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Abstract: Airlines optimize flight trajectories in order to minimize their operational costs, of which
fuel consumption is a large contributor. It is known that flight trajectories are not fuel-optimal
because of airspace congestion and restrictions, safety regulations, bad weather and other operational
constraints. However, the extent to which trajectories are not fuel-optimal (and therefore CO2-optimal)
is not well known. In this study, we present two methods for optimizing the flight cruising time by
taking best advantage of the wind pattern at a given flight level and for constant airspeed. We test
these methods against actual flight trajectories recorded under the In-service Aircraft for a Global
Observing System (IAGOS) programme. One method is more robust than the other (computationally
faster) method, but when successful, the two methods agree very well with each other, with optima
generally within the order of 0.1%. The IAGOS actual cruising trajectories are on average 1% longer
than the computed optimal for the transatlantic route, which leaves little room for improvement
given that by construction the actual trajectory cannot be better than our optimum. The average
degree of non-optimality is larger for some other routes and can be up to 10%. On some routes, there
are also outlier flights that are not well optimized; however, the reason for this is not known.

Keywords: flight trajectories; optimization; IAGOS

1. Introduction

Optimizing flight trajectories is an important activity for airlines. Generally speaking,
airlines will seek to minimize their overall operating costs which, for a given flight, depend
on both factors independent of the flight trajectory, such as landing fees, and factors
dependent on the flight trajectory such as fuel consumption, en route charges and flight
time (as the latter may feed back on the availability of the aircraft, staff costs and operations).
Airlines operate under multiple constraints including air traffic regulations, airport slot
time, airspace availability, flight safety and regulations, passenger comfort, etc. Flight
planning and optimal trajectory computations are therefore strategic activities for airlines
and how exactly they do it remains confidential to some extent. Dalmau et al. [1] showed
that the optimal flight trajectory could differ significantly whether en route charges are
accounted for or not because these are more expensive over some countries than others.
EUROCONTROL [2] estimated an average fuel inefficiency of between 8.6% to 11.2%
from take-off to landing on flights within the EUROCONTROL Network Manager area
in 2019. This said, fuel costs are known to be a significant expense for airlines so we
expect flight trajectories to be fuel-optimized to some extent, especially long-haul flights,
despite the other costs and constraints under which airlines operate. It is therefore in
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the interest of airlines to exploit fully the three-dimensional wind field to minimize their
fuel consumption. Improvements in the atmospheric observing system, data assimilation
techniques and numerical weather prediction models have gone a long way to provide
accurate forecasts of the wind field at cruising altitudes on lead times of a few hours to a
few days. Although trajectories are already well wind-optimized, Wells et al. [3] argued
that further savings were achievable using flights between London (LHR) and New York
(JFK) as an example. They estimate potential savings of 2.5% for eastbound flights and
1.7% for westbound flights, assuming a constant airspeed of 240 m s−1 and a constant flight
level. The Air Traffic Management (ATM) community has also developed indicators to
measure inefficiencies in the ATM system. Liu et al. [4] computed the horizontal en route
inefficiency as the deviation of the actual flown distance relative to the shortest ground
distance (also called the geodesic or great circle). Prats et al. [5] and Kuljanin et al. [6]
estimated inefficiencies, expressed in extra kg fuel burned, and separated them between
horizontal and vertical components during the strategic and tactical layers of the flight
planning. Unlike Liu et al., they estimate the inefficiencies against a wind-optimized
trajectory without considering en route charges. Wells et al. [7,8] further showed that
airspeeds can be adjusted to some extent within a flight to “take optimal advantage of the
wind field” and probably the temperature field as well. However, they found the additional
advantage of varying airspeed to be rather small at 0.5% for transatlantic flights compared
to constant airspeed trajectories.

A wind-optimized flight trajectory is also one that minimizes CO2 emissions. There
is thus a synergy between minimizing fuel cost and minimizing the CO2 emissions of a
particular flight. However, CO2 is not the only pollutant emitted by aircraft. There is
increasing awareness of the importance of non-CO2 effects [9] and regulatory bodies have
started to scope how non-CO2 effects can be embedded in existing or forthcoming policy
instruments for climate mitigation [10,11]. These non-CO2 effects include the NOx effects
on ozone (O3) and methane (CH4), aerosols, contrails and induced cirrus that stem from the
emission of water vapour (and aerosols) and their mixing in the atmospheric environment.
The radiative effects of contrails and induced cirrus are known to be highly variable in
space and time, and it is suspected that a small fraction of flights are responsible for a large
fraction of the radiative forcing attributable to contrails and induced cirrus [12,13]. There is
intense research activity to understand the potential for contrail avoidance through flight
rerouting [14–18]. This is a very challenging objective that requires an accurate forecast
of contrail-prone conditions, and in particular of ice-supersaturated regions, an ability to
optimize flight trajectories within operational constraints, and the right choice of climate
cost function(s) [19–21]. A prerequisite to investigating flight trajectory optimization that
combines CO2 and non-CO2 effects is to demonstrate an ability to compute fuel-optimized
trajectories. Reconstructing aircraft trajectories may also be important for verification of
CO2 emissions by airlines. This study therefore aims to revisit optimized trajectories in
comparison to actual flight trajectories in a more systematic way than was done before.

Various techniques of varying complexity have been proposed to optimize flight
trajectories against a particular cost function. Zermelo [22] proposed a numerical solution
by solving a differential equation on the aircraft heading angle, θ, known as Zermelo’s
equation. A similar approach was proposed by Sawyer [23], who solved an equation
that links the rate of change of θ to the curvature of the wind. This method forms the
basis of the Met Office routing algorithm as implemented by Lunnon and Marklow [24]
and used by Irvine et al. [25]. Parzani et al. [26] developed a Hamilton–Jacobi–Bellman
approach for coordinated optimal aircraft trajectory planning. Yamashita et al. [27,28]
implemented a genetic algorithm to optimize flight trajectory in the ECHAM climate
model and used such a model to design aircraft routing strategies according to weather
patterns [29]. Simorgh et al. [30] summarized in their Table 1 the different techniques which
are being used for flight trajectory optimization, which they categorized into direct optimal
control, genetic algorithm, brute force algorithm and non-linear algorithms. They also
implemented a heuristic algorithm based on an augmented random search that exploits
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the computing power of graphics processing units. It is important for such algorithms to
be robust because the wind field can have a lot of structure on the horizontal and there
could be many local minima to a trajectory optimization. To our knowledge, there has
been no intercomparison of flight trajectory optimization algorithms and there is a lack of
validation of such algorithms.

Our ultimate goal is to quantify the potential for minimizing the total aviation cost
using optimal trajectories and simulate an actual system with uncertainties in order to
verify it. This study represents an intermediate step with several objectives. First, we
would like to compare two optimization methods against each other and against actual
trajectories. Second, we quantify the degree of non-optimality of flight trajectories. The two
optimization algorithms are based on a standard minimization algorithm (Sequential Least
SQuares Programming) and an implementation of the Zermelo method. We assess the
algorithms against the actual trajectories of flights from the In-service Aircraft for a Global
Observing System (IAGOS). The methodology and data used are described in Section 2
while the results are presented and discussed in Section 3.

2. Data and Methodology
2.1. Problem to Solve and Simplifying Assumptions

We seek to compute the fastest trajectory to fly from point P1 to point P2 across a
wind field. In the following, we make a number of simplifying assumptions. We focus on
the cruising phase of the flight to avoid any operational constraint with the take-off and
landing phases of the flight. Thus, P1 and P2 are taken to be the beginning and end of the
cruising phase of the flight. We also assume a constant aircraft airspeed and flight level.
These assumptions are discussed further in Section 4.

2.2. Data

We apply our optimization methods on the flights that contribute to the In-service
Aircraft for a Global Observing System (IAGOS) European Research Infrastructure [31].
Only long-haul flights with a cruising flight phase longer than 2500 km are selected. For
each IAGOS flight, we identify the cruising phase as datapoints for which the pressure is
less than 350 hPa and the absolute difference in pressure between two successive datapoints
is less than 50 Pa after application of a 1D Gaussian filter with standard deviation of 40.
These parameters are dependent on the temporal resolution of the IAGOS data which is
currently 4 s. The screening works well to remove the steep pressure changes during the
take-off and landing phase but not the pressure changes associated with changing flight
levels during the cruising phase (see Figure S1). It should be noted that the IAGOS flights
come from a limited number of airlines (Air France and Cathay Pacific in 2018; Lufthansa,
China Airlines and Hawaiian Airlines in 2018 and 2019; only Lufthansa and Hawaiian
Airlines in 2020 and 2021; see Table S1). Therefore, our results may not be representative of
all the world’s airlines and flight routes.

We use wind data from version 5 of the European ReAnalysis (ERA5) project of the
European Centre for Medium range Weather Forecasts (ECMWF). The data are extracted
from the MARS archive at the 0.25◦ × 0.25◦ horizontal resolution, hourly temporal reso-
lution and on Pressure Levels (PL). PL relevant for this study are 300, 275, 250, 225, 200
and 175 hPa. The hourly data combine the 6-hourly analysis and its subsequent forecast.
We consider time variations in the wind field at the hourly resolution during the flight
duration in a simple manner as explained in the next subsection.

2.3. Reprojection

The first step of our method is to rotate the sphere so that the shortest route from
P1 to P2 is located on the Equator of the rotated sphere. In this way, we can treat equally
any route without having to worry about the singularities at the poles. Indeed, it is very
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unlikely, not to say impossible, that an optimal trajectory deviates by more than 90◦ from
the geodesic. This is done by defining a new North Pole, P, which is such that

OP =
OP1 ×OP2

||OP1 ×OP2||
(1)

where O is the Earth’s center and × denotes the cross product of two vectors. We use
the cartopy package in Python to rotate the sphere so that P is the new North Pole. We
then use the transform_points and transform_vectors methods of the cartopy package
to interpolate datapoint coordinates and wind vectors onto the rotated sphere. The new
pole P is located in the northern hemisphere if P2 is eastward of P1 and in the southern
hemisphere if is westward (here, eastward and westward refer to the shortest way of going
from P1 to P2). In this way, the longitude of P1 in the rotated grid is always less than
the longitude of P2, while the latitudes of P1 and P2 are zero by construction. The two
components of the wind are then interpolated onto a regular latitude-longitude grid with
the same 0.25◦× 0.25◦ resolution as that of the original grid. It should be noted that the
minimization procedure is performed entirely on the rotated sphere. The solution of the
problem can be reprojected on the original, unrotated sphere although there is no need to do
so in our study since we compute all our statistics on the rotated sphere. The reprojection
on the rotated sphere accounts for the small non-sphericity of the Earth as the cartopy
package of Python uses the WGS84 coordinate system by default. Thus, the flown distance
between P1 and P2 also accounts for the non-sphericity of the Earth.

In a second step, we discretize the shortest route (or great circle) along the Equator in
n segments with a uniform resolution of about 50 km. This provides a set of longitudes
λi for i ∈ {0 . . . n + 1} for which we need to find a set of latitudes φi for i ∈ {1 . . . n}. The
coordinates of P1 and P2 are (λ0, φ0 = 0) and (λn+1, φn+1 = 0).

The ERA5 wind field is four-dimensional but we make two simplifying assumptions.
First, we do not seek to optimize the flight level and its variations in time. The optimal flight
level depends not only on the wind field but also on the plane and flight characteristics. We
consider the flight level to be known and we select the ERA5 pressure level that is closest
to the average flight pressure as provided by IAGOS for the cruising phase. We do not
interpolate the wind field on the vertical. Second, we approximate the time variations of
the wind field by attributing one time to each longitude λ of the grid:

time =


TP1 if λ < λ0

TP1 +
λ−λ0

λn+1−λ0
(TP2 − TP1) if λ0 ≤ λ ≤ λn+1

TP2 if λn+1 < λ

(2)

where TP1 and TP2 are the times of beginning and end of the cruising phase and the overbar
denotes the closest round hour. The same time is allocated to all latitudes of a given
longitude band. This approximation is a simple way to take into account the temporal
variations of the wind field between the beginning and end of the cruising without selecting
times dynamically in our optimization procedures. Like for the pressure level, we do not
interpolate between times but select the closest time available in ERA5.

2.4. Cost Function

Finding the optimal trajectory requires defining the cost function that we seek to
minimize. Here, the cost function is defined simply as the square of the flight time assuming
a constant airspeed of the aircraft of 240 m/s (or 864 km/h). It is computed along the
discretized trajectory:

Tflight = ∑
i∈{1..n+1}

di/Vground,i (3)
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where di is the distance of segment i and Vground,i is the groundspeed of the aircraft for that
segment, which itself is computed as

Vground,i =
√

V2
air + V2

wind,i − 2VairVwind,i cos(αi) (4)

with Vair the airspeed of the aircraft (assumed constant), Vwind,i the wind speed and αi the
supplement of the angle between the aircraft and wind vectors. It should be noted that
the estimate of the groundspeed as a function of the plane bearing (and its derivatives as
used in the Zermelo method) assumes sphericity of the Earth. The error caused by this
approximation is likely to be very small as the coordinate system for each flight is rotated
(using an ellipsoid-aware algorithm) such that it lies along the Equator.

The flight time is computed for the cruising phase only. It should be noted that in
order to focus on the properties of the trajectory and maintain consistency between the
different approaches, we do not use the actual flight time of the IAGOS trajectory when
comparing with that of our optimized trajectories. Instead, we recompute the flight time of
the IAGOS trajectory with the Equations above and with the same longitudinal resolution.

2.5. Gradient Descent

The first optimization method is based on a classical gradient descent method to
minimize the cost function defined in Section 2.4. We use the Sequential Least SQuares
Programming (SLSQP) method of the Python scipy package to minimize the square of
flight time between P1 and P2 (see Section 2.4). As the function to be minimized is not
convex, there is no guarantee that we find the global minimum. To maximize our chance to
find the global minimum, the minimization procedure is repeated p times with different
initial conditions, φ0

i , for the control vector and we keep the smallest of all the minima. The
initial conditions are set to:

φ0
i =

{
φmax · i/m for i ∈ {1 . . . m− 1}
φmax · (n + 1− i)/(n + 1−m) for i ∈ {m . . . n} (5)

with φmax (in degrees) ∈ {−21,−18,−15,−12,−9,−6,−3, 0, 3, 6, 9, 12, 15, 18, 21} and
m ∈ {n//3, n//2, 2n//3}, where / and // denote float and Euclidian divisions, re-
spectively. This makes a grand total of p = 1 + 14×3 = 43 optimizations for each flight.
The maximum number of iterations was set to 100 as it was found to represent a good
compromise between accuracy and computational cost.

2.6. Zermelo Method

The second optimization method is an adaptation of the Zermelo equation, solved
using a simple forward Euler method. The solution is found following the “shooting”
method, where trajectories with a range of initial directions are produced either side of the
great-circle route between P1 and P2 [32]. For trajectory pairs that fall either side of P2, a
further search is performed between these pairs to locate an optimal trajectory.

By construction, the Zermelo solution starts exactly from P1 but it does not end exactly
in P2. In order to obtain a trajectory that ends exactly in P2, we stretch slightly the Zermelo
solution for each trajectory that passes within 75 km of P2:{

λz′
i = λz

i + (λn − λz
N) i/N for i ∈ {0 . . . N}

φz′
i = φz

i + (φn − φz
N) i/N for i ∈ {0 . . . N}

(6)

where λn and φn are the coordinates of the P2 point and N is the number of segments of
the Zermelo trajectory (which is generally different from n).

It should be noted that the Zermelo method is applied in the same framework
(Sections 2.3 and 2.4) as the gradient descent method, which means that both methods
share the same wind field and cost function. The results of the two methods are thus fully
comparable.
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3. Results
3.1. Timings

We have run both the gradient descent and Zermelo methods for all IAGOS flights
longer than 2500 km in the years 2018 and 2019 (pre-COVID) and 2020 and 2021 (which
encompass the COVID period with much-reduced air traffic). However, we focus in this
study on the 2019 year only as this is the latest year with a number of IAGOS flights in
excess of 1000 flights (see Table S1). However, we have processed all IAGOS flights from
2018 to 2021 to test the robustness of our procedure. The flights are categorized from their
regions of origin and destination as per Figure S2.

The two methods differ in their computational time, accuracy and success rate. The
Zermelo-based solution is by far the quickest of both methods with an average runtime of
∼6 s per flight (range 4 to 15 s) on a 2.8 GHz AMD EPYC 7402P CPU (see Figure S3). In
contrast, the gradient descent method takes an average execution time of 450 s per flight
(range 300 to 600 s). As it depends on a Python optimizer, there is little room for speeding up
the algorithm without a major revamping of the code. We have already greatly optimized
the wind extraction along the trajectory using numpy and xarray built-in methods, which
benefited both methods. The number of optimizations for each flight (which is currently
43) can be decreased by selecting the most promising initial conditions but we have not
performed a full sensitivity study on this. We have tried to decrease the maximum number
of iterations below 100 but this decreased the accuracy of the solution.

The gradient descent method always converges to a solution but there is no guarantee
that it is the optimal solution. Indeed, quite often the Zermelo solution is a little better than
the gradient descent method, but only by about 0.1%, which is essentially negligible and
gives confidence that both algorithms work when they are in agreement. The disadvantage
of the Zermelo method, as implemented in this study, is that it sometimes fails to find
the global optimum or does not find an optimum for longer routes. We consider that the
Zermelo method fails if it finds a solution that is 2% longer than the gradient descent
method. The success rate of the Zermelo method is ∼95% for the 2019 IAGOS flights. In
the following, we present statistics of the gradient descent method only.

3.2. Statistics

Figure 1 shows the flight time differences between our optimum and the recomputed
IAGOS flight time for the transatlantic flight route (Europe to North America, or westbound
flights, and North America to Europe, or eastbound flights). It can be seen that with only
one exception, the optimum found is faster than the actual IAGOS flight, which is as
expected because we compute the flight time using the same metric that has served for
the optimization. The two methods agree fairly well with each other, with the Zermelo
method finding a slightly more optimal solution but sometimes failing. When assessed
against the gradient descent method, we find the IAGOS flight to be only ∼1% slower
than the optimum trajectory on average for both eastbound and westbound transatlantic
flights (see column IAGOS/Quickest in Table 1). However, we can see in Figure 1 that a
few IAGOS flights can be up to 4–5% slower than the optimum. There are many reasons
why IAGOS flights are non-optimal. Firstly, as mentioned above, we assess the IAGOS
flights against our own metric; therefore, it can only be slower (except if our optimization
algorithm fails to find a global optimum). For instance, we assume a constant (average)
flight level whereas actual flights increase their flight level along the trajectory. Secondly,
operational routing has to rely on weather forecast rather than reanalysis, as is the case
here, which may result in a suboptimal route. Thirdly, there are operational constraints
(i.e., flight tracks to be used over the North Atlantic) which we do not consider here. It is
difficult to quantify the relative impact of these three effects. The second one is thought
to be small because operational routing is often adjusted until shortly before departure
and benefits from the latest forecasts that are close to the (re)analysis. Flight tracks over
the North Atlantic ocean are also thought to be a rather weak constraint because they are
adjusted every day on the basis of the preferred routes that airlines communicate to air
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traffic control agencies. Therefore, with a 1% difference, IAGOS flights can be considered as
being fairly well optimized. The flights that are 3 to 5% below optimality would be worth
investigating as they represent a potential for improving fuel efficiency. This is in contrast
with the finding from Wells et al. [3] who find a larger potential for improving efficiency of
transatlantic flights. The differences between their and our conclusions could be due to
the way the flight times are computed, the fact that they consider the end-to-end trajectory
while we only consider the cruising phase, or the representativeness of the flights being
considered in terms of routes or airlines.

The near-optimality of flights that we observe for the transatlantic route does not
translate for all routes. Figure 2 expands the statistics to all 2019 IAGOS flights and shows
only a small fraction of flights above the 5% inefficiency rate. Considering all 2019 IAGOS
flights, we find that IAGOS flights are 2.14% below the optimum. However, there are large
differences among the routes (see Table 1). Among the least efficient routes are South-East
Asia to Asia (ratio of 1.080), Asia to South-East Asia (ratio 1.096), Europe to South-East Asia
(ratio 1.055), Europe to Asia (ratio 1.041), Europe to Middle East (ratio 1.039) and Middle
East to Europe (ratio 1.034). We note that the number of flights considered may be low;
hence, the above ratios may not be representative. Some of these differences are clearly due
to air traffic control restrictions due to political or safety reasons. This appears to be the
case for the routes involving Asia, with restrictive air corridors in India and China, and
some routes potentially crossing conflict regions (e.g., Libya, Syria, eastern Ukraine). This
finding is consistent with that of Liu et al. [33] who found longer actual airborne times in
China and in the United States for the same origin–destination distance.

Figure 1. Relative difference in flight time for our time-optimized trajectories relative to the ac-
tual IAGOS recomputed time for our two optimization methods and for 2019 Europe to North
America (top panel) and North America to Europe (bottom panel) IAGOS flights. Negative values
indicate that the IAGOS trajectory is faster. The orange line is interrupted for cases for which the
Zermelo method has failed. The labels on the x-axis corresponds to the IAGOS flight ID in format
YYYYMMDDHHMMZZZZ with YYYY being the year, MM the month, DD the day, HH the hour,
MM the minute of take-off and ZZZZ the IAGOS measurement package number.
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Figure 2. Scatter plot of all 2019 IAGOS flight times versus the corresponding optimal flight time for
the cruising fraction of the trajectory. Flights are colour-coded by route (upper panel) and aircraft
(lower panel). In addition to the 1:1 line (thicker line) are shown the 1.01:1, 1.02:1, 1.05:1, 1.1:1,
and 1.2:1 lines. D-AIGT, D-AIKO and D-AIHE belong to Lufthansa, N384HA belongs to Hawaiian
Airlines and B-18317 belongs to China Airlines.

As some parametrizations for fuel consumption [34] depend only on flown distance,
irrespective of whether the flight or the route considered meet headwind or tailwind, we
find it useful to introduce several hypothetical flight times and compare them. We first
compute the flight cruise time in the absence of wind, Tno wind

flight , which corresponds simply
to the great circle distance divided by the airspeed. We then compute the flight cruise
time for the great circle in the presence of wind, Tshortest

flight . The ratio Tshortest
flight /Tno wind

flight
measures how the dominant winds affect the average flight time on a given route. The
ratio Tquickest

flight /Tshortest
flight measures by how much optimizing the trajectory by accounting for

the wind field can speed up the flight compared to the great circle route. Finally, we can
decompose the ratio TIAGOS/Tno wind

flight as

TIAGOS

Tno wind =
TIAGOS

Tquickest ·
Tquickest

Tshortest ·
Tshortest

Tno wind (7)
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where we have omitted the subscript for clarity. Table 1 shows this decomposition for
the different routes categorized from the IAGOS flights. Beyond the TIAGOS/Tquickest

which has been already discussed, we can see that wind-optimization allows 1–4% faster
trajectories compared to the great circle, while there are much larger variations due to the
dominant wind as evident from the Tshortest/Tno wind ratio.

Table 1. Statistics of the trajectory times for 2019 by regions of origin and destination (see text for
more explanation). The ratios correspond to the ratios of average flight times, rather than the average
of the ratios.

From To Year Nb IAGOS/ Quickest/ Shortest/ IAGOS/
Flights Quickest Shortest No Wind No Wind

North America Pacific 2019 216 1.016 0.985 1.078 1.079
Pacific North America 2019 215 1.015 0.988 0.940 0.942
Europe North America 2019 118 1.009 0.972 1.066 1.046
North America Europe 2019 93 1.011 0.975 0.949 0.936
Europe Africa 2019 91 1.020 0.992 1.002 1.014
Europe Asia 2019 89 1.041 0.984 0.957 0.981
Europe Middle East 2019 86 1.039 0.993 0.959 0.989
Africa Europe 2019 85 1.020 0.993 1.010 1.022
Middle East Europe 2019 72 1.034 0.991 1.053 1.080
Asia Europe 2019 68 1.030 0.983 1.059 1.073
Asia Pacific 2019 65 1.026 0.983 0.897 0.904
Pacific Asia 2019 65 1.025 0.963 1.162 1.148
Asia Asia 2019 63 1.029 0.998 1.003 1.030
Europe South America 2019 31 1.008 0.970 1.064 1.041
Australasia Pacific 2019 26 1.011 0.994 0.979 0.984
Pacific Australasia 2019 26 1.018 0.992 1.034 1.044
South America Europe 2019 24 1.013 0.978 0.953 0.944
Europe Central Asia 2019 16 1.016 0.993 0.938 0.947
Central Asia Europe 2019 16 1.014 0.989 1.072 1.075
South-East Asia Asia 2019 12 1.081 0.991 0.896 0.960
Europe Central America 2019 11 1.015 0.964 1.089 1.065
Asia South-East Asia 2019 11 1.096 0.979 1.181 1.267
Asia Australasia 2019 11 1.026 0.998 1.021 1.045
Australasia Asia 2019 11 1.035 0.998 0.984 1.015
Pacific Pacific 2019 10 1.011 0.995 1.008 1.014
Central America Europe 2019 6 1.020 0.981 0.926 0.927
Europe South-East Asia 2019 3 1.055 0.994 0.949 0.996
South-East Asia Europe 2019 1 1.028 0.986 1.067 1.082

3.3. Examples of Time-Optimized Trajectories in Comparison to Actual Trajectories

Figure 3 shows examples of time-optimized trajectories for westbound and eastbound
transatlantic flights operated by Lufthansa. On the top panels, the IAGOS flights are very
well optimized and within 1–2% of our optimum. On the lower panel, we selected two
outliers for which the IAGOS flights are less well optimized. In the case of the westbound
flight, the IAGOS trajectory has many angles especially towards the end. The eastbound
flight misses the wavy pattern of the jet stream, especially during the first half of the
trajectory.
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Figure 3. Examples of time-optimized trajectories (cyan blue and dark blue curves) along with the
actual IAGOS trajectory (black curve) for transatlantic routes. The shortest route for the cruising
segment is represented by a straight green line on the longitude–latitude projection of the rotated
sphere. The trajectories read from left to right, with the airports and start and end of cruising shown
with red crosses. Some information is provided on top of each panel: IAGOS flight ID, departure
airport => arrival airport, flight code, date, average pressure level in hPa, shortest, quickest (×2)
and actual flight times in decimal hours.

Examples of trajectories between Europe and Asia are shown on Figure 4. As these
routes are essentially continental, they are subject to many operational constraints with
e.g. the Himalayan mountain range and partly closed Chinese airspace, which results in
non-optimal routes. It should be noted that the flights are for 2019 when the Ukrainian
airspace was avoided by Western airlines.

Figure 4. Same as Figure 3 but for Europe-Asia routes.

The two flight trajectories on the India-Asia route shown in Figure 5 reveal substantial
suboptimality which is recurrent in this part of the world probably because of restrictions
in the Chinese airspace.
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Figure 5. Same as Figure 3 but for India-Asia routes.

The Pacific routes shown on Figure 6 contrast a trajectory that is very well optimized
with three trajectories that are far from their respective optima. We observe that trajectories
by Hawaiian Airlines are less well optimized than those by Lufthansa despite routes that
are essentially over the ocean. It would be interesting to understand whether there are
operational constraints that justify such route choices or whether fuel saving can be realised.

Figure 6. Same as Figure 3 but for Pacific routes.

4. Discussion and Conclusions

In this study, we have developed, presented and tested two methods to optimize
flight trajectories. The methods are currently restricted to the cruising phase and assume a
constant flight level and airspeed of the aircraft. The two methods agree very well with each
other, which lends confidence that we have a working solution for trajectory optimization.
However, one method is less robust in that it can occasionally find a local optimum or fail
altogether to find an optimum. The two methods can be used together to increase their
robustness.

We find that IAGOS trajectories are well optimized on some routes, in particular the
transatlantic routes between Europe and North or South America, but less well optimized
on some other routes, especially routes within Asia or between Europe and Asia. This is
likely to be due to airspace restrictions and narrow air flight corridors that require flying
some detours. We also observe some flights that are outliers, in that they are very far
from the optimum trajectory. The reason for such outliers is not known but could be due
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to airspace congestion, operational constraints, bad weather or imperfect flight planning.
Such outliers would need to be studied in more detail with the relevant airlines.

It is worth revisiting the assumptions made in this study. Some assumptions are
expected to have very small or insignificant impacts on our calculations. This is the case
of neglecting the non-sphericity of the Earth or the lack of temporal interpolation from
hourly-resolved wind field. Other assumptions are worth revisiting in future work. Indeed,
we assume a constant airspeed during cruising. To test this assumption, we have analyzed
time variations in the groundspeed and airspeed of the IAGOS aircraft during the cruising
phase. We found that the airspeed for the cruising phase presents a mode at 240 m/s
across all IAGOS flights of 2019, thus justifying our value. We also found that the standard
deviation of the airspeed during the cruising phase of a given flight is generally much less
than the standard deviation of the groundspeed. On average for all 2019 IAGOS flights,
the standard deviation of the airspeed within a flight is 1.32 m/s compared to 4.88 m/s for
the groundspeed. This also justifies our assumption of a constant airspeed for this study.
However, a more appropriate constant Mach number [35] or a varying airspeed that seeks
to minimize fuel consumption should be used in future studies. A constant flight level is
another assumption that will need to be relaxed in future work on contrail avoidance. The
difficulty though is to consider a fuel flow model that is accurate enough to capture the
fuel cost of changing flight altitude several times during the cruising phase.

Finally, when considering more complex trajectory optimizations that include the
climate impacts of NOx and contrails, special attention will be paid to the sensitivity of
the results to the choice of climate cost function, their time horizons and the uncertainties
in the model prediction of the climate effects (and in particular the prediction of the
ice-supersaturated regions).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/aerospace10090744/s1, Figure S1: Cross-section of the flight
pressure along the longitude of a sampled IAGOS flight from Frankfurt to Detroit airports; Figure S2:
World regions considered to categorize IAGOS flights by origin and destination airports; Figure S3:
Computational time as a function of individual flights for the Europe to North America 2019 IAGOS
flights and for our two optimization methods; Table S1: Total and screened number of IAGOS
flights considered in this study for the different years in the period 2018 to 2021 and the different
IAGOS-equipped aircraft.
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