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Abstract 

This article presents a novel Artificial Intelligence (AI) workflow to enhance drilling 

performance by mitigating the adverse impact of drill-string vibrations on drilling efficiency. The 

study employs three supervised machine learning (ML) algorithms, namely the Multi-Layer 

Perceptron (MLP), Support Vector Regression (SVR), and Regression Decision Tree (DTR), to 

train models for bit rotation (Bit RPM), rate of penetration (ROP), and torque. These models 

combine to form a digital twin for a drilling system and are validated through extensive cross-

validation procedures against actual drilling parameters using field data. 

  The combined SVR - Bit RPM model is then used to categorize torsional vibrations and constrain 

optimized parameter selection using the Particle Swarm Optimisation block (PSO). The SVR-ROP 

model is integrated with a PSO under two constraints: Stick Slip Index (SSI<0.05) and Depth of 

Cut (DOC<5 mm) to further improve torsional stability. Simulations predict a 43% increase in 

ROP and torsional stability on average when the optimized parameters WOB and RPM are applied. 

This would avoid the need to trip in/out to change the bit, and the drilling time can be reduced from 

66 to 31 hours.  

The findings of this study illustrate the system's competency in determining optimal drilling 

parameters and boosting drilling efficiency. Integrating AI techniques offers valuable insights and 

practical solutions for drilling optimization, particularly in terms of saving drilling time and 

improving the ROP, which increases potential savings. 

Keywords:  

Drilling optimization, Drilling vibrations, Artificial Neural Network, Machine Learning, Rate 

of Penetration. 
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1. Introduction  

Optimizing the efficiency of drilling operations (which accounts for half of the budget of any 

exploration and development project) is essential in reducing overall costs and time, maximizing 

equipment reliability, and minimizing the adverse impact of hazardous situations. Certainly, the 

improvement of drilling efficiency and operational safety has become vital for improving 

efficiency and reducing the carbon footprint of the oil and gas industry. 

Unwanted drill-string vibrations are the main cause of performance failures (Bavadiya et al., 2017). 

They are detrimental as they take away the mechanical energy aimed at drilling, lead to borehole 

instability, and cause premature wear of downhole equipment (Pla´cido et al., 2002). These 

vibrations are of great concern critical due to the ease with which they creep in and their persistent 

nature. The main causes of these vibrations are nonlinear bit-rock interactions, mass imbalance, 

poor management of drilling parameters, and improper selection of the downhole equipment (Yigit 

& Christoforou, 2006). These drill-string vibrations can be classified into three modes: torsional, 

axial, and lateral  (Spanos et all, 2003).  

 

Figure 1: Stick and slip situations, (a) The elasticities of the drill-string cause the buckling during the stick phase. (b) Extreme 

accelerations and forces in both the axial and lateral directions causing bit bounce and whirl during slip phase. 

It can be observed that the occurrence of one type of vibration mode during drilling operations 

often leads to the induction of other types due to dynamic coupling. For instance, the occurrence 



3 

 

3 

 

of axial vibration can induce lateral shocks, and torsional vibrations can trigger both bit bounce 

and whirl. Despite this cross-coupling, torsional vibrations are widely regarded as the most severe 

type of vibration due to their gravity and frequency characteristics (al Dushaishi et al., 2018). The 

main problem is associated with the high-speed peaks during the slip phase, which lead to extreme 

accelerations and forces in both the axial and lateral directions, causing bit bounce and whirl 

(Figure 1-b). During the Stick phase, there will be excessive friction on the cutters, which causes 

the stuck bit situation. In this case, the Top Drive continues to apply a constant torque to the drill-

string, which has a certain degree of elasticity, causing the drill-string to buckle and the drill pipe 

to twist (Figure 1-a). Therefore, the drilling optimization process must consider the mitigation of 

drill-string vibrations to improve the drilling efficiency and decrease non-productive time (NPT). 

Traditional physical-based models have limitations due to unreliable assumptions resulting from 

variations in downhole equipment, well angle, and geological passage. To overcome these 

restrictions, scholars have turned to data-driven models trained with enormous amounts of data. In 

particular, the use of AI algorithms has shown promising results in predicting drilling outcomes. 

The intelligent drilling systems, which employ innovative workflow and tools, are based on AI 

algorithms and smart equipment. The nonlinear modelling and optimization workflow offer 

necessary instructions and support for smart equipment, which provides the data to model and 

validate the AI systems. The optimization algorithms used to enhance ROP, while easing the drill-

string vibration are presented. 

Although the application of AI has made significant progress, most models address different 

challenges. For instance, a real-time DL-based high-performance damage detection model and 

VHD detection frameworks have been presented by (Roy & Bhaduri, 2023) and (Jamil & Roy, 

2023) to address the shortcoming of the current models in complex and noisy environments. The 

novel deep learning (DL)-based high-performance outperformed current state-of-the-art models by 

providing at least 89.51% accuracy in more superficial network structures. Multiple Graph 

Learning Neural Networks (Jiang et al., 2022)  have been recently presented and experimented on 

several datasets to demonstrate that MGLNN outperforms other related methods on semi-

supervised classification tasks. 
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Iterative learning control (ILC) algorithms have been used by (C. Zhou et al., 2022) and (Zhuang 

et al., 2022) to introduce a robust and optimal ILC for constrained systems. Their work extends the 

existing framework of ILC, utilizing the design degree of freedom to optimize performance beyond 

tracking accuracy. By minimizing energy while maintaining the required tracking accuracy, these 

algorithms showcase the potential for enhanced control in constrained conditions and improve the 

algorithm's constraint handling capability compared to conventional counterparts.  

Significant research has been aimed at addressing the challenge of predicting ROP and mitigating 

the effect of drilling vibrations using innovative AI solutions such as the risk assessment method 

based on neural network backpropagation (Chen et al., 2018), the average accuracy of prediction 

for BPNN based on the wellhead torque signals is more than 90%. A workflow that combines ROP 

optimization with ML based vibration models (Hegde et al., 2019), the approach offered an 

improvement of ROP by 14.1% on average across all formations. Real-time workflows that detect 

and characterize drill-string shock and vibration using historical data and ML methods (Millan et 

al., 2019). The efficacy of these approaches depends on the presence of downhole measurement 

tools (MWD) within the drill-string, to detect excessive vibrations. These MWD tools are included 

only for deviation objectives. 

The optimization scheme should be constrained by factors that mitigate drilling vibrations, such as 

mechanical specific energy (Rashidi et al., 2010) or stick slip index (Hegde et al., 2019). Simply 

using the maximum WOB and RPM can induce drilling vibrations, which prevents achieving the 

optimal ROP (Bataee & Mohseni, 2011). To achieve this, (Abbas et al., 2019) propose AI based 

scheme using the ANNs model and genetic algorithm (GA) to obtain operating parameters WOB 

and RPM that lead to maximum ROP with the bit selection. In addition, AI based workflow has 

assisted the bit selection and ROP optimization (Batruny et al., 2021; Tortrakul et al., 2021), the 

trained ROP models applied with different drilling bits, and BHA allow the appropriate selection 

of the bit without harmful vibrations. The cost of these practical experiments is very high, and 

several bits and runs are required for the training and decision making, which will be impossible 

in daily or footage contract type scenarios.  

In contrast, (Koulidis & Ahmed, 2023) have combined AI with in-cutter sensing data to improve 

drilling efficiency and mitigate axial vibrations. Although this research is currently limited to a 

small dataset of 100 points and laboratory experiments, it offers a promising direction for future 
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research. Other review papers highlight the potential of AI to address the industry challenges such 

as stuck pipes and hydrate formation (D’Almeida et al., 2022).  

Among them, the model related to vibrations has primarily focused on characterizing and detecting 

drill-string vibrations rather than mitigating them. Additionally, these models often do not consider 

important parameters such as depth-of-cut and the severity of torsional vibrations, which are critical 

in maintaining the dynamic stability of the bottomhole assembly and the drill-string (Y. Zhou et 

al., 2017). However, recent research has shown that managing these parameters by adjusting DOC 

can significantly improve drilling efficiency and reduce non-productive time and bit failures 

(Alkhazal et al., 2022). Therefore, there is a need for more advanced AI models that incorporate 

these factors to optimize drilling parameters and mitigate vibrations. 

The current state-of-the-art in drilling optimization involves finding controllable drilling 

parameters, such as the WOB and RPM, to achieve a maximum ROP while minimizing drill string 

vibrations. However, traditional drill-off testing methods for different drilling bits can be costly 

and time consuming; this approach involves manually changing the DOC by applying several 

WOB/RPM. The present paper proposes a novel solution in the drilling optimization field to 

improve the drilling bit aggressiveness with virtual tests. Compared to the existing studies, which 

include measurement equipment and require massive data sets, the proposed solution is based on 

an updating system that can build real time sub-models at every 9 m drilled interval, to maintain 

the generalization capability of the ML models. The existing studies and solutions are applicable 

only to specific regions and formations.  

This research presents a novel AI-based workflow that improves drilling efficiency and minimizes 

vibrations. It presents the first workflow that considers the depth-of-cut during the application of 

ML models for ROP optimization with bit tests and the selection of the optimal drilling parameters. 

The proposed method provides an effective solution to reduce time, cost, and effort, compared to 

the current state-of the-art models and workflows. Additionally, the proposed workflow offers a 

cost-effective and safer alternative to traditional field-testing methods by allowing for the testing 

of different depths-of-cut as a constraint in a virtual optimization system built on field data, without 

requiring the use of new bits in the field. Simulations predict an average 43% increase in ROP and 

torsional stability when the optimized parameters WOB and RPM provided are applied. This would 
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avoid the need to trip in/out to change the bit, and the drilling time can be reduced from the initial 

66 to 31 hours. 

The aims of this study are as follows:  

- The development of the system model and the open loop dynamics to digitally replicate the 

behaviour of the drilling system virtually (Digital Twin). The ML methods and the data used are 

detailed in Section 2.   

- The breakdown of the optimization workflow with the objective function (ROP) utilizing the PSO 

method with DOC/SSI constraints. This is also covered in Section 2.  

- The accuracy of the prediction models is evaluated numerically by means of the statistical 

measures NRMSE and R2, and qualitatively using cross-validation scatter plots (Section 3, part 1). 

- The implementation of the proposed strategy to demonstrate its effectiveness in improving 

drilling efficiency and reducing drill-string vibrations. The success of the optimization workflow 

is demonstrated when applied in the digital twin, and the results are provided in Section 3, part 2.  

- The Field deployment is suggested in Section 3, part 3 to boost safety and minimize operational 

costs. 

2. Methodology   

The digital twin of a drill-string is a computational model that mimics the physical behaviour of an 

actual drilling system. The system uses real-time data collected from sensors such as WOB, RPM 

and flow rate for a virtual representation of the drilling process. The input parameters have an 

immediate feedback signal, such as torque, bit RPM, and standpipe pressure (SPP). The system's 

overall output is measured by the ROP, a metric that reflects the drilling performance. In addition 

to the WOB, RPM, and flow rate inputs, it should be noted that the system also employs depth as 

a parameter. The role of depth, along with the updating system, will be detailed on in the following 

section. 

The operational framework which relies on the inputs and outputs parameters collected from the 

rig are represented in Figure 2. These data are processed and analysed using machine learning 

algorithms to enable the digital twin to simulate and forecast the behaviour of the drilling system. 
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Therefore, for the best replica of the system, the digital twin should have essential models for 

immediate and global feedback, including Bit RPM, torque, and ROP. These models will be used 

to optimize the drilling system's performance. The hydraulic model for SPP is not included in this 

digital twin. 

 

 

Figure 2: The operational framework used in creating the Digital twin using ML and field data. The field data collected from 

actual behavior are employed to create a predictive behavior.  

2.1. Data acquisition and processing 

To develop accurate predictive models for drilling parameters, it is crucial to have a reliable and 

comprehensive database. In this study, field data collected through surface sensors with varying 

frequencies were utilized, comprising a total of 10998 data points. The drilling data were sampled 

continuously at different rates from 1 to 50 Hz, corresponding to the sensor types employed in the 

drilling rigs. The data was subsequently processed to obtain an average value every 1 second. 

Typically, drilling rigs are equipped with Electronic Data Recorder (EDR) systems that capture 
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measurements from the rig's sensors. These systems typically record surface data at frequencies 

ranging from low to medium (0.1-10 Hz), it is presented in Figure 2 as a Data bank. 

These data points were utilized in the learning and validation process to develop the Down RPM 

models along with the ROP and drilling torque models. The input data included various drilling 

parameters, such as depth, bit position, hook position, flow rate, ROP, WOB, RPM, SPP, and 

Surface Drilling Torque. Data pre-processing was performed by removing tripping Out/In data, 

reaming data, and unrealistic data. Wrong measurements and noise due to sensor malfunctions, 

wellbore friction, buoyancy, lift induced by flow, and nozzle jetting can pollute the drilling data. 

These data points containing unrealistic values, such as null and negative values, were discarded. 

The box plot diagram, which is a powerful graphical technique for outliers detection, was then used 

to detect and eliminate the abnormal values that can drastically affect the training process and bias 

the fit predictions. 

The data were then normalized between 1 and -1 to. The field data were then divided into two 

subsets using the learn/validate the split approach. This approach involved randomly dividing the 

data into a training set (80% of the data) and a test set (20% of the data). These latter evaluate the 

generalization ability of the system. 

2.2. Model Development: 

The feedback from the drilling system (Bit RPM, Torque and ROP) are modelled in this section 

using the MLP, SVR, and DTR. These machine learning algorithms are a type of artificial neural 

network and require a large amount of data to train effectively. The MLP, which consists of 

multiple layers of nodes, can handle complex nonlinear relationships between inputs and outputs 

(Youcefi et al., 2020). The SVR, which deals effectively with high-dimensional data, can be used 

for regression tasks to find the hyperplane that best fits the data. The objective of SVR is to 

minimize the distance between the predicted values and the actual values while also minimizing 

the complexity of the model. The DTR works effectively for categorical variables and handles both 

linear and nonlinear relationships between inputs and outputs by partitioning the input space into 

a hierarchy of binary splits until a stopping criterion is met.  

In this research, the models use the control parameters WOB and RPM and the drilling torque and 

depth, as input data, as depicted in Table (1): 
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Table 1: The inputs data for each feedback and the model development techniques  

Model Inputs Output (Predictive Models) Technique 

Bit RPM WOB, RPM, Depth, Torque 
Bit RPM SVR  

Bit RPM MLP 

Bit RPM DTR 

MLP, SVR, DTR ROP WOB, RPM, Torque, Depth, flowrate 
ROP SVR 

ROP MLP  

ROP DTR 

Torque WOB, RPM, depth, flowrate 
Torque SVR 

Torque MLP  

Torque DTR 

An initial effective configuration had been set for each machine learning technique and used in the 

first interval. The hyperparameters presented in Table 2 will be updated at fixed intervals as more 

data is available. The ML performance was evaluated by the normalized root mean square error 

(NRMSE).  

Table 2: The Initial configurations and hyperparameters for the machine learning techniques.   

Machine learning Algorithms  Initial Configuration/ Hyperparameters 

Multi-layers Perceptron (MLP) 

Number of hidden Layers: 1  

Number of neurons: 7 

Learning rate: 0.001 

Activation function: Sigmoid  

Optimization Algorithm: Levenberg Marquart  

Support Victor Regression (SVR) 

kernel function: Sigmoid 

Kernel parameter λ: 0.1  

C parameter: 1 

Decision Tree Regression (DTR) 

Max depth: 8  

Min samples split: 10  

Min samples leaf: 5  

Max leaf nodes: 100  

The Levenberg Marquart Algorithm was employed to optimize the weight and bias for the MLP 

within a range of learning rate between 0.001 and 0.01. The Sigmoid function was selected after a 

series of runs testing all the functions and the performance was evaluated by the normalized root 

mean square error (NRMSE). The initial MLP topology consisted of a single hidden layer with 

seven neurons, and this configuration will be updated at fixed intervals as more data is acquired 

from the sensors.  
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Training SVR models involves solving an optimization problem. The approach aims to minimize 

the distance between the points from the hyperplane and the closest point in the data. The sigmoid 

kernel function had been selected to improve the SVR model’s performance based on its accuracy 

and capability to be tailored to specific characteristics. The choice of the regularization parameter 

C and Kernel parameter λ impact the model’s precision by avoiding misclassifying each training 

example and to minimize the distance between the hyperplane and the data points.  

In addition, training a DTR model is done by building the tree by recursively portioning the data 

into subsets. The RMSE criterion hyperparameter was used to measure the quality of a split in the 

DTR. The hyperparameters shown in Table 2 aim to avoid overfitting and to ensure that nodes are 

only split when enough data is available to make reliable predictions. The maximum depth limits 

the tree depth to avoid overfitting and is set to allow for a relatively complex model. The minimum 

sample splits sets to ensure that nodes are split when enough data is available. The leaf is set to 5 

to prevent overfitting by ensuring that each leaf node has enough samples to make reliable 

predictions. The maximum leaf nodes sets the maximum number of leaf nodes to avoid overfitting 

by limiting the complexity of the tree. 

After the second interval of data collecting, a trial-and-error update system was used to choose the 

ideal configuration for each parameter separately. This method allowed the dynamics and 

fluctuations of each parameter to be captured.  

After the model’s validation, the most accurate Bit RPM model was employed to measure the DOC 

and SSI using equations (1) and (2) for the prediction and classification of torsional vibrations.  

𝐷𝑂𝐶 =
𝑅𝑂𝑃

𝐵𝑖𝑡 𝑅𝑃𝑀
16.67  (mm

𝑅𝑒𝑣⁄ ) Equation (1) 

and  

SSI =
Max 𝐵𝑖𝑡 𝑅𝑃𝑀 − Min 𝐵𝑖𝑡 𝑅𝑃𝑀

AVG Bit 𝑅𝑃𝑀
 Equation (2) 

The severity of the torsional vibration is then classified using DOC and SSI into three groups: low 

[SSI<0, 05], medium [0,05<SSI<0,35], and high [0,35<SSI< 1]. The DOC for low torsional 

vibration severity is recorded for optimization reasons and will be used as a constraint in the 
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optimization block via PSO methods. The PSO block outputs will be used as inputs in the drilling 

digital twin system to verify its correctness. 

It is essential to apply optimal control parameters during the optimization process to ensure the 

enhancement of the drilling efficiency. To achieve this, the digital twin (physical system) should 

have ROP and torque as outputs. The ML techniques were utilized to build ROP and drilling torque 

models using the inputs shown in Table 1. After applying the parameters, the best model with the 

minimum error was selected to evaluate the optimization system. 

2.3. Model Validation: 

Cross-validation is a validation approach used in machine learning model verification in which the 

scatter plots (cloud diagrams) between the recorded and predicted values of the test and validation 

datasets are compared with the unit line (x=y). Furthermore, statistical parameters such as NRMSE 

and coefficient of determination (R2) are used to numerically validate the ANN models and assess 

the prediction accuracy. 

Equations 3,4, and 5 define the formulae used to determine NRMSE and R2. As a result, NRMSE 

and R2 values near 0 and 1, respectively, indicating a successful prediction model. 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

(𝑀𝑎𝑥 𝑌𝑟𝑒𝑎𝑙 − 𝑀𝑖𝑛 𝑌𝑟𝑒𝑎𝑙)
 Equation (3) 

       𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑌𝑟𝑒𝑎𝑙,𝑖 − 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)

2

𝑁

𝑖=1

 Equation (4) 

     𝑅2 = 1 −
∑ (𝑌𝑟𝑒𝑎𝑙,𝑖 − 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)𝑁

𝑖

∑ (𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 − �̅�)𝑁
𝑖

 

 

Equation (5) 

2.4. Optimization Workflow 

The developed ROP model represents a function of controllable drilling parameters such as WOB, 

RPM, depth, flow, and torque, and is considered the objective function (Figure 3, Step (a)). PSO 

algorithms are used to provide ideal control of the drilling process by determining the correct values 

for the controllable drilling parameters WOB and RPM, which can be modified at the rig surface 

to maximize ROP. The established SSI formula and DOC formula measured from the Bit RPM 

model is used to define the constraints of the optimization process. The optimization process shown 
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in Figure 3, Step (b) is designed to maximize ROP while keeping SSI at the desired interval, 

keeping the DOC within an acceptable range during drilling, this range is provided from the 

classification of vibrations severity and represents the low severity torsional vibrations which 

ensures that the optimized WOB and RPM do not introduce drilling vibration. Table 3 summarizes 

the formulation of this optimization problem.  

Table 3: Drilling process optimization formulation 

 Parameters/Functions Objective formulation/constraints 

Objective function 𝑅𝑂𝑃 (𝑊𝑂𝐵,𝑅𝑃𝑀) Maximize 𝑅𝑂𝑃 

Constraint 
SSI 

DOC 

<0.05 

<5mm 

 

The PSO optimization block (Kennedy & Eberhart, 1995) has several key parameters including the 

swarm size, learning rates (C1 and C2), and the inertia weight (ω) introduced by (Shi & Eberhart, 

1998), each of which plays a crucial role in the PSO algorithm's ability to find optimal solutions 

based on the following equation:  

V𝑖
𝑡+1  =  ωV𝑖

𝑡 + 𝐶1r1
𝑡( 𝑝𝑏𝑒𝑠𝑡𝑡 − X𝑖

𝑡) + 𝐶2r2
𝑡 ( 𝑔𝑏𝑒𝑠𝑡𝑡 − X𝑖

𝑡) Equation (6) 

 

Three key terms in Equation (6) are used to define the particle trajectory in the search area. The 

inertial component ωV𝑖
𝑡 is the memory of the previous direction of motion, designed to prevent the 

particle from drastically changing its path. The cognitive component 𝐶1r1
𝑡 ( 𝑝𝑏𝑒𝑠𝑡

𝑡
− X𝑖

𝑡) pulls the 

particle back to its sweet spot. The Social term 𝐶2r2
𝑡 ( 𝑔𝑏𝑒𝑠𝑡

𝑡
− X𝑖

𝑡) transfer each particle to the best 

region where the swarm has found so far in the domain space (Chiou et al., 2012). These parameters 

are listed in Table 4. 

Table 4: PSO Initial Configuration and parameters  

Hyperparameters Initial Value 

Swarm size 

learning rates C1 

learning rates C2 

Inertia weight (ω) 

50 

2.05 

2.05 

0.729 
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Random numbers 𝐫𝟏
𝒕and 𝐫𝟐

𝒕  [0;1] 

After the first interval was fully drilled (which we can consider between 9m or 27m) and the Bit 

RPM, ROP, and drilling torque models were developed; the optimization phase began. The ROP 

model was input into the optimization block to define the optimal control parameters (WOB/RPM) 

to maximize the ROP using the PSO algorithm while limiting the SSI and DOC as seen in Table 3. 

Once the optimal WOB and RPM are determined, they can be recommended to the Driller for 

implementation (Step (c)). The Figure 3, Step (e) represents the update of the models with the new 

training data collected while drilling 9 m and to be introduced again in the PSO to find ideal RPM 

and WOB values for the next part (the second optimization stage). This procedure is repeated until 

the entire formation is drilled. Figure 3 shows the full workflow of the proposed drilling 

optimization strategy. 

Field data were employed to test the accuracy of the predictive models and the optimization 

workflow. These offline data were segregated, filtrated, and provided to the system in real time 

synchronization where the collected data of the first interval were employed to build the models. 

In the field, the models will be trained and developed during the connection time which take 

generally 7 minutes. This technique shall overcome the impact of the changing variable sauch as 

formation and drilling programs by updating the models’ parameters each connection.   

The execution time depends on the computing resources. It took almost a minute to complete this 

process (modelling and optimization) on a laptop with 8 GB RAM and an 11th Gen Intel i5-11400U 

2.70 GHz CPU. With this computing power, the ROP model can be optimized to select the best 

operating parameters every minute, but changing drilling parameters is often impractical in 

practice. For this, the frequency of model updates is set to the time required for drilling 9m. 

However, the ROP model can be retrained at any time, even before drilling through the entire 

interval. If the drill sees too much vibration or a sharp increase in torque, these parameters will be 

changed. 
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Figure 3: Drilling optimization workflow utilizing PSO and the digital twin. The objective function in the optimization block is the 

ROP model, subject to two constraints measured with the Down RPM model (a). The PSO algorithm creates sets of candidates and 

tests them in the ROP model to determine the optimal WOB/RPM (b). The optimal parameters are then introduced in the torque 

model (c), which serves as an input in (d) where all parameters are implemented to assess the ROP enhancement. The system 

collects inputs during drilling every 9m and updates the prediction of the models utilized (e). 

3. Results, Analyses and Discussion 

In this section, a detailed discussion and analysis of the results are presented. These will clearly 

demonstrate the efficacy of the proposed algorithm and lead to meaningful conclusions. 

3.1. Predictive Models Evaluation  

The evaluation of digital twin models is presented in this section. Specifically, ML algorithms 

(SVR, MLP, and DTR) have been developed for Bit RPM, ROP, and torque, and their accuracy is 

showcased through the statistical parameters NRMSE and R2 in Table 5. 

Table 5: Statistical parameters  

 SVR MLP DTR 

Bit RPM ROP Torque Bit RPM ROP Torque Bit RPM ROP Torque 

R2 0.987342 0.99886 0.970054 0.970368 0.811692 0.969302 0.981762 0.698786 0.970404 

NRMSE 0.017 0.070 0.066 0.020 0.196 0.070 0.029 0,.335 0.064 

Cross validation was used in addition to statistical characteristics to evaluate the prediction model's 

ability. Figure 4 displays the cloud diagrams (Scatter plots) between the field data and predicted 

values for each of the developed models. These data points are picked at random from the 20% of 



15 

 

15 

 

data set aside for testing and validation. This is applicable to real-world scenario and is 

advantageous for generalising these predictive models. 

 

Figure 4: Cross-Validation illustrating the ability of the models to predict the ROP, Torque and Bit RPM using new data points 

that were not used during the training phase. The scatter plot is compared to the unit line (y=x). The outcomes of the predictive 

ROP models are depicted in (a), and the Torque cloud diagrams using SVR, MLP and DTR model is illustrated in (b). The results 

of the ML models are shown in (c) for the Bit RPM. all three scatter plots drawn together is a good practice to facilitate a decision 

on which model to work with in the digital twin. 

Based on the cross plots presented in Figure 4, it can be observed that the MLP and DTR models 

exhibit a poor level of precision in predicting ROP (Figure 4-a). This is evident from the disorderly 

distribution of ROP values in the testing charts for the MLP and DTR  models. This suggests that 

the model may not be effective in predicting ROP values for new data points. On the other hand, 

the SVR algorithm appears to be the best predictive model for ROP, as demonstrated by the 

matching between the unit line and the tendency line. This indicates a high level of accuracy in 

predicting ROP values for the test/validation subsets. Moreover, the statistical parameters of the 

SVR model confirm its precision in predicting ROP values. With an R2 value of 0.99886 and an 

NRMSE of 0.070, the SVR model outperforms the other models considered in this study. Figure 

4-a clearly indicates that the SVR model outperforms the DTR and MLP models, as it is closer fit 

to the unit line. This comparison with the unit line is critical, as all the results must be close to it 

for accurate predictions. Therefore, the SVR model has great potential for practical applications in 

the optimization strategy of drilling operations 
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Surface torque is often challenging to model accurately. However, minor differences in the models 

can be observed in the cross plots presented in Figure 4-b. In this case, the DTR model appears to 

be the best model for surface torque, as it shows a relatively tight clustering of data points around 

the unit line. While the lack of small torque values due to filtration processes may have led to some 

imperfections in the tendency line, the DTR model still demonstrates a good level of precision. 

The Scatter plots for the torque show that both the SVR and MLP models exhibit a distribution of 

data points around the unit line indicating a lack of precision in their predictions. In addition, the 

the DTR torque model shows a comparable level of precision to the other developed models, with 

an R2 value of 0.970404 and a NRMSE of 0.064. These statistical parameters fall within an 

acceptable range, particularly when compared to the SVR and MLP models. Where the SVR model 

have R2 value of 0.970054 and a NRMSE 0.066 and the MLP have an R2 value of 0.969320404 

and a NRMSE 0.070 as presented in Table 5. The presentation of all cloud diagrams together is a 

good practice to facilitate a decision on which model to work with in the digital twin; The DTR 

model is closer fit to the unit line. This DTR model appears to offer a promising solution for 

predicting torque values in real-world drilling scenarios 

According to the outcomes, the Bit RPM model developed using SVR displays the best results 

compared to the MLP and DTR models. The SVR model exhibits a perfect fit between the unit line 

and tendency line, as shown in Figure 4-c. While the MLP model shows a small deviation in the 

cross plot, it can be overlooked as the tendency line for test remain stable. In contrast, the DTR 

model displays the lowest accuracy with a greater deviation from the unit line in the scatter plot 

illustrated in Figure 8-c. Furthermore, the SVR model for Bit RPM exhibits the lowest error in 

statistical parameters (NRMSE=0.017 and R2=0.987342), which are within an acceptable range 

(as highlighted in Table 5). These results indicate that the developed SVR model performs well in 

predicting Bit RPM based on new data not seen during training. Hence, the SVR model will be 

employed further in the optimization process to estimate the SSI and DOC. 

3.2. Drilling Process Optimization 

Optimization PSO algorithm was employed to determine the optimal values of WOB and RPM 

that improve torsional stability by minimizing torque fluctuation while maximizing aggressiveness. 

The Figure 5 represents the block outcomes for both RPM and WOB compared to real scenario in 

drilling operation.  
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Figure 5: Variation of Controllable Parameters for the field Case and for the PSO Outcomes. (a) depicts the WOB fluctuation in a 

drilling scenario. The highlighted area in (a) is zoomed in (c) exhibits cases of axial vibration and steady values for the optimization 

outcomes. (b) illustrates the RPM fluctuation in the real case, showing torsional vibration. The highlighted area in (b) zoomed in 

(d) shows severe stick slip with steadiness of optimized RPM values. 

The population of candidate solutions is iteratively updated during the PSO optimisation process 

by modifying the values of WOB and RPM based on the best solutions found thus far. The method 

employs a swarm approach, in which each solution is represented as a particle that moves around 

the search space in pursuit of the best reaction. Through a process of evaluation and adjustment, 

the PSO algorithm identifies the best values of WOB and RPM that satisfy the constraints of DOC 

and SSI while maximizing the ROP. The process continues until the desired level of optimization 

is achieved or a stopping criterion is met. 

Figure 5-b reveals that sharp fluctuations in surface RPM are a consequence of severe torsional 

vibrations. Under these circumstances, the SSI ranges superior to 15%, causing the top drive to be 

unable to overcome the reactive torque with programmed RPM due to the drilling limit torque 

constraint (20000 N.m.). As a result, the RPM decreases each time (i.e.: Figure 5-d) with frequent 

applied torque (Figure 7-a) until either the bit is liberated, or a total stuck situation is assumed. 

Severe fluctuations in the WOB occur due to bit bounce, as demonstrated in Figure 5-a. The Figure 

5-c shows the presence of these vibrations in the highlighted area from Figure 5-a and the 

successful mitigation achieved through the implementation of new parameters. 
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Figure 6: Variation of SSI and DOC before and after the optimization. (a) depicts high severity of the preoptimization SSI and 

exhibits low severity for the post optimization SSI, the highlighted area is zoomed in (c) to show that the maximum value of SSI after 

the optimization is limited to 5%. (b) illustrates high severity of the real DOC measured by Bit RPM model and exhibits new DOC 

with steady values after implementation of new parameters. The highlighted area in (b) is zoomed in (d) to show the efficacity of 

the system to keep the DOC at acceptable range. 

After the classification process of vibrations and the localization of the optimal DOC with continual 

training after each 9 meters drilled, two constraints are introduced to the system. The Bit RPM 

model is effectively used to calculate the severity of stick slip index, which classifies the severity 

of vibrations into three ranges: low, medium, and high (Figure 6). Most SSI values are less than 

5%, representing high reactive torque that the top drive can easily overcome by increasing the 

motor torque. In this range, RPM fluctuation is acceptable (i.e., from 160 to 148 rpm), and the 

vibrations are less harmful (Both Figures 5-a and 6-a). 

The ANN model determines the optimal drilling parameters for avoiding harmful drilling 

vibrations. The Figures 5-a and 5-b show the optimal RPM and WOB under the constraints of DOC 

and SSI. The system provides stable parameters every 9 meters drilled, and the optimized 

WOB/RPM differs from the real WOB/RPM selected in the drilling program Figures 5-c and 5-d. 

These optimized parameters are used to measure new post-optimization parameters, such as 

optimized SSI, new DOC, optimized torque, and optimized ROP, presented in Figures 6 and 7, 

respectively. PDC cutters' principal mission is to remove formation to boost the ROP. When the 

cutters penetrate deeply into the formation, the blades can rub against the formation, resulting in a 



19 

 

19 

 

severe stick-slip situation. Stick-slip is the unpredictable movement of the drill-string that can 

damage the bit and reduce drilling efficiency. 

In the Figure 6-b, it seems that when the DOC exceeds 6mm, the torsional stability of the drill-

string decreases, and the SSI surpasses 15% like the example presented in in Figure 6-d. This 

indicates a strong relationship between the DOC and torsional stability. Therefore, to optimize 

drilling efficiency and reduce bit wear, a maximum DOC of 5mm is fixed as a constraint in the 

optimization block with low SSI (SSI<5%) to avoid undesirable friction with the formation. 

The system output provides steady DOC with high torsional stability, as observed in Figure 6-c the 

post optimization SSI is low, and the maximum is 5%. The torsional stability is noticed in Figure 

7-a, where the torque fluctuations have been managed without stick slip situation, the maximal 

torque reach the drilling limit torque in few cases where both optimized RPM and WOB reach the 

maximum values. This is due to the training process, where these parameters show high ROP 

without any dysfunctions. This is the only situation where the optimized WOB and RPM are too 

high. All the parameters are not either maximized or minimized, they are optimized depend on the 

data used in the machine learning and collected each 9m drilled, new parameters will be given from 

the system and new Torque is calculated continuously. 

The recorded WOB and RPM during drilling operations (real scenario) often show various 

vibrations, such as stick slip and bit bounce. However, these inefficiencies and vibration issues 

were eliminated in the digital twin outcomes through the use of new optimized parameters, as 

depicted in Figures 6 and 7. The optimized parameters were able to mitigate these issues by taking 

into account the relationship between the DOC and reactive torque. 

By using the minimum DOC necessary to pierce the bottom hole, the bit cutters were able to 

penetrate the borehole without inducing axial vibrations, such as bit bounce. This, in turn, helped 

control and mitigate lateral vibrations, such as whirl and shocks, since all types of vibrations can 

induce each other. Additionally, since the cutters were not deeply penetrating the formation, the 

reactive torque did not reach the drilling limit torque (Figure 7-a), resulting in a constant RPM and 

avoiding torsional vibrations. Therefore, by maintaining the DOC within an acceptable range, 

torque fluctuation was minimized, leading to greater torsional stability as shown in the highlighted 

area presented in Figure 7-c.  
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Figure 7: The variation of torque and ROP before and after optimization. (a) exhibits managed new torque, the highlighted area is 

zoomed in (c) to show torsional stability. (b) illustrates the recorded ROP versus optimized ROP after implementation of new 

parameters. The highlighted area is zoomed in (d) to show that fixed WOB/RPM provide both torsional stability and high ROP in 

this case. 

It's important to note that the optimized ROP is higher than the actual ROP at several points (Figure 

7- b and d), indicating that the optimization workflow has the potential to significantly decrease 

drilling time. If the open-loop results are implemented in a real drilling scenario, the optimized 

WOB and RPM values predicted by the PSO are expected to result in a significant improvement in 

ROP as resulted in the drilling digital twin. For example, in a 16'' phase (1560 m) that was drilled 

using three bits (3 runs), the average ROP was 23.5 m/hr. However, if the optimization workflow 

is implemented, the average ROP is expected to increase to 41 m/hr, as shown in Figure 7-b. 

Assuming that the entire section can be drilled with a single bit rather than three, the incorporation 

of all parameters could reduce drilling time from the initial 66 hours to just 31 hours. This would 

also provide the added benefit of avoiding the need to trip in/out to change the bit. Hence, this 

optimization workflow could enhance ROP by 43%. 

 3.3. Discussion  

The appropriate choice of machine learning algorithms was based on their suitability for nonlinear 

modelling tasks. SVR and DTR demonstrated their handling capability of complex high-

dimensional data and effective learning processes, making them a reasonable choice for predicting 

the drilling parameters in real time based on unseen data. However, the MLP model performed 

poorly compared to other proposed SVR and DTR models in this study. Even if the MLP is widely 
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used for pattern recognition, it did not fit the research purpose due to the extensive variation in the 

data, overfitting issue, and unsuitability with iterative learning in a short period during the 

connection time after the drilled formation.  

For the modelling task, the SVR exhibited the best performance even on predicting the drilling 

parameters based on the unseen data. These results reveal the generalization capacity of the 

established models and the importance of the steps that were followed in this paper for building 

ML models. The box plot was employed as a tool for detecting the outlier data, thus eliminating 

this abnormal data that could negatively affect the training process and model fit. In addition, the 

hyperparameters tunning process via trial and error approach and cross validation was a crucial 

step for building robust models. 

For the optimization workflow, the PSO demonstrates its power and speed for exploring the search 

space and finding the optimal drilling parameters,  resulting in an average 43% increase in net ROP 

from 23.5 m/hr to 41 m/hr. The integration of PSO as a metaheuristic optimization and its ability 

to iteratively explore the data allowed the workflow to find the optimal parameters effectively, 

together with the digital twin creation that provides a suitable testing environment. In addition, 

incorporating DOC as a constraint was a key differentiator compared to the current state of the arts 

models. Considering the DOC control strategy based on ML models, the process efficiency was 

improved with an additional bit selection option.  

Although updating the ML models make the workflow more efficient regardless of the geological 

conditions and the data quality that restricts the model's performance, it can be challenging when 

implemented in real time. Delays in real time data collection may hinder the system’s ability to 

optimize the WOB/RPM. The sub-models development is conducted during the connection time; 

therefore, any complexities or dysfunctions during the stand drilling (stuck pipe, fluid loss) can 

limit the workflow performance. Finally, the system requires a new generation of drilling 

equipment to be integrated, such as Top drive, draw works, and mud pumps. 

3.4. Field Implementation:  

The continuous learning technique utilised in this work is notably beneficial for drilling operations 

since various variables might affect the drilling process. The models can adjust to changes in 

drilling conditions, such as modifications in geology, rheology qualities, or BHA design, by being 

continuously updated in real-time. The data collected within the first interval of Figure 8, across 
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the depth range of 1879-1888 meters, were utilized for training the first models. These models were 

subsequently employed to forecast critical drilling parameters, including the ROP, RPM, and 

torque, within the second interval (1888-1897 meters). Concurrently, the system collected pertinent 

data from the second interval to facilitate the training of a subsequent model, intended to enable 

the accurate prediction of the aforementioned parameters within the third interval of the drilling. 

The implementation of the bit RPM predictive model to monitor the SSI and DOC enables the 

detection of severe malfunction and the prevention of operational challenges such as bit wear and 

tear, which need tripping out operation and cause NPT. The system highlights how drilling 

operations can be improved for optimal efficiency, particularly cost reduction and enhanced 

drilling productivity (ROP). 

Several advanced drilling software use AI based workflow and physical based model are available 

in the market. These solutions advice the user on the best drilling parameters, give recomandation 

and provide early warning when predicting dysfunctions. Drilling Advisory System (DAS) 

(Payette et al., 2015) and Optidrill (Hbaieb et al., 2018) are examples of these software. 

Nonetheless, the updating system proposed in this research can improve all of these software 

programmes that require top-formation detection algorithms to pass from model to model for each 

drilled section. 

The ability of the PSO-based AI system to automatically customise and adapt to different drilling 

operations and changing drilling conditions constitutes one of its most significant features. This 

means that, depending on input from sensors and other sources, the AI system may adjust drilling 

parameters in real time, resulting in a more efficient and effective drilling operation. Furthermore, 

the presented AI system can be embedded with PLCs for both Drawworks and Top drive, allowing 

precise control over motor torque/speed as well as axial displacement (WOB). This level of 

precision and efficiency allows for even more precise and efficient drilling operations, which can 

improve drilling performance, reduce drilling time, and boost safety. 
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Figure 8: Multi-interval approach for continuous learning. Data is collected in the first interval and used in the learning process 

and the optimised model is used in the second interval, and new data is collected to develop a new model for the following 

optimisation cycle. The image emphasises the continuous learning technique's iterative nature and its capacity to adapt to changing 

data patterns over time. 

5. Conclusion 

In this work, Artificial Neural Network models were developed to predict various drilling 

parameters and to digitally replicate the drilling system's behavior virtually (Digital Twin). SVR 

was found to be the most accurate model for predicting Bit RPM and ROP, while Decision Tree 

Regression was the best model for predicting surface torque. The resulting models demonstrated 

high accuracy, with R2 values of 0.9 or higher and NRMSE values of 0.07 or lower.  

The success of the optimization workflow is demonstrated when applied in the digital twin. The 

PSO algorithms demonstrate their power and speed in identifying the optimal drilling parameters 

(WOB and RPM) under DOC/SSI constraints. With the objective function was set to maximize the 

ROP, increase torsional stability, minimize torque fluctuation, and improve bit aggressiveness; 

simulations predict an average 43% increase in net ROP from 23.5 m/hr to 41 m/hr. This would 

avoid the need to trip in/out to change the bit and save the drilling time from 66 to 31 hours for the 

drilled section (1560 m). The proposed digital twin can automatically adapt to different drilling 

operations and most PLC equipment, ensuring high precision, effective optimization and smooth 

operation to increase ROP, reduce downhole vibrations, and save drilling costs. Future research 

will aim at applying AI algorithms to early warning of potential problems and recommending 

corrective actions. 
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