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Both of tonight’s papers describe important work that has contributed and, with sufficient po-
litical will, can ans should continue to contribute to public health policy-setting and decision-
making. The term “semi-mechanistic” could be applied to the modelling approaches used
in both, the models being informed by a combination of data and context-specific scientific
knowledge. I find it hard to disagree with this as a general philosophy but striking the right
balance is a challenge in any specific application. At root, an epidemic is a realisation of a
spatio-temporal point process, but is rarely modelled as such; for an exception see Neal and
Roberts (2004). More often, context-specific knowledge feeds the temporal formulaton of the
model as a set of discrete-time stochastic processees, with the role of space reduced to the
indexing of a small number of discrete units (Norwegian counties in Storvik et al, unspecified
in Bhatt et al). Discretising time is usually innocuous, both because of its simple geometry
and the availabilty of data at a time-resolution fine enough to capture the dynamics of the
process. Discretising space seems to me more questionable, certainly if the inferential goals
include estimation of parmeters that relate to the effects of spatially varying risk-factors.

Taking the purely spatial case for illustration, let Yi : i = 1, ..., n be case-counts in a set of
n areal units Ai that partition the study region, let S(x) be the (unobserved) disease risk
at location x, and write Si =

∫
Ai
S(x)dx. A very widely used class of models for mapping

the spatial variation in risk (Besag, York and Mollié, 1991) specifies the Yi as conditionally
independent Poisson variates with means

Mi = OiSi = Oi exp{d′iβ +Wi}, (1)

where the Wi form a Gaussian Markov random field, di is a vector of covariates and the offset,
Oi, is the number of people at risk in Ai. Arguably a more natural model is a log-Gaussian
Cox process, in which case the Yi are again conditionally independent Poisson variates, but
now with means

Mi =
∫
Ai

o(x)S(x)dx} =
∫
Ai

o(x) exp{d(x)′β +W (x)}, (2)

where o(x) is population density and W (x) is a spatially continuous Gaussian process. Model
(2) delivers the joint predictive distribution of the complete surface S(x) (in practice, rep-
resented by a suitably fine pixel grid), from which the joint predictive distribution of the Si

follows immediately if that is what is required (Diggle, Moraga, Rowlingson and Taylor, 2013).
Inferences drawn from (1) and (2) can differ materially if important covariates are available at
finer spatial scales than the Ai as a consequence of the long-studied effects of ecological bias
(Greenland and Morgenstern, 1990). For example, the current Covid-19 epidemic in England
has typically been mapped at the level of England’s 331 Lower Tier local Authorities (e.g.
Riley et al, 2021) but potentially important covariates, including measures of deprivation and
ethnicity, are available for each of the country’s 34,753 Lower Super Output Areas (LSOAs);
and they can vary substantially between LSOAs within the same LTLA.

Reproduction numbers, however defined, might similarly vary over much smaller spatial scales
than the ones to which epidemic models are typically fitted, which leads me to wonder exactly
what property of an epidemic a spatially agnostic R-number is estimating. Contrarily, I am
surprised that the time-trajectories of estimated R-numbers in Figure 2 of Storvik et al show
so much high-frequency variation, even allowing for the widths of their credible intervals. Do
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Figure 1: Causal diagram for informative non-response. Squares and circles represent observed
and unobserved quantities, respectively. Observed quantities are covariates, d, number of
responders, Z, and number of cases among responders, Y . Unobserved quantities are the
response rate, Q, true prevalence, P , and a latent process, S, representing unobserved factors
that potentially affect both Q and P . Non-response is uninformative if the red arrow is absent.

the dynamics of the epidemic really change so quickly? And if they do, how useful is an
estimate of the current R-number as a guide to real-time public health decision-making?

Finally, I would like to comment on an issue that is perhaps beyond the scope of either paper,
namely the reliability of the case-numbers that inform the models. A recent WHO report
gives world-wide, country-level estimates of the very substantial under-counts in reported
Covid-19 deaths (Knutson et al, 2022), and the problem can only be worse for case-counts
of a disease with, thankfully, relatively low mortality. Nicholson et al (2022) show how to
de-bias case-count data by jointly modelling routinely reported case-counts together with
data from a randomised (hence unbiased) prevalence study, the REACT study (Riley et al,
2021). REACT was an England-wide repeated cross-sectional study of the spatio-temporal
variation in Covid-19 prevalence over the course of the epidemic, based on Covid-19 posi-
tive/negative test results from samples, each of approximately 100,000 individuals drawn, on
each of 19 rounds over almost two years, as geographically stratified random samples of the
NHS-registered population. The response rate was of the order of 20 to 25 per cent, which the
REACT analysis accommodated by adjusting for imbalance in the responders with respect to
potemtial risk-factors. Nevertheless, this leaves a niggling doubt that in studies of this kind
responders within a risk-group may not be representative of the whole group. In the setting
of longitudinal studes, this corresponds to the problem of informative missingness, on which
topic many papers and at least one book (Daniels and Hogan, 2008) have been written. The
prevalence survey counterpart is harder to address because, unlike in longitudinal studies,
there no independent replication. Figure 1 outlines a possible solution. The predictive target
is the true prevalence, P , but in the case of informative non-response the empirical prevalence
depends on both P and Q.
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