{�̃�𝐾(𝐊)}.  
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For a range of different incident illumination vectors limited by a NA, the summation 

in Eq. (3-30) can be rewritten in terms of an indefinite integral, given in [185] by 

 ∑ �̃�NA(𝐊 + 𝐤i)

𝐤i

= ∑ �̃�NA(𝐊) ⊗ 𝛿(3)(𝐊 + 𝐤i) 

𝐤i

 

= ∫ �̃�NA(𝐊 − 𝐊′) ⋅ ∑ 𝛿(3)(𝐊′ + 𝐤i) d3𝐾′

𝐤i

 

=
𝑖

𝑘0
∫ �̃�NA(𝐊 − 𝐊′) ⋅ �̃�NA

′ (𝐊′) d3𝐾′, 

(3-31) 

where the difference in pre-factors between Eq. (3-31) and Eq. (46) of [185] comes 

from the difference in the definition of �̃�NA(𝐤) between this section and [185]. Note 

also that �̃�NA
′ (𝐊) is equal to �̃�NA(𝐊) when the illumination pupil is entirely filled, i.e., 

when the NA for illumination and observation are the same, but will vary if the 

illumination condenser’s NA is smaller than the objective NA. When the two functions 

match, the integral can be considered a convolution between �̃�NA(𝐊) with itself, and 

therefore can also be found numerically by the Fourier transform of 𝐺NA
2 (𝐫), rather than 

numerically evaluating the convolution directly [88,184]. An example PSF and 

associated 3D STF, given by Eq. (3-30) and Eq. (3-31), calculated using this approach 

is shown in Figure 3.2. 

 

Figure 3.2. A lateral-axial 2D slice of a) the real part of the PSF 𝐻𝐾(𝐫) and 

b) the magnitude of the associated 3D STF �̃�𝐾(𝐊) given by Eq. (3-30), for 

NA=0.6 and 𝑘0 = 2𝜋 𝜆⁄ , 𝜆 = 0.5 μm.  
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Finally, for an illumination source with multiple wavelengths, integration over a 

normalised power spectrum density 𝑆(𝑘0) of the illumination source is perfomed, 

giving 

 

�̃�𝐾(𝐊) = −
1

2𝜋
(

𝐊2

2𝐊 ⋅ �̂�
) ∫ ∫ �̃�NA(𝐊 − 𝐊′) ⋅ �̃�NA

′ (𝐊′) d3𝐾′

+∞

−∞

𝑆(𝑘0)

𝑘0

+∞

0

d𝑘0. (3-32) 

For an instrument with a well-specified illumination spectrum, a 3D STF can be 

generated and a PSF subsequently obtained that characterises the instrument in the case 

where no aberration is present. An example is shown in Figure 3.3. With adjustment, 

the same approach can be used to model the 3D STF of the instrument when reference 

mirror defocus is present [119]. Once a 3D STF is present, the foil model can be used 

as a virtual instrument and produce fringe signal data using Eq. (3-29), accurate for 

surfaces that are applicable under the KA and other foil model assumptions [186]. This 

remains the case with an experimentally obtained 3D STF, and from the 3D STF 

information about the instrument such as its lateral resolution can be obtained [144]. 

 

Figure 3.3. A lateral-axial 2D slice of a) the real part of the PSF 𝐻𝐾(𝐫) and 

b) the magnitude of the associated 3D STF �̃�𝐾(𝐊) given by Eq. (3-32), for 

NA=0.6 and a Gaussian spectrum illumination. The illumination has a mean 

wavenumber 𝑘0 = 2𝜋 𝜆⁄  where 𝜆 = 0.5 μm, and full width at half 

maximum (FWHM) of 𝑘0 5⁄ , approximately equivalent to a FWHM in 

wavenumber of 0.1 μm. 

3.2.5 3D STF measurement and correction 

Eq. (3-29) states that the fringes produced in a CSI instrument are a result of filtering 

the spectrum of an object function with a surface scattering 3D STF associated with the 
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instrument. When obtained experimentally this 3D STF is therefore able to effectively 

characterise the optical instrument, e.g. allowing for a comparison of the 3D 

measurement performance between different optical instruments [88,201]. An 

experimental 3D STF for a CSI instrument can be obtained by first measuring a surface 

with known topography, obtaining the intensity signal data from the instrument. As 

these intensity terms are separable in the frequency domain, the intensity is Fourier 

transformed and a band-pass filter applied to obtain the fringe spectrum �̃�𝐾(𝐊). Next, 

the foil object function 𝐹𝐾(𝐫) is produced using Eq. (3-18) and knowledge of the 

surface’s topography, and the object spectrum �̃�𝐾(𝐊) is generated by Fourier transform. 

The 3D STF �̃�𝐾(𝐊) can then be obtained by 

 
�̃�𝐾(𝐊) =

�̃�𝐾(𝐊)

�̃�𝐾(𝐊) 
, (3-33) 

where Eq. (3-29) has been rearranged. Numerically, the Dirac delta function in 

Eq. (3-18) is non-zero only on the surface of the infinitely thin foil object, and must 

therefore be blurred axially to be handled numerically. Therefore, the Dirac delta 

function is given numerically as the limit of a Gaussian function [74] 

 𝛿(𝑧) = lim
𝜎→𝜀

1

√2𝜋𝜎
exp [

−𝑧2

2𝜎2
] , (3-34) 

where 𝜎 is the standard deviation and 휀 is a small positive number (휀 > 0) chosen so 

that the variation of the magnitude of 𝐹𝐾(𝐫) near 𝑧 = 0 due to the non-zero 𝜎 can still 

be captured by the discrete sampling of 𝐹𝐾(𝐫) chosen. This experimentally measured 

3D STF can be used to characterise the instrument, and information about the 

instrument transfer function (ITF) and lateral resolution of the system can be 

obtained [144]. 

From Eq. (3-32) it is apparent that �̃�𝐾(𝐊) is a real-valued function for all 𝐊 and should 

not contain any phase within the passband. However, phase variation is typically found 

in experimental measurements of �̃�𝐾(𝐊), and is attributed to aberration in the optical 

system. Therefore, an inverse filter can be simply generated by phase inversion of the 

phase component of the experimentally measured 3D STF �̃�𝐾(𝐊), such that 

 𝑃inv(𝐊) = exp(−𝑖 ∠{�̃�𝐾(𝐊)}), (3-35) 
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where ∠{⋅} denotes taking the phase, and where 𝑃inv(𝐊) has unit magnitude throughout 

the passband. Then, for any measured intensity signal, the associated fringe field 

spectrum �̃�𝐾(𝐊) can be obtained, and the inverse filter can be applied such that 

 �̃�𝐾
′ (𝐊) = �̃�𝐾(𝐊) 𝑃inv(𝐊) (3-36) 

 𝐼′(𝐫) = 2ℜ {ℱ−1{�̃�𝐾(𝐊) 𝑃inv(𝐊)}} , (3-37) 

where 𝐼′(𝐫) is the intensity fringes after inverse phase filtering. These filtered fringes 

are believed to provide more accurate topography data than that obtained from the 

unfiltered fringes, due to compensating for the effect of instrument aberration. This can 

be understood under the foil model as the phase encoded within the filtered fringes 𝐼′(𝐫) 

better reflecting the phase of the object spectrum �̃�𝐾(𝐊) and therefore the surface 

topography described by the object function 𝐹𝐾(𝐫). Furthermore, computational 

adjustments can be made to the inverse filter to artificially adjust the 3D STF’s 

magnitude, “flattening” it to give a potentially improved PSF associated with higher 

spatial frequencies [74,247]. 

Under the assumption that the foil model is valid, including the requirement of the KA 

being valid and multiple scattering being negligible, it is shown in [247] that the 

measurement of a microsphere can provide the 3D STF characteristic of the CSI 

measurement instrument. A microsphere was used because in principle, all spatial 

frequencies that the instrument can capture are present across the sphere. The 

microsphere must be close to an ideal sphere, as the diameter measured from the top of 

the sphere to its bottom is used to generate the surface geometry of the entire sphere. 

Details on the microspheres chosen for this work are given in section 3.3.1, and some 

additional requirements on the microspheres are given in section 3.1. Note that only the 

cap of the sphere is resolvable due to the limited NA causing data dropout at steeper 

surface angles.  

3.3 Materials and methods 

Discussed in the following subsections are the methods and materials used to obtain 

information on the 3D STF of a CSI instrument by measurement of a microsphere. 

However, from the many microsphere measurements taken, the fringe data had to be 

converted into a usable format, filtered by an appropriate band-pass filter (BPF), 

aligned to the foil of the surface, and together processed to generate 3D STFs. 
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Exploration on the effect of the choice of window size, the capability of different 

alignment methods, the effect of misalignment, and the effect of other parameters also 

needed to be explored. Easy application of the inverse filters to fringe data from 

measurements of many different freeform surfaces was also required. To enable and 

support this (and prior) work, a graphical user interface was created, utility functions 

added, and the existing code modified to be more modular to support the use of the user 

interface.  

Benefits of the interface included easy selection of data files to load and ensuring the 

choice of parameters made was visible; utility functions included rapid loading of slices 

of fringe data to preview fringes and the choice of cropping made; modularity included 

allowing the BPF to be independently generated and saved for a chosen lens 

configuration. More details including some figures of the interface are given in 

Appendix A; this work was developed further outside of the PhD project by the author 

of this thesis as a research associate. 

3.3.1 Precision microspheres 

To characterise the 3D STF, the use of four silica spheres that were manufactured by 

two different methods were investigated. The spheres chosen were of varying sizes and 

were repeatedly measured at different rotational angles. The specifications of the 

spheres are given in Table 3.1. In addition to silica spheres, mercury spheres have 

previously been measured by others to obtain a 3D STF [250]. In this work silica 

spheres are used instead of mercury spheres due to: the ease of re-measurement of the 

same sphere at different times without a change in the sphere’s size or shape; the ease 

of measurement of several differently-sized spheres to minimise the effect of any shape 

error; and the ease of transporting and handling the spheres in comparison to those 

involved in handling liquid mercury. 
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Table 3.1 Specifications of the sphere measurements. 

Sphere A2 A5  B39 B45 

Diameter /μm 102.0 106.6  39.4 45.0 

Coating Yes  No 

Lateral and vertical 

sizes
7
 of the window 

W(r) /μm 

(x,y)     (z) 

20.3     5.2 

23.1     5.9 

26.0     6.7 

 (x,y)     (z) 

11.6     3.0 

14.5     3.7 

17.4     4.5 

Rotation /° 0, 90, 180, 270
8
 

No. of repeats  3 

The A-type spheres were produced using femtosecond laser structuring combined with 

a subsequent step of CO2 laser melting. This method is known as ‘laser morphing’ and 

is further described elsewhere [251,252]. The radius of the A-type sphere was 

determined using an interferometric radius measurement procedure on an 

interferometer (a Twymann-Green interferometer). The spheres were coated with silver 

to enhance reflectivity. The radius is measured as the distance between the so-called 

cat’s eye position, where the focus of the interferometric objective coincides with the 

vertex of the sphere, and the null test position of the sphere, where the focus of the 

interferometer objective coincides with the centre of curvature of the sphere. The radius 

is the displacement between the two positions, measured with a displacement 

measuring interferometer that uses a frequency stabilised helium-neon laser at 633 nm. 

The B-type spheres are commercially available and produced by melting non-spherical 

SiO2 particles in plasma to form spherical droplets, and then cooled to obtain solid 

spheres. As the B-type spheres directly sit on top of an optical flat, the diameters were 

measured as the distance between the top of the sphere and the surface of the optical 

flat. The standard deviation of the ten repeated diameter measurements is smaller than 

10 nm. The influence of the accuracy of the diameter and sphericity on the 3D STF has 

been demonstrated elsewhere [74]. 

3.3.2 Surface measurement 

In this work, characterisation and correction of a commercial CSI instrument was 

performed. This instrument had a Mirau objective lens (0.55 NA), 0.174 µm lateral 

 

7 Standard deviation. See section 3.2 for the definition of W(r), and section 3.4.1 for its implementation 
8 Sphere A2 is also measured at (45, 135, 225, 315)° 
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sampling distance, 10001000 lateral sampling points, 0.56 m central wavelength, 

and bandwidth of approximately 100 nm FWHM. The field-dependent lateral distortion 

of the instrument was measured and corrected using a previously reported self-

calibration technique [150]. In principle, the proposed technique can be applied to any 

CSI instrument. 

Three reference surface samples (material measures manufactured by Rubert & Co Ltd, 

see Table 3.2 for specifications) and an AM surface were used for validating the 

proposed error correction method of surface measurement, given in section 3.2.5. 

Surfaces R521 and R527 have similar slope distributions but different spatial 

frequencies. R525 has a similar pitch as R527 but its maximum slope is close to the 

acceptance angle of the NA of the instrument. As shown in Figure 3.4, the sinusoidal 

surfaces not only feature varying slopes but also varying spatial frequencies and 

microscale machining marks. The AM surface of a Ti-6Al-4V sample was made using 

the electron beam powder bed fusion (EBPBF) technique (see [253] for more details). 

The roughness of this type of surface is usually of the order of several micrometres or 

higher. These surfaces are well-known challenges for optical instruments and are good 

representatives of surfaces in real-world applications.  

Table 3.2 Nominal (as-designed) specifications of the surfaces. 

 R521 R527 R525 

Form Sine wave Sine wave Sine wave 

Pitch / μm 15 100 135 

Peak-to-valley 

amplitude / μm 
1.6 10 19 
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Figure 3.4. SEM images showing the micro textures in surfaces R521, 

R525 and R527. 

A stylus instrument (Talysurf Intra 50) was used to provide reference measurements of 

these surfaces. The tip radius of the stylus is 2 µm. The measurement noise (root-mean-

square [RMS] value) is 12 nm, which was evaluated using an optical flat by following 

the standard calibration procedure [254]. The primary profile length of the stylus 

measurement was 5 mm for the three sinusoidal surfaces. Each of the profiles was split 

into ten segments from which the mean profile and the standard deviation were 

calculated. The mean profiles of the stylus measurements were used for comparison, 

such that the impact of topographic outliers of the surface, e.g. dust particles, can be 

minimised. The reproducibility of the stylus measurements, calculated as the root sum 

of squares of the standard deviation value and the noise, are 30 nm, 30 nm and 24 nm 

for R521, R525 and R527, respectively. The root sum of squares is used when 

combining uncertainties from multiple uncorrelated contributors. The response of the 

stylus instrument to these surfaces is not expected to be affected by the slope-dependent 

errors experienced by the optical instrument thanks to the large pitch of the surface 

structure relative to the tip radius of the stylus. 
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To quantitatively compare the surface measurement results obtained by the optical and 

stylus instruments, surface profiles are extracted from different positions of the CSI 

areal topography maps and compared with the stylus-measured profiles. A registration 

algorithm that can specify any degrees-of-freedom [255] is used to match and register 

the profiles for direct comparison.  

3.4 Result and analysis 

3.4.1 Characterisation of 3D STF 

The 3D STF can be calculated by dividing the 3D fringe data of a spherical cap by the 

corresponding foil function in the spatial frequency domain, as given in Eq. (3-33). In 

implementing the numerical calculation, the window function in Eq. (3-18), 𝑊(𝐫), is 

defined using a 3D Gaussian function with appropriate widths in the spatial domain to 

limit the foil function to the spherical cap of interest. The Dirac delta function is 

approximated by a 1D Gaussian function along the surface height direction (z-direction) 

and has a sufficiently small width, as given in Eq. (3-34).  

The experimentally determined 3D STFs of the CSI instrument obtained by measuring 

the four spheres are shown in Figure 3.5. To minimise the characterisation error that 

may be caused by the size uncertainty, asphericity of the sphere [74,248] or other 

statistical error sources, the spheres were measured three times at four rotation angles 

(twelve measurements for each sphere). The measured 3D fringe data were processed 

using three different window sizes (see Table 3.1). Subsequently, seventy-two 3D STFs 

were obtained from the measurements of the A- and B-type spheres, respectively.  
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Figure 3.5. Experimentally characterised 3D STF of the CSI system. Row 

I shows the cross-sectional slices of the normalised magnitudes of the 

3D STFs. Row II shows the corresponding phases. Row III shows the 

magnitudes of the in-pupil STFs. Row IV shows the corresponding phases. 

Row V and VI show the 1D profiles of the magnitudes and phases of the 

experimental in-pupil STFs. (A, F, K, P) ideal (diffraction-limited) case. 

(B, C, G, H, L, Q) the 3D STF and in-pupil STF obtained using B-type 

spheres. (M, R) the corresponding standard deviations of the in-pupil STFs. 

(D, E, I, J, N, S) the 3D STF and in-pupil STF obtained using A-type 

spheres. (O, T, U) the corresponding standard deviations of the in-pupil 

STFs. (U) is obtained when sphere A2 was rotated at 45°, 135°, 225° and 

315°. (V, W, X and Y) the profiles are taken along the kx and ky axes as 

marked in (L, N, Q and S). 

The 3D STF is a complex-valued quantity. Its magnitude determines the spatial 

frequency passband of the CSI, and the peak modulation of the magnitude is located at 

approximately the spatial frequency 2/λ0 on the 𝑘𝑧 axis, where λ0 is the central 

wavelength of the light source in air. The 3D STF of an ideal instrument (diffraction-

limited) should in principle be rotationally symmetric about the 𝑘𝑧 axis. 

To make it easier to visualise and compare the measured 3D STFs, the mean and 

standard deviation of the in-pupil STF are evaluated, which is calculated by integrating 
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the 3D STF over the axial spatial frequency kz for each lateral spatial frequency kx and 

ky [256,257]. In this way, the in-pupil STF is similar to the in-pupil (2D) OTF that can 

be found at the back focal plane of the objective lens [192]. 

The magnitude of the experimental 3D STF [Figure 3.5(B), (C), and (L)] obtained using 

the B39 and B44 spheres deviates from the ideal magnitude [Figure 3.5(A), and (K)]. 

The degraded magnitude is likely to be due to the combined effect of defocus, high 

order aberrations, and the central obstruction due to the presence of the reference mirror 

in the optical axis of the Mirau objective. 

The magnitude is effectively the weighting factor that determines the impact of the 

phase value on the measurement result. The phase of the real instrument [Figure 3.5(G), 

(H), and (Q)] deviates from zero, i.e. the ideal case [see Figure 3.5(F) and (P)], due to 

the presence of optical aberrations. The departure and variation of the phase become 

relatively larger at the edges of the passband but its impact on the measurement result 

is limited as the corresponding magnitude is small.  

The asymmetry in both magnitude and phase is probably caused by the tilt and 

decentration of the optical components and other asymmetric aberrations in the optical 

system. The asymmetry indicates that the optical system would perform differently 

along different directions in terms of resolution and measurement accuracy. 

The standard deviation of the seventy-two 3D STFs obtained using spheres B39 and 

B44 is plotted in Figure 3.5(M) and (R). The mean values of the standard deviations for 

the normalised magnitudes and phases of the corresponding in-pupil STFs are 0.004 

(normalised value) and 0.06 rad, respectively. That these values are very small provides 

evidence that the characterisation result is stable and insensitive to the changes of the 

window function, is independent of the spheres, and the sphere form error is sufficiently 

small. The main cause of the residual variations in Figure 3.5(M) and (R) may be the 

result of the linearity of the axial scanning stage and the environmental mechanical 

vibration.  

The 3D STFs that were obtained using spheres A2 and A5 using the same instrument 

working conditions has a magnitude almost identical to that obtained using the B-type 

spheres [Figure 3.5(L), (N), (V), and (W)]. However, the mean value of the phase 

slightly deviates from the result of B-type spheres [see Figure 3.5(Q), (S), (X), and (Y)], 
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and the mean values of the standard deviation in phase is 0.22 rad [calculated from 

Figure 3.5(T)], much higher than that shown in Figure 3.5(R).  

The systematic phase variation in Figure 3.5(T) is mainly caused by an orthogonal 

anisotropy of the spherical form in the A-type spheres, i.e. the radius of the sphere 

slightly varies along two orthogonal horizontal directions. This hypothesis was further 

verified by measuring sphere A2 at four additional rotation angles, and the phase 

variation pattern in Figure 3.5(U) rotates with the sphere by 45° relative to Figure 

3.5(T). This problem is not surprising as the laser-morphing process started with 

intrinsically asymmetric conditions, such as thermal gradient, asymmetric material 

geometry, and possible asymmetry in the heating profile. From this point, the rest of 

the experiments were carried out using B-type spheres.  

3.4.2 Inverse filtering of 3D PSF 

The experimentally characterised 3D STF is used to calculate the inverse filter through 

phase inversion, as given by Eq. (3-35). The 3D impulse response of the instrument to 

the surface, i.e. 3D PSF, can be calculated through the inverse Fourier transform of the 

3D STF (Figure 3.6). It can be seen that the asymmetry and skewness of the original 

3D PSF in both axial and horizontal directions were corrected after applying the inverse 

filtering. The effects of the aberration compensation on real surface measurement will 

be shown in section 3.4.3. 
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Figure 3.6. Experimentally characterised 3D PSF of the CSI system. (A, 

B) Cross-sectional slices through the origin of the original 3D PSF in the x-

z and x-y planes, respectively. (C, D) Cross-sectional slices of the 3D PSF 

after the inverse filtering. (E) Interferogram profiles along the axial 

direction at x,y = 0 before and after the inverse filtering. (F) Profiles along 

the horizontal directions at z = 0 before and after the inverse filtering. 

3.4.3 Improved surface measurement 

The CSI-measured areal surface topography of R521, R527, and R525 are shown in 

Figure 3.7(A), Figure 3.8(A), and Figure 3.9(A), respectively. The topography is 

calculated pixelwise using the frequency-domain analysis method [87,110] without any 

filtering processes that connect phases of neighbouring pixels, i.e. algorithm-driven 

interpretation of surface structure is not used when resolving fringe order. The original 

and inverse-filtered measurement results are compared with the stylus measurements 

after alignment. The profiles at y = 0 are used for demonstrating the comparisons, as 

shown in Figure 3.7(C), Figure 3.8(C), and Figure 3.9(C). The CSI-measured profiles 

extracted from different y positions were also compared; similar results were obtained 

and, therefore, are not shown.  
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Figure 3.7. Measurements of surface R521. (A) 3D plot of the CSI-

measured areal topography. (B) Slope angle distribution calculated from 

the 1D numerical gradient of the stylus profile. (C) CSI- and stylus-

measured profiles, where for display purposes the seven profiles have been 

offset on the y-axis by {+3,+2,+1,+0,−1,−2,−3} μm respectively: (1) 

original CSI measurement, (2-4) CSI measurements modified based on the 

field-dependent 3D STFs, (5) final result of the inverse-filtered CSI 

measurement, (6) bandwidth matched and inverse-filtered CSI 

measurement, (7) mean value of the stylus-measured profiles. (D) Surface 

height differences between CSI- and stylus-measured profiles (8,9,10) and 

the standard deviation of stylus-measured profiles (11), where the dashed 

line indicates the 30-nm reproducibility of the stylus measurement. For 

display purposes these four difference profiles have been offset on the 

y-axis by {+0.5,+0,−0.5,−1} μm respectively. Note that all CSI profiles are 

calculated using both coherence profile and phase information, referred to 

as “high-precision CSI profile”. 
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Figure 3.8. Measurements of surface R527. (A) 3D plot of the CSI-

measured areal topography. (B) Slope angle distribution calculated from 

the stylus profile. (C) CSI- and stylus-measured profiles, where for display 

purposes the six profiles have been offset on the y-axis by {+2,+1,+0, 

−1,−2,−3} μm respectively. (D) Surface height differences between CSI- 

and stylus-measured profiles and the standard deviation of stylus-measured 

profiles, where the dashed line indicates the 24-nm reproducibility of the 

stylus measurement, and where for display purposes the six difference 

profiles have been offset on the y-axis by {+1.5,+1,+0,−0.5,−1,−1.5} μm 

respectively. 
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Figure 3.9. Measurements of surface R525. (A) 3D plot of the CSI-

measured areal topography. (B) Slope angle distribution calculated from 

the stylus profile. (C) CSI- and stylus-measured profiles, where for display 

purposes the six profiles have been offset on the y-axis by {+2,+1,+0, 

−1,−2,−3} μm respectively. (D) Surface height differences between CSI- 

and stylus-measured profiles and the standard deviation of stylus-measured 

profiles, where the dashed line indicates the 30-nm reproducibility of the 

stylus measurement, and where for display purposes the six difference 

profiles have been offset on the y-axis by {+1.5,+1,+0,−0.5,−1,−1.5} μm 

respectively.. 

Considering that a real optical instrument is never precisely shift-invariant, the B-type 

spheres were also placed at two other locations in the field of view, x = ±60 μm (at 

y = 0), to characterise the 3D STFs locally. Three locations are found (i.e. west, central, 

and east) that are sufficient for the purpose of demonstrating the effectiveness of the 

inverse filtering for this work. Based on Eq. (3-35) and Eq. (3-36), three corresponding 

field-dependent inverse filters were calculated and applied to the original CSI fringe 

data separately to generate three filtered surface measurements, as shown in profiles (2 

to 4) of Figure 3.7(C). Compared to the original CSI-measured profile, the measurement 

errors were effectively removed in the west, central, and east regions of the filtered 

profiles, respectively. Then, the filtered profiles were merged to generate profile (5) by 
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simply joining the corrected regions of profiles (2 to 4), where the boundaries of the 

three sub-regions were selected at x = ±30 μm, corresponding to approximately 1/3 and 

2/3 of the field of view. To make appropriate comparison with the stylus measurement 

and match the spatial bandwidths of the different instruments [258,259], the corrected 

CSI profile is low-pass filtered with a 2 μm cut-off spatial wavelength [see profile (6) 

of Figure 3.7(C)]. Note that all CSI profiles in Figure 3.7 are calculated using coherence 

profile to determine the fringe order and phase information to refine the surface height 

measurement [87,110], here referred to as “high-precision CSI profile”. 

Figure 3.7(D) shows the differences between the CSI and stylus measurements and the 

standard deviation of the stylus measurements. Profile (8) clearly shows the presence 

of slope-dependent and 2π errors (due to an incorrect estimation of the fringe order by 

approximately half the mean wavelength [164]) in the original CSI measurements. The 

errors mostly occur at the upward slopes. Small bumps that periodically appears in 

profile (11) imply that the surface contains irregularities and high roughness in the 

regions of upward slopes. 2π errors are often removed using post-processing methods, 

such as phase unwrapping, if the surface is known to be smooth and continuous. 

However, the performance of such techniques is significantly limited for the surfaces 

considered that contain irregular features and roughness on high slopes. Profiles (9) and 

(10) shows the effective reduction of the errors after inverse filtering. The mean height 

deviation of profile (10) is 18 nm. As the comparison is made using the mean stylus 

profile, the deviation is mainly caused by the topographic reproducibility of the 

manufactured surface, which is of the order of 30 nm. 

The slope distribution also shows that the upward slopes are steeper than the downward 

slopes. In the context of 3D imaging theory, high slopes may correspond to the high 

lateral spatial frequencies of the 3D STF. Based on an approximation, a 20° slope 

corresponds to a lateral spatial frequency of 1.22 μm−1, calculated as (2/λ0)×sin(20°), 

where the magnitude of the in-pupil STF is slightly above 0.2 and the phase deviates 

from zero by 0.25 rad, as shown in Figure 3.5(V) and Figure 3.5(X). Therefore, the 

fringe contrast is reduced in the high slope region and the fringe pattern is distorted due 

to optical aberrations. 

The same inverse filtering process was used for the case of R527 as shown in Figure 

3.8. This surface has a similar maximum slope angle as the R521 case but a pitch of 
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100 μm, corresponding to a spatial frequency of 0.010 μm−1. Profiles (1) and (2) are the 

coherence profiles and (3) and (4) show the high-precision CSI profiles. By the nature 

of the surface reconstruction method in CSI, coherence profiles do not have 2π errors 

but are sensitive to noise, as the coherence envelope is slowly varying and its width 

correlates with the coherence length of the light source, as discussed in section 2.3.1 

and shown in section 2.4.1. It is more precise to determine the surface height using the 

phase information as the fringe that carries the height information has approximately 

ten peaks under that coherence envelope.  

The coherence profile can be significantly influenced by retrace error, dispersion 

error [87,151,153,156,174], and errors that are induced by other aberrations [see 

profiles (7) in Figure 3.8(D)], which causes the incorrect estimation of the fringe order 

and, therefore, cause 2π errors in the high-precision CSI profile [see profiles (9)]. It is 

evident from Figure 3.8(D) that the inversion of the 3D STF successfully compensates 

the optical aberrations and corrects the fringe order analysis. Consequently, agreement 

between the CSI and stylus measurements is improved. The mean height deviation of 

profile (11) is down to 11 nm.  

Figure 3.9 shows the result for surface R525 which has a maximum slope angle close 

to the limit of the acceptance angle of the lens determined by the NA. 2π errors 

appearing in the high slope region are removed, leaving the mean height deviation of 

profile (5) in Figure 3.9(D) to 13 nm.  

Figure 3.10 shows the CSI measurement of the Ti-6Al-4V AM surface and the 

comparison before and after the inverse filtering. Based on the findings obtained from 

the measurements of sinusoidal surfaces, the difference in the coherence topography 

[Figure 3.10(B)] is highly likely to arise from the correction of the slope- and spatial 

frequency-dependent errors in the original measurement that suffers from optical 

aberrations. The difference in the high-precision topography is mainly due to the 

removal of 2π phase jumps through the fringe order correction. Although there is no 

reference measurement for the AM surface, the observed phenomenon agrees with that 

concluded from the sinusoidal surface measurements.  
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Figure 3.10. CSI measurements of the Ti-6Al-4V AM surface. (A) CSI 

high-precision areal topography. (B) Difference of the CSI coherence 

topography before and after the inverse filtering. (C) Difference of the CSI 

high-precision topography before and after the inverse filtering. Profiles are 

extracted through the origins. To improve the visibility, the magnitude of 

colourbar histograms in (B) and (C) are plotted in logarithmic scale and a 

threshold (−0.4 μm to 0.4 μm) of the height difference is used which 

removes outliers that account for 0.3% of the total number of measured 

points. 

3.5 Conclusion and discussion 

The 3D STF is an informative metric for quantitatively evaluating and comparing the 

performance of an optical surface measuring instrument in the linear regime, including 

the instrument’s response to various slope angles and spatial frequencies. A real optical 
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3D imaging instrument is never ideal and always exhibits some degree of aberration. 

Optical aberrations cause retrace errors, dispersion errors, 2π errors, and other slope- 

and spatial frequency-dependent errors in a CSI instrument. Although these errors are 

well-known and have been corrected to some degree in the past, most of the correction 

methods are applied to the measured surface height data as post-processing approaches.  

Here the experimental verification of the foil-model based characterisation of the 3D 

STF of a CSI instrument is demonstrated, and a practical method for compensating lens 

aberrations in CSI through phase inversion of the characterised 3D STF is presented. 

The error correction is carried out at a fundamental level by modifying the raw 3D 

fringe data prior to surface reconstruction and any post-processing.  

Three freeform surfaces with varying slopes and spatial frequencies and an AM surface 

have been used as case studies to further validate the characterisation and error 

correction methods. Phase jumps have been largely removed, and the discrepancy 

between CSI and contact stylus measurement is reduced from a few tens of nanometres 

to 10 nm across a 170 µm field of view, which is commensurate with the noise floor of 

the stylus instrument. The change in topography is most significant in areas of high 

slopes as it is in these areas that the phase jumps are most prevalent, due to the lower 

SNR of the associated fringes produced by high slopes and due to the greater impact of 

lens aberration. In the context of 3D imaging theory, the high slopes may correspond 

to the high lateral spatial frequencies of the 3D STF, which have lower magnitudes and 

tend to be most affected by lens aberration than those with no lateral component (see 

Figure 3.5). In this way, the compensation of lens aberration is especially useful for 

measurements of surfaces with slopes close to the specular NA limit, as discussed in 

section 2.6. 

Finally, this method may be applied to other 3D imaging modalities, e.g. imaging 

confocal microscopy and focus variation microscopy, which can also be treated as 

linear systems and are known to exhibit similar errors when presented with high surface 

slopes [88,260]. 

While the foil model assumes that a 3D linear shift-invariant filter applied to an object 

function is sufficient to accurately model the scatter produced by a range of 

surfaces [88], it is clear from Figure 3.7 that a real instrument may not be entirely shift-

invariant, demonstrated by the field dependent differences in the phase of the STF. 
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From plot (2) of Figure 3.7(C), the application of a field-dependent inverse filter can 

be seen to be detrimental in regions that are characterised by a different STF. The use 

of three sphere measurements taken at different locations (west, central, and east) was 

used to resolve this issue, combining filtered results together from each region using 

data fusion methods [234]. Sphere measurements may need to be taken at multiple (x,y) 

FOV coordinates, depending on the isotropy and degree of variation of the STF across 

the FOV. For example, to correct an entire FOV, 5 sphere measurements taken at 

positions such as ⚄ may be necessary. This is in contrast to [247], which found 

improvement in measurement results from a single STF for surfaces measured at 

different locations in the FOV. The additional complexity involved in taking multiple 

measurements and combining partially overlapping differently-filtered topography data 

does somewhat lessen the ease and effectiveness of this technique compared to that 

described in [247]. The sphere size may also be more significant when field dependence 

is considered. Smaller spheres are likely better at producing an STF that characterises 

the instrument near to a specific field position as the sphere covers only a small portion 

of the FOV, but this can also lead to sampling issues and alignment issues; more 

information on sphere size can be found elsewhere [248]. 

Naturally, the foil model is incapable of accounting for multiple scattering effects or 

the effect of sharp edges, as neglecting these effects is a requirement of the KA. 

Surfaces must also have minimal shadowed regions when illuminated and typically 

cannot have overhangs or undercuts. Therefore, the accuracy of the foil model for tilted 

surfaces can be reduced compared to when untilted. To accurately model scatter from 

more complex surfaces, a more rigorous model is required, as developed over the 

following chapters of the thesis.  

3.6 Summary 

In this chapter, an approximate CSI model based on the Kirchhoff approximation (KA) 

was presented, known as the foil model. The model’s theory was derived from scalar 

scattering theory and given in detail. The model states that the fringes produced by a 

CSI instrument can be predicted by filtering the spectrum of an object function (that 

follows the surface geometry) by a surface scattering transfer function (STF) associated 

with the instrument. The model is applicable for surfaces that are valid under the KA.  
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A method of obtaining the STF of an instrument though measurement of microspheres 

was described, and several STFs obtained from different microspheres. By obtaining 

an STF of an instrument experimentally the instrument can be characterised, and the 

effect of any lens aberration present can be found within the STF as non-zero phase. 

From the experimental STFs, inverse filters were produced that could be applied to 

measured fringes to compensate for the effect of lens aberration. This was demonstrated 

through application of inverse filters to several freeform surfaces, comparing the 

resulting topography data with that obtained from the unfiltered fringes and to the 

height data obtained from a traceable contract stylus instrument. The comparisons 

showed a reduction in fringe order errors, especially in areas of high slope, and a greater 

agreement of the topography data with the stylus instrument data. This provides 

experimental verification of the foil model and of the method of compensating for lens 

aberration by obtaining an STF experimentally. 

In this chapter, an approximate coherence scanning interferometry (CSI) model is 

introduced, based on the Kirchhoff approximation (KA). The theory is first outlined, 

describing the optical process of a CSI instrument as a three-dimensional (3D) linear 

shift-invariant filtering operation that maps surface geometry to imaged fringes. Under 

this model the effects of the instrument on the measurement process are entirely 

contained within a surface transfer function (STF), including aspects of the optical 

system such as objective numerical aperture (NA), lens aberration, and reference mirror 

defocus [119,159]. A method to obtain an instrument’s STF through measurement of a 

microsphere is described and the resulting experimental transfer functions are 

presented. From these experimental STFs, inverse filters (IF) can be generated that in 

principle can be applied to signal data captured by the instrument to compensate for the 

effects of lens aberration. From measurements of a sinusoidal grating, the topographies 

obtained from before and after compensation by an IF are compared both to each other 

and to measurements of the grating by a traceable contract stylus instrument. 
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Chapter 4: Verification of a 
BEM optical scattering model 
In this chapter, a rigorous two-dimensional (2D) model of electromagnetic surface 

scatter is presented, based on a boundary element method (BEM) established by 

Simonsen [261]. The model is experimentally verified by comparison of the simulated 

far-field scatter with measurements from a laser scatterometer for a sinusoidal grating, 

and by comparison of the model to known rigorous analytical solutions for certain 

surfaces via the Mie solution to Maxwell's equations (i.e., the Mie scattering theory). 

In addition, results from the BEM model are compared against those from an 

approximate approach for a wide range of sinusoidal grating surface wavelengths, and 

the regions of agreement investigated.  

The work in this chapter is based on that presented at the European Optical Society 

Annual/Biennial Meeting (EOSAM) in 2018 [209]. Further verification work is 

performed as part of the following chapter (Chapter 5), which focuses on developing 

and verifying a model of coherence scanning interferometry (CSI) based on this 

chapter’s BEM model.  

4.1 Introduction 

As discussed in section 2.4.3, non-linear rigorous models of optical scatter are 

necessary if accurate scatter for any arbitrary surface geometry is desired. While linear 

methods such as those based on the Kirchhoff approximation can provide accurate 

results for a wide variety of surfaces, they nonetheless make several assumptions about 

the surface so that the scattering problem is analytically tractable, limiting the range of 

applicability. Scatter from surfaces such as vee-grooves cannot be readily predicted by 

these linear methods, despite the strongly specular reflecting nature of the surface, due 

to the strong amount of multiple scattering (or more specifically multiple reflection) 

that occurs [175,178]. In general, rough surfaces and those with steep surfaces are more 

likely than flatter surfaces to produce multiple scattering, to have incident angle and 

polarisation dependent effects, and suffer more from geometric effects such as self-

shadowing. Complex geometries that include overhangs are also impossible for linear 

methods to handle. 
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The BEM scattering model used in this chapter was implemented using MATLAB by 

collaborators at Loughborough University, based on the method described by 

Simonsen [261]; the underlying theory itself was developed earlier by Maradudin et 

al [262]. The method is derived from Maxwell’s equations and can account for surface 

plasmons in metals. The method relies on the Ewald-Oseen extinction theorem, which 

states that the incident field is extinguished within an object by a component of the 

induced field, and the other component of the induced field then satisfies the wave 

equation for the object’s refractive index [263–265]. For monochromatic, linearly 

polarised plane wave illumination, the BEM model solves linear partial differential 

equations along the surface boundary to obtain the field and its surface normal 

derivative, from which near-field and far-field scatter can then be calculated [261]. The 

numerical approach used is formally exact and is therefore in principle applicable to 

scattering from surfaces of any topography [261].  

The BEM approach is in principle faster (decreased computational effort) for solving 

surface boundary problems than methods such as finite element methods (FEM) due to 

the BEM approach scaling better with surface size [188]. For example, for surface 

modelling for a surface made up of N2 points, FEMs scale with N6 while BEMs scale 

with N4, despite both methods requiring matrix inversion [49]. Note that the BEM 

model considered in this chapter is limited to only 2D surfaces, i.e., limited to surfaces 

completely described only by a set of lateral and axial coordinates (x, z), where surface 

undercuts are allowed. A similar model that can handle three-dimensional (3D) surfaces 

is a boundary source method named 3sBSM, described elsewhere [220]; however use 

of the 3sBSM model is more complex and its computation time currently prohibitive 

for use in polychromatic NA illuminated instrument modelling.  

Publications using this chapter’s BEM model directly include [209,225–228], and this 

model has also been used to develop the BEM-CSI model presented in Chapter 5.  

4.2 Theory  

As already stated, the BEM model essentially follows that described by Simonsen in 

section 4.10 of [261], which details the 2D BEM surface scattering theory in full. 

However, following Simonsen’s work, the following derivation is given here using a 

somewhat simpler notation and omitting the more complicated details. This has been 

carried out to explain the core of the BEM approach to a reader who may not have 
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access to Simonsen’s paper or finds the simpler notation more accessible, and for 

completeness. To this aim, some steps of the derivation are omitted and at times 

expressions are simplified. 

The surface is modelled as an object that occupies space Ω with permittivity 휀− and 

permeability 𝜇−, in a surrounding space Ω, with permittivity 휀+ and permeability 𝜇+, 

where n is an outward vector normal to the boundary surface ∂Ω (pointing from Ω 

towards Ω), as shown in Figure 4.1. 

  

Figure 4.1. Geometry of the object considered for the scattering problem 

If an incident electromagnetic wave Φ𝑖𝑛𝑐(𝐫) generated by some external source 

occupies space Ω, then the total electromagnetic field inside space Ω, i.e. 𝐫 ∈ Ω, can be 

represented by the surface integral 

 Φ𝑜𝑢𝑡(𝐫) = Φ𝑖𝑛𝑐(𝐫) +
1

4𝜋
∬ [Φ+(𝐫′)

𝜕𝐺+(𝒓−𝒓′)

𝜕𝑛′ − 𝐺+(𝐫 − 𝐫′)
𝜕Φ+(𝐫−𝐫′)

𝜕𝑛′ ] 𝑑𝑆′
∂Ω

, (4-1) 

or equivalently, inside Ω (𝐫 ∈ Ω), as 

 Φ𝑖𝑛𝑐(𝐫) = −
1

4𝜋
∬ [Φ−(𝐫′)

𝜕𝐺−(𝐫−𝐫′)

𝜕𝑛′ − 𝐺−(𝐫 − 𝐫′)
𝜕Φ−(𝐫−𝐫′)

𝜕𝑛′ ] 𝑑𝑆′
∂Ω

, (4-2) 

where 
𝜕

𝜕𝑛′ is the derivative of the function along the normal vector n at the point 𝐫′, 

Φ+(𝐫′) and 
𝜕Φ+(𝐫′)

𝜕𝑛′  are values of the electromagnetic field and its surface normal 

derivative at the outer side of the boundary ∂Ω, Φ−(𝐫′) and 
𝜕Φ−(𝐫′)

𝜕𝑛′
 are values of the 

electromagnetic field and its surface normal derivative at the inner side of the boundary 

∂Ω, 𝐺+(𝐫 − 𝐫′) and 
𝜕𝐺+(𝐫−𝐫′)

𝜕𝑛′
 are the Green’s function (of the Helmholtz wave 

equation) and its surface normal derivative in Ω, and 𝐺−(𝐫 − 𝐫′) and 
𝜕𝐺−(𝐫−𝐫′)

𝜕𝑛′  are the 

Green’s function and its surface normal derivative inside Ω. Note that the 𝐫′ is bound 

to the surface ∂Ω and the surface integral that varies this parameter for each surface 
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element 𝑑𝑆′ forms a closed surface. The field Φ±(𝐫) is the electric component of the 

TE wave or the magnetic component of the TM wave, and the 2D outgoing Green’s 

function 𝐺∓(𝐫, 𝐫′) can be given by 

 𝐺∓(𝐫, 𝐫′) = 𝑖𝜋𝐻0
(1)(𝑘∓|𝐫 − 𝐫′|) , (4-3) 

where 𝑘∓ is a wave vector of the medium, i.e. 𝑘∓ = 𝑛∓𝑘𝑜 for vacuum wave vector 𝑘𝑜 

and refractive index of the media 𝑛∓, and 𝐻0
(1)

(∙) is the Hankel function of the first kind 

and zeroth order. Note that the dependence of the fields and the Green’s functions on 

the frequency of light has been omitted to simplify the notation, and that Sommerfeld’s 

radiation condition [230,266] has been used to remove the need to integrate the exterior 

region at infinity, i.e. so that only the boundary between the object and the exterior 

space is relevant. Also note that Eq. (4-2) is the Ewald-Oseen extinction theorem, where 

the incident field is seen to be extinguished inside the object (Ω) by the induced field. 

The equivalence of the extinction theorem and the boundary-value scattering problem 

is shown elsewhere [265]. 

To evaluate the fields everywhere by using Eq. (4-1) and Eq. (4-2), knowledge of the 

values of Φ+(𝐫′), Φ−(𝐫′), 
𝜕Φ+(𝐫−𝐫′)

𝜕𝑛′  and 
𝜕Φ−(𝐫−𝐫′)

𝜕𝑛′  at the boundary ∂Ω is needed. These 

terms can be approximately evaluated using the Fresnel equations, a method taken by 

Beckmann’s Kirchhoff approximation (KA)-based approach to model surface 

scattering [141,208]. This KA-based approach is also a part of the Foil model, discussed 

in Chapter 3. This leads to a non-rigorous model of surface scattering that is valid only 

when the KA holds and multiple scattering is negligible [184,185]. To be able to solve 

the scattering problem rigorously, the field and its normal derivative on the surface can 

instead be calculated by taking advantage of the extinction theorem. An exact solution 

of the scattering problem first equates the fields and their derivatives on the boundary 

between two media, i.e. 

 Φ+(𝐫′) = Φ−(𝐫′), (4-4) 

 1

𝜅+

𝜕Φ+(𝐫′)

𝜕𝑛′ =
1

𝜅−

𝜕Φ−(𝐫′)

𝜕𝑛′ , (4-5) 

where 𝜅𝑇𝐸
+ = 𝜇+, 𝜅𝑇𝐸

− = 𝜇−, 𝜅𝑇𝑀
+ = 휀+ and 𝜅𝑇𝑀

− = 휀−; 𝜅+ and 𝜅− are here used without 

a subscript as 𝑢±(𝐫) represents either the TE or TM case. These boundary conditions 



4.2 Theory  107 

given in Eq. (4-4) and Eq. (4-5) are applied to Eq. (4-1) and Eq. (4-2), coupling the two 

inhomogeneous integral equations.  

These can then be solved by discretising the coordinates that comprise the boundary 

surface, and from this forming matrix equations that can be numerically solved as long 

as the step size adequately approximates the integrals. The boundary surface (contour) 

of the domain Ω is divided into N control points and, at these points, the fields Φ+(𝐫′) 

and their derivatives 
𝜕Φ𝑗

+(𝐫′)

𝜕𝑛′ , 𝑗 = 1, 2, …, N, at the side of the upper/external (+) medium 

are assumed unknown. By appropriately applying the boundary conditions given in 

Eq. (4-4) and Eq. (4-5) to the fields in Eq. (4-1) and Eq. (4-2), a system of 2N equations 

with 2N unknowns is obtained; N fields {ℱ𝑗 = Φ𝑗
+(𝐫′)} and N derivatives {𝒩𝑗 =

𝜕Φ𝑗
+(𝐫′)

𝜕𝑛′
}. If from ℱ𝑗  and 𝒩𝑗 two vectors are formed with length N {ℱ = (ℱ1, ℱ2, … , ℱ𝑁), 

𝒩 = (𝒩1, 𝒩2, … , 𝒩𝑁)}, a system of two matrix equations can be formed.  

 −(𝐀+ − 𝐈)ℱ + 𝐁+𝒩 = ℱ𝑖𝑛𝑐, (4-6) 

 −𝐀−ℱ +
𝜅𝜈

−

𝜅𝜈
+ 𝐁−𝒩 = 0, (4-7) 

where ℱ𝑖𝑛𝑐 is a vector whose components are the incident fields at the N control points 

at the boundary surface contour, 𝐈 is the identity matrix, and the components of the 

matrices 𝐀−, 𝐀+, 𝐁− and 𝐁+ are best given in equations (138a) and (138b) of 

Simonsen’s paper (and are derived in its appendix) [261]. However, note that they 

depend on the surface normal derivative of the Green’s function and the Green’s 

function respectively, as they are derived from Eq. (4-1) and Eq. (4-2). 

The solutions to the system of equations (Eq. (4-6) and Eq. (4-7)) that provides values 

for the components of the vectors ℱ and 𝒩 can be represented by 

 ℱ𝑗 = 𝓕ℱ𝑖𝑛𝑐, (4-8) 

 𝒩𝑗 = 𝓝ℱ𝑖𝑛𝑐, (4-9) 

where the matrices 𝓕 and 𝓝 are defined as: 

 𝓕 = [−(𝐀+ − 𝐈) + (𝐁+) (
𝜅𝜈

−

𝜅𝜈
+ 𝐁−)

−1
(𝐀−)]

−1

, (4-10) 

 
𝓝 = [−(𝐀+ − 𝐈)(𝐀−)−1 (

𝜅𝜈
−

𝜅𝜈
+ 𝐁−) + (𝐁+)]

−1

. 
(4-11) 
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With these matrices defined, Eq. (4-8) and Eq. (4-9) can give the electromagnetic fields 

and their surface normal derivatives along the boundary on the outside of the object, 

from which near- and far-field field values could be calculated. By definition, the 

second term (i.e. the entire integral) of Eq. (4-1) is the scattered field outside the object, 

i.e. as Φ𝑜𝑢𝑡(𝐫) = Φ𝑖𝑛𝑐(𝐫) + Φ𝑠𝑐(𝐫). Equivalently, from Eq. (4-6) the following 

expression can be obtained: 

 ℱ − ℱ𝑖𝑛𝑐 = ℱ𝑠𝑐 = 𝐀+ℱ − 𝐁+𝒩. (4-12) 

From this expression, the BEM model can be used to calculate scatter in the near field 

and far field, where 𝐀+ and 𝐁+ are in general dependent on 𝐫 and 𝐫′. However, for 

experimental verification and for CSI modelling it is only the far-field scattering 

distribution function that is of interest, which provides the intensity of the scattered 

light captured at some scattering angle. The far-field scatter at a position with vector 𝐫𝑗 

can be given by  

 ℱ𝑠𝑐(𝐫𝑗) = ∑ 𝑎𝑛(𝐫𝑗)ℱ𝑛 − 𝑏𝑛(𝐫𝑗
𝑁
𝑖=1 )𝒩𝑛, (4-13) 

where 𝐹𝑛 and 𝐷𝑛 are the components of the vectors ℱ and 𝒩, and N is the number of 

control points, as previously defined. The coefficients in Eq. (4-13) are obtained the 

elements of 𝐀+ and 𝐁+ in the far field case and are given by  

 𝑎𝑛(𝐫𝑗) = 𝑄
𝑑𝑙𝑛

4
exp(−𝑖𝐫𝑛 ∙ 𝐤𝑗) 𝐧𝑛 ∙ 𝐤𝑗 , (4-14) 

 𝑏𝑛(𝐫𝑗) = 𝑖𝑄
𝑑𝑙𝑛

4
exp(−𝑖𝐫𝑛 ∙ 𝐤𝑗), (4-15) 

and 

 𝑄 = √
−2i

πk+|𝐫𝑗|
. (4-16) 

Here, 𝐤𝑗 =
𝐫𝑗

|𝐫𝑗|
𝑘+, 𝐫𝑛 = (𝑥𝑛, 𝑧𝑛), 𝐧𝑛 is the surface normal vector of the 𝑛th element, 

𝑑𝑙𝑛 is the length of the 𝑛th element of the scattering boundary, and 𝑘+ is the wavevector 

of the light in the scattering medium. 

Finally, the measured intensity is given by  

 𝐼𝑠𝑐(𝐫𝑗) =
𝜀+𝜇+𝜀0

2
|ℱ𝑠𝑐(𝐫𝑗)|

2
, (4-17) 

where 휀0is the permittivity of free space.  



4.3 Methodology  109 

An alternative approach for the far field case taken in Simonsen’s paper uses the Fourier 

representation of the Green’s function (instead of Eq. (4-3)), where the surface 

coordinate considered is neglected in the Green’s function. This then provides an 

expression for Φ𝑠𝑐(𝐫) as an integral of a scattering amplitude function over all 

scattering angles, where the scattering amplitude function is itself a function of the field 

and its surface normal derivative along the entire boundary, and weighted by the 

specific scattering angle considered. In general care must be taken when numerically 

evaluating the Hankel function directly (or by using built-in functions) in the far field 

due to issues with numerical instability [267]. In the BEM scattering model used in this 

thesis, for far-field calculations, an asymptotic expression for large arguments is used 

for the Hankel function, while the built-in Hankel function in MATLAB is used for 

near-field calculations. 

4.3 Methodology 

To verify the BEM model, several comparisons were made. The model had already 

been tested for simple surfaces, such as a flat and a low-amplitude sinusoidal grating 

(PV ≪ 𝜆 for peak-to-valley surface amplitude PV and illumination wavelength 𝜆), and 

the results compared against those obtained from Fourier optics [192,245], giving good 

agreement. To compare the BEM model against an exact reference, near-field scatter 

for a transmissive cylinder was calculated and compared against that predicted by Mie 

scattering theory, which is an exact solution of Maxwell’s equations for spheres and 

cylinders [268,269]. Experimental verification was also performed, comparing the 

model against scatterometer measurement of a higher amplitude sinusoidal grating 

(PV > 10𝜆), for which Fourier optics modelling would not be valid. Results from the 

BEM model for this surface were therefore also compared against a KA-based model. 

Finally, results from the BEM model and KA-based model were compared for a wide 

range of sinusoidal gratings with different surface wavelengths, and their region of 

agreement investigated. 

4.3.1 Scatterometer measurement method 

As the BEM model is a 2D model, a sinusoidal grating was measured. The grating used 

was produced by Rubert & Co Ltd and was produced using nickel electroforming, with 

a nominal amplitude of 9.5 µm and a nominal wavelength of 135 µm (i.e., a maximum 

slope angle of ~23.9°). Using a stylus profile instrument, an equivalent grating was 
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measured and several profiles along the direction of sinusoidal variation were collected. 

From this data, a curve fitting the profile to a sine function gives a measured peak-to-

mean amplitude of 10.05 µm (i.e. PV of 20.1 µm) and surface wavelength of 134.8 µm 

(a maximum slope angle of ~25.1°). This surface geometry is shown in Figure 4.2.  

 

Figure 4.2. Illustration of the surface geometry of the measured sinusoidal 

grating. Not to scale, as the height of the grating has been exaggerated. 

The bidirectional reflectance distribution function (BRDF) from this grating was 

measured by collaborator Hamidreza Aryan with a high-accuracy angular scatterometer 

at the University of North Carolina at Charlotte (UNCC), named CASI [270,271]. A 

block diagram of the scatterometer is shown in Figure 4.3. More information on BRDF 

can, for example, be found in [272]. BRDF measurement of the grating using the CASI 

scatterometer was made over a range of angles spanning a semicircle centred on the 

point of sample illumination. The general geometry of BRDF measurement is shown in 

Figure 4.4. The semi-circular scanning path was chosen to lie on the plane of incidence, 

i.e., the plane in which both the grating’s surface normal and the incident illumination’s 

propagation vector lies. Since this incident propagation vector can be freely chosen, the 

plane of incidence can be aligned so that its normal is parallel to the grating’s ruling 

direction. The incident illumination was a p-polarised (i.e. transverse magnetic (TM) 

polarisation) beam produced by a laser source (𝜆 = 632.8 nm) which illuminates the 

grating at an angle of incidence of 5° from the grating’s surface normal. The 

illumination’s beam diameter on the surface was approximately 1.5 mm, having been 

reduced from 6 mm by application of an illumination aperture.  
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Figure 4.3. Overall block diagram for the CASI scatterometer. Reproduced 

from [270] with permission from author Dr John Stover and publisher 

SPIE. 

 

Figure 4.4. Geometry of BRDF measurement. Incident illumination with a 

fixed irradiance is applied with angles 𝜃i, 𝜙i to a surface, and the radiance 

of the resulting scatter is measured at angles 𝜃r and 𝜙r, where 𝜃 and 𝜙 are 

the zenith and azimuth angle respectively. The BRDF has units of inverse 

steradians, where steradians are a unit of solid angle. In general, the BRDF 

is a four-dimensional function of 𝜃i, 𝜙i, 𝜃r, and 𝜙r. In this work, only an 

arc along 𝜃r is measured for constant 𝜃i and 𝜙i = 𝜙r = 0. Note here that 

the surface normal is aligned with the 𝑧 axis of the optical geometry. 

A scan of BRDF values along this semi-circular path was taken from -95° to 85° with 

the 0° position of the data set in the instrument to be the “specular region” as part of the 

pre-measurement alignment procedure. This specific measurement path was chosen 

under the assumption that the illumination was located at −10° and the normal of the 

surface’s mean plane at −5°, and therefore the specular region (centred at 0°) includes 
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the angles close to the angle at which light would be primarily reflected if the surface 

were perfectly smooth. Illumination with normal incidence to the surface mean plane 

could not be used as the placement of the detector would obscure the source of 

illumination during the necessary alignment procedure, which was why an incidence 

angle of 5° was used.  

Measurements of the BRDF were taken in steps of 0.478° across the semicircle, where 

the goniometric component of the CASI has a lateral resolution of 0.001° (0.01 mm 

linear) [270]. A fixed collection aperture of 12.525 mm was used across the range, 

except for the specular region. Around this region, the measurements were taken using 

smaller apertures (4.846 mm and 1.640 mm) and using smaller angular steps (steps of 

0.185°, 0.063° and 0.013°), likely following a default configuration optimised for 

surfaces that strongly scatter in the specular direction. The smaller aperture was likely 

used in this region due to the much larger signal strength expected. However, as this 

data is filtered out, only the fixed collection aperture and default angular step used 

outside the specular region are relevant. 

To compare the BRDF to an angular scattered intensity distribution (ASD) produced 

by a model, a cosine correction must be applied to the BRDF, as described in [272]. 

The cosine correction to the BRDF allows easier examination of the ratio between the 

scattered light power per unit solid angle and the incident power. As the incident power 

and the detector’s aperture are fixed for all angles considered in the comparison, the 

definitions of the cosine corrected BRDF and the ASD only differ by a fixed constant 

amount, allowing for meaningful comparison. Note that the intensity ordinate has been 

normalised for this comparison to avoid considering these scale factor differences; in 

this work, the priority was comparing how the shape of the distribution of the ASD 

varies compared to the cosine corrected BRDF. 

4.3.2 Comparison with BEM modelling 

The ASD from the BEM computational model was obtained, matching where possible 

the experiment and experimental grating’s specification for the modelled surface. We 

used a virtual sinusoidal grating with the previously measured amplitude and 

wavelength (10.05 µm, 134.8 µm); plane wave illumination with wavelength 𝜆 = 

633 nm and p-polarisation was used at an incident angle of 5°; the surface is treated as 

having the electromagnetic boundary conditions of an ideal conductor; and the input 
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beam was chosen to be a plane wave of infinite extent. While the final ASD is shown 

later in section 4.4.2, it is useful in explaining the method taken to present some 

preliminary results here, shown Figure 4.5. In Figure 4.5, the 0° position is the direction 

of the mean plane’s surface normal, and the incident illumination arrives at the +5° 

position. Note that the asymmetry of the result comes from the incident angle of +5°; 

the intensity peaks at roughly +45° and −55° can be predicted using geometrical optics 

for this angle of incidence. 

The total length of the illuminated grating was 1.4828 mm (eleven surface 

wavelengths), chosen to match CASI’s beam diameter of 1.5 mm. Control points along 

this surface are chosen automatically, ensuring the surface is sufficiently sampled to 

produce accurate scattering results: the distance between control points was set to be a 

maximum of 𝜆 5⁄ = 127 nm apart. The scattering problem is solved computationally, 

and the far-field field strength calculated across 50,000 uniformly distributed angles 

between −80° and +80° (an angular step size of 0.0032°). This high angular sampling 

easily guarantees that even the thin intensity peaks will be well represented; each fine 

peak in Figure 4.5 on average being made up of twelve points.  

 

Figure 4.5. Simulated far-field scattered intensity due to illumination of a 

sinusoidal grating (peak-to-mean amplitude: 10.05 µm, surface 

wavelength: 134.8 µm) with 𝜆 = 633 nm p-polarised light incident at 5° 

from the surface normal 

This ASD model data must also be filtered for effective comparison with experimental 

scatterometer measurement data, as the measured data represents the scatter collected 

at each angular position over a small range of angles that are simultaneously collected 
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by the aperture of the sensor. Therefore, convolution of the ASD data with an aperture 

function is performed. The 12.525 µm aperture corresponds to a ~1.2° angular “width”, 

however a simple rectangular convolution kernel of this width resulted in a noisy output 

due to the unphysical hard cut-off. By additionally considering that the detector will 

not equally collect light across its aperture to its sensor, a combination of a rectangular 

function of width 0.9° with a Gaussian function with standard deviation of 0.2° was 

chosen as a convolution kernel, shown in Figure 4.6. Since the intensity ordinate of the 

ASD will be normalised, the scale of this aperture convolution kernel is not considered. 

The result of the convolution is shown in Figure 4.7. 

 

Figure 4.6. Convolution function (black line) obtained by convolution of a 

rectangular function of width 0.9° (blue dashed line) with a Gaussian 

function with standard deviation of 0.2° (red dashed line). This function is 

applied to the simulated ASD when it is compared with experimental data. 
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Figure 4.7. Result of convolution of the ASD calculated using BEM 

4.3.3 Model comparison for a range of sinusoids 

Because the aforementioned ideal sinusoidal grating is not expected to produce multiple 

scattering, the results from the rigorous BEM model for scatter from this grating can 

also be compared to those from a KA-based (i.e. non-rigorous) model, where agreement 

between the two is expected for this specific surface geometry, providing evidence of 

the BEM model’s validity. The comparisons made for this surface geometry are 

discussed in section 4.4.2. However, it is interesting to investigate for which surface 

slopes the expected agreement would begin to fail, i.e., when the KA no longer holds. 

While this does not verify that the BEM model provides accurate scatter for this 

domain, a disagreement between the KA and the BEM model where the KA is expected 

to fail is nonetheless expected, given that multiple scattering will begin to contribute to 

the scatter more significantly in this region. Comparisons are made between the models 

using a sinusoidal grating similar to that used for Figure 4.5, except here the nominal 

surface parameters are used, with a total surface length of 810 µm (six surface 

wavelengths), and illuminated with normal incidence light. While the surface peak 

amplitude is held constant at 9.5 µm, the surface period is varied from 135 µm down to 

11 µm in steps of 1 µm. The results are shown in section 4.4.3, with select examples 

and an overview of the entire range presented. 
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4.4 Results & Discussion 

4.4.1 Comparison to Mie scattering 

The results of the comparison between the BEM model and the Mie scattering theory 

are shown in Figure 4.8. Here the illumination was a p-polarised plane wave with 

wavelength of 0.5 µm travelling along the z-direction towards positive z, for a dielectric 

cylinder of radius 0.5 µm, and the refractive index of the medium outside and inside 

the cylinder was 1.0 and 1.5 respectively. 

 

Figure 4.8. Magnitude of the scattered field and total field for the BEM 

model and the Mie solution for a homogenous cylinder. 

No significant differences were seen between the results from the BEM model and the 

Mie theory. Away from the surface boundary, the maximum difference between the 

results in the plots in Figure 4.8 were approximately 200 times smaller than the 

maximum field magnitude inside the cylinder, and outside the cylinder the maximum 

difference is approximately 2000 times smaller than the maximum field magnitude. 

Along the surface boundary there are some artefacts present in the results from the BEM 

model that differ more significantly from the Mie scattering theory, that occur due to 

the BEM model having to discretely sample the cylinder. As the number of samples for 
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this cylinder boundary increases, the presence and magnitude of these artefacts 

decreases. 

This overall agreement provides strong evidence that the BEM model can accurately 

predict scatter and do so beyond the linear regime, given that Mie scattering theory is a 

direct solution of Maxwell’s equations and the relatively high curvature of the 

cylindrical surface. 

4.4.2 Comparison to scatterometer 

The measurement as reported by the CASI instrument is shown in Figure 4.9. 

Negligible values of BRDF at high angles are removed from the data to allow for easier 

viewing of the data, and a small number of points with extreme BRDF values around 

−70° were removed as outliers. The two gaps in BRDF values around −10° and 0° are 

caused respectively by the receiver obscuring the illumination, for which no 

measurements were taken, and in the defined specular region, where the data is filtered 

out due to the use of different apertures and angular steps.  

 

Figure 4.9. Measurement of the BRDF (in units of inverse steradians) 

produced by the CASI scatterometer at UNCC. The axis Angle has values 

reported by the instrument, as described in section 4.3.1. 

The measurement that produced the data in Figure 4.9 was taken with the assumption 

that, as the illumination was at −10° and the surface normal at −5°, the specular region 

was therefore at 0°; i.e., illumination with an incident angle of −5° from the surface 

normal was used. This choice is reiterated by the measurement data being collected 
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from −95° to 85°, i.e., placing the centre of the measurement data range at −5°, where 

the surface normal is believed to be, collecting an equal amount of scatter from either 

side of the semicircle. However, this measurement configuration should not produce 

peaks at −70° and 30°, and this misconfiguration issue in the data and metadata 

provided by UNCC had to first be investigated. 

CASI misconfiguration 

Under geometrical optics, scatter of light from the chosen sinusoidal grating for an 

illumination incident angle of −5° from the surface normal was considered. The scatter 

from the regions of the grating with the steepest slopes should produce scatter at angles 

of −45.1° and 55.1° from the surface normal, and intuitively scatter is expected to be 

strong in these regions. In the horizontal axis of Figure 4.9, where the origin is aligned 

with the supposed specular region, these peaks would be located at the −50.1° and 50.1° 

positions respectively. This result does not match the data shown in Figure 4.9, with 

effectively no scatter measured at 50°.  

For the same measurement configuration, both the BEM model and KA-based model 

were used to produce scatter, and after filtering the scatter compared to the experimental 

CASI data. The results from the two models were almost identical to each other, so only 

results from the BEM model are shown in Figure 4.10. The location of the two peaks 

in intensity are located at approximately −45° and 55°, matching the values obtained 

from geometrical optics. This strongly suggests some of the information about the CASI 

data is incorrect. 
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Figure 4.10. Comparison of BEM scatter data (after convolution with an 

aperture kernel function) against CASI measurement data, under the 

assumed measurement configuration. Note that in this figure the CASI data 

is shifted by 5°, so that here 0° represents the supposed location of the 

surface normal for both sets of data.  

While the data shown in Figure 4.9 has been filtered, before this filtering was applied 

the data had both non-zero values and had multiple changes in sample spacing (and 

potentially aperture) around 0°; in contrast, no data was collected at all from around 

−10°. This strongly suggests that the instrument was configured expecting the specular 

region to be located at 0° due to incident illumination located at −10°, incident at an 

angle of −5° from the surface normal. The full measurement data range of −95° to 85° 

also supports this conclusion. It would be difficult to mistake the location of the incident 

illumination when setting up the instrument, and it is also unlikely that the incident 

angle of the illumination from the surface normal is significantly different from the 

stated 5° incidence from the surface normal. 

Therefore, the case where the instrument was configured backwards was considered, 

with the incident illumination still located at −10° (as seen in Figure 4.9) but the surface 

normal instead located at −15°, i.e., the direction of incident illumination is flipped, 

with an incident angle of +5° rather than −5°. In this case, the specular region would be 

at −20°. When the horizontal axis is shifted by +20° so that this specular reflection is 

located at 0°, the two peaks in the data are located at −50° and 50°; this agrees with the 

expected result under geometrical optics. This result, alongside good agreement with 

the BEM and KA method modelling results using this measurement configuration 
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(shown in section 4.4.3), is the basis for the decision to consider this flipped 

configuration as the correct illumination configuration. Except for Figure 4.10, this 

configuration has already been used for the modelled results of the sinusoidal grating 

presented so far, to reduce the confusion caused by presenting incorrectly configured 

modelling data. 

Comparison of CASI and BEM 

Figure 4.11 shows the cosine corrected BRDF (i.e. the angle-resolved scatter) as 

measured by CASI, compared to the ASD obtained from our computational model after 

convolution with an aperture function. Under the correct measurement configuration, 

the CASI data’s surface normal is located at −15° in Figure 4.9, and so the CASI data 

is shifted by +15° before being included in Figure 4.11 so that the surface normal is 

placed at 0°. 

 

Figure 4.11. The cosine corrected BRDF as measured by CASI, compared 

to the ASD obtained from our BEM computational model (after 

convolution with an aperture function).  

Figure 4.11 shows close agreement between our BEM simulation and the experimental 

measurement: the mean absolute difference between the two sets of data is 0.22 AU, 

equivalent to 3% of the peak intensity. In particular, the agreement is good at the 

retrograde (positive) angles along the lobes of varying intensity. However, a finer 

angular sampling step size around this region would have improved the clarity of the 

comparison and reduced the aliasing effects present around each peak. The closely 
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matching gap between the two intensity peaks, and the predicted shift of the CASI data 

by +15° correctly aligning the two datasets without additional fine-tuning, both provide 

additional evidence for model verification. Some of the differences between the shapes 

of the intensity curves are believed to be caused by the noise produced by reducing the 

beam width with a pinhole to 1.5 mm, since some scattered light from the edges of the 

pinhole could be seen on the sample. Additionally, it appears that a small systematic 

increase in intensity has occurred during the CASI measurement for the negative 

angles; the cause of which is unclear. Differences originating from the simulation could 

include simulating a perfect grating rather than the “real” grating (in terms of surface 

smoothness, PV and period), the differences between the 2D surface model and the 3D 

real grating, the hardware-limited resolution limits of our model, and other model 

approximations such as treating the illumination as a p-polarised plane wave. 

4.4.3 Survey of agreement with KA method 

Figure 4.12 shows the scatter produced by the KA-based method and the BEM model 

for a sinusoidal grating using the same conditions as used for Figure 4.5, except here 

nominal surface values and normal incidence light is used, and a surface length of 

810 µm (six surface wavelengths) considered, i.e. a specific case of that described in 

section 4.3.3. 
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Figure 4.12. ASD produced using (top) the KA-based method, (middle) 

using the BEM model, and (bottom) the difference between these results. 

The ASD is produced from scatter from a perfect sinusoidal grating with 

135 µm surface wavelength and 9.5 µm amplitude illuminated with normal 

incidence polarised plane wave illumination. Note the vertical axis scale for 

the difference plot is 100 times smaller than the two plots above it. 

The two methods give almost identical results. Note that the slight asymmetry here 

occurs due to the choice of the initial phase of the sinusoidal grating (+𝜋) and low 

number of integer surface wavelengths, such that the resulting asymmetry of the surface 

produces a visible asymmetry in the far-field ASD. However, since both the BEM and 

KA-based models take as input the same biased surface, the comparison between the 

ASDs produced is valid. 

As the virtual sinusoidal grating’s wavelength (or period/pitch) (𝑑) is decreased from 

135 µm while retaining the peak-to-mean amplitude (ℎ) of 9.5 µm (with 0.633 µm 

wavelength illumination (𝜆)), the two models give results in close agreement until 

around 𝑑 = 76 µm, corresponding to ℎ 𝑑⁄ = 0.125 and 𝑑 𝜆⁄ ≈ 213. Surface 

wavelengths shorter than this cause the ASDs of the BEM method and KA-based 

method to rapidly diverge, corresponding to surface geometries whose scattering 

distribution for normal incident light would, under geometrical optics, produce multiple 

reflections and, therefore, no longer be sufficiently characterised by the KA. This is 
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illustrated in Figure 4.13. This condition is equivalent to requiring the local radius of 

curvature to be much larger than the wavelength of light for the KA to hold, as discussed 

in section 2.4.2. Interestingly, this result shows similarities to that given in [198], which 

discusses the boundaries to the regions of validity of a KA-based model for 

monochromatic scattering from a sinusoidal grating. The paper shows that the KA 

begins to fail when ℎ 𝑑⁄  exceeds 0.13 for any incident angle and for any optical 

wavelength, and that this specific limit is related to the occurrence of multiple reflection 

under geometrical optics; the approximation can fail for lower values of ℎ 𝑑⁄  in reality, 

and is reduced both for non-normal angles or incidence and at longer illumination 

wavelengths relative to the surface wavelength. 

 

Figure 4.13. Geometrical optics reflections from a sinusoidal grating with 

surface period 𝑑 = 76 µm and peak-to-mean amplitude ℎ = 9.5 µm, 

illuminated at normal incidence. 

The following figures (Figure 4.14, Figure 4.15, and Figure 4.16) display comparisons 

between the two models at selected surface wavelengths; note that for each figure the 

plots share the same y-axis scale for that figure. The divergence is shown across the 

entire range more abstractly in Figure 4.17. 
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Figure 4.14. ASD for a perfect sinewave for surface wavelength of 90 µm 

and amplitude of 9.5 µm, (top) using a KA-based method, (middle) using 

the BEM model, and (bottom) the difference between these results. 

 

Figure 4.15. ASD for a perfect sinewave for surface wavelength of 65 µm 

and amplitude of 9.5 µm, (top) using a KA-based method, (middle) using 

the BEM model, and (bottom) the difference between these results. Note 

the change in the scale of the y-axis of the difference plot. 
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Figure 4.16. ASD for a perfect sinewave for surface wavelength of 45 µm 

and amplitude of 9.5 µm, (top) using a KA-based method, (middle) using 

the BEM model, and (bottom) the difference between these results. Note 

the change in the scale of the y-axis of the difference plot. 

 

Figure 4.17. Differences between the KA-based linear model and the BEM 

rigorous model for a sinusoidal grating with amplitude 9.5 µm and 

0.633 µm wavelength illumination for a range of different surface 

wavelengths (left). The same data is shown using maximum surface 

inclination as the horizontal axis for an alternative viewpoint (right). 

4.5 Conclusion and discussion 

The agreement of the results presented in section 4.4 provides evidence that the BEM 

model can produce accurate scattering results. While there was some confusion related 

to the alignment of the experimental set-up and data (discussed in detail in section 
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4.4.2), this was ultimately resolved, providing agreement between the BEM model and 

experiment. Comparisons with a KA-based linear model also gives good agreement for 

the chosen sinusoidal function, and the agreement with Mie scattering theory supports 

the BEM model’s capabilities for more complex surfaces. However, the approach taken 

is worth discussing. 

Naturally, the comparison work was limited by the sinusoidal grating used. A grating 

was chosen due to the BEM model being limited to only 2D surfaces, i.e., limited to 

surfaces completely described only by a set of (x, z) coordinates. A sinusoidal grating 

was chosen due to its simplicity, the wide range of existing scattering literature that 

involves them, and the ease of obtaining a suitable sinusoidal grating for measurement. 

In some scattering theories, the sinusoidal is also fundamental, in the sense that an 

arbitrary surface (with no undercuts) can be made up of a combination of sinusoids, and 

the resulting scattering from the arbitrary surface is closely connected to the 

combination of the scattering from the surface’s decomposition into different 

wavelength sinusoidal gratings.  

While the sinusoidal grating chosen had high amplitude relative to the wavelength of 

illumination used, the surface wavelength used was also large such that the surface was 

not too steep, so that a KA-based model would be expected to accurately calculate 

scatter for the surface. This was carried out to improve the ability of this work to verify 

the BEM model through comparison to a more readily understood method, for a surface 

that was, effectively, simpler to model. However, this choice of simpler surface does 

mean that this work does not strongly verify the model’s capability to handle multiple 

scattering, besides the comparison to the Mie solution for a cylinder. Obtaining 

experimental sinusoidal gratings that were known to produce multiple scattering was 

difficult and was ultimately avoided, especially given that this work relied on 

collaborators at UNCC, who made the experimental scatterometry measurements also 

having access to the same surface. Even if such a surface could be measured, the ability 

to rely on a simple reference model to compare to in addition to experimental data was 

valuable to minimise experimental mistakes, such as the misalignment problem 

discussed.  

A comparison to another rigorous model, one that is already established and can be 

used as a reference, is difficult to do for several reasons. First, understanding a different 
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rigorous model enough to trust its theoretical foundation is naturally difficult, compared 

to a simple KA-based method, as such methods must necessarily be complex. For this 

reason, comparison to another numeric rigorous model is also less convincing, 

compared to comparison to exact analytical solutions or to experimental measurement. 

Due to the large amount of effort in creating implementations of rigorous approaches, 

much existing software in the literature is also inaccessible due to being proprietary, 

bespoke or commercial. For example, some early attempts to compare the BEM model 

to a commercial FEM model were made, specifically JCMsuite from JCMwave GmbH. 

However, access was provided only to results of the FEM model, where virtual surfaces 

were sent by email to the author of the model and scatter data sent back. Due to 

problems with ensuring the same surface and illumination conditions were modelled, 

and disagreements with the model’s author about the direction of the work and the 

contents of the associated publications, the FEM comparison work had to be discarded.  

As previously discussed, the scatterometer used was not configured correctly, which 

caused some confusion. Other parts of the experimental work could have also been 

improved. The high precision of the goniometric component of the scatterometer 

(angular resolution of 0.001°) was unfortunately not used effectively; instead, the 

majority of the data was collected with an angular spacing of 0.478°. This led to aliasing 

problems in the data. As the sinusoidal grating was not expected to scatter specularly 

strongly, the choice to change the aperture and angular spacing in the expected specular 

region made this region of the data unsuitable for model comparison. Ideally, a smaller 

aperture and a smaller angular spacing would have been used equally throughout the 

entire semi-circular scan. 

4.6 Summary 

In this chapter, a two-dimensional rigorous boundary elements method (BEM) solution 

to Maxwell’s equations was presented and verified. First, the theory of the model was 

outlined, where the model should be able to accurately predict scattering from any 

surface. To verify this, scattering data from the BEM model was compared to various 

analytical models for different surfaces with good agreement, including an exact 

analytical Mie scattering solution for a cylinder, providing evidence of the BEM 

model’s ability to accurately calculate scatter for surfaces with high surface curvature 

and slopes. The BEM model was also verified by comparison to experiment, comparing 
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the model to measurements of a rough but slowly varying sinusoidal grating by a high 

accuracy scatterometer, resulting in good agreement when differences in the 

scatterometer set-up and the physical modelling are considered. These comparisons 

provide evidence that verify the accuracy of the BEM model, and provide some 

evidence of its capability to accurately predict scatter from complex surfaces, including 

those surfaces that linear models cannot accurately model. Finally, the BEM model was 

compared against a Kirchhoff approximation-based method for the sinusoid geometry 

measured experimentally, providing further agreement, and for a range of different 

sinusoidal grating geometries, to investigate the domain within which the two models 

agree and disagree. 
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Chapter 5: Modelling of CSI 
beyond the linear regime 
In the previous chapter (Chapter 4), a rigorous two-dimensional (2D) boundary element 

method (BEM) model of electromagnetic surface scatter was presented. The BEM 

scattering theory was outlined, and the model was verified for a sinusoidal grating 

through comparison to experiment and to an approximate analytical method, and for a 

cylinder through comparison to an exact analytical solution. In this chapter, a coherence 

scanning interferometry (CSI) model that was developed based on this BEM model is 

presented. This model is intended to be capable of accurately modelling the CSI signal 

for complex surfaces which contain steep surfaces and can produce multiple scattering. 

The BEM-CSI theory is first outlined, where CSI fringes are produced by considering 

the holographic recording and reconstruction of the scattered field produced by the 

BEM model from a range of illumination wavelengths and incident angles. The 

computational implementation of the model is discussed, including the discrete 

sampling of continuous ranges and on the grid interpolation chosen. The BEM-CSI 

model is verified through comparison to experimental CSI measurements of various 

surfaces, and through comparison of results of modelling a vee-groove to those seen in 

the literature, which demonstrates the model’s capability to predict multiple scattering. 

The work in this chapter is based in part on that published in [51] (journal paper), the 

majority of which is based on the work presented earlier at the SPIE: Optical Metrology 

2019 conference [50]. 

5.1 Introduction 

Detailed information about a part’s surface topography is valuable in manufacturing, as 

described in section 1.1. Optical surface topography measurement methods such as CSI 

have traditionally struggled with measurements of surfaces with slopes steeper than the 

specular slope limit, as described in section 2.6. Despite modern improvements in 

instrument technology allowing for an extended range of measurable slopes, the 

reliability of surface topography obtained from these slopes is unknown. However, a 

virtual instrument can be used to improve a user’s understanding of the measurement 

process and investigate the reliability of surface topography data by providing 
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uncertainty evaluation [41], as described in section 1.1 and 1.3. The value of a virtual 

instrument is also discussed elsewhere [186,273,274]. 

A CSI model like that described in [186], which uses the foil model (described in 

section 2.4.2 and 3.2), can be useful for a range of surfaces for which the model is valid 

(given in section 2.4.2). However, a CSI model based on a rigorous optical model would 

be capable of predicting instrument response for a wider range of surfaces, including 

those that are complex and produce significant multiple scattering. The fringe data that 

such surfaces produce are typically not correctly handled by reconstruction methods. 

Reconstruction methods for CSI must rely on an assumed relationship between the 

measured field and the true surface topography, with reconstruction methods typically 

assuming that the phase of the measured field at a point is proportional to the surface 

height at that point. While CSI models based on this simple assumption can still predict 

the main features of an interference signal [101,275], and reconstruction methods that 

assume this are effective [87], this approximation only truly holds for sufficiently 

smooth surfaces (PV ≪ 𝜆 for peak-to-valley amplitude (PV) and illumination 

wavelength (𝜆)). Despite the mitigating effect of a finite spatial frequency bandwidth, 

the effect of multiple scattering and loss of diffraction orders cannot be neglected and 

remains a problem for surfaces that are rough at the optical scale, or when coherent 

features such as vee-grooves or sharp edges are present [49,164]. For such complex 

surfaces, the CSI measurement process is fundamentally non-linear, and consequently 

the linear reconstruction methods cannot reconstruct accurate surface topographies. 

Only an advanced reconstruction method that accounts for these effects could provide 

an accurate surface topography estimate for these surfaces, and such a method must be 

based on a rigorous scattering model. 

Rigorous models for optical scattering typically use numerical methods to solve 

Maxwell’s equations, methods which are discussed in section 2.4.3. To solve the 

scattering problem for arbitrarily complex surfaces efficiently, a rigorous BEM-based 

optical scattering model has been chosen, the details of which are presented in Chapter 

4, including model verification. The BEM scattering method described is formally 

exact, and accounts for surface plasmons, polarisation effects, and structures which 

contain overhangs and other complex re-entrant features. As this BEM model is two-

dimensional (2D), it is restricted to surfaces that only scatter within the plane of 

incidence, i.e. surfaces fully described by lines on the plane of incidence (x-z plane) and 
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considered to infinitely extend along the third dimension (y direction) perpendicular to 

the plane of incidence. Due to limited development time and the increased 

computational demand, a three-dimensional (3D) scattering model was not considered 

here. 

In this chapter, a new way of modelling CSI images by using a BEM-based rigorous 

surface scattering model and synthesising images in the spatial frequency domain 

(k-space) is demonstrated. The model considers the effects of multiple scattering and 

works for surfaces with arbitrary geometries. The fringes produced by the CSI model 

are compared to those measured by a real instrument for a range of surfaces, to verify 

the model, and a vee-groove was also modelled to verify the multiple scattering 

capability. Since the CSI model is limited to 2D but the experimental instrument 

generates 3D image data, qualitative comparison between simulation and experiment is 

provided. Publications using this chapter’s CSI model include [50–52], and this model 

is used in Chapter 6 to investigate scatter from tilted complex surfaces. 

5.2 CSI modelling theory 

To obtain equations that describe the signal synthesis for CSI, the theory of scalar 

scattering of scattering must first be revisited, as described in section 2.5. The far-field 

scattered field that scatters from an illuminated object encodes information about the 

object itself. Back-propagation of this far-field scatter can provide the reconstructed 

scattered field in the vicinity of the instrument’s object plane, which an optical 

instrument effectively images, i.e., providing an expression for the field measured by 

the instrument. This back-propagation provides the reconstructed measured field 

spectrum in k-space.  

The following section describes how this measured field is then demodulated by the 

reflected reference field, and the effect of this demodulation on the field spectrum 

generated in k-space for a specific incident illumination wavevector. From this, an 

expression for the measured fringes for a broadband light source, i.e., from a range of 

different incident angles and illumination wavelengths, can be obtained.  

5.2.1 CSI signal synthesis 

The intensity fringes measured by an interferometer for a single incident reference field 

is given in [88,185,184] by 
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 𝐼(𝐫) = 2ℜ{𝑂(𝐫)}, (5-1) 

where ℜ{⋅} denotes taking the real part, and the fringe field 𝑂(𝐫) is given by 

 𝑂(𝐫) = 𝐸𝑚(𝐫)𝐸𝑟(𝐫)∗. (5-2) 

Here the measured scattered field 𝐸𝑚(𝐫) from the scattering object, for position vector 

𝐫, is demodulated by the conjugate of the reference field 𝐸𝑟(𝐫), where the reference 

field is the field reflected from the reference mirror in a real system. The location of 𝐫 

can be thought of being near to the image plane, or alternatively as corresponding to 

the associated region near the object plane, which an instrument scans through to obtain 

field information. From the arguments presented in section 2.5.2, the scattered field 

from the scattering object measured at the instrument’s sensor can be considered equal 

to the reconstructed scattered field present near to the object, which is why 𝐸𝑚(𝐫) as 

given by Eq. (2-38) and (2-46) has been used in Eq. (5-2) to represent the measured 

scattered field. Note that the expression for coherent demodulation given in Eq. (5-2) 

is the same as that in Eq. (3-23), used in the derivation for the foil model. 

Considering Eq. (5-2) more generally, the fringe field 𝑂(i)(𝐫) for a specific incident 

illumination wavevector 𝐤i, where the reference field is given by a plane wave 

𝐸𝑟
(i)(𝐫) = e𝑖𝐤i⋅𝐫, can be given by 

 𝑂(i)(𝐫) = 𝐸𝑚
(i)(𝐫) e−𝑖𝐤i⋅𝐫, (5-3) 

where 𝐸𝑚
(i)(𝐫) denotes for a specific incident wavevector the resulting reconstructed 

scattered field that can be measured at the image plane, which is generated by the 

scattering object and can be calculated from the far-field scatter produced by the object 

as given by Eq. (2-46). Here it is assumed that the reference field is a perfect reflection 

of the incident field, so that neither the reference surface nor its scatter need to be 

directly considered. For an instrument with optical axis �̂� pointing from the surface 

towards the instrument, with the NA given by 𝐴𝑛, the incident wavevectors allowed 

satisfy the inequality −�̂�i ⋅ �̂� > √1 − 𝐴𝑛
2  (where any vector 𝐯 satisfies 𝐯 = |𝐯|�̂� for 

|�̂�| = 1).  

The total intensity measured from a range of incident illumination wavevectors can then 

be given by 
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 𝐼total(𝐫) = ∑ 𝐼(i)(𝐫)

i

= ∑ 2ℜ{𝑂(i)(𝐫)}

i

, (5-4) 

which can equally be expressed by 

 𝐼total(𝐫) = 2ℜ{𝑂total(𝐫)}, (5-5) 

where 𝑂total(𝐫) is given by 

 𝑂total(𝐫) = ∑ 𝑂(i)(𝐫)

i

 

= ℱ−1
{∑ �̃�

(i)
(𝛏)

i

} ≡ ℱ−1
{�̃�total(𝛏)}, 

(5-6) 

where the tilde denotes taking the Fourier transform such that �̃�
(i)

(𝛏) = ℱ {𝑂(i)(𝐫)}, and 

where the spatial frequency coordinate 𝛏 has been used to denote the spatial frequencies 

of the interferogram. Notably, the summation of intensity values in real space can be 

obtained from the summation of fringe field spectrum values, which are generally 

complex valued. These equations are given in more detail in Appendix B. 

Eq. (5-5) and Eq. (5-6) state that the total fringe intensity can be obtained from 

calculating the summation of the fringe field terms for each incident wavevector in the 

spatial-frequency domain. Returning to Eq. (3-24), the fringe field can be Fourier 

transformed to obtain the fringe field spectrum 

 �̃�(i)(𝛏) = ℱ{𝐸𝑚
(i)(𝐫) e−𝑖𝐤i⋅𝐫}. (5-7) 

Under the Fourier modulation / frequency shifting property given by 

 ℱ{𝑔(𝑥)} = �̃�(𝜉) 

ℱ{𝑔(𝑥) e−𝑖𝑘i𝑥} = �̃�(𝜉 + 𝑘i), 
(5-8) 

for any arbitrary function 𝑔(𝑥), the Fourier transform in Eq. (5-7) can be written as 

 �̃�(i)(𝛏) = �̃�𝑚
(i)(𝛏 + 𝐤i). (5-9) 

Expressing the measured scattered field spectrum �̃�𝑚
(i)

 in terms of the source spectrum 

�̃�(i) or in terms of scattering potential 𝑓′ using Eq. (2-43) gives 
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�̃�(i)(𝛏) = −

𝑖

8𝜋2𝑘0
�̃�(i)(𝛏 + 𝐤i)𝛿(|𝛏 + 𝐤i| − 𝑘0) (5-10) 

 
�̃�(i)(𝛏) =

𝑖

2𝜋𝑘0
𝑓′(𝛏 + 𝐤i, 𝐤i)𝛿(|𝛏 + 𝐤i| − 𝑘0), (5-11) 

where naturally the wavevector 𝐤 in Eq. (2-43) has been replaced by 𝛏 + 𝐤i. 

These two expressions show that �̃�(i)(𝛏) is non-zero only where |𝛏 + 𝐤i| = 𝑘0, i.e., 

non-zero values are present only on a shell in 𝛏-space with radius 𝑘0, centred at 𝛏 =

−𝐤i. From Eq. (2-45), it can be seen that �̃�(i)(𝐤) only has values on a shell in k-space 

where 𝐤 = 𝐤s = 𝑘0𝐬s, where 𝐤s is the observation wavevector of the far-field scattered 

field. Therefore, by considering only the values of 𝛏 that meet the equality 𝛏 = 𝐤s − 𝐤i, 

Eq. (2-45) or Eq. (2-46) can be combined with Eq. (5-10) or Eq. (5-9) respectively to 

provide �̃�(i)(𝐤s − 𝐤i) in terms of far-field scatter 𝐸𝑠(𝑟𝑠𝐬s) or scattering amplitude 

𝑓′(𝐤s, 𝐤i), given by 

 
�̃�(i)(𝐤s − 𝐤i) =

𝑖𝑟𝑠

2𝜋𝑘0
𝑒−𝑖𝑘0𝑟𝑠𝐸𝑠

(i) (𝑟𝑠

𝐤s

𝑘0
), (5-12) 

 
�̃�(i)(𝐤s − 𝐤i) =

𝑖

2𝜋𝑘0
𝑓′(𝐤s, 𝐤i). (5-13) 

Note that while these expressions appear to be in terms of constant wavenumber 𝑘0, 

they also hold for treating 𝑘0 as a variable, so long as |𝐤s| = |𝐤i| = 𝑘0 for any choice 

of 𝐤i. Also note that in general, the observation vector is also limited by the NA and 

must similarly satisfy the inequality �̂�s ⋅ �̂� > √1 − 𝐴𝑛
2  .  

The expression given in Eq. (5-12) is already enough to explain the approach taken in 

this chapter to synthesise the CSI signal from far-field scatter, with the geometry 

visualised later in Figure 5.2. However, it is useful to obtain an explicit expression for 

the total fringe field �̃�total(𝛏) as given by Eq. (5-6), and therefore an expression for 

𝐼total(𝐫). Considering the unrestricted coordinate 𝛏 using Eq. (5-6) and Eq. (5-10), the 

expression  

 
�̃�total(𝛏) = −

𝑖

8𝜋2𝑘0
∑ �̃�(i)(𝛏 + 𝐤i)𝛿(|𝛏 + 𝐤i| − 𝑘0),

i

 (5-14) 

can be obtained. When including a limiting NA, this can be written as 
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�̃�total(𝛏) = −

𝑖

8𝜋2𝑘0
∑ �̃�(i)(𝛏 + 𝐤i)�̃�NA(𝛏 + 𝐤i),

i

 (5-15) 

where a transfer function �̃�NA(𝐤) has been defined by 

 �̃�NA(𝐤) = 𝛿(|𝐤| − 𝑘0)𝐻 (�̂� ⋅ �̂� − √1 − 𝐴𝑛
2  ). (5-16) 

Unsurprisingly, the term that is summed in Eq. (5-15) only has non-zero values when 

�̃�NA(𝛏 + 𝐤i) ≠ 0, which for a valid 𝐤i fully determines the values of 𝛏 where the term 

is non-zero. Therefore, neither a transfer function for the illumination nor an explicit 

summation of the observation values are needed for the expression; the former is 

implied by the summation over i, and the latter embodied in the expression for �̃�(i)(𝛏) 

(which includes �̃�NA(𝛏 + 𝐤i)).  

For a broadband illumination source such as a white-light LED, multiple wavelengths 

are present. The normalised power spectrum density 𝑆(𝑘0) of the illumination source 

can be included in Eq. (5-15), giving 

 
�̃�total(𝛏) = −

𝑖

8𝜋2
∫

𝑆(𝑘0)

𝑘0

∞

0

�̃�mono(𝛏; 𝑘0) d𝑘0, (5-17) 

where �̃�mono(𝛏; 𝑘0) is given by one of either of: 

 �̃�mono(𝛏; 𝑘0) = ∑ �̃�(i)(𝛏 + 𝐤i; 𝑘0)�̃�NA(𝛏 + 𝐤i; 𝑘0),

i

 (5-18) 

�̃�mono(𝛏; 𝑘0) = −4𝜋𝑟𝑠𝑒−𝑖𝑘0𝑟𝑠 ⋅ ∑ 𝐸𝑠
(i) (𝑟𝑠

𝛏 + 𝐤i 

|𝛏 + 𝐤i|
) �̃�NA(𝛏 + 𝐤i; 𝑘0).

i

 (5-19) 

From the combination of Eq. (5-5), Eq. (5-17), and Eq. (5-19), a complete expression 

for the fringes measured by a broadband NA limited CSI instrument in terms of far-

field scattered field is obtained. 

5.3 Implementation 

The procedure that allows a BEM-based CSI model to generate fringe signal data for 

surfaces can be broken into several steps, which are illustrated in Figure 3.1.  
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Figure 5.1. Flowchart describing the operation of the CSI model. In 

practice, the fields are summed together iteratively, rather than only once 

all plane waves have been considered. 

The choice of model parameters and their limitations are described in section 5.3.1, and 

a brief overview on generation of BEM scatter is given in section 5.3.2. The method 

used to calculate CSI signal from the BEM scatter through addition in spatial frequency 

space is described in section 5.3.3, the implementation of which requires discrete 

sampling of multiple quantities and interpolation onto a rectangular grid, discussed in 

section 5.3.4 and 5.3.5.  

5.3.1 Choice of inputs 

A surface’s coordinates along the lateral axis x and the optical axis z can be generated 

by an analytical function or numerically specified. Naturally, the surface described by 

these coordinates defines the boundary between two homogeneous mediums of 

different refractive indices, and for each medium, the complex refractive index must be 

specified. Next, the optical parameters, such as the NA of the lens, are chosen, 

providing the range of angles that the incident illumination can take and the acceptance 

angle for filtering of the scattered field. The polarisation of illumination is selected, 

between either the transverse electric (TE) or transverse magnetic (TM) polarisations 
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(i.e. s- or p-polarisations). The illumination’s broadband spectrum can be defined by a 

Gaussian distribution with a given mean wavelength and full width at half maximum 

(FWHM). For each component of the illumination, the illuminating beam applied to the 

surface is modelled as either a Gaussian beam or a plane wave. In the case of a Gaussian 

beam, the diameter of the beam waist is set to be half the lateral width of the surface, 

where the lateral width of the surface is the width of the surface’s projection onto the 

horizontal (x) axis. 

5.3.2 BEM for surface scattering 

Once the surface, optics and illumination have been defined, the broadband spectrum 

and the angles of illumination are sampled, and for each possible pairing of wavelength 

and incident angle, the surface field values are found using the BEM method described 

in Chapter 4, which provides the total field and its surface normal derivative along the 

surface. Details on the BEM model chosen can be found in sections 4.1 and 4.2. Details 

on the sampling is given in section 5.3.4. From these surface “source” fields, the 

scattered far-field at any point for each pairing can be found (e.g., Eq. (4-13)). As 

mentioned in section 4.3.2, for these far-field scatter calculations to be accurate, the 

surface must be resampled equidistantly before the surface field values are found, with 

the resampling distance typically set to 𝜆/5 or smaller for illumination wavelength 𝜆. 

To ensure that the same surface coordinates are used for each wavelength of light 

sampled from the spectrum, the smallest wavelength sampled is chosen to determine 

the resampling distance.  

5.3.3 CSI signal synthesis in 𝛏-space 

To calculate the values of �̃�total(𝛏) for the plane wave components of the illumination 

𝐤i, the demodulation can be carried out in the spatial frequency domain through a 

process similar to a convolution of the far-field scatter with the conjugate of the 

reference field, as described in section 5.2. For each 𝐤i, the scattered field generated at 

a scattering/observation wavevector 𝐤s is iteratively added to �̃�total(𝛏) at the position 

𝛏 = 𝐤s − 𝐤i to any existing value at that position, and this is repeated for each 

wavelength of the light source, weighted by its spectral density. The fringe field 

spectrum �̃�total(𝛏) is obtained through the superposition of the signal for each 
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wavelength and angle of incidence, and the CSI fringe image in real-space is then given 

by the real part of 𝑂total(𝐫) = ℱ−1{�̃�total(𝛏)}. 

For a single incidence wavevector 𝐤i, the contribution to �̃�total(𝛏) is given by �̃�(i)(𝛏), 

given in Eq. (5-9) in terms of the shifted measured field spectrum �̃�𝑚
(i)(𝛏 + 𝐤i). The 

reference field, a reflection of the incident field, is the source of the +𝐤i term. The 

values of �̃�𝑚
(i)(𝐤s) for 𝐤s = 𝑘0𝐬s can themselves be expressed in terms of the (real-

space) far-field scatter from the illuminated object 𝐸𝑠
(i)(𝑟𝑠𝐬s) taken at the same angle, 

as given in Eq. (5-19). The values of the measured field spectrum �̃�𝑚
(i)(𝐤s) are only 

defined on a spherical shell in k-space with a radius of 𝑘0 = 2𝜋/𝜆0 (or 1/𝜆0 if 𝐤s was 

a linear wavevector) [276], and likewise the spectrum of the reference field measured 

is also a spherical shell in k-space with the same radius. Both spherical shells are 

truncated due to the finite NA, and here it is assumed that the same NA limits both the 

illumination and observation angles available [88]. As shown in Figure 5.2, for a 

monochromatic source the two truncated spherical shells appear to be convolved, due 

to the demodulation process, i.e., the reflected reference field shifts the measured field 

values to higher spatial frequencies. Specifically, once a value for �̃�𝑚
(i)(𝐤s) is 

calculated, it can be shifted in k-space by −𝐤i to obtain its contribution to �̃�(𝛏). The 

process is not a convolution, as the scattered field (and therefore the measured field 

spectrum) depends on the value of the incident wavevector 𝐤i. Therefore, for each 𝐤i 

considered, a new set of scattered field values must be calculated along an arc of 

observation vectors 𝐤s, and each arc shifted accordingly in k-space by −𝐤i to be placed 

into 𝛏-space. For this reason, different coloured arcs are used in Figure 5.2, indicating 

that each arc in general has different field values. 
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Figure 5.2. Diagram of construction of signal in 𝛏-space at 𝐤s − 𝐤i using 

𝐤s and 𝐤i. a) Construction of fringe field spectrum �̃�(𝛏) is achieved by 

adding the computed scattered field values for each incident wavevector 𝐤i 

across a range of scattering/observation wavevectors 𝐤s at the positions 

𝐤s − 𝐤i in 𝛏-space. The field values have been multiplied by the appropriate 

phase and scale factors and weighted by the illumination spectral density. 

b) For a specific wavenumber 𝑘0, the non-zero field values of �̃�(𝛏) for a 

limited set of 𝐤i are shown as coloured arcs, with each colour associated 

with a different choice of 𝐤i. The value of �̃�(𝛏) under the black arc is zero; 

the black arc is used to illustrate how the values of the far-field scattered 

field are first located along the black arc before they are shifted by −𝐤i. 

For each possible NA-limited pairing of 𝐤i and 𝐤s (where |𝐤i| = |𝐤s| = 𝑘0), the far-

field scattered field from the scatterer must first be found using the BEM model, and 

using Eq. (2-46) the corresponding values of the measured field spectrum �̃�𝑚
(i)(𝐤s) for 

each calculated far-field scatter 𝐸𝑠
(i)(𝑟𝑠𝐬s) can be found. This is also shown in 

Eq. (5-19), and consists primarily of removing the phase contribution of the far-field 

propagation by distance 𝑟𝑠. No apodization function is used to weight the resulting 

scatter for each choice of 𝐤i and 𝐤s, corresponding to the case of constant angular 

variation (i.e., uniform angular apodization) [185,190]. However, an apodization 

function could be readily introduced if desired. The other scale factors present in 

Eq. (5-19) are omitted in the implementation of the model, as there is no direct facility 

in the BEM model to control the intensity of the illumination used. It is also not easy to 

obtain the power of the illumination used for the real instrument, nor the power 

measured by the CCD sensor when imaging the fringes. Due to this, accounting for the 

scale factors that are constant for all �̃�(𝐤) is unnecessary, and only qualitative 

comparison with experiment is desired.  

To calculate the fringe spectrum �̃�(𝛏) for broadband illumination, the process to obtain 

�̃�mono(𝛏; 𝑘0) as given in Eq. (5-19) is performed for each wavelength of the 
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illumination present. These are then weighted by the term 𝑆(𝑘0) 𝑘0⁄  in the integral in 

Eq. (5-17), where 𝑆(𝑘0) is the normalised power spectrum density of the illumination 

source. However, in the implemented model a different weighting factor 𝑆′(𝑘0) is used 

instead of 𝑆(𝑘0) 𝑘0⁄ . This is done for two reasons.  

First, the spectral density used in CSI instruments is typically close to a Gaussian 

distribution, with a mean and standard deviation such that 𝑎 ⋅ 𝑆(𝑘0) 𝑘0⁄ ≈ 𝑆(𝑘0), 

where 𝑎 is a scalar constant normalisation factor defined as 𝑆max = 𝑆(𝑎) where 𝑆max is 

the maximum of 𝑆(𝑘0). In this way, it is equally reasonable to treat 𝑆(𝑘0) 𝑘0⁄  as a 

Gaussian distribution in terms of 𝑘0, such that 𝑆′(𝑘0) = 𝑎 ⋅ 𝑆(𝑘0) 𝑘0⁄  can be modelled 

as a Gaussian.  

 

Figure 5.3. Spectral density 𝑆(𝑘0) and weighting factor 𝑆(𝑘0) 𝑘0⁄  for a 

Gaussian distributed 𝑆(𝑘0) with a mean of 1.786 μm-1 and FWHM of 

0.351 μm–1 (corresponding approximately to a mean of 0.56 μm and a 

FWHM of 0.11 μm for an approximately equivalent Gaussian distributed 

spectral density as a function of wavelength). Note that 𝑘0 here is in units 

of cycles μm-1, i.e., 𝑘0 is a linear wavenumber, in contrast to using radians 

μm-1 for an angular wavenumber. 

Second, the spectral density of a real CSI instrument is, for this work, obtained through 

measurement of a low-NA measurement of a flat, where the fringe spectrum is obtained 

by Fourier transform of the measured fringe data. The flat surface acts as a mirror so 

that only specular scatter occurs. As the fringe spectrum �̃�(𝛏) only has non-zero values 
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when 𝛏 = 𝐤s − 𝐤i, the specular scatter from the flat will exclusively lie in 𝛏-space along 

the 𝜉𝑧 axis (where 𝜉𝑥 = 0). The use of a low NA reduces the effect on the fringe 

spectrum of specular scatter produced by larger angles of incidence, approximately 

providing fringes that would be obtained if illumination was only normally incident. 

This ensures that the values of fringe spectrum along the 𝜉𝑧 axis are determined 

predominantly by the illumination spectral density. Therefore, a vertical slice along the 

𝜉𝑧 axis of 𝛏-space is taken from this spectrum to obtain a distribution relating to the 

spectral density of the illumination source. While the scale of the domain of this 

distribution is doubled compared to the illumination wavenumber (𝜉𝑧 = 2𝑘0), it is the 

case that this distribution represents the total weighting term that the illumination 

introduces i.e., it represents 𝑆(𝑘0) 𝑘0⁄  in Eq. (5-17), which already includes the 1 𝑘0⁄  

factor. It is therefore preferable in the implementation of the CSI model to not include 

a 1 𝑘0⁄  term, and to handle a Gaussian modelled or experimentally measured weighting 

function 𝑆′(𝑘0) alone. 

5.3.4 Discrete sampling considerations 

While the descriptions for fringe synthesis in section 5.3.3 are accurate, it is necessary 

in a computational model for the various summations to be discretely sampled (or 

discretely generated). The sampling considerations related to BEM, such as the sample 

spacing of the surface geometry, have been discussed previously in Chapter 4. Those 

associated with the CSI fringe generation specifically are the illumination spectrum 

sampling and the angular sampling of the NA limited range of angles for the incident 

and observation vectors. In each case, if the sampling is too sparse to capture and 

characterise the underlying variation of the quantity being sampled, then the model 

cannot accurately model the resulting fringe signal. The sampling of the resulting real-

space fringe signal generated must also be chosen, which can be chosen to match that 

of an instrument’s imaged pixel size (i.e., spatial sampling per pixel) and scanning step.  

Sampling of incident and observation angles are performed with equidistant angular 

spacing, as previously stated. The number of samples per degree (sample density) used 

for the incident and observation angles in general differ. The minimum number of 

observation angles required is determined in part by the surface’s total width, as this 

determines the width of a scattered diffraction order; i.e. the Fourier transform of a 

rectangular function provides a sinc function whose width scales inversely with the 
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rectangular function’s width [277]. For this condition, a sample density of 

approximately 3 samples per degree for a 25 μm wide surface appears appropriate, 

shown in Figure 5.4.  

 

Figure 5.4. Intensity of angular scatter from monochromatic (λ=0.57 μm) 

normal incidence illumination of a flat surface with length a) 25 μm, and b) 

50 μm. Samples where scatter values are calculated at are shown with a red 

x. The angular sample rate is a) 3 samples per degree, b) 6 samples per 

degree, automatically increased for the longer surface to proportionally 

account for the decreased peak width. 

The minimum number of incident angles required is harder to generally determine, as 

it is determined by the variation of the relative distribution of surface scatter as the 

incident angle is varied for a specific surface. For some surfaces, very little variation of 

the distribution of scatter occurs (relative to the incidence direction), while for others 

more significant variation can occur, sometimes over only a small range of incident 

angles. Methods such as the foil model avoid this problem by design, by assuming a 

degree of independence between the object and the optical geometry, which allows the 

scattering amplitude to depend only on the object function and on 𝐤s − 𝐤i, with no 

dependence on 𝐤i explicitly. This method is accurate for surfaces that are valid under 

the KA, which is satisfied sufficiently by many real-world surfaces. This means that for 

many surfaces, the minimum incident angle sampling density required is not dependent 

on the surface chosen and is related only on the need to sufficiently represent the 

extended support of the fringe spectrum �̃�(𝛏) that occurs when the sample is 

illuminated by multiple incident wavevectors at different angles. This extended support 
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is especially significant when, due to a limited NA and a tilted surface, the majority of 

captured scatter originates from incident angles close to the acceptance angle. A sample 

density of approximately 0.6 samples per degree appears appropriate in practice for 

various surfaces, i.e., around 41 incident angles for an NA of 0.55.  

Sampling of the illumination spectral density at a finite number of wavelengths must 

also be performed. The minimum sample density required is one that sufficiently 

represents the distribution of the spectral density and can sufficiently capture the change 

in the fringe field �̃�(𝛏) as 𝑘0 varies. In principle this sample density can be quite small 

for simple surfaces such as a flat; for the spectral density shown in Figure 5.3, taking 

11 samples is sufficient (spacing of 0.08 cycles μm-1), a choice commonly used in the 

foil model. However, for a range of illuminating angles for more complex or tilted 

surfaces, greater care must be taken, as monochromatic fringe spectrum values 

�̃�mono(𝛏; 𝑘0) are a result of the summation of field values from many different 

combinations of 𝐤i and 𝐤s where each field value is in general dependent on the specific 

𝐤i used. Ensuring that adjacent values of �̃�mono(𝛏; 𝑘0) from different 𝑘0 are sufficiently 

close enough to each other to successfully capture the underlying variation can require 

larger illumination spectrum sampling densities. In Chapter 6, for a similar spectral 

density range to that in Figure 5.3, 61 samples were taken (a spacing of 

~0.015 cycles μm-1). This is shown in Figure 5.5. When a measured illumination 

spectrum is used in the model, the spectral density is interpolated at the chosen sampling 

density.  
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Figure 5.5. Modelled Gaussian spectral density with a mean wavenumber 

of 1.754 μm-1 and FWHM of 0.246 μm–1 (corresponding approximately to 

a mean wavelength of 0.57 μm and a FWHM of 0.08 μm), sampled at a) 11 

positions, and b) 61 positions. Note that 𝑘0 here is in units of cycles μm-1, 

i.e., 𝑘0 is a linear wavenumber. 

5.3.5 Coordinate grid interpolation 

After choosing the sampling of various continuous parameters across their ranges, an 

additional sampling issue must be resolved. The fringes in the model are generated over 

an x-z Cartesian plane, where the z-axis is the optical axis of the instrument. The fringe 

intensity values over this plane are discretely found over a rectangular grid of 

coordinates that span the plane. The values are stored in a 2D numerical array with the 

rows and columns of the array associated with the corresponding coordinate grid. The 

spacing of coordinates along the grid in the lateral (x) and axial (z) directions are 

constant, but the specific spacing in each direction in general differs. When imitating a 

real instrument, these values are the spatial sampling per pixel (accounting for 

magnification) and the scan step between images, respectively. To obtain the fringe 

field in real space 𝑂(𝑥, 𝑧) over this grid, the fringe field spectrum �̃�(𝜉𝑥, 𝜉𝑧) must first 

be found over a corresponding rectangular grid of coordinates in the Fourier domain. 

An inverse Fourier transform is performed numerically by use of the Fast Fourier 

Transform (FFT) algorithm, a specific discrete Fourier transform (DFT) algorithm 

included in MATLAB, to obtain 𝑂(𝑥, 𝑧) from �̃�(𝜉𝑥, 𝜉𝑧). An example grid is shown in 

Figure 5.6.  
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Figure 5.6. Discrete 2D rectangular grid in a) real space and b) 𝛏-space, 

with constant spacing a) d𝑥 and d𝑧, and b) d𝜉𝑥 and d𝜉𝑧. For a real space 

axis 𝑥 containing 𝑁𝑥 discrete points, the corresponding frequency space 

axis under the FFT also has 𝑁𝑥 discrete points with spacing of d𝜉𝑥 =
1

(𝑁𝑥⋅d𝑥)
 

and a total extent of 𝑁𝑥d𝜉𝑥 =
1

d𝑥
. Points range from 𝜉𝑥 = −

1

2d𝑥
+

d𝜉𝑥

2
 to 

𝜉𝑥 =
1

2d𝑥
−

d𝜉𝑥

2
 when 𝑁𝑥 is odd, and from 𝜉𝑥 = −

1

2d𝑥
 to 𝜉𝑥 =

1

2d𝑥
− d𝜉𝑥 

when 𝑁𝑥 is even. Corresponding expressions hold for the 𝑧 and 𝜉𝑧 axes. 

The fringe spectrum �̃�(𝜉𝑥, 𝜉𝑧) over a rectangular grid in the Fourier domain must be 

found to obtain real-space fringes. However, the fringe spectrum is formed by the 

combination of field values found at the locations where 𝛏 = 𝐤s − 𝐤i, for a discrete set 

of 𝐤s and 𝐤i considered. Naturally, any vector 𝐤s − 𝐤i formed from the discrete set of 

available 𝐤s and 𝐤i generally will not lie on any of the 𝛏-space rectangular grid 

coordinates, as shown in Figure 5.7. In the case of tomography where only 𝐤s is 

considered, the fringe spectrum could first be described in polar coordinates, and 

resampling to Cartesian coordinates using an established method could then be 

performed [278]. However, because of the effect of the 𝐤i term introduced by the 

demodulating reference field, an equivalent method here would first require creating 

many shifted polar coordinate grids for each 𝐤i (including for each 𝑘0), where only the 

values along the arc 𝐤s (relative to a shifted origin of −𝐤i) are non-zero. Such an 

approach is not straightforward or especially efficient and may be difficult to implement 

due to the sparseness of each set of polar coordinates. 
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Figure 5.7. Locations of demodulated scatter in 𝛏-space at 𝛏 = 𝐤s − 𝐤i 

given by red cross marks for 141 equally spaced observation wavevectors 

𝐤s (for a NA of 0.40), for monochromatic (λ=0.50 μm) normal incidence 

illumination (𝐤i = −𝑘0𝜉𝑧). a) Shows the location of scatter relative to the 

origin where arrows for 𝐤s and −𝐤i have been added for clarity, and where 

grid lines are tied to axes ticks. In b) and c) the locations of scatter are made 

more visible and the grid lines represent a rectangular grid of discrete 

coordinates (𝜉𝑥 , 𝜉𝑧) at which values for �̃�(𝜉𝑥, 𝜉𝑧) are found from the nearby 

scatter. 

Here instead the contribution to �̃�(𝜉𝑥, 𝜉𝑧) for a specific pair of 𝐤s and 𝐤i is found by 

multiplying the generated fringe field value by a function similar to a blurring 

convolution kernel. The kernel function used is a product of Gaussian functions with 

compact support and is evaluated in the region of 𝛏 = 𝐤s − 𝐤i at coordinates near to 

𝐤s − 𝐤i that lie on the rectangular grid. A similar approach using sinc functions can be 

seen in section 4.4 of [279]. A one-dimensional (1D) simplification of the method used 

here is shown in Figure 5.8.  
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Figure 5.8. Diagram displaying a 1D simplification of the 2D blurring 

method. The magnitudes of two adjacent scattered fields are denoted by red 

cross marks, where the magnitudes here were arbitrarily chosen to be 1 AU 

(left) and 0.9 AU (right). The discrete coordinates of 𝜉𝑥 at which field 

values are to be found are shown by equally spaced vertical grey lines. Each 

scattered field contributes its field value to nearby discrete coordinates 

using a Gaussian “blurring” function centred on the scattered field, where 

the field magnitude of the contribution at each discrete coordinate is 

determined by the Gaussian function at that coordinate. For example, at 

𝜉𝑥 = 0 the field value found is the sum of the two scattered fields with 

magnitudes modified by the Gaussian function, given by the blue and 

burgundy circle marks at 𝜉𝑥 = 0 (0.77 AU and 0.32 AU respectively). As 

the addition is complex, the resulting field value may have a smaller 

magnitude than the sum of the constituent field magnitudes. 

The kernel function fulfils two purposes. The first purpose is to try to ensure that the 

field value at 𝐤s − 𝐤i and adjacent field values found nearby are combined in such a 

way so that the field values at rectangular grid coordinates between the adjacent field 

values are correctly interpolated. For this purpose, the blurring extent should be related 

to spacing between the values of 𝐤s − 𝐤i and how they are distributed (for a discrete 

set of 𝐤s and 𝐤i). The distribution of 𝐤s − 𝐤i values for a chosen number of 𝐤s and 𝐤i 

for the monochromatic case is shown in Figure 5.9. The blurring should in general scale 

inversely with the number of samples taken and should also be applied differently along 

different directions. This is shown by the difference in spacing between dots of the same 

colour and of similar but different colours in Figure 5.9b) to d). For example, reducing 

the number of observation angles sampled for 𝐤s spreads out the field values found 

across the NA-limited arc; these values need to be blurred more to compensate and this 

blurring should be made along the tangent to the arc.  
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Figure 5.9. Locations of demodulated scatter in 𝛏-space at 𝛏 = 𝐤s − 𝐤i 

given by coloured dots, for monochromatic illumination (λ=0.50 μm) over 

a range of incident angles limited by a NA of 0.40, where 141 𝐤s and 29 

equally spaced incident wavevectors 𝐤i have been used. A different colour 

is used for each arc of scatter produced by a different 𝐤i, as in Figure 5.2, 

and here similar values of 𝐤i use similar colours to indicate the structure of 

the demodulated scatter’s distribution. In a) the location of scatter relative 

to the origin is shown, grid lines extend from the axes’ ticks, and arrows for 

𝐤s and −𝐤i have been added for clarity. The black dotted line added 

represents the NA-limited shell of available 𝐤s before being shifted by −𝐤i. 

In b), c), and d) the gaps between locations of scatter are made more visible. 

In c) and d) the same field of view at different positions is displayed, and 

the grid lines represent a rectangular grid of discrete coordinates (𝜉𝑥, 𝜉𝑧) as 

in Figure 5.7b) and c). 

The second purpose is to ensure that the field values at each specific 𝐤s − 𝐤i, which 

may be at any position within the passband of the instrument, are added to the 

rectangular grid of coordinates in the vicinity of 𝐤s − 𝐤i. For this purpose, the blurring 

extent should at a minimum be half the size of a rectangular grid “pixel”, where the 

width and height of a “pixel” is the spacing between adjacent grid values along each 

dimension, otherwise the calculated fringe values that are not near to any single grid 

coordinate will not provide much contribution to any coordinate of �̃�(𝜉𝑥 , 𝜉𝑧). This can 

equally be considered a constraint on the maximum size of the 𝛏-space grid pixels 

chosen for a specific blurring extent and sample density used. 

The primary purpose of the kernel is the first purpose: correctly combining adjacent 

and overlapping calculated field values such that the field values provided at the 

rectangular coordinates chosen are accurate. When the rectangular grid of coordinates 

is fine relative to the sampling of 𝐤s − 𝐤i chosen (i.e., the angular spacing and spectrum 
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spacing chosen), the kernel provides interpolation via blurring to ensure smooth 

variation of the fringe field values in regions between samples of 𝐤s − 𝐤i, for example 

filling in the gaps in Figure 5.9c). The values of �̃�(𝜉𝑥, 𝜉𝑧) at these in-between grid 

points would otherwise be zero. However, the second purpose cannot be neglected. 

When the grid is both coarse relative to the sampling of 𝐤s − 𝐤i and to the kernel extent, 

those field values near a specific grid coordinate would contribute almost exclusively 

to �̃�(𝜉𝑥, 𝜉𝑧) at just that single coordinate, while values not near any specific coordinate 

contribute almost nothing to �̃�(𝜉𝑥, 𝜉𝑧) at any coordinate. To resolve this, either the 

blurring must be increased (while the sampling of 𝐤s − 𝐤i is simultaneously 

decreased), or the rectangular grid made finer, so that the blurring extent used is larger 

than half the size of a rectangular grid “pixel”.  

Blurring modes 

In the model, there are two modes implemented for the blurring kernel: Cartesian 

blurring and polar blurring. The first, used for the work presented in this chapter, blurs 

separately along the 𝜉𝑥 and 𝜉𝑧 directions, labelled as 𝑘𝑥 and 𝑘𝑧 in Figure 5.13 onwards 

for simplicity. This blurring along 𝜉𝑥 scales inversely with the observation angle sample 

density, and the blurring along 𝜉𝑧 scales inversely with the illumination spectrum 

sample density. Such an approach is simple and fast to implement and benefits from 

the two blurring directions being orthogonal. It also benefits when the diffraction orders 

in the fringe spectrum are parallel with 𝜉𝑧, which occurs when the mean plane of the 

modelled surface is parallel with 𝜉𝑥 (and therefore 𝑥). For surfaces that primarily scatter 

in and near to the specular direction, and at incident and observation angles from the 

normal that are relatively small (|𝜃| < ~30°), most of the fringe spectrum is close to 

the line 𝜉𝑥 = 0, such that blurring along 𝜉𝑥 and 𝜉𝑧 provides accurate results. Even in 

the case of Figure 5.15, where the scatter is spread out wider than in Figure 5.17, the 

blurring chosen remains suitable and any issues can be mitigated by increasing the 

number of angular and illumination samples taken. This blurring mode is shown in in 

Figure 5.10 in black. 

The second blurring mode, used for the work presented in Chapter 6, blurs along the 

directions parallel and perpendicular to 𝐤s, i.e., providing radial and tangential blurring 

at each point on the observation arc. This mode in general provides more accurate 

results for any surface but is slightly slower computationally and was more complicated 
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to implement. This mode is also shown in Figure 5.10 in red. Using this mode instead 

of the Cartesian blurring is necessary for titled surfaces, especially those titled at angles 

larger than 30°. This is because the fringe spectrum of a titled surface is approximately 

equal to the spectrum of the untilted surface rotated around 𝛏 = 𝟎 by the same angle, 

so that for a periodic surface, the diffraction orders are also rotated. Performing blurring 

along 𝜉𝑧 that scales inversely with the illumination sample density fails when the 

diffraction orders no longer lie parallel with 𝜉𝑧, and instead leads to gaps in the 

diffraction orders, shown in Figure 5.11, which in turn lead to aliasing effects in the 

real-space fringes. The Cartesian blurring can only succeed for titled surfaces when the 

spectrum sampling is significantly increased, and the blurring extent reduced to a value 

that specifically suits the tilt chosen. In contrast, the polar blurring approach can use a 

constant number of samples and constant blurring parameters when untilted and tilted 

at any angle and give accurate results with similar appearances (besides the rotation of 

the diffraction orders).  

 

Figure 5.10. Locations of demodulated scatter in 𝛏-space at 𝛏 = 𝐤s − 𝐤i 

given by coloured dots, for polychromatic illumination (from λ=0.415 μm 

to λ=0.628 μm) over a range of incident angles limited by a NA of 0.40, 

where 141 𝐤s, 29 𝐤i, and 21 illumination wavenumbers 𝑘0 = |𝐤i| = |𝐤s| 
have been used. A different marker colour is used for different 

wavenumbers. In a) the region covered by 𝛏 = 𝐤s − 𝐤i for the samples of 

𝐤s, 𝐤i, and 𝑘0 is shown, with a small black box denoting the region shown 

in b). In b), the FWHM in two directions are given for the Cartesian blurring 

in black and for the polar blurring in red, with the grid lines denoting the 

discrete coordinates (𝜉𝑥, 𝜉𝑧) at which values are interpolated at.  
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Figure 5.11. Magnitude of the CSI fringe spectrum for a sinusoidal surface 

(PV of 1.4 μm, surface wavelength of 14.8 μm) tilted at 30° , for an NA of 

0.4, for the foil model (left) and the BEM-CSI model (right), where 

Cartesian blurring with insufficient blurring parameters has been used for 

the BEM-CSI model, degrading the underlying diffraction orders. The 

Cartesian blurring parameters used were sufficient in the untilted case.  

It is possible that the blurring associated with the illumination sampling density should 

strictly be in the direction of 𝛏 = 𝐤s − 𝐤i, rather than in the direction of 𝐤s, as both 𝐤s 

and 𝐤i scale together with the choice of 𝑘0 (i.e. 𝛏 = 𝑘0(�̂�s − 𝐬i)); however, such a 

blurring mode has not yet been implemented. The radial blurring in terms of 𝐤s 

nonetheless appears to be a sufficient substitute to blurring along 𝛏, and benefits from 

always being orthogonal to the tangential blurring of 𝐤s (associated with the 

observation sampling density).  

The scatter most affected by a change between blurring in 𝐤s or 𝛏 is specular scatter 

from large incident angles, found at the bottom of each monochromatic distribution as 

shown in Figure 5.9c). However, in these regions the blurring in 𝐤s is almost exactly 

that needed for blurring associated with the incident angle sampling density chosen, 

i.e., the different 𝐤i considered. This is not explicitly implemented in any blurring mode 

as it is for now not obvious how to obtain an expression for the spacing between sets of 

coordinates for �̃�(𝛏) for two different angles of 𝐤i, or suitably combine the need to blur 

for three parameters (spectrum, observation angle, and incident angle sampling) 

together. In contrast, the regions associated with backscatter, shown in Figure 5.10b), 

are where the largest “gaps” between samples appear and are where the radial blurring 

is most required. In these regions, the direction of 𝛏 and 𝐤s are parallel or almost 

parallel, such that radial blurring along 𝐤s is equivalent to blurring in the direction of 

𝛏. Nevertheless, for any choice of blurring mode, an increase of sampling parameters 

(and computation time) can be used to mitigate the effects of the specific blurring mode 

chosen, so this aspect remains a relatively minor issue.  
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Note that scatter locations for even just monochromatic illumination can at times appear 

to form lines, visible in Figure 5.9b), where each line if extended would intercept 𝛏 =

𝟎. However, this is just a consequence of the arbitrary choice of sampling made, which 

occurs only when the incidence angular spacing is a multiple of the observation angular 

spacing, or partially occurs when the simplest ratio between the two contain integers 

smaller than the number of angular samples made.  

Also note that the symbol k is used instead of 𝜉 for the spatial frequency of the fringes 

from this point onwards in this thesis, as using k for spatial frequencies is a much more 

common notation, and because taking care to distinguish between the spatial 

frequencies of the wave and of the fringes is unnecessary when not comparing the two. 

5.4 Methods and materials 

To verify the BEM-CSI model, the results from the model are compared with those 

from experimental measurements. A range of prismatic surfaces were measured using 

a Zygo Nexview™ NX2 CSI instrument, see Table 3.1. Results for similar surfaces 

from a linear model of CSI can be seen in [74]. In each case, a 10 μm scan along the 

optical axis (z-axis) was performed using a 50× objective lens, which has a NA of 0.55 

(acceptance angle of ~33°), a Sparrow criteria optical resolution of 0.52 μm, a field of 

view (FOV) of (0.174 × 0.174) mm when using the 1.0× zoom lens, and from the 

1000 × 1000 pixel FOV, a spatial sampling of 0.174 μm per pixel. Here the circular 

illumination aperture fills the whole NA of the lens; i.e. the system’s illumination NA 

is equal to the NA of the objective lens. This is confirmed by the experimentally 

measured 3D surface transfer function of the same instrument configuration seen 

in [159]. Due to the design of the objective lens, the polarisation of illumination 

incident on the surface is nominally circular, with a small radial component resulting 

from the high NA of the objective lens. The signal data measured and recorded by the 

instrument, i.e., the intensity measured at each pixel for each scan position, is exported 

as a 3D array of integers. The spatial-frequency domain (k-space) fringe data is then 

obtained through use of the 3D Fourier transform, and a band-pass filter (BPF) applied 

to isolate the high spatial frequency fringe components. A subsequent inverse Fourier 

transform of the filtered signal provides the real-space experimental fringe data without 

low spatial frequency components. 
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Table 5.1 Surfaces measured and modelled for this paper 

Surface type Specific surface 

measured 

Nominal parameters 

Optical flat NPL AFL Measured areal root-mean-square roughness Sq: 1.4 nm 

(Levelling by least-squares mean plane subtraction; S-filter with a 

nesting index of 0.8 μm; L-filter with a nesting index of 80 μm) 

Sinusoidal 

grating 

Rubert 543E Peak-valley amplitude: 0.12 μm 

Surface wavelength: 2.5 μm 

Sinusoidal 

grating 

Rubert 528E Peak-valley amplitude: 1.5 μm 

Surface wavelength: 50 μm 

Step height with 

sharp edge 

NPL ACG-2.1 

XP01 

Step height: 2.1 μm 

Vee-groove N/A (only 

modelled) 

Vee-groove dihedral angle: 70° 

Depth: 10 μm 

The BEM-CSI model is provided with the corresponding curves that specify the real 

surfaces, e.g. a sinusoid for a sinusoidal grating and a horizontal line for an optical flat. 

Each surface in Table 3.1, with the exception of the vee-groove, has a length of 170 μm 

along the lateral direction, i.e. x-direction, matching the FOV of the experiment, and 

the surface geometry was sampled with a spacing of 0.099 μm. 

For modelling with the BEM-CSI model, it was assumed that the light is incident upon 

a perfect conductor and can be treated as linear TE polarisation illumination. The 

spectral density as a function of wavenumber is modelled as a Gaussian distribution 

with a mean of 1.72 μm–1, and FWHM of 0.24 μm–1 (corresponding to a mean of 

0.58 μm and a FWHM of 0.08 μm) and approximately matching the corresponding 

parameters of the instrument. The real-space fringe signal 𝑂(𝐫) is determined at 

coordinates with lateral and axial spacing that match that of the real instrument’s signal 

data, i.e. using a lateral spacing of 0.174 μm and an axial spacing of 0.071 μm, with 

1000 lateral points and 205 axial points. This corresponds to a k-space grid spacing of 

0.0058 μm–1 and 0.0673 μm–1 for the lateral and axial directions respectively. The 

spectrum is sampled 15 times over three standard deviations of the total spectrum (i.e. 

from 1.42 μm–1 to 2.03 μm–1), and the incident angles sampled 18 times over the angles 

within the acceptance angle for the NA. Over the same range of angles, 1113 

observation angles are chosen, at which the far-field scatter is calculated.  

Under these conditions, the CSI signal simulation took around 45 minutes for each 

surface on a PC with Intel® Xeon® E5-1620 v4 @ 3.50 GHz CPU and 64 GB RAM. 
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However, for these surfaces, a reduction to 9 incident angles halves this time with very 

little effect on the generated fringes. Additionally, it is expected that more 

computationally efficient approaches, e.g., parallelisation, would reduce this time 

considerably. 

These comparisons are intended to be qualitative, not quantitative, due to the limitations 

of the BEM-based CSI model in matching the 3D nature of the experimental 

measurement, e.g., the circular aperture of the instrument. Due to the commercial nature 

of the system, adjusting this aperture to a slit was not possible. Therefore, to allow for 

qualitative comparison this difference is mitigated through the measurement of grating 

or prismatic surfaces, due to their strong scattering characteristics into the plane in 

which BEM is limited to.  

Note that the definition used for spatial frequency 𝑘𝑥 (along the x-axis), as seen in 

Figure 5.13 and all subsequent k-space figures, is not the angular frequency definition, 

but the linear frequency definition (an unscaled reciprocal of space). This is done as the 

grating pitch can more easily be connected to the k-space diffraction patterns produced. 

5.5 Results 

5.5.1 Optical flat 

First the experimental results when measuring an optical flat are compared with results 

from the model, as seen in Figure 5.12 and Figure 5.13. Qualitative agreement is 

achieved, showing that the model generates fringes that match the experimental results. 

The coherence envelope of the fringes slightly differs between the experimental results 

and those from the CSI model, which is expected due to the 2D limitation of the BEM 

modelling, and because the instrument’s source spectrum is not exactly Gaussian. 

Differences in spectral distribution causing the coherence envelope to differ are shown 

in Fig. 4 of [74], where a linear 3D CSI model based on the KA and CSI experimental 

measurement data are compared. It is well-known that a narrower spectrum will lead to 

a broader coherence envelope. 
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Figure 5.12. Cross-sectional CSI signal of an optical flat, a) experimental 

result after BPF filtering, c) corresponding simulation of fringe, where 

along the blue dotted lines the profiles b) and d) have been taken from 

measurement and simulation respectively. The fringe intensity has been 

normalised to lie within ±1 in each case. 

 

Figure 5.13. Cross section of the magnitude of the k-space CSI signal from 

measurement of an optical flat, a) experimental result and b) corresponding 

simulation. The k-space signal magnitude has been normalised to +1 in each 

case. 

5.5.2 Sinusoidal gratings 

In Figure 5.14 and Figure 5.15, a high spatial frequency, low amplitude sinusoidal 

grating is used, as specified in Table 3.1. As expected from elementary Fourier 

optics [182,192,245], the diffraction orders produced are spaced relatively far apart due 

to the surface wavelength of 2.54 μm. Qualitative agreement between experiment and 
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simulation is again seen, with the signals in both the real space and k-space appearing 

to match. However, the amplitudes of the higher diffraction orders, relative to the 

zeroth-order, are weaker in the experimental measurement. This is partly because the 

current BEM algorithm only considers in-plane illumination, but in the experiment, the 

zeroth-order will have a few contributions from off-axis illumination that increase its 

magnitude, i.e., this effect can be considered as the difference between measuring a 

grating using a spherical lens and a cylindrical lens. In addition, this effect is partially 

caused by the imperfect transfer function of the instrument due to optical aberration and 

apodization due to the reference mirror in its Mirau objective [144,159].  

 

Figure 5.14. Cross-sectional CSI signal of a sinusoidal grating Rubert 

543E, a) experimental result and b) corresponding simulation. Note that the 

fringes were measured a) and generated b) over the same FOV as in Figure 

5.12, but the display window has been shrunk for better visual comparison. 
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Figure 5.15. Cross section of the magnitude of the k-space CSI signal from 

a sinusoidal grating Rubert 543E, a) experimental result and b) 

corresponding simulation.  

In Figure 5.16 and Figure 5.17, comparison is made using a sinusoidal grating with 

higher amplitude and longer wavelength, as specified in Table 3.1. The surface 

wavelength of 50 μm causes the resulting pattern in k-space to be closer together, and 

the increased amplitude gives the more complex pattern seen here. Qualitative 

agreement is again seen for both the real and k-space fringe data.  

 

Figure 5.16. Cross-sectional CSI signal of a sinusoidal grating Rubert 

528E, a) experimental result and b) corresponding simulation. 
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Figure 5.17. Cross section of the magnitude of the k-space CSI signal from 

a sinusoidal grating Rubert 528E, a) experimental result and b) 

corresponding simulation. 

5.5.3 Step height 

The final comparison between the model and experiment uses a step height, as shown 

in Figure 5.18 and Figure 5.19, and as specified in Table 3.1. The experimental results 

and the modelled results in Figure 5.18 a) and b) respectively differ around the step 

itself. This discrepancy likely occurs due to the inherent difference between the CSI 

model, which is restricted to surfaces that only scatter within the plane of incidence, 

and a real 3D measurement; this can in part be seen through examination of the fringes 

after filtering of the out-of-plane k-space signal in Figure 5.18 c).  

This filter was a simple binary mask where only a central slice of the three-dimensional 

Fourier transform of the signal data was taken, and the rest discarded. The data was 

then inverse Fourier transformed, the real part taken, and the central slice displayed as 

the fringe data. This filter does not work exactly as a physical slit aperture (located at 

the back focal plane of the objective lens) but can nonetheless remove the out-of-plane 

scatter of the in-plane illumination, as well as part of the scatter of the out-of-plane 

illumination. Therefore, the filter should moderately improve the comparison.  

Polarisation effects introduced by the instrument’s optical elements, and in particular 

the Mirau interferometric objective [280], are not considered in this CSI model, which 

could also contribute to this difference. In addition to these effects, the tilted fringes 

near the corner and the vertical wall of the modelled step height are probably caused by 
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the double reflection between the two orthogonal surfaces, which are likely less 

pronounced in the experiment because the texture of the vertical wall is higher 

compared to the smooth surface assumed in the simulation. This discrepancy could be 

investigated in future work with a full 3D BEM-based CSI model.  

 

Figure 5.18. Cross-sectional CSI signal of a step height obtained from cross 

grating sample NPL ACG-2.1 XP01, a) experimental result, 

b) corresponding simulation for a step height, assuming a step inclination 

of 90°, and c) experimental result after removal of the out-of-plane k-space 

signal. 
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Figure 5.19. Cross section of the magnitude of the k-space CSI signal from 

a step height found on the cross grating sample, a) experimental result, 

b) corresponding simulation for a step height. 

5.5.4 Vee-groove 

In addition to comparisons to experimental measurements, in Figure 5.20 the model’s 

results of a 10 μm deep vee-groove with 70° dihedral angle are presented, where the 

sampling in wavenumber and incident angle has been increased. The inverted “v” fringe 

pattern seen at the pit of the vee-groove is understood to be virtual images of the two 

vee-groove walls, generated by multiple reflection [175,178]; and the relationship 

(described in [178]) which relates the dihedral angle of the multiple reflection image to 

the vee-groove dihedral angle appears to be satisfied here. The result also visually 

matches that found elsewhere [49]. This result, therefore, presents evidence that the 

model can account for multiple scattering. 
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Figure 5.20. a) Simulated CSI signal in real space for a vee-groove as 

described in Table 3.1. Note that the blue dashed line denotes the geometry 

of the vee-groove modelled. b) The magnitude of the k-space CSI signal. 

5.6 Conclusion and discussion 

The BEM-CSI model was verified through comparison with experimental CSI 

measurements of various surfaces, including two sinusoidal gratings and an optical flat, 

showing agreement. Comparison with a step height showed some agreement, though 

some discrepancies were also present. Verification of the model’s capability to predict 

multiple scattering was performed through comparison of results of modelling a vee-

groove to results seen in the literature, with agreement again seen. Such a model will 

eventually provide opportunities to accurately measure complex surfaces, e.g., through 

iterative improvement of surface topography through the minimisation of the 

differences between measured and modelled CSI images, or to improve accuracy by 

using the model to evaluate uncertainty.  

One of the primary limitations of the model that limits the comparison between the 

model and experimental measurement is the 2D nature of the model, compared to the 

3D nature of the experimental measurement. The use of a cylindrical objective lens 

could have brought the experiment closer to the model, but this substitution was not 

possible, and the usual spherical objective lens was used instead. While a BPF can 

remove off-axis fringe spectrum data prior to comparison, it cannot prevent the surface 

from being illuminated by off-axis illumination in the first place; the 2D BEM model 

can only account for in-plane illumination. While measuring grating surfaces mitigates 

the effect of this on the comparison made, it is inevitable that some differences are still 

present.  
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The use of a 3D optical scattering model would alternatively enable closer agreement 

with the experimental measurement while avoiding the need to only measure grating 

surfaces, however such a model was not readily available initially, and the use of a 3D 

scattering model presents numerous additional challenges in the development of the 

CSI model. Even were these theoretical and programming issues resolved, the 

computational demands and associated hardware requirements of a 3D scattering model 

present a significant practical problem. For example, the 3s boundary source method 

(3sBSM) model is similar to the BEM scattering model in its approach to modelling 

scatter, and is implemented in MATLAB by the same authors [220]. However, for an 

adequately sampled 20 × 20 μm surface (434 × 434 points) illuminated by 

monochromatic illumination from a single direction, the 3sBSM model requires the use 

of a high-performance computer, requiring approximately 420 GB of RAM and taking 

45 minutes to calculate the far-field scatter. In contrast, for a 20 μm wide surface, the 

BEM model obtains surface field values and far-field scatter in less than 1 second on a 

desktop PC, requiring under 0.1 GB of RAM. Producing CSI signal data from a 

scattering model not only requires running the scattering model multiple times (on the 

order of ~1000 times), but also increases RAM requirements, as the complex scattered 

field values must be stored in 3D arrays to preserve their locations in k-space. 

Ideally the capability of the BEM-CSI model to accurately predict multiple scattering 

would have been verified experimentally, while in this chapter the vee-groove 

modelling results are only compared against results in the literature. It was however not 

possible to obtain a vee-groove to measure, and it was also difficult to obtain an 

alternative surface that produced scattering that is distinctly multiple scattering from a 

specific section of the surface. Such a surface would also have to be prismatic and 

simple with mostly smooth surfaces; it is likely a vee-groove is the most suitable 

candidate for this. The ability to model the response of a vee-groove by modelling 

geometrically the multiple reflections that occur is beneficial in confirming any result 

obtained [175]. It was also better to confirm the validity of the model through 

comparison to surfaces which can be readily modelled using other methods and that 

produce intuitive fringe spectra. This does however mean that the sinusoidal surfaces 

modelled are those that the foil model (see Chapter 3) can also model accurately; the 

opportunity to explore the region where the foil model begins to fail to accurately 

predict scatter is therefore missed. 
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Some discrepancies seen are attributed to a difference between the modelled 

illumination spectral density and that used in the instrument. The modelled spectral 

density is in general suitable for predicting the spectral density’s effects on the CSI 

signal obtained, as shown in Figure 2.8. However, in future work including Chapter 6, 

the spectrum used was obtained from a measurement of instrument’s illumination 

spectral density, indirectly obtained from the signal data of a low-NA measurement of 

an optical flat. Other discrepancies can be attributed to the fact that polarisation effects 

introduced by the instrument’s optical elements are not considered in this CSI model, 

and that the illumination of the instrument is treated as TE polarised illumination. The 

effect of approximating the effects of polarisation is lower for lower NAs, but as 

resolving high spatial frequency details of surfaces requires larger NAs, a compromise 

had to be made when choosing an objective NA to measure with here. 

5.7 Summary 

In this chapter, a rigorous model of CSI based on BEM was presented. The model’s 

theory was derived and its implementation details for interpolation in spatial frequency 

space discussed. The model is based on a BEM model which accounts for multiple 

scattering effects, and therefore the BEM-CSI model is a promising approach for 

generating fringes for arbitrarily complex surfaces. Evidence of the model’s validity 

was provided by comparison to experimental measurements from a commercial CSI 

instrument for several surfaces, giving qualitative agreement. Modelling of a vee-

groove was also performed to provide evidence towards the model’s capability to 

account for multiple scattering. This model is used further in Chapter 6. 
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Chapter 6: Measurement 
beyond the specular reflection 
limit with CSI 
In Chapter 5, the theory and implementation of the BEM-CSI model was presented, 

showing that the model can predict fringes caused by multiple scattering, and 

demonstrating qualitative agreement with experimental coherence scanning 

interferometry (CSI) measurement results of sinusoidal gratings. In this chapter, the 

capability of optical surface topography measurement methods for measurement of 

steep and tilted surfaces through modelling using BEM-CSI is investigated. Of 

particular interest is the effect on the interference signal and measured topography when 

tilting the measured object at angles larger than the specular reflection limit (SRL) of 

the instrument, determined by the instrument’s numerical aperture (NA). The results 

presented illustrate the capabilities, limitations, and modelling methods for 

interferometers to measure beyond the SRL.  

The work in this chapter is a modified version of that published in [52] (journal paper), 

and also includes the preliminary results presented earlier at the SPIE: Photonics 

Europe 2020 conference [225]. 

6.1 Introduction 

As discussed in sections 1.1 and 2.2, interferometry for surface topography 

measurement is used across many industries that rely on quality control of parts, 

ranging from machined automotive components to additively manufactured 

parts [37,104,105]. In recent years, technological enhancements to measurement 

sensitivity have extended CSI measurement capabilities to parts having surface slope 

angles that exceed the specular acceptance angle, defined for incoherent microscope 

illumination by 𝜃𝑁𝐴 = sin−1𝐴𝑛, where 𝐴𝑛 is the variable for the NA of the objective. 

This capability is attributed to capturing the weakly-reflected light scattered at high 

scattering angles [35,36]. Reference [225] details the current state of the art and 

potential of high slope measurement with optical instruments, with further information 

detailed in section 2.6. This new practical capability poses a theoretical challenge for 

researchers in an applications area where the need is clear: instrument users need to 
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know under what circumstances measurement results for steeply-sloped surfaces are 

meaningful and have a quantifiable uncertainty. The answer to these questions will be 

highly dependent on the specific part type and measurement configuration, hence the 

need for appropriate physical models. 

First, the capability of a CSI instrument to capture surface information beyond the SRL 

was preliminarily investigated through measurement of both a roughened flat and a 

blazed grating, considering both the form and texture components of the surface 

topography produced. In comparison to reference measurements, such as CSI 

measurements of the surface while untilted and from an atomic force microscopy 

(AFM) instrument, problems seen with the surface texture obtained from measurements 

as a surface is tilted are discussed. Using only a simple monochromatic surface 

scattering boundary element method (BEM) model, some intuition towards the effect 

of tilting a blazed grating is provided, in lieu of the full BEM-CSI model. 

Next, the use of the BEM-CSI model [51] on the same blazed diffraction grating 

oriented at several tilt angles is demonstrated, as an informative example case. This 

object was specifically chosen for further study to represent several aspects of the steep-

slope problem, including re-entrant features, a mixture of brightly-reflecting and 

weakly-scattering surface areas, and a known periodic structure [225]. The BEM-CSI 

model was chosen as it accounts for multiple scattering and other characteristics of 

complex surface topography and can use a point cloud representation of the part 

surface—an essential capability when dealing with re-entrant features. Prior 

publications involving this CSI model include [50,51]. Using the model, several 

characteristics of measurements of a chosen blazed grating are predicted, by gradually 

increasing the tilt angle until the mean plane of the grating exceeds the SRL determined 

by the NA of the objective. These results are also verified experimentally. Together 

these results confirm the capability of CSI for measuring steeply-sloped surfaces while 

clarifying the limitations of the results, leading to greater confidence when using CSI 

to measure surfaces with complex geometries. 
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6.2 Materials and methods 

6.2.1 CSI instrument 

A commercial CSI instrument9 with specifications outlined in Table 6.1 was used for 

the experimental measurements. A detailed description of the working principle of CSI 

can be found in section 2.3 and elsewhere [84,105,110]. The optical process of a CSI 

instrument can also approximately be described using a three-dimensional (3D) surface 

transfer function, as given in section 3.2; more information on this “foil model” 

approach can be found elsewhere [74,119,159,185,247]. A CSI instrument first 

acquires 3D fringe data from a surface by taking images over a scan along the optical 

axis. To this fringe data, a surface reconstruction algorithm is applied, typically taken 

along the history of each pixel, to calculate the surface topography by using the 

coherence envelope and/or fringe phase information. 

Table 6.1. Instrument specification 

Magnification 20× 50× 

NA 0.40 0.55 

Acceptance half-angle from 

arcsin(NA) 

23.6° 33.4° 

Field of view (using 1.0× zoom lens) (0.43 × 0.43) 

mm 

(0.17 × 0.17) 

mm 

Optical resolution (Sparrow criterion) 0.71 µm 0.52 µm 

Spatial sampling 0.43 µm/pixel 0.17 µm/pixel 

Illumination central wavelength ~0.56 µm 

Illumination full width at half 

maximum (FWHM) 

~0.11 µm 

Axial scanning step 0.071 µm 

6.2.2 Test samples 

Roughened flat 

The first surface measured was a randomly roughened metal flat, with an Sq, areal root-

mean-square roughness parameter, of 237 nm evaluated over six regions with standard 

 

9 Zygo Nexview™ NX2 
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deviation of 17 nm. This surface was measured using the 20× lens as specified in Table 

6.1. The surface parameters stated here and in section 6.3.1 are calculated from the 

surface texture, obtained from the measured topography from the following procedure: 

Gaussian S-filter with a nesting index of 2.5 μm; levelling by rotation of least-squares 

mean plane; and Gaussian L-filter with a nesting index of 250 μm.  

Blazed grating 

The second surface measured was a blazed grating (Thorlabs GR13-0305 visible ruled 

reflective diffraction grating) with a groove spatial frequency of 300 lines per 

millimetre. The grating substrate is made of soda lime glass, with an aluminium 

reflective coating. Using a measurement of the sample with an AFM instrument in 

tapping mode, the grating was found to have a pitch of approximately 3.4 µm, and a 

peak-to-valley height (PV) of approximately 0.2 µm, as shown in Figure 6.1; these 

parameters are used for modelling the grating. The AFM instrument used a tip with a 

maximum radius of 12 nm, obtaining topography over a (10 × 10) µm region with 

sample spacing of 26.1 nm, and with a Z sensor noise level of around 30 pm root-mean-

square. 

 

Figure 6.1. The profile of the GR13-0305 blazed grating as measured by 

an AFM instrument. 

A periodic grating was chosen for measurement for several reasons. Such surfaces with 

a single characteristic spatial frequency can be considered as representing one of the 

many spatial frequency components of a more complex surface. The far-field 

scatter/diffraction pattern of a grating can be accurately modelled with a variety of 

methods, and locations of scatter can be predicted analytically. Experimental 

measurement of a sample at different tilt angles is made much easier with a grating due 

to the similarity of the surface across the sample, allowing for tilted measurements to 

be taken from different regions of the sample, rather than requiring finding or creating  
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fiducials visible at any surface tilt angle. The prismatic nature of such surfaces means 

that for light incident perpendicular to the grooves, the scatter outside the plane of 

incidence is negligible. This feature allows the use of a two-dimensional (2D) surface 

scattering model to simulate the far-field scatter pattern without significant loss of 

accuracy. Here, this 2D model corresponds to an 3D optical system with a slit pupil 

such that the observation can only be carried out within the plane of incidence, and the 

illumination is equally limited. 

A blazed grating was specifically considered in this work as the asymmetric profile 

produces asymmetrically distributed scatter patterns. This asymmetry allows inspection 

of the differences in the fringes and topography formed that occur when the surface is 

tilted, for example, by a constant amount but in each direction. As the scatter is 

asymmetric, it is expected that more scatter, and therefore more energy, would be lost 

in one of the two cases. Understanding results produced from such a surface is a 

valuable step towards obtaining and understanding more general results.  

6.2.3 Experimental methods 

Roughened flat 

The roughened flat is measured with the 20× lens (Table 6.1) while tilted by 30°, to 

examine the effect on the surface topography information obtained when the collection 

of the specular scatter is prevented, here for an effectively randomly rough surface. It 

is expected that useful topography information can still be obtained from both the 

surface form (determined by the tilt) and the surface texture.  

Blazed grating 

The blazed grating is measured with the 50× lens (Table 6.1) at different tilt angles, in 

one of two cases shown in Figure 6.2; note that at 0° tilt angle, the L and R cases are 

mirror images of each other. In this way, the L and R cases indirectly represent a 

rotation of the grating in both the positive and negative directions.  
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Figure 6.2. Diagram presenting the two measurement cases used for 

measurement of the blazed grating while tilted at angle 𝜙, where the black 

arrow denotes the blaze direction of the grating. (a) L case: the sample is 

tilted at an angle 𝜙 with downward facing blaze, (b) R case: the grating is 

tilted at an angle 𝜙 with upward facing blaze. 

First, the grating is measured when untilted, and when tilted at 45° in both the L and R 

cases, and the topography obtained, inspected, and compared. 

Following these preliminary results, the grating is then measured in the L and R cases 

at tilt angles between 0° to 50° in increments of 10°, with the fringes (signal data) 

inspected and compared. Estimated topography is then obtained for the tilt angles that 

are beyond the objective lens’s acceptance half-angle. The fringe data obtained by the 

instrument is stored as a 3D numerical array. By using a 3D Fourier transform, the 

fringe spectrum in the spatial frequency domain (k-space) is obtained. The high spatial 

frequency fringe components that are of interest and contribute to surface 

reconstruction are isolated before display through application of a band-pass filter 

(BPF) as described elsewhere [247].  

Note that the surface homogeneity of the grating was confirmed to allow comparison 

of measurements from different regions as though they were taken from the same 

region. Repeat measurements at specific tilts were taken to confirm that the results 

obtained at that tilt were independent of the measurement location. 

6.2.4 Modelling methods 

Monochromatic modelling 

Blazed gratings produce an asymmetric distribution of scatter. Consequently, under the 

Abbe theory of imaging, measurements of the gratings taken at the same absolute tilt 
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but in each direction are expected to produce different topography results. To quantify 

a blazed grating’s scatter distribution, the BEM scattering model, described in section 

4.1 and 4.2, was first used. This 2D BEM model was used to simulate the scattering by 

a blazed grating at different tilt angles when illuminated by a monochromatic plane 

wave at normal incidence. Intensity values are obtained from both s- and p-polarised 

illumination, and the mean of the two taken, to represent the result of unpolarised 

illumination. As previously stated, the model is limited to modelling of surfaces of 

homogenous refractive index with surfaces fully described by surface boundaries that 

lie on the plane of incidence (x-z plane).  

BEM-CSI modelling 

To better model the measurement process, the rigorous BEM-CSI model described in 

detail in Chapter 5 is used to simulate measurements of the blazed grating at different 

tilt angles (described in section 6.2.3) by the CSI instrument (described in section 

6.2.1), using the 50× lens (described in Table 6.1). For illustrative purposes, the 

modelling process is illustrated in Figure 6.3, using a blazed grating surface as input. 

To summarise: in this model, the incident broadband illumination is decomposed into 

a combination of monochromatic Gaussian beams that illuminate the surface at specific 

incident angles. For each choice of illumination wavelength and incident angle, scatter 

is obtained using an algorithm based on a BEM for surface scattering [261], and the 

results of this are combined. Following a basic aberration-free imaging process via back 

propagation of the scatter, while accounting for the limited NA, a CSI fringe image can 

be synthesised [51,185]. See sections 2.5 and 5.2 for the mathematical theory used. 
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Figure 6.3. CSI fringe generation based on a BEM scattering model. (a-e) 

Scattered field due to monochromatic illumination at different angles, with 

the incident direction denoted with a white arrow; (f-j) the magnitude of the 

far-field scatter in k-space for the corresponding incident angles used in (a-

e). (k) The combination of k-space results given in (f-j) but from multiple 

angles and multiple wavelengths, weighted by the spectral density used, 

considered the fringe spectrum. (l) The modelled fringes obtained from the 

real part of the inverse Fourier transform of the fringe spectrum (k). 

This 2D model is limited to consider surface profiles and their scatter in the plane of 

incidence (x-z plane), corresponding to an instrument with a slit pupil. However, the 

experimental measurement uses an instrument with a circular pupil and illuminates the 

surface with a right circular cone of illumination. Therefore, to allow for qualitative 

comparison with experiment, this limitation of the BEM-CSI model is mitigated 

through the measurement of gratings or prismatic surfaces, due to their strong scattering 

characteristics into the plane into which BEM is limited. As the CSI instrument in the 

experiment uses circularly polarised illumination with a small radial component also 

present due to the objective lens’ high NA, both s-polarisation and p-polarisation 

illuminations are considered using the BEM model. The modelling results of the two 

linear polarisations are displayed separately. 

The blazed grating profile described in section 6.2.2 is chosen for modelling, considered 

in both the L and R cases, and across the various tilt angles as described in section 6.2.3. 

The modelled profile, shown in Figure 6.4, combines the surface texture measured by 

an AFM instrument along the longer facet (given in Figure 6.1) with an ideal smooth 
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blazed grating profile. Relative to the axis along which the pitch and surface width is 

measured (x-axis), the longer and shorter facets are inclined at 3.6° and 48.0°, 

respectively. 

 

Figure 6.4. Geometry of the profile used for modelling, where the central 

region of each longer facet has had surface texture added digitally, with the 

texture obtained from an AFM measurement. Note that the data aspect ratio 

of the axes is adjusted for easier display. 

6.3 Results and analysis 

6.3.1 Roughened flat topography 

Despite the 23.6° acceptance angle of the 20× objective lens used, in Figure 6.5(a) and 

(d) the instrument is shown capable of obtaining topography from the measurement of 

the 30° tilted roughened flat, providing form data with surface inclination agreeing 

closely with the chosen tilt. Similar results on CSI instrument capability are given 

in [35,36]. Clearly, even the loss of the specular component of the scatter does not 

prevent useful topography information from being obtained, and that this topography 

information must originate from the non-specular scatter captured.  

Presented in Figure 6.5(b) is the surface texture information obtained from the surface 

while tilted, as per the approach outlined in section 6.2.2. Measurements of this tilted 

surface from six different locations provide a Sq of 246 nm with a standard deviation 

of 34 nm, which is similar to that obtained at 0° tilt (237 ± 17 nm, detailed in section 

6.2.2), and this similarity is shown in Figure 6.5 between plots (b) and (c). However, 

comparison of the surface topography from the same location while at different tilts is 

difficult as it is a random surface, and therefore it cannot be concluded from this result 

alone whether or not the surface texture has been accurately measured. To investigate 

how the loss of scatter affects the measured surface texture, measurement of a grating 

which contains periodic and well-defined surface structure is needed. 
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Figure 6.5. Topography results from a 20× lens of the roughened flat 

(a,b,d,e) when tilted at 30°, and (c, f) when untilted. Shown is the (a) raw 

topography obtained when the surface was tilted, (b) the topography after 

levelling with the least-squares best fit plane, and (c) the raw topography 

obtained when the surface was untilted. Plots (d-f) are the north-south 

profiles taken from plots (a-c) respectively, as marked by the black arrows. 

6.3.2 Blazed grating topography 

Shown in Figure 6.6 are the topography results from the measurement of the blazed 

grating using the 50× lens corresponding to the L case at 0° (L0), the L case at 45° 

(L45), and the R case at 45° (R45), as defined in Figure 6.2. 

 

 

Figure 6.6. Topography results after plane form removal from a CSI 

measurement of a GR13-0305 blazed grating with tilting arrangements of 

(a) L0, (b) L45, and (c) R45, using a 50× lens; corresponding profiles are 

shown below in plots (d-f). These profiles are taken along and in the 

direction of the lines marked by the black arrows. 

These results show that the texture information obtained from the blazed grating is 

influenced significantly by tilting, and the tilting direction chosen. From the 0° results 
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shown in Figure 6.6(a), the grating’s blazed profile is shown, however, the PV heights 

across the profile are approximately 0.12 µm, below the 0.2 µm PV height measured 

by the AFM instrument. This reduction in height is expected and occurs due to the 

spatial frequency transfer characteristics of the CSI instrument [74,88,142,281], with a 

transmission magnitude at 0.3 μm-1 of approximately 70% [159]. Further reductions to 

the transmittance are expected as the instrument will have had some reference mirror 

defocus present while the measurements were taken [119].  

Despite being measurements of the same surface and at the same absolute tilt, the results 

from case L45 and case R45 differ significantly; the topography from case L45 retains 

the overall blazed structure, while case R45 provides significantly less visible structure. 

This difference occurs due to the asymmetry of scatter from the grating. The simulated 

far-field scattering/diffraction of an ideal blazed grating with geometry matching that 

of the GR13-0305 under normally incident monochromatic plane wave illumination of 

wavelength 580 nm (the central wavelength of the CSI system) is shown in Figure 6.7. 

Clearly, more scattered power is collected within the aperture and a high SNR is 

achieved for the L45 case (Figure 6.7(b)) compared to the R45 case (Figure 6.7(c)).  

Although the measurement results in the L45 case retain a blazed grating structure with 

the correct pitch, the PV height of the blazed structure is approximately 0.82 µm, 

around four times larger than the value from the AFM measurement. Clearly, the CSI 

measurement of the L0 case (0° tilt) provides a result that is much closer to the reference 

measurement. This result is consistent with the scattering modelling in Figure 6.7(a) 

where more diffraction orders are captured at a high SNR within the NA limit.  

However, from these results it is not possible to entirely understand why the measured 

grating’s PV height and surface height variation are amplified in cases L45 and R45. It 

is possible that to explain this, a rigorous fully 3D CSI model that considers 

polychromatic incoherent illumination is required, an extension of the 2D rigorous CSI 

model [50]. Such a model could be based on the recently reported boundary source 

method surface scattering model [220]. 
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Figure 6.7. Modelling results for scattered intensity from the blazed grating shown in 

Figure 6.6, for the mean intensity obtained from both s- and p-polarised monochromatic 

illumination of wavelength 580 nm, with tilting arrangement (a) L0, (b) L45, and (c) 

R45. The region between the dashed black lines denotes the ±33.4° acceptance cone for 

the 50× lens (0.55 NA). 

6.3.3 Fringe generation 

The blazed grating in both the L case and the R case are tilted at a range of angles, as 

previously described in section 6.2, and fringes obtained as a result, displayed in Figure 

6.8 and Figure 6.9. On average, less energy is captured as surface tilt angle is 

increased [225], with the R case losing more energy compared to the L case as a 

function of increasing surface tilt angle. To optimise the signal-to-noise ratio for each 

tilt angle in the experimental case, the illumination light level of the CSI instrument 

was adjusted for each measurement. Consequently, meaningful comparison between 

the maximum absolute fringe intensities at different tilt angles is difficult. Therefore, 

the experimental data has been normalised so that the maximum fringe intensity in each 

plot is unity. Conversely, as the illumination in the model remains constant, the 

modelled fringes at all tilt angles can be normalised by the same factor, chosen so that 

the maximum fringe intensity from the 0° tilt angle case is unity. The scale covered by 

the greyscale colourmap in each plot shrinks to ensure fringes remain visible, visually 

obscuring the overall reduction in fringe contrast with increasing tilt angle but 

emphasising the relative variation in fringe contrast at each tilt angle.  

Modelled results using s-polarised and p-polarised illumination are shown in both 

Figure 6.8 and Figure 6.9. The results from both polarisation states provide similar 

qualitative agreement with the experimental result. Visually, the p-polarisation result 

provides a slightly better agreement. However, due to limited time, a detailed 
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investigation and discussion regarding the effects of polarisation is omitted here and is 

left for future work. For the L case (Figure 6.8), fringes along the longer facets fade out 

as the surface tilt angle increases, whereas fringe packets, reminiscent of a point spread 

function (PSF) eventually appear at the sharp-edged shorter facets. A PSF obtained 

using the Foil model is visually compared with the fringes from this facet in Figure 

6.10, and a PSF obtained from experimental characterisation of the CSI instrument can 

be seen in both Figure 3.6, and in Figure 3 of [159]. At 50° tilt angle, these short facets, 

shorter than half the central wavelength, act as discrete surface points and produce 

fringes that appear as a tilted train of PSFs. In the R case, shown in Figure 6.9, a similar 

effect is seen; as tilt angle increases, the fringe contrast reduces for the long facets, and 

PSF-like fringes form for the short facets. However, at 40° and 50°, fringes form along 

the longer facets due to the profile’s surface texture.  
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Figure 6.8. Modelled (left and middle column) and experimental (right 

column) fringes of the L case blazed grating at different tilts, where 

modelled fringes are produced from s-polarisation (left) and p-polarisation 

(middle) illumination. The solid blue line represents the surface profile used 

in the model. The grayscale variation represents variation in intensity, with 

arbitrary units used as described in section 6.3.3. 
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Figure 6.9. Modelled (left and middle column) and experimental (right 

column) fringes of the R case blazed grating at different tilts, where 

modelled fringes are produced from s-polarisation (left) and p-polarisation 

(middle) illumination. The solid blue line represents the surface profile used 

in the model. The grayscale variation represents variation in intensity, with 

arbitrary units used as described in section 6.3.3. 
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Figure 6.10. Visual comparison of (a) the PSF obtained from the Foil 

model associated with an ideal CSI instrument, and (b) modelled fringes 

from the BEM-CSI model near to the shorter facet for the L case blazed 

grating tilted at 50° , as seen in the bottom left of Figure 6.8. 

Both the L and R modelling results at 50° tilt angle have reduced fringe contrast from 

the long surface facets. The long facet has a slope of 54° and 46° for the L50° and R50° 

case respectively, both easily exceeding the arcsine of the NA of the instrument (33.4°). 

Under the Huygens-Fresnel principle, this phenomenon can be understood as each point 

along the longer facets acting as a point source, and interfering with each other, such 

that specular reflection dominates the scatter, causing the majority of the scatter to be 

lost, and that which is visible appears to be produced by the fine (nano-scale) surface 

texture.  

Both the L50° and R50° results also produce PSF-like fringes around the shorter facet. 

The shorter facets, being only 0.27 µm long, can be considered points of discontinuity 

on an optical scale for a central illumination wavelength of 0.56 µm. In the L50° case, 

the shorter facets can be considered as strong under-resolved point sources when 

illuminated from above, as the shorter facets are almost parallel with the horizontal. In 

the R50° case, the sharp edge at the junction of the shorter and the longer facets may 

diffract light back towards the lens. This type of surface discontinuity also produces 

similar PSF-like fringes. While scatter from high spatial frequency surface texture 

along this shorter facet will contribute to this, the BEM-CSI model has PSF-like fringes 

appear even for gratings with perfectly smooth facets. From the modelling results, it 
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appears that scatter from high spatial frequency surface texture along the longer facets 

will also generate fringes at large surface tilt angles. 

From these modelled and experimental results at higher surface tilt angles, the train of 

PSF-like patterns obtained clearly allows for the tilt angle of the surface to be acquired, 

i.e., in this case, allowing for the surface topography to be obtained. For rough surfaces, 

and where phase information may be less reliable, it is good practice in CSI to rely only 

on the fringe envelope to provide a surface estimate [110]. As the periodicity of the 

surface is also obtained from these patterns, it can be concluded that at least some high 

spatial frequency surface texture can be captured when the surface is tilted beyond the 

acceptance angle, and even when all facets have inclination greater than the acceptance 

angle. As fringe data can be recorded even when all facets have an inclination greater 

than the acceptance angle, it should be possible to retrieve surface topography with a 

certain degree of accuracy. However, meaningful discussion on the effect of tilt angle 

on the obtainable surface topography requires consideration of the height estimation 

process. 

6.3.4 Fringe analysis 

Typical surface reconstruction methods rely on evaluating the height at each lateral 

position, by considering at each camera pixel the interferogram formed along the optical 

axis over the scanning process. The axial profiles from the modelled profile L50° and 

R50° case, shown in Figure 6.11, and the experimental case, shown in Figure 6.12, are 

investigated.  
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Figure 6.11. Modelled fringes from the modelled blazed grating profile 

tilted at 50° under s-polarisation illumination in the (a-c) L case, and (d-f) 

the R case. The solid blue line in (a) and (d) represents the surface 

topography used in the model, while the two dotted cyan lines are the lines 

along which fringe profiles are obtained. The x = −1 μm and x = 0 μm 

profiles are shown in (b,e) and (c,f) respectively. Note the change in 

intensity range across all plots. 

 

Figure 6.12. Experimental fringes from the blazed grating tilted at 50° in 

the (a-c) L case, and (d-f) the R case. The two dotted cyan lines seen in (a) 

and (d) are the lines along which fringe profiles are obtained. The left and 

right profiles are shown in (b,e) and (c,f) respectively. Note the change in 

intensity range in (c) and (f).  
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The differences seen between the modelled and experimental fringes, which are larger 

in the R case, can be attributed to noise present in the experimental measurement, due 

to the low proportion of scattered light captured from the surface. The differences are 

also likely due to imperfections in the grating, compared to that used in the model, and 

the inability of the model to fully imitate the actual measurement process (the slit 

aperture configuration of the model). 

The topography obtained from the experimental measurement of the blazed grating 

tilted at 50° in the L and R cases can be seen in Figure 6.13, with results very similar 

to that of the grating at 45° tilt shown previously in Figure 5(b,e) of [225] and in Figure 

6.6. These results use only the coherence profile and do not depend on the phase data 

present in the fringes.  

 

Figure 6.13. Topography estimate (coherence profile) obtained from the 

experimental measurement of the blazed grating tilted at 50° in (a,b) the L 

case, and (c,d) the R case. The topography with confidence above a set 

threshold is denoted with the blue solid line, and in regions where height 

data falls below this threshold a dotted magenta line instead connects with 

straight lines the regions of confident height data. In (a,c) the topography 

estimate is displayed on top of the corresponding band-passed fringes, and 

in (b,d) the topography is rotated 50° to remove the form (levelled).  
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The original geometry of the blazed grating can be seen in Figure 6.13 to mostly be 

lost. In the L case, this occurs because the shorter facet’s width (≈ 0.27 μm) is small 

enough that the PSF’s width exceeds it, for the illumination used. Therefore, the PSF-

fringes provide a false “facet width” dependent primarily on the confidence threshold 

of the height algorithm; this limitation would occur for any diffraction limited optical 

system with similar NA and illumination. Depending on the algorithm and confidence 

threshold chosen, height information may be reported along the magenta lines in Figure 

6.13(b) through the assumption that the regions of confidence are likely joined by a 

surface close to a straight line, despite the lack of useful fringe data. This is the cause 

of the height results reported in Figure 5(b,e) of [225] and in Figure 6.6. In the R case, 

the high spatial frequency micro- and nano-scale surface texture is the source of a 

significant proportion of the captured scatter, and combined with the low signal-to-

noise ratio, and a similar PSF issue, the blazed grating surface structure is almost lost. 

6.4 Conclusion and discussion 

Surface measurement based on optical imaging relies on using an objective lens to 

collect diffracted or scattered light from the surface of an object. A mirror-like flat 

surface cannot be measured if the surface is tilted at an angle greater than the SRL given 

by the NA because the dominant specular reflected light cannot be collected by the 

objective lens. To measure a surface tilted beyond the SRL of the objective lens, the 

surface must contain structures that cause light to be scattered backwards and collected 

by the lens. The complex scattering amplitude is then holographically recorded through 

the 3D interferometric imaging process to generate the 3D fringe data [185] from which 

surface topography is reconstructed.  

Through BEM-CSI modelling and experimental results, it has been demonstrated that 

even when the mean plane of the blazed grating is tilted beyond the NA limit, fringes 

with the shape of CSI point spread function can be generated due to diffraction and 

scattering by surface structures such as the sharp edges, local facets smaller or 

comparable to the optical scale, fine surface textures, and other surface irregularities. 

Therefore, despite the loss of specular scatter due to surface tilt, with sufficient 

micro/nano-scale surface structures, it is possible to obtain useful surface information 

from the non-specular, backward scattered light. 
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One specific limitation of the work is that the blazed grating chosen contains features 

that are small relative to the mean wavelength of illumination, and thus small relative 

to the PSF width. This is illustrated in Figure 6.14, where for the 50× lens the lateral 

spatial sampling and the axial scanning step spacing are shown as dashed gridlines, 

alongside the sparrow criterion and modelled PSF. As the grating is tilted, the shorter 

facets and longer facets are sampled differently due to the rectangular “voxels”, which 

contain the captured intensity information, aligning differently with the facets at 

different tilt angles. While the sampling processes are naturally very different between 

the lateral and axial directions, treating the surface as being “sampled” by these 

rectangular voxels is useful in understanding the fringe results obtained. To some 

degree, this “dilution” of the surface across the rectangular voxels is a cause of the 

differing topography results at each tilt angle, for the L and R cases. However, it is 

unclear whether this also extends to surfaces with larger amplitudes or those comprised 

of different spatial frequencies; more investigation across a wider range of surfaces is 

required. Note that this limitation is similar to the “interferometric slope effect” 

discussed elsewhere [232]. 
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Figure 6.14. Diagram of the relative sizes of the blazed grating shorter facet 

and the instrument sampling spacing for different measurement conditions, 

alongside a PSF of the instrument to scale. Parameters used are listed in 

Table 6.1. Note that the lateral resolution for this objective lens, represented 

in this figure by the sparrow criterion (0.5 𝜆/𝐴𝑛), is determined by the 

optical resolution, as here the optical information collected is sufficiently 

sampled by the imaging sensor. The PSF shown is generated using the Foil 

model, obtained by inverse Fourier transform of a modelled 3D transfer 

function of a distortion-free instrument. 

However, limitations in the BEM-CSI model’s capabilities also restrict what virtual 

experiments can be performed with confidence, and these limitations are likely the 

cause of some of the discrepancies still seen for the blazed grating between the 

modelled and experimental results. As previously noted in section 4.1, section 5.1, and 

earlier in this chapter; the model is 2D and can only consider 2D surfaces with both the 

illumination and scatter similarly limited to the same 2D plane. This limitation is 

mitigated by only considering prismatic surfaces for modelling. The model is also 

limited to a choice of orthogonal linear polarisations, and therefore cannot properly 

replicate the CSI instrument’s circular polarised illumination; both the lens and imaging 

process is also considerably simplified compared to reality.  

Although the size of relevant surface features being comparable to the central 

illumination wavelength allows faster modelling of the surface (compared to surfaces 

with larger/wider features), such surfaces require large magnification lenses to resolve 

the small features, typically also accompanied by larger NAs. While this somewhat 
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increases modelling time due to the larger range of illumination and observation angles 

considered, the primary disadvantage is that fringes obtained from such larger NA 

objective lenses have a greater dependence on the polarisation of light (and its 

interaction with the surface chosen) due to the wider range of incident illumination 

angles used. When polarisation cannot be handled fully in a model, the use of a larger 

NA can increase the differences seen between the model and experiment. 

In the future, a more developed model, perhaps based on the 3D boundary source 

method optical scattering model [220], could be used to investigate a wider range of 

surfaces and better define the domain within which the conclusions presented here also 

remain accurate. 

6.5 Summary 

In this chapter, an experimentally-verified BEM-CSI model was used to investigate 

several characteristics of measurements of a blazed diffraction grating, by gradually 

increasing the tilt angle until some areas exceed the specular reflection limit determined 

by the numerical aperture of the objective. At high tilt angles, it was found that the 

sharp edges with undercuts still provide strong signals, and appear as plateaus in the 

topography data, with a width corresponding to the width of the point spread function 

of the instrument. Consistent with current practical guidance when using CSI 

instruments for very high slope angles, it was also found that useful phase information 

is lost and that the optimum results are obtained using coherence-based data evaluation 

methods. Finally, it was confirmed that in many surface areas, there is sufficient fine-

scale surface texture to provide useful overall form information from the non-specular 

scattered light. 
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Chapter 7: Conclusions and 
future work 
In this chapter the conclusions of the thesis are summarised and compared to the aims 

and objectives of the work as given in section 1.2, contributions to the field are 

explicitly noted, and the areas for future work are described. The contributions to 

science during the PhD consist of the key results, findings, and outputs produced and 

are listed as part of the summary of conclusions. 

7.1 Thesis summary 

7.1.1 Aims and objectives 

The problem tackled by the thesis, the industrial and academic motive to tackle it, the 

aims and objectives selected to investigate and address the problem, and the novelty of 

the chosen approach, were presented in Chapter 1. The aims were: 

1) To advance methods that enable extending the range of surface slopes that can 

be reliably measured by optical surface topography measurement  

2) To investigate the reliability of the current capability 

This was to be done primarily through the development and use of instrument models, 

and with a focus on coherence scanning interferometry (CSI). The objectives were to: 

1) Characterise and capture how an instrument responds to surface spatial 

frequencies, allowing for topography error on surface slopes caused by lens 

aberration to be mitigated 

2) Develop and verify a CSI model that can accurately generate fringes for 

complex surfaces, which may contain slopes beyond the specular reflection 

slope limit, including accounting for any multiple scattering present 

3) Demonstrate and improve understanding on the effect of surface slope on CSI 

fringes and topography, including slopes beyond the specular reflection slope 

limit 

These objectives were addressed in the subsequent chapters: Chapter 3 addresses 

objective 1, Chapter 4 and Chapter 5 address objective 2, while Chapter 6 addresses 

objective 3.  
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7.1.2 Contribution to the field 

In Chapter 2, the relevant state of the art was discussed, and the accompanying 

background presented. This includes an overview on metrology, surface topography 

metrology, and on CSI instrument principles and capability. A review of CSI models in 

the literature was given, and the scalar scatter theory relevant in subsequent chapters 

derived. The state of the art on the capability of optical surface topography 

measurement methods for measurement of steep and tilted surfaces was reviewed, with 

a focus on CSI measurement and the effect on the measured topography when tilting 

the measured object at angles larger than the numerical aperture (NA) slope limit (a.k.a. 

the specular reflection slope limit) of the instrument. This work represents a 

contribution to the field in the form of a summary review. 

In Chapter 3, an approximate CSI model based on the Kirchhoff approximation (KA) 

was introduced, in which the instrument response of a CSI instrument can be described 

by a three-dimensional (3D) surface transfer function (STF). The 3D STF is an 

informative metric for quantitatively evaluating and comparing the performance of an 

optical surface measuring instrument in the linear regime, including the instrument’s 

response to various slope angles and spatial frequencies. Real optical 3D imaging 

instruments always exhibit some degree of aberration, which in a CSI instrument can 

cause various topography errors and other slope- and spatial frequency-dependent 

errors in the height data; the effects of aberration are seen in an experimentally obtained 

STF as non-zero phase. In Chapter 3, an instrument’s STF was obtained through 

measurement of microspheres and an inverse filter (IF) generated from the STF. The 

filter provides error correction at a fundamental level by modifying the raw 3D fringe 

data prior to surface reconstruction and any post-processing. From measurements of 

freeform surfaces, the topographies obtained from before and after compensation by an 

IF were compared both to each other and to measurements of the surfaces by a traceable 

contact stylus instrument, demonstrating a reduction in topography errors due to the IF.  

The first contribution of this work is the experimental verification of the underlying 

approximate CSI model that allows for the response of an instrument to be characterised 

by a 3D STF. The second contribution is the demonstration and experimental 

verification of a novel surface topography error correction method for CSI that 

compensates for the effect of lens aberration through filtering signal data prior to 
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surface reconstruction and any post-processing. These contributions included the 

following publications [119,144,159,244], and was performed in collaboration with Dr 

Rong Su. 

In Chapter 4, a rigorous two-dimensional (2D) model of electromagnetic surface scatter 

was presented and verified, based on a boundary element method (BEM) established 

by Simonsen [261]. The theory of the model was outlined, where the model is expected 

to be able to accurately predict scattering from any surface. To verify the model, 

scattering data from the BEM model was compared to scattering data from various 

analytical models for different surfaces with good agreement, including comparison 

with an exact analytical solution of a cylindrical surface via the Mie scattering solution 

to Maxwell’s equations. The model was experimentally verified by comparison of the 

simulated far-field scatter with measurements from a laser scatterometer for a 

sinusoidal grating. These comparisons provided evidence that verify the accuracy of 

the BEM model, and in the case of the Mie solution, provided evidence of its capability 

to accurately predict scatter from complex surfaces and for surfaces with high curvature 

and slopes, including those surfaces that linear models cannot accurately model. The 

BEM model was also compared against a KA-based method for the sinusoid grating 

geometry measured experimentally, providing further agreement, and for a range of 

different sinusoidal grating geometries, showing that disagreement occurs for 

geometries where multiple scattering is expected to occur under geometrical optics.  

The contributions of this work are the experimental verification of the BEM optical 

scattering model and the verification of the model’s capabilities to accurately model 

more complex surfaces with high curvature and slopes. These contributions included 

the following conference presentation [209]. 

In Chapter 5, a rigorous model of CSI based on the previous chapter’s BEM optical 

scattering model was presented and verified, capable of accurately modelling the CSI 

signal for complex surfaces which contain steep surfaces and can produce multiple 

scattering. The CSI model’s theory was presented, derived from scalar scattering 

theory, and implementation details, including interpolation in spatial frequency space 

onto discrete coordinates, were also discussed. The model produces CSI fringes by 

correctly combining in spatial frequency space the far-field scatter produced by the 

BEM model for a range of illumination wavelengths and incident angles, accounting 
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for imaging through backpropagation to a reconstructed scattered field. Evidence of the 

CSI model’s validity was provided by comparison with experimental measurements 

from a commercial CSI instrument for several surfaces, giving qualitative agreement. 

CSI model fringe data for a vee-groove surface geometry was produced and compared 

to results in the literature to demonstrate the model’s capability to account for multiple 

scattering and scatter from steep surfaces.  

The contributions of this work are the development and verification of a CSI model 

based on a BEM optical scatter method, believed to be the first published rigorous CSI 

model based on BEM. This included demonstrating evidence of the CSI model’s 

capability to predict multiple scattering. These contributions included the following 

publications [50,51]. 

In Chapter 6, the capability of optical surface topography measurement methods for 

measurement of steep and tilted surfaces was investigated. Of particular interest was 

the effect on the interference signal and measured topography when tilting the measured 

object at angles larger than the specular reflection limit, determined by the NA of the 

instrument. The results presented illustrate the capabilities, limitations, and modelling 

methods for interferometers to measure beyond the specular reflection limit. The 

experimentally-verified BEM-CSI model given in Chapter 5 was used to investigate 

several characteristics of measurements of a blazed diffraction grating, by gradually 

increasing the tilt angle until some areas exceeded the specular reflection limit 

determined by the NA of the objective. At high tilt angles, it was found that the sharp 

edges with undercuts still provide strong signals, and appear as plateaus in the 

topography data, with a width corresponding to the width of the point spread function 

of the instrument. Consistent with current practical guidance when using CSI 

instruments for very high slope angles, it was also found that useful phase information 

is lost and that the optimum results are obtained using coherence-based data evaluation 

methods. It was confirmed that in many surface areas, there is sufficient fine-scale 

surface texture to provide useful overall form information from the non-specular 

scattered light.  

The first contribution is the specific demonstration of the effect of surface tilt on the 

CSI signal measured for a blazed grating, tilted at a range of angles that include those 

that exceed the specular reflection limit. This includes presenting the differences 
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between fringes produced by a blazed grating with the same tilt angle but different blaze 

direction. The second contribution is the specific result demonstrating the effect of 

surface tilt at specific tilt angles that exceed the specular reflection limit on the 

topography obtained. This result, alongside the CSI fringes obtained, provide an 

explanation to previously published erroneous CSI measurement results [225]. This 

result also shows that even when the mean plane of the blazed grating is tilted beyond 

the specular reflection limit, fringes with the shape of CSI point spread function can be 

generated due to diffraction and scattering by surface structures such as the sharp edges, 

local facets smaller or comparable to the optical scale, fine surface textures, and other 

surface irregularities. The third contribution is the general result that despite the loss of 

specular scatter due to surface tilt, it is possible to obtain useful surface information 

from the non-specular backward scattered light. The fourth contribution is the 

demonstration that fringe results for the tilted blazed grating can be accurately 

generated using a rigorous CSI model, even when the model is limited to 2D. This 

suggests that similar investigations for any arbitrary surface could also be performed 

and provide useful results, with the benefit that the virtual surface “measured” is known 

exactly. These contributions included the following publications [52,225]. 

7.2 Areas for future work 

Areas for future work can be generally placed into one of two sections. The first section 

covers specific improvements or alternative approaches for each chapter that would 

further or improve the work presented, such as those recognised in hindsight. The 

second section covers novel future work that could be undertaken to develop this area 

of research further, including methods built upon the work presented in this thesis. 

7.2.1 Specific improvements 

Specific improvements to the work presented in Chapter 3 are limited, as issues 

previously present in earlier publications about the work were addressed in preparation 

to producing [159]. This included ensuring the most suitable window filtering 

parameters are chosen in the generation of the 3D STF and improving the accuracy of 

the alignment between the virtual foil and the measured fringes of the microsphere. One 

area of specific improvement would be to consider more locations in the instrument’s 

field of view (FOV) at which to measure the microsphere, with locations varying in 
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both lateral directions, to characterise the degree to which shift-invariance does not 

strictly hold along both lateral axes.  

One improvement to the work presented in Chapter 4 would be for the scatterometry 

measurement to be made with a smaller aperture and much smaller angular steps, with 

both the angular steps and the collection aperture kept fixed throughout the entire 

measurement process. While agreement was found between the BEM model and the 

measured data, a relatively wide convolution kernel was used to account for the aperture 

width, which could be reduced if a smaller aperture was used. In addition, avoiding the 

experimental method errors discussed in section 4.4.2 would increase confidence in the 

verification of the model by experiment. Another improvement would be to additionally 

perform verification of the BEM model through comparison with an existing rigorous 

optical scattering model that has already been verified, for both the experimental 

surface and for surfaces where multiple scattering is expected.  

In Chapter 5, the results from the CSI model developed partly depend on the methods 

of sampling and interpolation chosen, seen clearly when the Cartesian blurring was 

found to be insufficient for tilted surfaces, and polar blurring was introduced for the 

modelling presented in Chapter 6. While both modes have been shown to be effective 

and produce results that match experiment, the development of a method of blurring 

that accounted for all three ranges sampled would be valuable in producing accurate 

results even at the very minimum samples provided. This would also motivate the 

development of automatically obtaining the minimum number of samples required, 

perhaps through an iterative process, saving computation time. In addition, verification 

of the CSI model by taking measurements of a surface that produces multiple scattering 

(such as a vee-groove) and comparing to the model would better support the claim that 

the model accounts for multiple scattering and steep surfaces. Verification through 

comparison with other rigorous CSI models that have been developed since publishing 

the BEM-CSI model [50], such as [183,188], could also provide evidence to support 

the BEM-CSI model’s validity. Further testing against step height surfaces may also be 

valuable, but the surface texture of the vertical step facet would need to be accurately 

measured first and use of a 3D scattering model may still be necessary. 

Specific improvements for the work presented in Chapter 6 include controlling the 

illumination light level used in the experimental case. If the light level could be fixed 
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throughout all the measurements without negatively impacting the measurement 

quality, then the loss of scatter captured by the instrument could be quantitively 

assessed in the experimental case and compared to that predicted by the CSI model. 

With a variable light level, not even relative quantitative comparison between 

experimental fringes from different tilts can be made. If the light level must be changed 

to compensate for the reduction in captured scatter as surface tilt is increased, then with 

appropriate characterisation of the relationship between light level and fringe intensity 

acquired, the amplitude of each set of measured fringes could be adjusted to values 

equivalent to that obtained from a constant light level, and a quantitative comparison 

performed. Another improvement would be to measure a taller blazed grating at 

different tilts, so that PSF-like fringes that form over the shorter facets of the tilted 

grating can be associated specifically with either the sharp edges of the grating or the 

relatively flat shorter facet. A taller grating would also mitigate the effect of the spatial 

sampling shown in Figure 6.14.  

As the blazed grating generally produces regions of well-defined scatter along lines in 

spatial frequency space, the sensitivity of the measured fringes to tilting can vary 

significantly at different angles. For example, at certain surface tilts, a small change in 

surface tilt can cause an entire diffraction order to no longer be captured; in other areas 

a much weaker effect would be seen. It would therefore be valuable to measure the 

grating at surface tilts before and after each of these key tilting locations to show the 

non-linear impact of surface tilt on fringe visibility. Using the CSI model, it would also 

be possible to obtain fringes for many surface tilts and to correlate how the values of 

the fringe spectrum at certain surface tilts are related to the fringes obtained, providing 

an improved understanding. The same approach could be applied to the change in the 

topographies obtained. Finally, if a similar blazed grating with minimal nano-scale 

surface texture was available, then the experimental results in the R-case at large tilts 

(shown in Figure 6.9) could be compared to equivalent measurements of the smoother 

grating, to ascertain with confidence which fringes are associated with which part of 

the grating in the experimental results.  

7.2.2 Novel future work 

As already discussed, from the work presented in Chapter 3 the instrument is shown to 

not strictly be shift-invariant, and 3D STFs are obtained from three regions to enable 
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effective topography correction over the entire measurement FOV. One area of future 

work could be the investigation of the degree to which this shift invariance holds for 

different lenses of the same instrument and for different instruments, parameterising 

the anisotropy of this variation. A greater understanding about the relationship between 

the different measurement configurations and the degree to which they are shift 

invariant could further define domains of validity for the foil model. For a specific 

measurement configuration, it could also allow for the minimum adequate number of 

3D STFs required for effective topography correction to be determined. Another 

direction of future work is making use of the detailed transfer characteristics provided 

in an instrument’s 3D STF to provide a more comprehensive comparison between 

optical measuring instruments for measurements in the linear regime, in contrast to just 

comparing single parameters such as lateral resolution. While this naturally allows for 

comparison between different instruments of the same model or between the same kind 

of instrument made by different manufacturers, a similar method could be developed to 

allow for comparison of a 3D STF from a CSI instrument with STFs obtained from 

other optical topography measurement technologies, such as focus variation.  

Regarding Chapter 3’s foil model, which underpins the IF work, there is value in 

establishing the regions of validity of the model compared to other models. This could 

be done though comparison to simpler, more well-established linear models to confirm 

the added value of the foil model, and against rigorous models to confirm the 

boundaries of validity where care must be taken. Some specific comparisons with a 

simpler linear model have already been done in [182,246]. Developing the instrument 

model further into a virtual instrument for measurement uncertainty evaluation, the 

value of which is given in Chapter 1, is another area of future work; progress towards 

this has already been made in [186]. 

The BEM optical scattering model verified in Chapter 4 can be used in more than just 

a CSI model. One direction of future work is to develop a rigorous model of another 

instrument technology, such as focus variation, using similar theory to that described 

in Chapter 5. However, the BEM model is useful on its own for the purpose of 

producing accurate virtual scatterometry data for rough surfaces, and has already been 

used for training deep learning methods for on-machine surface defect detection [226–

228]. For this work, the quantity of scattering data and the size of the surfaces required 
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prevents practical use of a 3D rigorous model, whereas the 2D BEM model remains 

viable. 

In Chapter 5, the CSI model developed is verified against a range of experimental CSI 

measurements, and a vee-groove surface geometry is also used in the model. As 

previously mentioned, the theory developed is not only limited to CSI, and alternative 

rigorous instrument models using the BEM scattering model could be produced. The 

CSI model accounts for the imaging process in an idealised way, without considering 

the instrument’s optics beyond the NA. Therefore, to develop an accurate virtual 

instrument model for evaluating measurement uncertainty, more complex imaging 

methods are required, such as those that account for the separate components of the 

optical system. Alternatively, the CSI model could be combined with a part of the foil 

model (from Chapter 3). As an experimental characterisation of an instrument provides 

detailed information on its imaging process, the 3D STF obtained could be combined 

with the BEM-CSI model to provide more accurate CSI fringe data for a specific 

instrument. If computational challenges could be overcome (as given in section 5.6), 

the same CSI modelling theory could be used with a 3D optical surface scattering 

model, such as the 3s boundary source method [220]. In experimental comparisons, the 

issues between the 3D measurement and 2D model would no longer be present, and 

modelling of non-prismatic surfaces such as a randomly rough surface would become 

possible.  

In Chapter 6, a blazed grating was measured at various tilts, and at certain tilts the 

topography was also obtained and compared. The stated conclusions are primarily 

associated with the specific grating measured, and further development of this work 

would be to confirm the effectiveness of the model for a wider variety of complex 

surfaces, through further experimental comparison. This could begin with modelling 

and measuring high amplitude sinusoidal surfaces that have non-negligible multiple-

scatter, to improve understanding of the (non-specular) instrument response to steep 

surfaces. The use of a low objective NA and measuring relatively low spatial frequency 

surfaces would reduce the effect of polarisation effects in the instrument, reducing 

differences between the instrument and the model associated with approximating the 

polarisation of the illumination. A low NA also requires only small surface tilts to reach 

the specular reflection limit. Another area of future work is to investigate through 

modelling the effects of lateral chromatic aberration (i.e., lateral colour) and dispersion 
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effects on the CSI fringes and topography produced by an instrument, including the 

effect on tilted surface sections. This area of work has some developments published 

in [153,174], which are briefly discussed in section 2.3.5. Similarly, through modelling 

the effect of the surface topography on the spectral composition of the fringes produced 

can be investigated, especially for tilted surfaces. Some existing work in this area can 

be seen in [172,187], which are also discussed briefly in section 2.3.5. 

Beyond further experimental verification of various challenging surfaces, the CSI 

model could be used to obtain the CSI fringes and topography for surfaces that would 

be impractical to manufacture or measure, i.e., the model expands the domain of 

surfaces for which CSI fringes can be accurately predicted. Through modelling, results 

could be obtained about the capabilities of a measurement method such as CSI for 

carefully constructed virtual surfaces, providing a more general understanding of image 

formation for steep and complex surfaces. Of industrial interest is to improve the 

understanding of the instrument response for surfaces that cannot currently be measured 

or are challenging to measure, to assist in understanding why they cannot be measured 

or are challenging and over what surface and measurement configurations they remain 

a challenge. This includes measurement of very rough additive manufactured surfaces, 

surfaces with optically unresolved surface features, high-aspect ratio surfaces such as 

deep holes (discussed in section 2.6.1), and surfaces with high slopes and sharp edges 

(as seen with the blazed grating) [36]. Producing a case study directed specifically at 

modelling and measuring parts of industrial interest and improving understanding of 

their response is an area of scientific and commercial interest. 

Eventually, a rigorous CSI model could be used to improve the quality of topography 

data obtained from measurements of parts with surfaces that produce non-negligible 

amounts of non-specular scatter. This could be done though height estimation methods 

that rely on the model and an iterative process that changes a virtual surface until 

differences in the virtual and measured fringes are minimised [49]. 
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Appendix A: Foil model 
inverse filtering graphical user 
interface 
A pre-existing code base had already been developed that was capable of loading signal 

data from the commercial CSI instrument, cropping the data to chosen parameters, 

saving the cropped data, applying certain filtering operations to clean the data, simulate 

a spherical foil from a given sphere diameter, calculate the transfer function and use 

this to produce an inverse filter to apply to further measurements. The flow chart for 

this work can be seen in Figure A.1.  

 

Figure A.1. Flow chart for the method to produce the surface transfer 

function (STF) and associated inverse filter via measurement of a 

microsphere and generation of the foil model of the surface, and (circled by 

the dashed line) the application of the inverse filter to measured fringe data. 

FT and IFT denote the Fourier transform and inverse Fourier transform 

respectively. Details such as real and foil sphere alignment are omitted. 

However, the use of this code was limited heavily by its linear structure, with all 

operations following each other in series from start to finish. A lack of user interface 

made changing parameters slower and made the current choice of parameters harder to 

see. To allow this code to easily measure the STF and apply the inverse filter to other 

measurements, a graphical user interface (GUI) was made, and the underlying code 

heavily restructured to allow for the GUI code wrapping. The core objectives were: 

• Easy changing of parameters while preserving default/unchanged parameters 
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• Quick and easy testing of different spheres, especially for quickly changing the 

selection of which file(s) to load using a selection dialog 

• Allow for adding of additional features, such as distortion correction, & 

automation 

• Rework overall structure of code into more modular components for flexibility, 

to allow for testing of independent components independently 

• Optimise code to reduce redundant function calls, structural issues, packaging 

of arguments 

• As part of quick and easy testing of spheres, wrap the data format converter 

command line program provided by the instrument manufacturer with a GUI 

• Fix any bugs present 

Work was performed to complete these objectives including the development of a GUI 

to, shown in Figure A.2. In addition to successfully meeting the previously stated 

objectives, some additional features not present in the original code base were added. 

This includes: 

• Data converter GUI wrapper makes further changes to file format beyond the 

command line program’s conversion, using HDF5-based version 7.3 MAT-files 

for data arrays, allowing for fast preview of slices of data 

• Approximate auto-centring of fringes via finding peak intensity 

• Lateral repositioning of the cropping centre 

• Independent cropping and saving of data 

• Filter windowing lateral and axial size adjustment 

• Independently generate and save BPF mask, using relevant GUI values 

• Coarse automatic spatial co-alignment between generated foil model and 

measured fringe data 

• Finetune repositioning of foil shell, iterative adjustment, or pre-set values 

• Distortion correction of optical elements can be loaded from a file 

• Generation and saving of inverse filter via averaging of saved STFs 

• Application of saved inverse filter to other measurements 

• Utility functions (open explorer, close all figures, disabling of unticked features) 
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Figure A.2. Screenshot of the GUI for the loading, filtering and analysing 

of fringe data, to obtain STFs via method displayed in Figure A.1. 

Of particular benefit is the ability to: 

• Independently generate and save the band pass filter (BPF) mask for a chosen 

instrument configuration 

• Crop, filter and save the fringe data; preview the foil shell for the current settings 

• Get and save the STF from a single measurement 

• Average a set of saved STFs to calculate and save an inverse filter; and load and 

apply this filter to any other measurement 

Some example outputs for the fringe data after Gaussian filtering and its associated k-

space form after bandpass filtering are displayed in Figure A.3 and Figure A.4 

respectively.  
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Figure A.3. Fringe data of a measurement of a microsphere, after Gaussian 

spatial filtering 

 

Figure A.4. The associated k-space form of Figure A.3, after a BPF mask 

has been applied to the relevant section. Note the absolute parts and phase 

angle parts are displayed across two perpendicular planes both aligned with 

the optical axis. 

This work was developed further outside of the PhD project by the author of this thesis, 

working on an EPSRC IAA project “Calibration and correction of optical topography 

measuring technology” as a research associate. 
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Appendix B: Summation 
identities for complex numbers 
As given in Eq. (5-1) and Eq. (5-2), the expression for the fringe component of the 

intensity is 2ℜ{𝐸𝑚(𝐫)𝐸𝑟(𝐫)∗}, equally expressed as 𝐸𝑚(𝐫)𝐸𝑟(𝐫)∗ + 𝐸𝑚(𝐫)∗𝐸𝑟(𝐫), 

where ℜ{⋅} denotes taking the real part of a complex number. Taking the real part of 

the complex 𝑂(𝐫) to obtain the imaged fringes is implicitly implied in [88,184] and 

explicitly included in [185] for their equivalent expressions for Eq. (5-2). However, the 

choice in either case to handle the complex 𝑂(𝐫) rather than the real 𝐼(𝐫) = 2ℜ{𝑂(𝐫)} 

is made as the intensity obtained from multiple illumination wavevectors can be 

expressed as a function of a linear sum of the complex fringe terms, to be shown in this 

appendix. For a superposition of intensity values, where each intensity value is a result 

of illumination by a specific incident illumination wavevector 𝐤i, the total intensity is 

given by 

 𝐼total(𝐫) = ∑ 𝐼(i)(𝐫)

i

= ∑ 2ℜ{𝑂(i)(𝐫)}

i

 

= ∑[𝑂(i)(𝐫) + 𝑂(i)(𝐫)∗]

i

 
(7-1) 

and the Fourier transform of this gives 

 𝐼total(𝐤) = ∑ �̃�(i)(𝐤)

i

+ ∑ �̃�(i)(−𝐤)∗

i

 

= �̃�k-total(𝐤) + �̃�k-total(−𝐤)∗, 

(7-2) 

where �̃�k-total(𝐤) has been defined as the summation of �̃�(i)(𝐤), and consequently the 

summation of �̃�(i)(−𝐤)∗ is given by �̃�k-total(−𝐤)∗. As the fringes 𝐼total(𝐫) are real, 

redundant information is unsurprisingly obtained from 𝐼total(𝐤) in k-space, i.e., 

knowledge of all �̃�(i)(𝐤) alone is enough to obtain 𝐼total(𝐤), as a corresponding 

�̃�(i)(−𝐤)∗ can always be generated for each �̃�(i)(𝐤) found. However, this redundancy 

can alternatively be better expressed by considering the inverse Fourier transform of 

Eq. (7-2), where 
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 𝐼total(𝐫) = ℱ−1{𝐼total(𝐤)} = 𝑂k-total(𝐫) + 𝑂k-total(𝐫)∗ 

= 2ℜ{𝑂k-total(𝐫)}, 
(7-3) 

where 𝑂k-total(𝐫) has been defined by 

 𝑂k-total(𝐫) = ℱ−1{�̃�k-total(𝐤)}, (7-4) 

which can be equally expressed as 

 𝑂k-total(𝐫)∗ = ℱ−1{�̃�k-total(−𝐤)∗}. (7-5) 

Eq. (7-4) shows that only 2ℜ{𝑂k-total(𝐫)} is needed to calculate 𝐼total(𝐫), and as such 

only �̃�k-total(𝐤) must be found and �̃�k-total(−𝐤)∗ does not need to be considered.  

Combining Eq. (7-3) and Eq. (7-4) for an explicit expression of �̃�k-total(𝐤) gives 

 𝐼total(𝐫) = ∑ 2ℜ{𝑂(i)(𝐫)}

i

= 2ℜ{𝑂k-total(𝐫)} 

= 2ℜ {ℱ−1 {∑ �̃�(i)(𝐤)

i

} }. 

(7-6) 

This expression gives the approach taken by the BEM-CSI model to calculate fringes 

from a summation of fringe field values in k-space. Note that using the linearity of the 

Fourier transform, 𝑂k-total(𝐫) can also be related to 𝑂(i)(𝐫) directly by 

 
𝑂k-total(𝐫) = ℱ−1

{∑ �̃�
(i)

(𝐤)

i

} = ℱ−1
{∑ ℱ {𝑂(i)(𝐫)}

i

} 

= ℱ−1 {ℱ {∑ 𝑂(i)(𝐫)

i

}} = ∑ 𝑂(i)(𝐫) ≡ 𝑂total(𝐫)

i

. 

(7-7) 

This should not come as a surprise, as from Eq. (7-1) and Eq. (7-3) there is 𝐼total(𝐫) =

∑ 2ℜ{𝑂(i)(𝐫)}i  and 𝐼total(𝐫) = 2ℜ{𝑂k-total(𝐫)} respectively; combining these two and 

using the identity ∑ ℜ{𝑄(𝐫)}i = ℜ{∑ 𝑄(𝐫)i } for complex valued 𝑄(𝐫) also gives 

Eq. (7-7).  
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