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Abstract

Standard selection criteria for forecastingmodels focus on information that is cal-
culated for each series independently, disregarding the general tendencies and per-
formances of the candidate models. In this paper, we propose a new way to perform
statistical model selection and model combination that incorporates the base-rates
of the candidate forecasting models, which are then revised so that the per-series
information is taken into account. We examine two schemes that are based on the
precision and sensitivity information from the contingency table of the base-rates.
We apply our approach on pools of either exponential smoothing or ARMA models,
considering both simulated and real time series, and show that our schemes work
better than standard statistical benchmarks. We test the significance and sensitiv-
ity of our results, discuss the connection of our approach to other cross-learning
approaches, and offer insights regarding implications for theory and practice.

Keywords: forecasting, model selection/combination, information criteria, exponential
smoothing, cross-learning.
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1 Introduction

Model selection and combination (or averaging) have long been fundamental ideas

in forecasting for business and economics (see Inoue and Kilian, 2006; Timmermann,

2006, and references therein for model selection and combination respectively). In

both research and practice, selection and/or the combination weight of a forecast-

ing model are usually case-specific. By this, we mean that they are based on cri-

teria such as the Akaike’s information criterion (Kolassa, 2011), the predictive log

score (Geweke and Amisano, 2011; Pettenuzzo and Timmermann, 2017), or standard

accuracy measures (Koutsandreas et al., 2021) that summarise forecasting performance

through time series validation processes (Bergmeir and Benı́tez, 2012) computed only

on the series of interest itself. Since these criteria are typically justified by assumptions

(asymptotic or otherwise) that may not hold in practice, a selected model may not per-

form best out of sample. As a result, forecasts can potentially be improved by exploiting

environmental information, in particular the propensity across multiple time series, for

the model chosen by a selection criterion to differ from the model with the best out-of-

sample forecasting performance.

In this paper we propose easy to implement and general algorithms for model selec-

tion and combination in forecasting that exploit revised base-rate information by using

a collection of reference series. Examples of such reference series could include the

large collections of macroeconomic time series (Stock and Watson, 2012) or the time se-

ries from the M forecasting competitions (Makridakis et al., 2020). For each of these

examples, all reference series are themselves quantities of interest that may be the tar-

get of forecasting and we can evaluate forecasting performance by averaging across all

series. This motivates the approach we take in our paper. However, in a detailed em-

pirical study, we also show that forecast performance is robust to including additional

reference series (e.g., by including series from a different domain to the forecast of in-
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terest), being also robust to the number of series considered for extracting the base-rate

information.

Rather than use reference series as predictors, they are instead used to revise the

probabilities that a model is the “correct” (or “true”) model in the sense of having the

best out-of-sample forecasting performance. Apart from the reference series, the only

other requirements are the choice of a pool of candidate models, a criterion for select-

ing between these models, and a criterion for evaluating forecasts. As a result, there

is scope to tailor our proposed algorithms to applications with specific loss functions.

Furthermore, as long as the selection and evaluation criteria are likelihood-free, the set

of candidate models can even include models for which the likelihood is intractable or

difficult to compute.

To provide the general idea behind our proposed approach, let there be two models

under consideration (model A and model B). Let events SA and SB refer to models A or B

respectively being selected according to some criterion. Similarly, let events CA and CB

refer to models A or B being the “correct” model, in the sense of being optimal with re-

spect to some evaluation criterion. Also, assume that we have access to a set of reference

series, such that we can empirically estimate joint probabilities of models being selected

and “correct”, and thus populate the cells of the contingency table (such as Table 1).

The use of reference series is inspired by the meta-learning literature in forecasting (see

Lemke and Gabrys, 2010; Wang et al., 2009; Talagala et al., 2018; Montero-Manso et al.,

2020, and references therein). However, in contrast to these papers, the weights we com-

pute have an interpretation as probabilities rather than being the outputs of a “black-

box”1, machine learning algorithm which type (e.g., neural network or decision tree)

and hyper-parameter values have to be carefully selected. Moreover, since the weights

in our approach are solely estimated using forecasting performance related informa-

1Even where weights are determined by a black-box, they can still be interpreted as contributions to
aggregate forecast error variance(Wolpert, 1992; Conflitti et al., 2015; Diebold and Shin, 2019).
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tion, they are not subject to time series features and general statistics which number,

type, and representativeness may be challenging to determine in practice for construct-

ing a successful meta-learning algorithm. In addition, the information exploited by our

approach focuses on models instead of series, being also summarised at a global level

(forecasting performance is being tracked across the complete set of reference series)

instead of being learnt at a local one (forecasting performance is being tracked at each

series and the connections between the inputs and outputs of the algorithm are deter-

mined accordingly).

Table 1: The contingency table.

CA CB Total
SA p(SA ∩CA) p(SA ∩CB) p(SA)
SB p(SB ∩CA) p(SB ∩CB) p(SB)

Total p(CA) p(CB) 1

From Table 1, we can observe the general, environmental tendencies for models A

and B in terms of (i) being the selected model with probabilities p(SA) and p(SB), respec-

tively, and (ii) being the “correct” model with probabilities p(CA) and p(CB), respectively.

In the literature, when selection is based on p(CA) and p(CB), which correspond to the

base-rate information, then this is typically referred to as “aggregate selection” because

a single model is used to forecast all series by considering which model provided the

most accurate forecasts for a hold-out sample in most of the cases and ignoring their

particular characteristics (Fildes and Petropoulos, 2015).

For any new series, we can first evaluate the case-specific event of selecting either

model A or model B, i.e., we either observe the event SA or SB. Suppose we observe SA.

Rather than use model A, we propose to incorporate base-rate information by selecting

model A when p(CA|SA) > p(CB|SA) and model B otherwise. These conditional probabili-

ties are computed using the values in the contingency table and summarise “precision”,

i.e., the proportion of cases for which the selected model is actually the “correct” model.
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An alternative approach will be to select model A when p(SA|CA) > p(SA|CB) and model

B otherwise. These conditional probabilities offer the revised probabilities for a model

being selected, assuming that some other model (or the same model) is the correct one.

In contrast to the previous case, these conditional probabilities summarise “sensitivity”.

We note that p(SA|CA) = (CA|SA) and p(SA|CB) = (CB|SA) only when p(CA) = p(CB).

If, instead of model selection, model combination is desired, the conditional proba-

bilities discussed above can be used as weights in a forecast combination. Since p(C |S)

represents the probability that a model is the “correct” model conditional on observed

information, this bears an interesting resemblance to the Bayesian paradigm for model

combination. In the Bayesian setting, the choice of model is treated in the same way as

other parameters and model combination based on posterior model probabilities arises

in a natural way to integrate out model uncertainty. The posterior probability that a

given model is the “correct” model can be computed using Bayes theorem, although

in practice Markov chain Monte Carlo algorithms are required for exploring the model

space. For an extensive review of Bayesian model combination, including key historical

references, see Hoeting et al. (1999).

Although the computation of posterior model probabilities can be challenging, there

are a number of useful approximations. A prominent example, discussed by Raftery

(1996), is based on the Bayesian Information Criterion (BIC), which we use as one of

the selection criteria in Section 5.2. Alternatives to the BIC can also be considered. For

example, in the forecasting literature Kolassa (2011) uses Akaike’s Information Crite-

rion (AIC) in a similar fashion to find forecast combination weights. Furthermore, re-

cent work by Bissiri et al. (2016), Loaiza-Maya et al. (2020) as well as the literature on

PAC-Bayes (see Guedj, 2019, for a review) generalise posterior inference to allow loss

functions to replace likelihoods and can also be applied to finding model weights. Our

proposed approach also uses loss functions in the form of selection and evaluation cri-
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teria. It does however differ from existing approaches substantially, by using the condi-

tional probabilities computed from reference series as “proxies” for the posterior model

probabilities. By comparing our own proposed methods to forecast combinations that

approximate posterior model probabilities without using the reference time series, we

can examine the benefits of the proposed cross-learning framework. Furthermore, the

use of general loss functions, rather than likelihoods, allow our method to be extended

to machine learning methods, such as random forests, which are becoming increasingly

popular in business and macroeconomic forecasting (Medeiros et al., 2021).

The remainder of the paper is structured as follows. Section 2 introduces our pro-

posed approachmore rigorously including different approaches for computing the weights

from the reference time series. Section 3 presents a simulation study that illustrates the

intuition behind how the proposed approaches work and provide evidence of their ef-

fectiveness. This is followed by an application on real macroeconomic data in Section 4.

Section 5 describes the empirical design used to evaluate our proposed approach in

more detail. By considering a data set containing more series, both in number and di-

versity, we are able to investigate the sensitivity of results to different choices of the

reference set as well as an additional selection criteria, namely time series validation.

Section 6 and Section 7 provide additional discussion and conclude respectively.

2 Methodology

The proposed forecasting algorithm involves two steps. First, a collection of reference

time series is used to compute the probabilities in a contingency table. Second, models

are fit to the actual time series of interest and combination weights are derived for each

model according to one of three schemes, two of which depend on the contingency table.

We now describe each of these steps in turn.
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2.1 Populating contingency table

Let Z :=
{

z(1), . . . , z(N )
}

be a collection of N reference time series. LetM := {M1, . . . ,MK } be

a set of K models that can be used for forecasting. Let S be a selection criterion, computed

using only in-sample information and with value S
(n)
k for reference time series z(n) and

model Mk . Similarly, let C be an evaluation criterion, used to determine the “correct”

model, that is computed using only out-of-sample information and has value C
(n)
k for

reference time series z(n) and model Mk . Without loss of generality, we will assume

that lower values of S
(n)
k and C

(n)
k indicate better performing models. Although, the

selection and evaluation criteria will be of a statistical nature in this paper, in certain

applications, model combinations could be based on context specific loss functions (for

an example from finance see Caldeira et al., 2016, who consider model combinations

based on Sharpe ratios).

Let W be a K ×K matrix corresponding to the contingency table, with element wi,j

in the ith row and j th column. These entries measure the joint probability that for a ran-

domly selected reference time series, the “correct” model is model j when the selected

model is model i. Algorithm 1 provides details on how wi,j are computed. We note that

in cases where the computational burden is small, step 7 of Algorithm 1 can involve a

rolling window evaluation.

2.2 Forecasting algorithm

Now let y be the time series of interest that needs to be forecast. In this paper, we are

interested in forecasting all of the reference series, that is y will be each element of Z.

However, in general, y may only be a single element of Z or may not be in Z at all. Fore-

casts from all models inM will be produced. Three schemes are considered for model

selection and combination. Criterion-based schemes ignore the information in the con-

tingency table entirely. Precision-based schemes derive weights based on the probabil-
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Algorithm 1 Algorithm to populate cells of contingency table

1: procedure ContTab(Z,M,S ,C)
2: Set wi,j ← 0 for all i = 1, . . . ,K , j = 1, . . . ,K ⊲ Initialise
3: for n = 1, . . . ,N do ⊲ Loop over reference time series

4: Split z(n) into a training sample z
(n)
train and a test sample z

(n)
eval .

5: for k = 1, . . . ,K do ⊲ Loop over models

6: Fit model Mk to z
(n)
train and compute S

(n)
k .

7: Compute C
(n)
k using z

(n)
eval

8: end for
9: Set i∗ = argmin

i

S
(n)
i ⊲ if larger values of S

(n)
i indicate better models, use

argmax instead

10: Set j∗ = argmin
j

C
(n)
j ⊲ if larger values of C

(n)
j indicate better models, use

argmax instead
11: Set wi∗,j∗ ← wi∗,j∗ +1
12: end for
13: Set W ←W

/

N ⊲ Normalise cells of contingency table

14: end procedure

ities that a model is the “correct” model conditional on it being selected (p(C |S)). Sen-

sitivity-based schemes derive weights based on probabilities of selecting a model given

the “correct” model (p(S |C)). These are equivalent to p(C |S) if the assumed distribution

p(C) is uniform (a priori the new time series is equally likely to be best forecast by any

model). The computation of weights is outlined in detail in Algorithm 2.

The final forecasts are either based on selection or combination and one of the three

weighting schemes. In the results of Section 3, 4 and 5, criterion-select, precision-select

and sensitivity-select respectively refer to using the model corresponding to the element

that is maximal for wcrit, wprec and wsens. Alternatively, criterion-average, precision-

average and sensitivity-average take a weighted average of forecasts using wcrit, wprec and

wsens respectively as weights.
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Algorithm 2 Algorithm to compute criterion, precision and sensitivity combination
weights

1: procedure CompW(W,M,S ,y)
2: for k=1,. . . K do ⊲ Loop over models
3: Fit model Mk to y and compute S

y

k and a forecast ŷT+h,k .
4: end for
5: Set unnormalised criterion weights to wcrit

k ← exp(−S
y

k /2)

6: Set i∗ = argmin
i

S
y

i ⊲ if larger values of S
y

i indicate better models then use argmax

instead
7: Compute unnormalised precision weights w

prec
k ← wi∗,k

8: Compute unnormalised sensitivity weights wsens
k ← wi∗,k

/

∑

i
wi,k

9: Normalise all weights, wg← wg
/

∑

k
w
g
k , for g ∈ {crit,prec,sens} and where bold w

denotes vectors of length K .
10: end procedure

3 Simulation Study

3.1 Simulation design

We now turn our attention to a simulation study that provides intuition into how our

proposed methods work as well as evidence of their effectiveness. We simulate n = 200

times series from the ARMA class of models

(1−φ(L))(1−Φ(Lm))yt = (1+θ(L))(1 +Θ(Lm))ǫt ,

where yt is the time series at time t, ǫt is a white noise term at time t, L is the lag

operator, m is the seasonal frequency (e.g., 4 and 12 for quarterly and monthly data,

respectively), φ(L) is an AR polynomial of order p, Φ(L) is a seasonal AR polynomial of

order P, θ(L) is an MA polynomial of order q and Θ(L) is a seasonal MA polynomial of

order Q. Of the n = 200 series, 80 are simulated from a non-seasonal ARMA(1,1) model

(i.e., p = q = 1, P = Q = 0) and 120 series are simulated from a seasonal AR(1) model

(i.e., P = 1, p = q = Q = 0) with m = 12. Different AR and MA parameters are generated
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for each series from U(0.5,0.75) distributions and the variance of the white noise terms

of each series are generated from U(0.8,1.6) distributions.

A data generation process (DGP) similar to the one described above could arise in

the context of factor models with variables loading onto seasonal factors, non-seasonal

factors, or some combination of both (see Nieto et al., 2016, for an example of such a

model). In this setting, although the number of variables is large, each variable is a

linear combination of only a small number of factors. Linear combinations of ARMA

models are also ARMA models, with the AR and MA orders of the linear combination

constrained by the orders of the constituent processes (see Lütkepohl, 1984, for general

results). As a result, in a factor model, each series will follow one of only a small number

of ARMA processes despite the number of series being large. This enables “borrowing

strength” from all time series when trying to select a forecasting model (or combination

weights) for each individual series.

3.2 Contingency Table

For the simulation study we consider all seasonal ARMA models with p, P, q, and Q

equal to either 0 or 1, leading to a total of 16 candidate models. These are numbered

with letters from A to P as outlined in Table 2. Models A-D are all non-seasonal models

(P = Q = 0) while models E-P all allow for some form of seasonality. Recall that all

data are either generated frommodelD (non-seasonal ARMA(1,1)) or model E (seasonal

AR(1)). All models are estimated using the ARIMA() function in the forecast package in

R.
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Table 2: Summary of labels used to indicate the 16 ARMA models considered in the

simulation study.

Order
Label

A B C D E F G H I J K L M N O P

p 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

P 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

q 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Q 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

To populate the contingency table in 3, for each series we first use a training sample

of Ttrain = 60 observations to compute the BIC of the 16 candidate models and use it

as a criterion for selecting the most appropriate model. The counts of these selections

correspond to the rows of the contingency table. The evaluation criterion used to de-

termine the “correct” model (corresponding to the columns of the contingency table) is

the Mean Absolute Error (MAE). To compute MAE, we form one step ahead forecasts,

and repeat this process over a non-overlapping rolling window for the next Teval = 90

observations. Note that the “correct” model according to MAE may differ from the true

DGP which is always either model D or model E.
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Table 3: Contingency table for the simulation study. Rows correspond to the “selected”

model, while columns correspond to the “correct” model. Model labels A-P are outlined

in Table 2. Row I and Cell (F,O) are discussed in the text therefore are respectively

highlighted in italics and bold.

Correct

Model A B C D E F G H I J K L M N O P Total

S
el
ec
te
d

A 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 2

B 0 4 6 17 0 2 3 3 1 1 1 1 1 1 0 4 45

C 0 2 1 4 0 0 1 0 0 1 0 0 0 2 0 0 11

D 0 8 5 25 0 2 0 1 1 3 0 4 0 2 1 2 54

E 0 0 0 0 34 7 11 5 2 0 1 0 2 0 2 0 64

F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3

I 0 0 0 0 7 2 0 0 0 0 0 0 1 0 1 0 11

J 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 4

K 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

L 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 3

M 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 0 17 12 51 43 14 15 10 4 5 3 5 5 5 5 6 200

We can draw a number of conclusions from Table 3 that provide insights into how the

proposed cross-learning methods work. Focusing on row I (italics in Table 3), there are
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11 series for which model I (a seasonal MA(1) model) is selected by BIC. For the majority

of these series (7 series), the model identified as “correct” by validation is model D

(seasonal AR(1)). For all 11 of these series the true DGP is in fact modelD. Here criterion-

select, which selects purely on the basis of BIC, would lead to an incorrect model (model

I) being used to forecast these 11 series. In contrast, our precision-select method would

use the “correct” model (model D) whenever model I is selected by BIC. In this way our

cross-learning approach can correct possible tendencies to select incorrect models by

revising them through base-rate information.

As a caveat, we should note there are cases where the proposed approach can break

down. For example, there is one series with model F selected for which the “correct”

model was misidentified as model O (bold in Table 3). The true DGP for this series is

model D. In this case, both the criterion-select and precision-select approaches would fail

to choose the “correct” model.

Finally, we make some comments on the expected asymptotic behaviour of the con-

tingency table. As Teval → ∞ the MAE loss function will be minimised for the true

model2 leading all non-zero values to be concentrated in columns D and E. Since BIC

is a model consistent criterion, as Ttrain → ∞ eventually all non-zero values will con-

centrate in rows D and E. However, there are a number of settings where the selection

criteria do not lead to concentration on the true model. One is where Ttrain is finite, an-

other is where the selection criterion is not model consistent (e.g., AIC), and yet another

is where the true DGP in not included in the candidate models (Diebold, 1991). In all

of these cases we can exploit knowledge from the contingency table and improve model

selection and combination through revised base-rates.

2All models we consider are symmetric in the sense that the predictive mean and median are equal. If
the predictive mean is used for forecasting then choosing the model based on MAE may not converge to
the true DGP.
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3.3 Measuring performance

Following Makridakis et al. (2020), we consider two forecasting performance measures.

The first focuses on point forecast accuracy, while the second assesses the performance

of prediction intervals. Let yt be the observation of y at time period t and ft , ut , and

lt the point forecast, the upper, and the lower bound of the prediction interval for the

same period, respectively. Also, let T be the length of in-sample data for y and m its

seasonal frequency. Since we will evaluate forecasts of all simulated series, we require

measures that can be averaged across many time series. For point forecasts a widely-

used measure of forecasting accuracy with this property is the Mean Absolute Scaled

Error (MASE), defined as

MASE =
1

h

T+h
∑

t=T+1

|yt − ft |

1
T−m

T
∑

t=m+1

|yt − yt−m|

.

The Mean Scaled Interval Score (MSIS) is used as a measure of the performance

of the prediction intervals. It is the scaled average difference between the upper and

lower bound of the prediction interval plus a penalty for the instances where the actual

observation lies outside the intervals. This penalty is linked to the desired confidence

level, (1−α)× 100%. In this study, we set α = 0.05 (95% confidence level). The MSIS is

defined as

MSIS =
1

h

T+h
∑

t=T+1

(

ut − lt +
2

α
(lt − yt)1{yt < lt}+

2

α
(yt −ut)1{yt > ut}

)

1
T−m

T
∑

i=m+1

|yt − yt−m|

,

in which 1{·} is an indicator function. Note that the scaling of MSIS is the same as in
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MASE. For both measures, lower values are better.

3.4 Results

We now compute the performance measures introduced using a double rolling window.

For each outer window we first compute the contingency table using an ”inner” rolling

window of 29 one step ahead forecasts and a training sample size of 60 points. We then

retrain all models using all 90 available data points used to compute the contingency

table and produce one step ahead forecasts. The size of the outer rolling window is

90. Both here and in the remaining empirical applications, information on all series up

to, but not past the forecast origin is used to form forecasts. We also note that in our

contingency table there are rows entirely made up of zeroes (models G, N, O, and P). If

these models are selected during the validation, the forecasts for the precision-select and

sensitivity-select approaches are set to be the same as for the criterion-select approach. A

similar strategy is used for the methods based on averages.

Along with the results for the various selection and combination schemes, we of-

fer the results for three benchmarks. The first is selecting the best model according

to the evaluation criterion for all series, which we refer to as aggregate-select. The sec-

ond is an equally weighted forecast combination, referred to as EQW-average. The third

is the method of Diebold and Shin (2019) which involves regressing realisations of the

target variable on forecasts, but shrinking towards equal weights using an L1 or L2

penalty. We implement the Diebold and Shin (2019) method using an L1 penalty and

the R package glmnet with default settings for selecting the regularisation parameter

by cross-validation. We note that this approach can provide negative weights making

it ill-suited to computing prediction intervals. Therefore, results for MSIS are not pre-

sented for the Diebold and Shin (2019) method. We also implemented a modification

of the Diebold and Shin (2019) method whereby all negative weights are set to zero and
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weights are then normalised to sum to one. Here and in the remainder of the paper this

is referred to as normalised DS.

Table 4: Mean Absolute Scaled Error (MASE) and Mean Scaled Interval Score (MSIS)

for the simulated data described in Section 3.1. The top four lines refer to selection

methods, while the bottom four lines to combination methods. Precision/Sensitivity

are our proposed methods for exploiting cross-learning. The other methods, serving as

benchmarks, do not exploit revised base-rates. The best results in each column and each

panel are shown in bold.

Method MASE MSIS

Aggregate-select 0.956 6.82

Criterion-select 0.928 7.04

Precision-select 0.928 7.23

Sensitivity-select 0.905 6.68

EQW-average 0.850 5.66

Diebold & Shin (2019) 0.886 -

Normalised DS 0.853 5.75

Criterion-average 0.903 7.04

Precision-average 0.887 6.62

Sensitivity-average 0.875 6.33

The MASE and MSIS are reported in Table 4. We can make some general conclu-

sions. First, aggregate-select uses the forecasts from the most commonly selected model

(in most windows, model E) for all series. This performs poorly since 40% of the series

are drawn from a DGP without seasonal behaviour. Second, model averages outperform

the corresponding selection methods. Third, and most critical, sensitivity-select and

sensitivity-average outperform criterion-select and criterion-average, respectively. Simi-
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larly, precision-select is on par with criterion-select and precision-average is more accurate

than criterion-average. While these differences are small, they are statistically signifi-

cant according to a non-parametric Nemenyi test that controls for multiple comparisons

(Koning et al., 2005). The best performingmethod for this particular simulation is equal

weights - a robust choice that is often difficult to beat, with normalised DS also perform-

ing well. Nonetheless, the simulation demonstrates the advantages that can be accrued

by exploiting cross-learning relative to the approaches that only use series specific infor-

mation.

4 Macroeconomic Forecasting

4.1 Data

We now follow a similar exercise to the simulation study, this time using real macroe-

conomic data. The FRED-MD data3 contains over 100 macroeconomic time series mea-

sured at a monthly frequency that are continuously updated and revised. The same

double rolling window setup used in the simulation study is used again here. As such,

the starting point we use for the data is February 2003, a date chosen to exclude obser-

vations affected by the onset of Covid-19. A small number of series with missing data

were excluded from the analysis leading to n = 115 series. We note that the FRED-MD

data are pre-processed with differencing and log transformations applied to each series

to ensure stationarity. This approach that is common in the literature of macroeconomic

forecasting with a large number of series (see McCracken and Ng, 2016, and references

therein). In light of this, it is suitable to only consider the stationary ARMA models

rather than the richer ARIMA class of models.

3These are publicly available from the St Louis Federal Reserve.
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Table 5: Contingency Table for the Fred-MD data. Rows correspond to the “selected”

model, while columns correspond to the “correct” model. Model labels A-P are outlined

in Table 2.

Correct

A B C D E F G H I J K L M N O P Total

S
el
ec
te
d

A 8 6 6 1 0 0 1 0 0 0 0 0 4 0 2 0 28

B 6 2 4 0 1 0 1 1 0 2 1 0 2 0 2 0 22

C 3 2 5 3 0 0 5 0 0 0 1 9 2 0 4 0 34

D 1 5 2 1 0 1 0 1 0 2 0 2 0 0 0 0 15

E 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

F 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

J 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

K 0 0 2 1 0 0 0 0 0 0 0 0 1 0 0 0 4

L 0 0 2 0 0 0 0 0 0 1 0 1 1 0 1 0 6

M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 2

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 19 16 22 6 2 1 7 2 1 6 2 12 10 0 9 0 115

Table 5 displays the contingency table for one window of the FRED-MD macroeco-

nomic data. We observe a tendency to select non-seasonal models (models A-D) even

though the results of out-of-sample validation suggest that seasonal models, especially
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models L and M, may be better suited to forecasting some series. Our cross-learning

approach will correct for this tendency.

The results comparing our proposed methods to the same benchmarks used in Sec-

tion 3.4 is shown in Table 6. Regarding MASE and the selection methods, Precision

select and sensitivity select do not outperform criterion select. However the for the aver-

aging methods outperform the precision average is the best method overall outperform

all selection methods, criterion average and even equal weights. These results further

demonstrate the potential of our cross-learning approach in a real-world setting.

The results in Table 5 summarise results over all time series in the database. While a

difference of 0.002 may seem small, it should be noted that most series are transformed

using log differences, and to summarise forecast accuracy across series, MASE is used

which further standardises the forecast error metric. To give an idea of how precision

average can give an economically significant improvement over criterion average, we

can consider the series total business inventories for which precision-average yields an

mean absolute error of 0.094 compared to 0.179. Since this series is transformed to

log differences a difference in MAE of represents a difference in forecast error in the

growth rate of 8% or, given the scale on which inventories are measured, roughly $US

160bn. As a caveat we would note that methods that exploit cross-learning do not lead

to superior forecasts for every series. For example, for the series number of employees

in financial services criterion average outperforms precision average, with a difference

in MAE of 0.0175, which when interpreted as a difference in forecasting accuracy for a

growth rate, is economically significant.
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Table 6: Mean Absolute Scaled Error (MASE) and Mean Scaled Interval Score (MSIS)

for the FRED-MD data described in Section 4.1. The top four lines refer to selection

methods, while the bottom four lines to combination methods. Precision/Sensitivity

are our proposed methods for exploiting cross-learning. The best results in each column

and each panel are shown in bold.

Method MASE MSIS

Aggregate-select 0.553 5.04

Criterion-select 0.530 5.06

Precision-select 0.537 5.10

Sensitivity-select 0.544 5.04

EQW-average 0.532 4.84

Diebold & Shin (2019) 0.553 -

Normalised DS 0.533 4.83

Criterion-average 0.527 4.99

Precision-average 0.525 4.85

Sensitivity-average 0.527 4.84

5 Large-scale empirical evaluation

5.1 Models

In this section, we focus on the exponential smoothing (ETS) family of models. In ex-

ponential smoothing models, up to three components are estimated (level, trend, and

seasonality) and the forecasts are based on the estimates of these components. The

exponential smoothing family consists of 30 models in total, which are all possible com-

binations of different types of error (additive or multiplicative), trend (none, additive,
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or multiplicative; damped or not), and seasonality (none, additive, or multiplicative).

An exponential smoothing model form is usually summarised by three or four letters

that represent the types of the components in the model. For instance, an exponen-

tial smoothing model with additive error, additive trend, and multiplicative seasonality

is acronymised as ETS(AAM), or simply AAM. Similarly, ETS(MAdN) is a model with

multiplicative error, additive damped trend, and no seasonal component.

In practice not all models are used, either because some combinations result in es-

timation difficulties (such as additive error term with multiplicative seasonality) or in

unrealistic and explosive forecasts (such as multiplicative trends). In this study, we use

the ets() which is part of the very popular forecast package for the R statistical soft-

ware (Hyndman et al., 2020), which is used for this study, considers by default 15 out

of the 30 theoretically possible models. For non-seasonal data (such as time series with

a yearly frequency), the number of available exponential smoothing models drops from

15 to 6.

5.2 Selection and evaluation criteria

We consider two selection criteria, which are described below. The evaluation crite-

rion that we use in this study is the mean absolute error (MAE). The application of the

proposed algorithm for populating the contingency table (subsection 2.1) requires the

splitting of each reference time series into a training set (z
(n)
train – on which the selection

criteria values are calculated) and a test set (z
(n)
eval – on which the evaluation criterion

values are calculated). Let T (n) be the length of the reference time series z(n) and h the

required forecast horizon for y. The first T (n)−h observations of z(n) serve as the training

data, with the last h being the test data.

The first selection criterion is an information criterion. Information criteria are

based on the in-sample performance of a model, penalised for the size of the model
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(number of parameters that need to be estimated). Information criteria values can be

calculated using the training data of each reference time series, z
(n)
train. In this empirical

evaluation, we present results for the BIC, similarly to the simulation and macroeco-

nomic data of Section 3 and Section 4, respectively. However, the insights are consistent

for other information criteria such as the AIC or its corrected version for small sample

sizes (AICc).

The second selection criterion is time series validation. Replacing information cri-

teria with time series validation allows us to directly match the cost functions of the

selection and the evaluation criteria in constructing the base-rate matrix. However, this

requires further splitting the series such that selection via validation is enabled. We

first consider the first T (n) − 2h observations of z(n) and prepare forecasts for the pe-

riods T (n) − 2h + 1 to T (n) − h. The model that performs best (based on MAE) on the

periods T (n) − 2h + 1 to T (n) − h is the selection via time series validation. Next, we take

the first T (n) − h observations of z(n), corresponding to z
(n)
train, and prepare forecasts for

z
(n)
eval to calculate the evaluation criterion, similarly to information criteria. We note that

the benchmark due to Diebold and Shin (2019) also requires a splitting of the sample,

therefore can only be compared to the validation results below.

5.3 Data

We use the yearly, quarterly, and monthly data from the M, M3, and M4 forecasting

competitions (Makridakis et al., 1982; Makridakis and Hibon, 2000; Makridakis et al.,

2020). The forecasting horizon considered in this study is different per data frequency,

which matches the original design of the aforementioned competitions: h = 6, 8, and 12

for the yearly, quarterly, and monthly data respectively. Following the process described

in 2.1, we populate a separate contingency table per frequency and selection criterion

(BIC or time series validation).
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The various exponential smoothing models available have different numbers of pa-

rameters to be estimated and, as such, require a different minimum number of available

observations. Because of that, we need to ensure that models are selected for their mer-

its and not their data requirements. This would be important for the shorter of the

series available, as their inclusion would introduce a bias when populating the contin-

gency tables. As such, for each selection criterion, only the series that could be fitted

over all available exponential smoothing models were considered. Table 7 provides the

respective counts.

Finally, the out-of-sample evaluation takes place on the series that both selection

criteria can be applied, which matches the counts of series for constructing the BIC’s

contingency tables. That means that for the case of selection with validation, there is

not an absolute match between the series used for constructing the base-rate matrices

and the series that are finally evaluated. This mismatch would be a normal situation for

cases where only a small number of series needs to be forecast, with the corresponding

contingency table being populated using a wider, representative set of time series.

Table 7: Number of series considered for constructing the base-rate matrices for each
selection criterion, i.e., BIC and time series validation.

Frequency BIC base-rate Validation base-rate
Yearly 20,616 15,315

Quarterly 24,820 24,327
Monthly 49,998 49,477
Total 95,434 89,119

5.4 Out-of-sample evaluation

Tables 8 presents the average values of MASE and MSIS on the out-of-sample perfor-

mance for the various selection and combination schemes considered (see section 2.2),

for each selection criterion (see section 5.2), and for each and data frequency. As de-
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scribed in section 5.3, the out-of-sample evaluation takes place over 95,434 yearly, quar-

terly, and monthly series for which both selection criteria (BIC and Validation) can be

applied. The best performances (lower MASE or MSIS value) for each scheme (selec-

tion or combination) are highlighted in boldface. We excluded, both from the selection

and combination schemes, the exponential smoothing models where the information

criterion values could not be estimated or the lower or upper prediction interval of the

furthest horizon was an outlying value, as determined by the interquartile range of the

forecasts produced by the examined models.

Table 8: The out-of-sample performance of the various selection and combination
schemes.

Selection
Scheme

Yearly Quarterly Monthly
Criterion MASE MSIS MASE MSIS MASE MSIS

BIC Aggregate-select 3.512 45.524 1.192 9.953 0.988 8.893
Criterion-select 3.412 33.175 1.166 9.503 0.949 8.175
Precision-select 3.490 44.494 1.184 9.888 0.985 8.649
Sensitivity-select 3.309 32.329 1.174 10.368 0.948 8.327

EQW-average 3.231 29.225 1.174 9.099 0.948 8.213
Criterion-average 3.351 31.652 1.152 9.332 0.942 8.098
Precision-average 3.247 29.935 1.147 9.023 0.916 7.933
Sensitivity-average 3.212 29.180 1.155 9.032 0.922 7.961

Validation Aggregate-select 3.512 45.524 1.192 9.953 0.988 8.893
Criterion-select 3.358 38.937 1.179 10.182 0.942 8.640
Precision-select 3.511 45.265 1.188 10.083 0.972 8.756
Sensitivity-select 3.374 39.119 1.178 10.144 0.951 8.789

EQW-average 3.231 29.225 1.174 9.099 0.948 8.213
Diebold & Shin (2019) 5.084 - 1.583 - 1.346

Normalised DS 3.249 30.387 1.173 9.104 0.946 8.246
Criterion-average 3.348 37.631 1.176 9.934 0.936 8.478
Precision-average 3.251 30.004 1.159 9.071 0.925 8.053
Sensitivity-average 3.214 29.149 1.170 9.083 0.935 8.115

We observe that, when a single model is selected, the criterion-select scheme (re-

gardless of the selection criterion) provides a reasonably good performance. Sensitivity-

select is better than criterion-select in the yearly frequency and when BIC is used. Also,
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precision-select offers better performance with respect to prediction intervals for the

quarterly data and the Validation selection criterion. However, it would be fair to say

that there is not much to be gained from the contingency tables and the environmental

information when a single model is selected. Overall, and as expected, aggregate-select

results in worse performance compared to other selection schemes, with the only excep-

tion being the MSIS for the quarterly frequency.

The situation is different when models are combined. In this case, the criterion-

average scheme focuses on weights that have been estimated based on the information

criteria values (for the BIC) or the validation performance of the models for a single time

series, disregarding the general tendencies and performances of these models. On the

other hand, precision-select and sensitivity-select take into account the performance of

each model when applied to a large set of series. Sensitivity-average is the best approach

for the yearly frequency, outperforming all other selection and combination approaches,

including EQW-average. Similarly, precision-average is the best approach for the seasonal

(quarterly and monthly) frequencies. The gains from the application of precision-average

and sensitivity-average are especially evident in the case of the performance of the pre-

diction intervals. For example, the MSIS value for the sensitivity-average at the yearly

frequency is 7.8% and 22.5% lower than the respective values of criterion-average for

the BIC and Validation criteria, which, by turn, are lower than the respective criterion-

select values.

Comparing the results of Table 8 for the two selection criteria considered, BIC and

Validation, we can generally notice small differences. However, BIC is overall better

than Validation for the various selection and combination schemes. Regardless, the pro-

posed selection/average schemes are by definition applicable for any selection criterion,

as long as the respective contingency tables can be populated.

Next, we perform non-parametric multiple comparisons using the Friedman and the
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post-hoc Nemenyi tests. The results from the application of these tests allow us to check

whether or not the differences between the performance of the various selection and

combination schemes are statistically significant. It is worth noting that these tests do

not rely on distributional assumptions, while they focus on the ranked rather than the

absolute performance of each scheme. We use the nemenyi() function of the tsutils

package for R (Kourentzes, 2020). The significance results at a 5% level are presented

in figures 1 and 2 for the MASE and the MSIS respectively. The considered schemes are

presented from best (top row) to worst (bottom row) based on their average ranks. The

columns’ order follows the presentation of the schemes in the Table 8. For each row,

the black cell represents the scheme being tested; blue cells suggest that the scheme de-

picted in the row has an average rank that is not statistically different than the scheme in

the respective column; and white cells suggest statistically significant differences. As an

example, focusing on the first panel of Figure 1 (yearly data and BIC selection criterion),

the equal-weighted average (“EQW-Ave”), which has an average rank of 4.51, is not sta-

tistically different, at a 5% level, to sensitivity-select (“Sens-Sel”), but it is statistically

different to all other selection and combination schemes.

Three major observations arise from Figures 1 and 2. First, the precision-average

scheme is ranked always first in terms of MASE, regardless of the frequency of the data

or the selection criterion. Moreover, it is statistically better than all other schemes, with

the only exception being the quarterly data and the BIC criterion where there is no

evidence of statistical different average ranks between precision-average and criterion-

average. Second, the good performance of the precision-average scheme is also evident

in the yearly and monthly frequencies for the MSIS measure. However, the other com-

bination scheme that utilises revised base-rate information, the sensitivity-average, is

significantly better than all others in the quarterly data. Third, there is no evidence

that one of the selection schemes, aggregate-select, criterion-select, precision-select, and
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Figure 1: Nemenyi test results at a 5% significance level for the MASE.

sensitivity-select, performs consistently better than the others.

Koning et al. (2005) showed that the above significance test may tend to over-reject

the null when analysing a large number of series. We repeated the above analysis fo-

cusing only on the series labelled as macroeconomic, which are roughly 20% of the M

competition series. The precision-average scheme is still the best option, frequently being

statistically better than the other approaches.

Additionally, we also apply the model confidence set (Hansen et al., 2011) that se-

lects a set of models, jointly non-significantly different from one another, and contain-

ing the best model with a certain level of confidence. We use the MCSprocedure()

function of the MCS package for R (Bernardi, 2017), with the default 0.15 alpha level

27



BIC − Yearly

A
g

g
−

s
e

l

C
ri

t−
s
e

l

P
re

c
−

s
e

l

S
e

n
s
−

s
e

l

E
Q

W
−

a
ve

C
ri

t−
a
ve

P
re

c
−

a
ve

S
e

n
s
−

a
ve

Sens−sel − 5.05

Prec−sel − 4.85

Crit−sel − 4.72

Agg−sel − 4.70

Crit−ave − 4.52

EQW−ave − 4.33

Sens−ave − 4.04

Prec−ave − 3.81

Friedman: 0.000 − Critical distance 0.073

BIC − Quarterly

A
g

g
−

s
e

l

C
ri

t−
s
e

l

P
re

c
−

s
e

l

S
e

n
s
−

s
e

l

E
Q

W
−

a
ve

C
ri

t−
a
ve

P
re

c
−

a
ve

S
e

n
s
−

a
ve

Agg−sel − 5.43

Prec−sel − 4.98

EQW−ave − 4.56

Sens−sel − 4.28

Crit−sel − 4.24

Prec−ave − 4.23

Crit−ave − 4.21

Sens−ave − 4.08

Friedman: 0.000 − Critical distance 0.067

BIC − Monthly

A
g

g
−

s
e

l

C
ri

t−
s
e

l

P
re

c
−

s
e

l

S
e

n
s
−

s
e

l

E
Q

W
−

a
ve

C
ri

t−
a
ve

P
re

c
−

a
ve

S
e

n
s
−

a
ve

EQW−ave − 4.93

Prec−sel − 4.72

Sens−sel − 4.49

Sens−ave − 4.48

Agg−sel − 4.46

Crit−sel − 4.33

Crit−ave − 4.33

Prec−ave − 4.26

Friedman: 0.000 − Critical distance 0.047

Validation − Yearly

A
g

g
−

s
e

l

C
ri

t−
s
e

l

P
re

c
−

s
e

l

S
e

n
s
−

s
e

l

E
Q

W
−

a
ve

C
ri

t−
a
ve

P
re

c
−

a
ve

S
e

n
s
−

a
ve

Sens−sel − 4.83

Crit−sel − 4.79

Prec−sel − 4.72

Agg−sel − 4.67

Crit−ave − 4.46

EQW−ave − 4.42

Sens−ave − 4.20

Prec−ave − 3.91

Friedman: 0.000 − Critical distance 0.073

Validation − Quarterly

A
g

g
−

s
e

l

C
ri

t−
s
e

l

P
re

c
−

s
e

l

S
e

n
s
−

s
e

l

E
Q

W
−

a
ve

C
ri

t−
a
ve

P
re

c
−

a
ve

S
e

n
s
−

a
ve

Agg−sel − 5.14

Prec−sel − 4.84

Sens−sel − 4.72

Crit−sel − 4.61

EQW−ave − 4.24

Crit−ave − 4.21

Prec−ave − 4.15

Sens−ave − 4.08

Friedman: 0.000 − Critical distance 0.067

Validation − Monthly
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Figure 2: Nemenyi test results at a 5% significance level for the MSIS.

(85% confidence level) and 5000 bootstrap replications. Focusing on forecast accu-

racy (MASE), we observe that sensitivity-average is identified as superior to all other

approaches for the yearly data (for both selection criteria, BIC, and Validation), while

precision-average is the superior approach for the quarterly and monthly data. Focus-

ing on MSIS, sensitivity-average and/or precision-average are identified as the superior

approaches. The only instance that one of the other six approaches is identified as su-

perior is the case of MSIS for the yearly data when BIC is used as the selection criterion,

where EQW-average is tied with sensitivity-average as the superior approaches. Table 9

summarises the results for the model confidence test.

Next, we focus on the frequencies with which the four selection schemes opt for a
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Table 9: Superior approaches based on the model confidence test.

Selection Criterion
Measure Frequency BIC Validation
MASE Yearly Sensitivity-average Sensitivity-average

Quarterly Precision-average Precision-average
Monthly Precision-average Precision-average

MSIS Yearly EQW-average; Sensitivity-average Sensitivity-average
Quarterly Sensitivity-average; Precision-average Precision-average
Monthly Sensitivity-average; Precision-average Precision-average

model that is within the top, middle, or bottom third of the respective pool of available

models. For example, given that the model pool consists of 15 exponential smoothing

models (6 for the yearly data), then a scheme points to a model in the top 1/3 of the mod-

els when that model is ranked, based on its point forecast accuracy, in [1,5] (or [1,2] for

the yearly data). Figure 3 presents the respective selection frequencies for each selection

criterion and data frequency. We observe that precision-select and aggregate-select point

to a model in the top-third more often than the other two selection schemes (criterion-

select and sensitivity-select) for the yearly and quarterly data, irrespective of the selec-

tion criterion. However, precision-select and aggregate-select also opt more often than the

other selection schemes a model that is ranked in the bottom-third of the models. De-

spite the similarities in the model ranks selected by aggregate-select and precision-select,

the latter offers better overall performance, as observed in Table 8.

Another interesting observation arises from the ranked performance of the models

selected by sensitivity-select. In three of the six panels (BIC - Yearly, BIC - Quarterly, and

Validation - Yearly), we see that sensitivity-select opts significantly more frequently than

the other two schemes for a model ranked in the middle-third and less frequently for

models in either the top or bottom thirds. This suggests that sensitivity-select selects less

frequently the best models but also avoids more frequently the worst models. In that

sense, sensitivity-select works similarly to how humans select models (Petropoulos et al.,
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Figure 3: Selection frequencies of the top, middle, and bottom-ranked models for each
selection scheme, analysed per data frequency and selection criterion.

2018). Sensitivity-select results in models with similar ranks to criterion-select for the

monthly data frequency but also for the quarterly data and the validation criterion.

5.5 Sensitivity analysis

So far, our main empirical results focused on the use of very large sets of reference

series, without paying attention on the domain/context of each series or even whether

the number of series in the reference set would alter the results. In this section, we

will empirically show that the performance of the sensitivity and precision approaches

(both selection and average) are insensitive to the domain of series. We will also show

that these approaches work well even in the cases of limited number of reference series.

We first present the accuracy (MASE) and uncertainty (MSIS) results for the monthly

data in the M competitions labelled as “macroeconomic”. The performance of the dif-

ferent approaches is measured when (i) all monthly M competition series or (ii) only
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the series of the particular category (macroeconomic) are considered to populate the

contingency table. We focus on the monthly macroeconomic data as this complements

the results of our case study in the previous section. However, the insights presented

below are similar for other domains (industry, demographic, micro, and finance) and

other data frequencies (yearly and quarterly). The results are presented in Table 10 and

refer to the case when the Validation criterion is used. We observe that the average per-

formance of the sensitivity and precision approaches is not affected by the choice of the

reference data. More importantly, the relative rankings of all the approaches remains

largely the same.

Table 10: The out-of-sample performance of the various selection and combination
schemes for the monthly macroeconomic series of the M competitions, when all data
or just the macroeconomic data are used as the reference data.

All data... Macro data...
...as reference data

Scheme MASE MSIS MASE MSIS
Aggregate-select 0.991 8.734 0.991 8.735
Criterion-select 0.960 9.033 0.960 9.033
Precision-select 0.978 8.684 0.983 8.712
Sensitivity-select 0.973 9.383 0.968 9.285

EQW-average 0.966 8.404 0.966 8.404
Criterion-average 0.956 8.828 0.956 8.828
Precision-average 0.936 8.127 0.933 8.084
Sensitivity-average 0.950 8.281 0.953 8.316

Next, we examine the effect of the size of the reference set of series. We do so both

for all data but also for the macroeconomic data only. In both cases, we match the

reference set with the evaluation set. This means that when we evaluate all data, we

also use all data as the reference set, using appropriate subsets of each series to render

the out-of-sample forecast evaluation fair. We randomly consider random samples of

each reference set such that the percentage of series in the sample is in the range 5%

to 100%. Given that the monthly time series in the validation base-rate (see Table 7)
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is 49,477, the size of the reference sample for populating the contingency table for “all

data” varies between 4,948 and 49,477. Similarly, the size of the reference sample for

populating the contingency table for the “macroeconomic data” varies between 1,040

and 10,401. For each possible size, we take five such random samples. The results of

this analysis when the Validation criterion is used are presented in figures 4 and 5 for

MASE and MSIS respectively.
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Figure 4: The sensitivity of the MASE results on the size of the reference set. Left panel:
all data; Right panel: macroeconomic data. Reference series at 100% of the sample
match the evaluation series.

We observe that the precision-select and sensitivity-select approaches are sensitive to

the number of series in the sample size but also to the composition of the sample itself.

As such, their performance fluctuates considerably, and in some cases they are worse

than aggregate-select. Contrary to this, the precision-average and sensitivity-average ap-

proaches are very robust against the sample size, with their performance only slightly

affected by the series (and count of series) contributing in the sample. As such, we can

conclude that one does not need access to tens of thousands of series to achieve perfor-

mance improvements using approaches such as precision-average and sensitivity-average.
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Figure 5: The sensitivity of the MSIS results on the size of the reference set. Left panel:
all data; Right panel: macroeconomic data.

As a practical recommendation, we can consider an analysis similar to the above

to choose the number of reference series to use in the analysis. In particular we can

randomly select different sub-samples of all available reference series, each of size k,

and then evaluate the forecasts. We can then choose the number of reference series such

that the variance of forecast performance across the different sub-samples of size m is

below some threshold.

6 Discussion

Our empirical results suggest that combining models using precision and sensitivity in-

formation can significantly improve the performance of a system rather than focusing

solely on the per-series information. Effectively, our results show that the base-rate in-

formation has a useful role to play in model selection and model combination. Suitably

revising the base-rates offers a forecasting performance can be superior to exclusively fo-

cusing on the case-specific information. Solely focusing on the base-rates, as showcased
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by the aggregate-select scheme, is not appropriate and a balance is needed between the

environmental (aggregate) and individual (per series) information regarding the perfor-

mance of a forecasting model.

Our approach is a very simple case of cross-learning, as the base-rate information

is built by the application of the models within the pool on a large number of time se-

ries. Compared to other approaches that utilise cross-learning, our approach offers more

transparency while being more intuitive. Normally, cross-learning (and meta-learning)

approaches require extensive feature engineering (Montero-Manso et al., 2020), prepro-

cessing or scaling of the data (Kang et al., 2020), and hyper-parameter optimisation. In

contrast, our approach involves a small number of modelling decisions, mostly related

to the choice of the pool of forecasting models, the selection of selection and evalua-

tion criteria, and the choice of the reference series. Especially with regards to the latter,

our sensitivity analysis shows that considering pools of series that are more generic

than the target series does not harm forecast accuracy, while the precision-average and

sensitivity-average approaches are robust against the size of the reference set of series.

Our proposition is widely automated and requires limited judgemental input from the

modeller. As such, our approach on forecast combinations based on revised base-rates

could be offered as part of automatic and batch forecasting solutions.

Similar to other cross-learning approaches, our approach consists of an offline and

an online part. The offline part corresponds to the population of the contingency ta-

bles, while the online part corresponds to the use of these tables to estimate the re-

vised base-rates. It is worth-mentioning that the additional calculations for the online

part, once the values of the selection criteria have been estimated, are trivial and result

in negligible additional computational cost. However, populating the contingency ta-

bles can be costly if the reference set of series is large, even more for the validation

selection criterion compared to information criteria such as the BIC. In any case, it
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would be reasonable to assume that, in a relatively constant environment, the offline

part would not be updated in every review period (i.e., every time one needs to produce

forecasts). Therefore, in forecasting settings where the contingency tables do not have to

be re-constructed regularly, the proposed base-rate approaches become “economically”

meaningful, even when the accuracy improvements they achieve over simpler model

selection and combination methods are relatively small. On the contrary, in forecast-

ing applications that may require frequent contingency tables updates, the trade-off be-

tween accuracy improvements and additional computational costs should be carefully

evaluated.

Usually, weighted-based combination approaches estimate a unique set of weights

for each target series. An example is the criterion-average approach, where the weights

are estimated based on the values of the selection criterion for each model when applied

to a particular (the target) series. However, this is not true for the precision-average and

sensitivity-average approaches. We calculate only K sets of weights for each of these ap-

proaches, with each set of weights being applied based on the model that is selected.

In this sense, our combination weights are “static” given a reference set of series. It is

not the first time that static combination weights are proposed in the literature. For

instance, Collopy and Armstrong (1992) proposed the use of static weights when com-

bining between four models towards estimating levels and trends. However, contrary to

them, our static weights are not arbitrarily selected but are directly linked with the en-

vironmental performance (base-rates) of the models. As such, the combination weights

for precision-average and sensitivity-average will change if the set of reference series used

for calculating the base-rate also changes.

One advantage of model combinations through revised base-rates is that they do

not rely on specific selection or evaluation criteria, or even a standard pool of models.

In this study, we focused on a single evaluation criterion (MAE) solely for purposes

35



of brevity; the choice of MAE was made so that it links to the performance indicator

used for measuring point-forecast accuracy (MASE). However, a different evaluation

criterion could be more appropriate in other settings. Moreover, in our work we showed

results for two selection criteria, BIC and Validation. The results are similar for other

information criteria (such as AIC or AICc), while our approach could work with any

other selection criterion, such as cross-validation. Finally, we limited our pool of models

to either the exponential smoothing family of models (for the case of the large-scale

empirical evaluation) or the ARMA family of models (for the case of the simulation

study and the macroeconomic data application). Recall, however, that as long as the

selection criteria values are comparable, then one could consider a pool that includes

forecasting methods or models from several different families.

In our empirical design, we use suitable sub-series of the target series to form the

reference set of series and populate the contingency tables necessary for the precision-

based and sensitivity-based schemes. We withheld an appropriate number of obser-

vations such that the evaluation criterion is calculated over a period that matches the

required forecast horizon of the target series. The use of sub-series of the target series

inherently offers contingency tables that are representative to the target series. We also

used large, generic reference sets of series to produce forecasts for specific categories of

data (see subsection 5.5). Such generic sets of series offer accuracy levels that are very

similar (if not better) than using a reference set that closely represents the target data.

While one could focus on reference series that are more representative to the target

series (see Kang et al., 2017; Spiliotis et al., 2020, for details on measuring series repre-

sentativeness) to reduce the computational cost, modelling decisions can be simplified

by selecting large, diverse sets of reference series.

In this study, we used a large set of real data pooled from three major forecasting

competitions (M, M3, and M4 including industry, demographic, micro, and finance se-
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ries among other) and FRED (macroeconomic series). We should highlight that our re-

sults are based on relatively low frequency data (monthly to yearly) but we have no rea-

son to believe that the insights gained cannot be generalised to other, higher frequency

data. Similarly, although our study examined particular data domains, the sensitivity

analysis performed suggests that our insights should be applicable to other domains as

well. Also, we would like to mention that we do not intend to directly compare the

achieved performances presented in this paper with any of the original submissions in

the aforementioned forecasting competitions. While we did not use the test data explic-

itly, having access to the hold-out data renders any comparison with the competitions’

participants unfair.

7 Concluding remarks

In this study, we argued that the selection of models for time series forecasting should

not exclusively focus on the values of selection criteria applied on each series individ-

ually, but the base-rate information should also be taken into account, i.e., how often

a particular model performs best on the out-of-sample. We argued that such “envi-

ronmental” information of the performance of the various models should be revised

with the case-specific information towards obtaining probabilities that each of the can-

didate models is indeed the correct one. Such probabilities can then be used for model

(forecast) selection or forecast averaging. Our approach is a very simple case of cross-

learning, while also being in-line with the agenda of Bayesian inference through loss

functions.

Our empirical analysis was based on the point-forecast accuracy and performance

of the prediction intervals using both simulated and real life time series. Our results

showed that combination approaches based on precision and sensitivity information
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can outperform both individual and aggregate selection or combination, while concep-

tually being in-between the two. In some cases, the differences in performance were

statistically significant. The insights gained were similar for the two selection criteria

(BIC and validation), the various sampling frequencies, and the two measures (MASE

and MSIS) considered.

Future research could focus on context-specific data and how contingency tables can

be populated to better suit the needs of organisations with a small and relatively uni-

form sets of data. Moreover, in this paper we limited our attention to either exponential

smoothing models or ARMA models. As our approach is not structurally limited to

these models, it would be interesting to see how it performs when selecting and combi-

ning over a more diverse pool of models. A final promising avenue of future research

will be to see whether the algorithms proposed can be extended beyond forecasting, to

model combination for estimating common parameters across models, in the spirit of

(Lavancier and Rochet, 2016).
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