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Abstract: The safety of flight operations depends on the cognitive abilities of pilots. In recent
years, there has been growing concern about potential accidents caused by the declining mental
states of pilots. We have developed a novel multimodal approach for mental state detection in
pilots using electroencephalography (EEG) signals. Our approach includes an advanced automated
preprocessing pipeline to remove artefacts from the EEG data, a feature extraction method based on
Riemannian geometry analysis of the cleaned EEG data, and a hybrid ensemble learning technique
that combines the results of several machine learning classifiers. The proposed approach provides
improved accuracy compared to existing methods, achieving an accuracy of 86% when tested on
cleaned EEG data. The EEG dataset was collected from 18 pilots who participated in flight experiments
and publicly released at NASA’s open portal. This study presents a reliable and efficient solution for
detecting mental states in pilots and highlights the potential of EEG signals and ensemble learning
algorithms in developing cognitive cockpit systems. The use of an automated preprocessing pipeline,
feature extraction method based on Riemannian geometry analysis, and hybrid ensemble learning
technique set this work apart from previous efforts in the field and demonstrates the innovative
nature of the proposed approach.

Keywords: ensemble learning; machine learning; EEG; pilot deficiencies; artifact detection; tangent
space; EEG preprocessing; heterogeneous data; mental states classification; feature extraction

1. Introduction

The evolution of the aviation industry is heavily dependent on maintaining the highest
standards of safety. Advances in aircraft design, endurance, and safety have led to a decrease in
the number of aircraft accidents worldwide since the 1960s [1]. However, operator reliability
remains a crucial factor in maintaining flight safety, as flight crews are responsible for a
wide range of tasks, including receiving instructions from air traffic control, interpreting
onboard instrument data, making course corrections, briefing cabin crew and passengers,
and responding to unexpected events. Operating an airplane requires a high level of mental
acuity, and these responsibilities can compromise flight safety [2–4]. According to data
analyzed by the International Air Transport Association (IATA), there were 45 plane crashes
caused by pilots losing control of the aircraft, resulting in 1645 fatalities between 2012
and 2021 [5,6]. Furthermore, the Commercial Aviation Safety Team (CAST) investigated
18 aircraft accidents in which pilots lost control and found that deficiencies in flight crew
attention were involved in 16 of the 18 incidents [7]. As a result, CAST recommended that
the aviation community, which includes government, business, and academic institutions,
conduct research to detect and assess attention-related pilot performance deficiencies
(APPD), specifically focusing on channelized attention (CA), diverted attention (DA), and
startle/surprise (SS) mental states. CA is a state where pilots engage in a puzzle-based
video game called Tetris while remaining focused entirely on the game without paying
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attention to other tasks. DA is a state in which pilots solve math problems that periodically
appear while performing display monitoring tasks. Pilots who are in the SS mental state
experience unexpected inversions of the primary flight display in the simulator.

To achieve this goal, researchers from both academia and industry have investigated a
variety of approaches based on physiological signals and machine learning (ML) methods.
In terms of physiological signals, quantitative sensors, both singular and multiple, have
been employed to capture biological signals from the human body in both field studies
and near-realistic laboratory environments. The electroencephalography (EEG) sensor
is widely regarded as the most crucial physiological signal for analyzing mental states
due to its ability to detect transient alterations in brain activity that may be indicative of
pilots’ attention deficits. It seems to provide the most accurate data for distinguishing
mental states. It is also preferable to other methods of brain monitoring since it is safe,
adaptable, non-invasive, and an utterly passive recording technique. Despite its advantages,
EEG is notorious for picking up artefacts from environmental factors and physiological
phenomena, such as muscle activity, ocular movements, line noise, and heartbeats, which
compromise the quality of the signals. Therefore, isolating the neural signal relative to the
cognitive processes that reflect brain activity from the recorded artefacts is crucial.

The presence of artefacts in EEG data can negatively impact the performance of ML
models used to detect different mental states of pilots. To address this issue, researchers
have employed various signal processing and feature extraction techniques. One approach
is to record and combine EEG with non-brain physiological signals, such as functional
near-infrared spectroscopy, electrocardiogram (ECG), galvanic skin response (GSR), and
respiration (RP), simultaneously. However, the fusion of features derived from EEG and
non-brain physiological signals may not always improve the performance of ML mod-
els [8,9]. Another approach is to utilize traditional preprocessing techniques to handle
contaminated EEG data. Visual inspection and rejection, filtering, and Independent Com-
ponent Analysis (ICA) are examples of such conventional denoising procedures. These
methods, while effective, have several downsides, including the need for manual imple-
mentation, being slow and inefficient for longer recording sessions, and being difficult for
beginners to execute [10,11]. These drawbacks highlight the importance of developing an
automated preprocessing method.

Features or essential information embedded in the EEG signal are usually extracted
after preprocessing, as they are crucial for classification tasks [12–14]. Both temporal and
spatial features can be extracted from the EEG signals. For pilot mental state classification,
temporal features in the time, frequency, and time–frequency domains are commonly
extracted [15]. One such method that originates in the frequency domain is the power
spectrum density (PSD). The presence or absence of shifts in the power spectra of individual
EEG bands is an important indication of different mental states. In brain–computer interface
(BCI) applications, spatial features are commonly extracted. They represent the active area
of the brain. For pilot mental state classification, they are rarely used as input.

Features extracted from EEG signals are then fed into an ML model to predict various
types of mental states. ML models are trained to distinguish between either binary or
multiple classes. Fatigue, workload, stress, and drowsiness are examples of detected
mental states in the literature. Most studies have attempted to establish a clear distinction
between normal (NE) and each mental state (i.e., a binary classification) or to categorize a
single mental state into three or more distinct levels. In addition, only a few studies have
focused on assessing and detecting attention-related pilot performance deficiencies (APPD).
To the best of our knowledge, no attempts have been made to simultaneously recognize
different APPD states (i.e., multiclass classification), particularly CA, DA, SS, and NE, using
solely EEG data.

This study aims to investigate the viability of identifying APPD states using publicly
released EEG data. Specifically, the study poses the following research questions: (1) Can
an advanced automated EEG preprocessing pipeline be developed to clean the dataset?
(2) Can spatial features that are relevant to predicting pilot mental states, such as CA, DA,
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and SS, be extracted from cleaned EEG data? (3) Can a hybrid ensemble learning model
be developed to classify four pilot mental states based on heterogeneous EEG data using
spatial features? (4) Will the hybrid ensemble learning model outperform other ML models?
(5) How can the results of this study contribute to the development of tools and techniques
for detecting and assessing attention-related pilot performance limitations/deficiencies in
aviation settings?

In this work, we propose a novel multimodal approach that decontaminates the EEG
signals, extracts meaningful features, and detects the APPD states using heterogeneous
cleaned EEG signals collected from 18 pilots. The main contributions of this paper are
as follows:

• Development of automatic preprocessing pipeline to automatically repair or remove
corrupted EEG data.

• Development of feature extraction and selection methodology, based on Riemannian
geometry analysis of the cleaned EEG data, that handles the issues of an imbalanced
dataset and the curse of dimensionality and extracts meaningful features from the
EEG signals.

• Development of a novel APPD system based hybrid ensemble learning for classifying
CA, DA, SS, and NE states.

Recognition of APPD mental states was critically examined using several different
ensemble learning algorithms, including Random Forests (RF), Extremely Randomized
Trees (ERT), Gradient Tree Boosting (GTB), AdaBoost, and hybrid ensemble learning
(Voting). By addressing these research questions and providing these contributions, this
study provides new insights into the use of EEG data to predict and assess APPD, as
recommended by the CAST.

The remaining sections of this work are structured as follows: In Section 2, we briefly
examine relevant works. The existing EEG recordings, the proposed multimodal approach,
and the proposed ML classification models are described in Section 3. In Section 4, we
report and discuss experimental findings. Section 5 wraps up the investigation and suggests
some directions to explore next in terms of research.

2. Related Work

The process of identifying mental states typically involves four steps: collecting data,
cleaning it, selecting relevant features, and making predictions. The first step involves
capturing signals from the brain and converting them into digital form. Then, to ensure
accurate analysis, any extraneous noise or artifacts present in the data are removed through
preprocessing. Next, specific characteristics of the data are selected and extracted in
preparation for classification. These extracted features are then used by a classifier to make
predictions about which class the data belongs to. As this process specifically relates to
EEG data, the following provides a summary of previous research on the three stages of
mental state detection: preprocessing, feature extraction, and classification.

2.1. Signals Preprocessing

An assortment of neuronal activity, physiological artefacts, and non-physiological
noise can be found in raw EEG data. As their presence may hinder the performance of
ML models [16], identifying and removing artefacts is a crucial preprocessing step before
their use [17]. Although most research preprocessed their EEG data, there were a few
exceptions [18–20]. To increase the signal-to-noise ratio (SNR), it is necessary to undertake
a preprocessing procedure to eliminate extraneous noise and artefacts.

For the pilot’s mental states classification, conventional preprocessing techniques,
including filtering [16,21–27] and ICA [24,25,28], were employed on the EEG recordings.
For example, Roza et al. [16] used a band-pass filter with a center frequency of 12–30 Hz to
isolate the beta rhythm. Han et al. [25] used band-pass filtering at 0.1–50 Hz to remove the
high frequency prior to removing eyes-related artefacts using the ICA algorithm. Similarly,
Alreshidi et al. [29] used previously released pilot EEG data to analyze the influence of three
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preprocessing procedures on the efficiency of two ML models. The results demonstrated
no discernible changes in the performance accuracies of the models when the data were
filtered or when ICA was applied for eye-related artefact detection after data filtration. It
has been established in the literature that typical preprocessing procedures for EEG data
analysis necessitate knowledge and experience on the part of the analyst. Furthermore,
they are only applicable when applied manually, requiring inspection, identification, and
removal of faulty channels and contaminated data segments.

The past few years have seen the development of a number of partially or completely
automated EEG preprocessing procedures that provide ways to clean EEG data. The
Autoreject algorithm is an example of an automated preprocessing procedure that can be
employed in EEG analysis pipelines [30]. It is a novel approach for automatically identifying
and repairing erroneous segments in EEG data from single trials. It uses advanced statistical
learning techniques, such as Bayesian hyperparameter optimization and cross-validation,
to select amplitude thresholds to use for rejecting or repairing bad segments in EEG data.
The Autoreject technique was used by Bonassi et al. [31] to automatically repair or reject
contaminated epochs in EEG data. Pousson et al. [32] preprocessed the EEG data that were
recorded from pianists doing musical tasks using the Autoreject method. There was a total
of 10% erroneous epochs that were uncovered by the method and subsequently omitted
from the investigation. Previous research has established that Autoreject has a significant
role in the automatic purification of EEG data.

2.2. Feature Extraction

EEG is a set of stochastic signals that conceals extremely intricate data. Because of
its high nonlinearity, its features are prone to sudden fluctuations. Human mental states,
however, transition gradually from one state to the next [33]. Feature extraction aims to
extract relevant features from data to map EEG segments to mental states.

Various features, such as statistical [16,22,34] and power spectral density fea-
tures [16,18,21–25,28,34,35], have been extracted from pilots’ EEG recordings in earlier
research in order to classify pilots’ mental states. For example, Wu et al. [28] used the power
spectrum curve area representation of the decomposed delta, theta, alpha, and beta brain
waves obtained using wavelet packet transform as features to perform the classification.
Roza et al. [16] derived 15 distinct features from EEG and other physiological signals. The
wavelet coefficients and several statistical features were extracted from the EEG signals.
Furthermore, Binias et al. [26] extracted logarithmic band-power features using common
spatial pattern (CSP) spatial filtering, which is widely used in BCI applications, from pilots’
EEG recordings.

There has been a recent uptick in the use of Riemannian geometry-based feature
extraction and classification algorithms for BCIs. The first implementation of these tech-
niques in BCI applications was published in [36]. The authors employed the Riemannian
mean covariance matrix distance as a feature for classification purposes. Additionally, they
showed how the covariance matrices can be represented as vectors in the tangent space of
the Riemannian manifold. Majidov and Whangbo [37] computed the covariance matrices
obtained by using CSP spatial filtering and mapped them onto the tangent space of the
Riemannian manifold. Singh et al. [38] used the data from the EEG electrodes to create
spatial filters that reduce the dimensionality prior to employing Riemannian distance as a
pattern recognition metric for classification. In addition, classifiers based on Riemannian
geometry were used by Appriou et al. [39] in the proposed BioPyC toolbox. One such
classifier is the tangent space classifier.

2.3. Mental State Classification

After EEG signals have had their features extracted, they must be classified using
either a binary or multiclass ML approach. Because of the increased efficiency with which
neural data may be analyzed and the need to decode brain activity, ML, and particularly
Deep Learning (DL), algorithms have found widespread use in the field of computational
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neuroscience. Supervised ML algorithms, for instance, must first be trained using example
data. The model and its learnt properties are then used to make predictions about the class
label of new data that have not yet been seen.

For the detection of various pilot mental states, previous studies implemented var-
ious ML [18,22–27,34,35,40,41] and DL [16,18,25,26,28,35,42,43] algorithms. For instance,
Han et al. [25] proposed a detection system based on multimodal physiological signals and
a multimodal deep learning (MDL) network, consisting of convolutional neural network
(CNN) and long short-term memory (LSTM) algorithms, to detect pilot’s mental states,
namely distraction, workload, fatigue, and normal. Roza et al. [16] proposed an emotion
recognition system based on multimodal physiological signals and artificial neural network
(ANN). The system was developed to detect five emotional states, namely happy, sad,
angry, surprised, and scared. To identify the various states of mental fatigue, Wu et al. [28]
presented a deep contractive autoencoder network; up to 91.67 percent of cases of the
fatigued mental status of pilots could be correctly identified. In a flight simulator exper-
iment, Johnson et al. [23] investigated probe-independent methods for categorization of
three layers of task-complexity. The investigation was carried out using six classification
algorithms, namely naïve bayes, decision trees, quadratic discriminant analysis, linear
discriminant analysis (LDA), k-nearest neighbors (KNN), and support vector machine
(SVM). Dehais et al. [40] devised a scenario in which twenty-two pilots using a six-dry-
electrode EEG system performed a low-load and high-load traffic pattern, as well as a
passive auditory oddball. Zhang and Wang [24] proposed a concatenated structure of
deep recurrent and 3D CNN to learn spatial–spectral–temporal EEG features for cross-task
mental workload assessment. The findings reveal that the proposed approach achieved an
average accuracy of 88.9%. Distinguishing between stages of brain activity related to idle
but concentrated anticipation of visual cues and reactions to them using LDA, KNN, SVM,
RF, and ANN algorithms was the focus of the research of Binias et al. [26].

Detecting and assessing APPD was also addressed in previous studies. For example,
Harrivel et al. [35] employed RF, extreme gradient boosting, and deep neural network
classifiers to predict CA, DA, and low workload states. As a preliminary study, through the
use of different sensing modalities in high-fidelity flight simulators, the authors classified
three types of mental states. Harrivel et al. [34] employed RF, gradient boosting, and
two SVM classifiers to identify CA and SS states in further studies. The authors stressed the
need for addressing the data quality issues. Terwilliger et al. [20] aggregated three mental
states classes, namely CA, DA, and SS, into one class called event. To distinguish the event
class from the NE mental state class, the authors presented a convolutional autoencoder
approach. In previous research, we examined the effects of two preprocessing procedures
on SVM and ANN using EEG data from a pilot exposed to CA, DA, SS, and NE states [29].
Although the models demonstrated the viability of combining data from two scenarios, the
curse of dimensionality prevented them from accurately predicting the DA and SS states.

In the field of aviation, several studies have been conducted to evaluate the efficacy
of EEG data in predicting mental states of pilots. Some of these studies have employed a
binary classification approach to detect different mental states, while others have utilized
EEG data in combination with other physiological data to improve performance. In this
study, we develop a multiclass classification approach to identify CA, DA, SS, and NE
states using only EEG data.

Another notable limitation of previous studies is the limited sample size, with many
only incorporating EEG data from fewer than 10 participants. This raises questions re-
garding the generalizability of their results, as the findings may only be applicable to a
small subset of the population. While incorporating additional signals can sometimes
improve model performance, it can also introduce additional noise and complexity to the
system, making it more challenging to interpret the results. In this work, we develop our
model using only cleaned heterogeneous EEG data collected from 18 pilots, which provides
more generalization.
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Additionally, some studies have not disclosed the necessary information to make their
work easily reproducible, while others have failed to make their datasets publicly available.
This makes it challenging for other researchers to verify or build upon their findings. In this
work, we train our models with publicly released EEG data, which makes it reproducible.

Furthermore, some studies have not performed proper preprocessing techniques on
their EEG data, such as advanced filtering and artefact removal, potentially compromising
the validity of their results. The noise can interfere with the extraction of meaningful fea-
tures and patterns in the EEG signal, leading to a decrease in the accuracy and reliability of
the resulting model. To minimize the impact of noise on the performance of ML techniques,
it is important to preprocess the EEG signal and remove as much noise as possible before
training the model. Accordingly, we develop an automated preprocessing pipeline in this
study to automatically clean and improve the quality of the EEG signals.

Regarding extracting meaningful features for the machine learning models, researchers
have hardly ventured beyond statistical and PSD features. In this work, we extract tangent
space vectors based on Riemannian geometry analysis in an attempt to detect APPD states.

To the best of our knowledge, current research did not attempt to combine multiple
approaches from different areas to predict the pilot’s mental states, which makes this
study the first of its kind in the aviation field. The innovative nature of this study lies
in the development of a novel multimodal approach to detect and classify APPD states
using cleaned EEG data. The EEG signals from 18 pilots were collected from a variety
of conditions to form the heterogeneous EEG data. The approach involves the automatic
preprocessing of the EEG signals, feature extraction and selection methodology based on
Riemannian geometry analysis, and a novel APPD system that classifies the APPD states.
The system addresses the issues of corrupted EEG data, imbalanced datasets, and the curse
of dimensionality, and provides meaningful features from the EEG signals, making it a
unique contribution to the field.

3. Materials and Methods
3.1. Dataset Description

In November 2020, a dataset was obtained from NASA’s open data portal website,
which comprised experimental data collected from 18 pilots. The pilots participated
in four experiments, three of which took place in a non-flight environment and one in
a high-fidelity motion-based flight simulator. The non-flight environment experiments
lasted approximately 6 min, while the flight simulator experiment lasted approximately
1 h. The data were recorded in physiological signals and were provided in CSV format.
Information regarding the utilized EEG recording headset and the flight simulator is
reported in Appendix A.

The dataset was divided into one-second epochs and combined into a single dataset
of 89,198 samples, to account for the varying durations of each benchmark task. The
benchmark tasks included NE, CA, DA, and SS. A typical snapshot and schematic of each
experiment is depicted in Figure 1. The majority of the samples in the dataset came from
the NE class (80%).

This dataset has great potential for advancing research in the fields of BCI and human
factors in aviation and can be used to develop new models and algorithms to predict pilot
performance under different conditions, as well as training programs to improve pilot
performance in high-stress situations. Additionally, the dataset can be utilized to evaluate
the design of flight deck interfaces and test the effectiveness of new technologies, such as
augmented reality and virtual reality, in enhancing pilot performance.

3.2. The Automatic Preprocessing Pipeline

This study implemented advance preprocessing techniques using an open-source
library called MNE-Python. The proposed EEG data preprocessing pipeline is shown in
Figure 2. A brief description of the preprocessing steps is discussed below.
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The EEG data were given in a CSV file. We used the MNE-Python library to apply
advanced preprocessing methods. A “raw” object, a core data structure for continuous EEG
data, was created and included information such as channel names and types, standard
montage labeling, and the sample rate.

The first step was to filter the EEG signals. This was achieved by applying a digital
filter to the data, which suppresses specific frequency components that fall outside of a
designated range. There are two main types of digital filters used in digital signal processing
(DSP): finite impulse response (FIR) and infinite impulse response (IIR). In the present study,
we applied band-pass filtering to the EEG signals using an FIR filter, with a cutoff range of
1–50 Hz. We then segmented the EEG data into one-second non-overlapping epochs. The
epochs that had a maximum peak-to-peak signal amplitude of more than 700 µV, or a
minimum peak-to-peak signal amplitude of less than 1 µV, were dropped from the dataset,
as their existence negatively affected the applicability of the next preprocessing steps.
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Afterwards, we employed the Autoreject method to repair or discard corrupted epochs.
Bayesian optimization and cross-validation are leveraged in Autoreject to automatically
determine an artefact threshold for each channel/sensor; thereafter, faulty channels/sensors
are interpolated, or the epoch is discarded. Figure 3 is a diagram depicting the operation
of the Autoreject algorithm in a simplified form. For a detailed discussion of how and
why this algorithm works, we suggest reading [38], written by the program’s creators.
To identify and eradicate blinks and other forms of artifactuality, we employed an MNE-
Python function that used the EEG channel Fp1 as a surrogate electrooculogram. These
components have a lot of variation and tend to be located in the frontotemporal region of
the head. The EEG signals were reconstructed after the blinking component was eliminated
from the source matrix. Finally, we used Autoreject again to encounter any distortions that
could be found after repairing the blink artefacts.
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With more than 80% of the data coming from the NE class, it is possible that the trained
model will be biased toward that class. This makes a model’s predictions seem naive, even
if they have a high degree of accuracy. To counteract the preponderance of the NE class,
we undersampled the data with the intention of creating a more even distribution across
all classes.

3.3. EEG Feature Extraction

After preprocessing the EEG data, two methods that expanded upon previous work
on EEG BCI were adopted. First, the EEG data were subjected to specialized spatial filtering
in order to boost SNR. We used an algorithm modified from the xDawn algorithm to
estimate the spatial filters. Second, we extracted the features from a particular form of the
EEG epochs’ covariance matrices and adjusted them using techniques from Riemannian
geometry. Indeed, the covariance matrices, being Symmetric and Positive-Definite Matrices
(SPD), are topologically localized on a Riemannian manifold. To reduce the covariance
matrices dimensionality by discarding irrelevant information, we performed the Fisher
Geodesic Discriminant Analysis (FGDA) algorithm proposed by [44,45]. Be aware that the
features are matrices, rather than the typical vectors. Because we need to maintain the
special structure of these matrices, we cannot simply vectorize them. As an alternative, we
employed techniques from Riemannian geometry introduced in [46] to map the covariance
matrices, belonging to a manifold, onto the Riemannian tangent space, where they may
be vectorized and treated as Euclidean objects. Each matrix is represented as a vector of
size n(n + 1)/2, where n is the dimension of the SPD matrices. Figure 4 is a geometric
depiction of the tangent space mapping process. Despite its more common association
with motor imagery, we believe that incorporating it into a visual processing task as part
of our research could prove to be useful. A tangent space formed by a group of tangent
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vectors can be defined for each point P, where P ∈ P(n). Between P and the exponential
mapping P = Expp(Si), each tangent vector S is the derivative at t = 0 of the geodesic Γ(t),
denoted as

ExpP(Si) = P
1
2 exp(P−

1
2 SiP−

1
2

)
P

1
2 (1)
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Once the tangent space vectors have been extracted, we may use the Principal Com-
ponent Analysis (PCA) and ANOVA methods as a variable selection strategy to lower the
space dimension and alleviate the curse of dimensionality.

3.4. EEG Classification

In this study, we rigorously tested multiple ensemble learning algorithms, including
Random Forests (RF), Extremely Randomized Trees (ERT), Gradient Tree Boosting (GTB),
AdaBoost, and Voting, for their ability to recognize APPD mental states. A modified version
of the 5-fold cross-validation process based on stratification was used to assess the quality
of the proposed approach.

Five-fold cross-validation is a commonly employed technique in machine learning to
assess the performance of algorithms. The method involves dividing the original dataset
into five equal-sized subsets, referred to as folds. In turn, each fold serves as the validation
data once while the remaining four folds are utilized as training data. This process is
repeated five times, with each fold being used exactly once as the validation data. The
performance of the algorithm is then evaluated based on the average of the results obtained
from the five trials.

This approach to evaluating performance provides a more reliable estimate compared
to a single train/test split. This is due to the reduction of variance in performance estimates
and the assurance that all data are utilized for both training and testing.

RF: In 2001, L. Breiman presented the Random Forest algorithm as a general-purpose
classification and regression technique, and it has since seen tremendous success. The
method has been shown to be effective in situations when there are more variables than
observations, as it mixes multiple randomized decision trees and averages their predictions.
It can be scaled up to address complex issues, customized to meet the needs of a wide
range of ad hoc learning projects, and designed to yield metrics of varying significance.
The entropy function was used as a metric of split quality in our work, with the number of
estimators fixed at 200.

ERT: It is a classifier that works in a way that is similar to RF, but with a slight twist: it
introduces randomization to the training process. Each tree in ExtraTrees’s multiple trees is
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trained independently using the entire dataset used for the classification. The optimum
branching at a node is determined by considering a subset of all features, much like the
Random Decision Forest. Each feature has a single threshold picked at random rather than
multiple, less optimal ones. In our research, we used a total of 200 estimators and the
entropy function to evaluate split quality.

GTB: It provides a prediction model in the shape of a collection of weak prediction
models, most often decision trees. GTB is the name of the resulting procedure when a
decision tree is the weak learner. The method extends the boosting algorithm to any loss
function that can be differentiated. In our study, split quality was assessed using the
‘friedman_mse’ function and a total of 100 estimators.

AdaBoost: The statistical classification meta-algorithm known as Adaptive Boosting
was developed by Yoav Freund and Robert Schapire in 1995. Its performance can be en-
hanced by combining it with a variety of different learning methods. This method creates
a model in which each piece of information is given the same amount of consideration.
Incorrectly labelled points are thus given more weight. After this new model is created, the
points with greater weights will be given more consideration. A model will be trained re-
peatedly until a reduced error is received. Because of its rapid convergence to a smaller test
error after fewer boosting iterations, the ‘SAMME.R’ method was chosen in our research.

The hybrid model (Voting): The goal is to predict class labels using a majority vote or
the average projected probability (soft vote) based on the results of a collection of machine
learning classifiers that are conceptually distinct from one another. A classifier like this
can help even out the performance of a group of otherwise comparable models. Based
on the outcomes of RF, ERT, and GTB, we used the average projected probability to make
predictions about class labels.

3.5. Performance Metrics

Several indicators are used to determine the reliability of our findings. The Confusion
Matrix is the most important criterion for evaluating our classification models. Metrics
like a model’s accuracy, precision, and recall are also crucial for understanding how well
it actually performs. True positive (TP), false positive (FP), true negative (TN), and false
positive (FN) are the four concepts used in the metrics. In greater detail, these metrics are
described as follows:

Accuracy: It is the proportion of accurately predicted classes achieved by the model.
The formal definition is as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Precision: It can be defined as the percentage of positive observations that were
successfully anticipated relative to the total number of positive observations that were
predicted. The formal definition is as follows:

Precision =
TP

TP + FP
(4)

Recall: It can be calculated by dividing the number of accurately anticipated positive
observations by the total number of observations in the actual class. The formal definition
is as follows:

Recall =
TP

TP + FN
(5)

F1-score: It is the weighted average of Precision and Recall. The formal definition is
as follows:

F1− score = 2× Precision× Recall
Precision + Recall

(6)
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4. Results and Discussion

In this study, a multimodal approach was proposed to identify attention-related pilot
performance-limiting states based on heterogeneous EEG data. We employed an automated
preprocessing pipeline to clean the EEG data by either removing or repairing corrupted
epochs. We employed an extraction and selection methodology based on Riemannian
geometry analysis to obtain meaningful features from the cleaned data. Using these
extracted features, we trained a hybrid ensemble learning model in addition to four other
ensemble learning models to detect APPD states.

4.1. EEG Signal Analysis

This section presents and discusses the results of employing the automated prepro-
cessing pipeline. Figure 5 reveals the size of the dataset before and after preprocessing
the dataset.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 21 
 

 

Precision =  TPTP + FP (4) 

Recall: It can be calculated by dividing the number of accurately anticipated positive 
observations by the total number of observations in the actual class. The formal definition 
is as follows: Recall =  TPTP + FN (5) 

F1-score: It is the weighted average of Precision and Recall. The formal definition is 
as follows: F1- score =  2 ∗ Precision × RecallPrecision + Recall (6) 

4. Results and Discussion 
In this study, a multimodal approach was proposed to identify attention-related pilot 

performance-limiting states based on heterogeneous EEG data. We employed an auto-
mated preprocessing pipeline to clean the EEG data by either removing or repairing cor-
rupted epochs. We employed an extraction and selection methodology based on Riemann-
ian geometry analysis to obtain meaningful features from the cleaned data. Using these 
extracted features, we trained a hybrid ensemble learning model in addition to four other 
ensemble learning models to detect APPD states. 

4.1. EEG Signal Analysis 
This section presents and discusses the results of employing the automated prepro-

cessing pipeline. Figure 5 reveals the size of the dataset before and after preprocessing the 
dataset. 

 
Figure 5. The size of the dataset before and after preprocessing the dataset. 

We observed that the proposed pipeline identified and discarded a total of 33,786 
contaminated epochs in the dataset; to be precise, 29,175 epochs from the NE class, 3632 
epochs from the CA class, 598 from the DA class, and 381 epochs from the SS class were 
dropped from the dataset, as they were considered artefacts. 

The proposed EEG preprocessing pipeline aims to improve the quality of EEG data 
by removing artifacts and other sources of noise, ultimately leading to more accurate and 

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

Before Preprocessing After Preprocessing

N
o.

 o
f s

am
pl

es No Event

Channelised Attention

Diverted Attention

Startle/Surprise

Figure 5. The size of the dataset before and after preprocessing the dataset.

We observed that the proposed pipeline identified and discarded a total of 33,786 con-
taminated epochs in the dataset; to be precise, 29,175 epochs from the NE class, 3632 epochs
from the CA class, 598 from the DA class, and 381 epochs from the SS class were dropped
from the dataset, as they were considered artefacts.

The proposed EEG preprocessing pipeline aims to improve the quality of EEG data
by removing artifacts and other sources of noise, ultimately leading to more accurate and
reliable results in downstream analyses. The employed pipeline removed 33,786 out of
89,198 epochs were recorded, resulting in a final dataset of 55,412 epochs. While some may
argue that removing such a large number of epochs may lead to a loss of valuable data, it
is important to consider the rationale behind the preprocessing steps and the impact they
have on the quality of the remaining epochs.

While visually inspecting the discarded epochs, we observed that the epochs were
contaminated by physiological artefacts, such as muscle tension and clenching of the
jaw, and non-physiological/technical artifacts, such as body movements and powerline
interference. As an illustration, Figure 6A depicts an eight-epoch window of the original
EEG data, whereas Figure 6B depicts an eight-epoch window of the EEG data that have
been preprocessed using the preprocessing pipeline. Figure 6A reveals that ocular activity
artefacts, such as blinks and lateral eye movements, were spotted and color-coded as red
in epochs 15, 18, and 20. These three epochs were deleted in addition to epochs 19, 21,
and 25, as indicated in Figure 6B. We also noticed that some epochs, epoch 16 for instance,
were repaired.
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Based on the results presented, the EEG preprocessing pipeline appears to be effective
in improving the quality of the EEG data. The visual comparison of the EEG signal before
and after preprocessing indicates a reduction in noise and artifacts, resulting in a cleaner
and more consistent signal.

The use of Autoreject for artifact rejection and correction, followed by eye-related
artefact removal, and a second stage of Autoreject for further correction, provides a com-
prehensive approach to minimizing the impact of artefacts on the EEG signal. The use of
these methods in combination is likely to capture a wide range of artefacts and improve
the overall quality of the data.

The effectiveness of the pipeline is also supported by the quantitative analysis of the
EEG data. For example, the reduction in the number of epochs removed after preprocessing
may indicate that the pipeline was successful in identifying and removing a significant
proportion of the artifacts. Furthermore, the comparison of the EEG data before and after
preprocessing may provide evidence of the improvements made in the EEG data quality.

However, it is important to note that the effectiveness of the pipeline may depend
on various factors, such as the quality of the initial EEG data and the parameters used for
each stage of the pipeline. Therefore, a careful evaluation of the resulting EEG data and
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the quality of the analysis should be conducted to determine the overall effectiveness of
the pipeline.

In addition, while the use of automated methods for artefact detection and correction
can provide several advantages, such as consistency and efficiency, they may not capture all
sources of noise and artifacts. Therefore, it may be beneficial to supplement the automated
methods with visual inspection, especially in cases where subtle sources of noise may
be present.

We also report the spectral power analysis of one pilot while performing the high-
fidelity motion-based flight simulator experiment to examine the overall activity level of
the brain at different frequencies. Figure 7 illustrates the spectral power topography during
APPD mental states, namely (A) NE, (B) SS, (C) CA, and (D) DA. The power spectral density
was computed for each frequency band (delta (0–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),
beta (12–30 Hz), and gamma (30–45 Hz)).
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In all frequency bands, we commonly found an increase mean power of the CA,
DA, and SS states compared to the NE state. We also observed a lower frequency power
increase in all frequency band ranges during the SS state. For the delta activity, the highest
mean spectral power was located in the frontal lobe during the CA and DA states. For
the theta and alpha activity, the highest spectral power was observed in the frontal lobe
for theta activity (max: 47.5 dB) and in the frontal and occipital lobes for alpha activity
(max: 36.7 dB) during the DA state. Theta oscillations have been linked to mental states of
relaxation and drowsiness, while alpha oscillations have been associated with decreased
cognitive engagement and mind-wandering. For the beta (max: 33.3 dB) and gamma
activity (max: 33 dB), the highest spectral power was observed in the occipital lobe during
the CA state. Both beta and gamma oscillations have been connected to engaged cognitive
processing, including perception and memory, while beta oscillations have been associated
with focused attention and concentration.

Spectral power analysis is a well-established method for analyzing EEG data that has
been used in many studies to investigate the spectral properties of the EEG signal. In our
study, we used spectral power analysis to visualize the topography of EEG activity during
four different mental states—CA, DA, SS, NE. By calculating the power spectral density of
the EEG signal in different frequency bands, we were able to obtain topographical maps
that showed the distribution of power across the scalp. These maps provided a global
view of the EEG patterns that were associated with each mental state, and they allowed
us to identify the scalp regions that exhibited the strongest or weakest power in different
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frequency bands. This information was useful in identifying patterns of EEG activity that
were associated with each mental state, and in validating the results of our subsequent
classification analysis. Thus, the use of spectral power analysis was essential to achieving
the primary objective of our study, which was to gain a better understanding of the EEG
patterns underlying the four mental states.

4.2. Evaluation of Machine Learning Models

Five ensemble learning models, namely RF, ERT, GTB, AdaBoost, and Voting, were
trained with tangent space features generated from cleaned EEG data using the 5-fold
cross-validation technique. First, we estimated the spatial covariance matrices from the
cleaned EEG data and obtained a set of SPD matrices of shapes (48, 48). Each matrix was
vectorized, obtaining 1176 tangent space features, which were then projected to a lower
dimensional space using PCA. In Table 1, we show the performances of the employed
ensemble learning models. We considered the macro average of the evaluation metrics
Accuracy, Recall, Precision, and F1-score. We also show the standard error, which we
calculated based on the F1-score metric for each class because we trained the models using
the 5-fold cross-validation technique.

Table 1. Ensemble learning models’ performances.

Methods Mental Class Accuracy (%) Precision (%) Recall (%) F1-Score (%) Standard Error

RF

NE 91 92 91 0.010
SS 82 81 82 0.009
CA 87 86 87 0.013
DA 82 83 83 0.011

Macro average 86 86 86 86

ERT

NE 90 91 90 0.011
SS 80 80 80 0.016
CA 86 85 86 0.010
DA 81 82 82 0.012

Macro average 84 84 84 84

GTB

NE 91 90 91 0.016
SS 82 82 82 0.009
CA 87 87 87 0.012
DA 83 84 83 0.011

Macro average 86 86 86 86

AdaBoost

NE 91 88 89 0.009
SS 80 80 80 0.007
CA 83 82 83 0.010
DA 79 81 80 0.023

Macro average 83 83 83 83

Voting

NE 91 92 92 0.013
SS 82 82 82 0.009
CA 87 86 87 0.012
DA 83 84 83 0.013

Macro average 86 86 86 86

To provide thorough analysis, the degree of confusion generated by each model
was computed. The confusion matrix for the 5-fold cross-validation results using the RF
classifier is shown in Figure 8A; the ERT was employed in (B), GTB in (C), AdaBoost in (D),
and Voting in (E). The values of the diagonal elements represent the percentage of correctly
predicted classes.



Sensors 2023, 23, 7350 15 of 20

Sensors 2023, 23, x FOR PEER REVIEW 15 of 21 
 

 

CA  87 87 87 0.012 
DA  83 84 83 0.011 

Macro average 86 86 86 86  

Ada-
Boost 

NE  91 88 89 0.009 
SS  80 80 80 0.007 
CA  83 82 83 0.010 
DA  79 81 80 0.023 

Macro average 83 83 83 83  

Voting 

NE  91 92 92 0.013 
SS  82 82 82 0.009 
CA  87 86 87 0.012 
DA  83 84 83 0.013 

Macro average 86 86 86 86  

To provide thorough analysis, the degree of confusion generated by each model was 
computed. The confusion matrix for the 5-fold cross-validation results using the RF clas-
sifier is shown in Figure 8A; the ERT was employed in (B), GTB in (C), AdaBoost in (D), 
and Voting in (E). The values of the diagonal elements represent the percentage of cor-
rectly predicted classes. 

 
Figure 8. The confusion matrix for the 5-fold cross-validation results. The RF model’s confusion 
matrix is shown in (A); the ERT in (B), GTB in (C), AdaBoost in (D), and Voting in (E). 

Figure 8. The confusion matrix for the 5-fold cross-validation results. The RF model’s confusion
matrix is shown in (A); the ERT in (B), GTB in (C), AdaBoost in (D), and Voting in (E).

Based on the data from Table 1, we observed that all five models provided good
detection performances. The best accuracy performance achieved was 86%, which was
achieved by the RF, GTB, and Voting models, followed by AdaBoost (84%) and ERT (83%).
The same trend can be seen across different metrics, including precision, recall, and F1-score.
We believe the reason why ERT did not perform as well as the RF model, although both
algorithms are based on the bagging or bootstrap aggregation technique, is because of
the randomness in the way splits are computed; while the most discriminative thresholds
are picked as the splitting rule in RF, thresholds in ERT are drawn at random, which
slightly increased biasness in the model. Similarly, we also observed a slight difference in
the performances of GTB and AdaBoost, even though both algorithms are based on the
boosting technique. We suspect the reason of the increase in GTB model performance is
due to the use of the log loss function, which is more robust to mislabeled examples in the
dataset; unlike GTB, the AdaBoost algorithm uses the exponential loss function.

Figure 8 further shows that all models made accurate classification predictions. The
NE mental state was predicted by all five models to be the easiest to distinguish, with
an accuracy performance range of 88.44–91.88%, followed by the CA with a range of
82.34–86.88%. It was also discovered that, across all five models, DA was the third best
at recognizing class with an accuracy performance of 81.25–84.06%, while SS was the
worst at recognizing class with an accuracy performance of 79.53–82.50%. Nevertheless,
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these performance levels can be enhanced if the dataset is more cohesive. With regards
to predicting NE and DA states, the Voting classifier performed best, whereas the GTB
classifier performed best with regards to predicting CA and SS states.

The use of ensemble models has become increasingly popular in machine learning
due to their ability to leverage the strengths of different models to improve performance. In
this study, we compared the performance of several popular ensemble models, including
RF, ERT, GTB, and AdaBoost, with a hybrid ensemble model. The results showed that
the hybrid ensemble model outperformed ERT and AdaBoost and achieved comparable
performance to RF and GTB. One of the key advantages of the hybrid ensemble model is
its flexibility. By combining different models, the hybrid ensemble approach can handle
various types of data and tasks, making it a versatile option for different applications.
In contrast, the other models tested in this study were each based on a single algorithm,
limiting their flexibility to some extent. Another advantage is its improved generalization
ability. The use of a combination of models in the hybrid ensemble approach can help to
mitigate the risk of overfitting. This can lead to more accurate predictions on new, unseen
data, making the hybrid ensemble model a promising approach for practical applications.

Several studies have investigated the classification of mental states using EEG data.
However, some of these studies did not make their dataset publicly accessible, did not
achieve clear or consistent results, employed different sensors and conventional preprocess-
ing techniques, or did not classify the same number of mental states. In order to compare
the results of our multimodal approach with other studies, we evaluated our approach in
the context of studies that have used the same dataset.

Harrivel et al. [35] implemented a broad suite of sensors to classify pilot mental
states. Although this study provided initial insights into the use of physiological signals to
measure attention in aviation, their datasets were limited in size. In addition, their results
were not conclusive because they were based on only one pilot. Harrivel et al. [34], on
the other hand, considered a larger sample size and employed multiple sensors, including
EEG, ECG, GSR, and respiration. However, the study relied on spectral power features and
did not classify four mental states. Moreover, the results were not as good as in our study,
likely due to the limited classification capabilities of spectral power features. Similarly, [20]
considered a larger sample size of 18 users but did not clean their data from artifacts and
merged three mental states into one called the event state. The lack of artifact removal may
have contributed to unclear results, and the use of different metrics limited comparison
with our study.

We also evaluated our approach in the context of studies that have used a different
dataset. For example, Han et al. [25], proposed a multimodal deep learning network to
classify four mental states (distraction, baseline, workload, and fatigue) using a dataset
of eight pilots. The authors employed conventional preprocessing techniques, including
filtering and ICA for removing eye-related artifacts. They also extracted PSD features
from the EEG signals and provided three topographic maps as inputs to a CNN model. In
addition, the authors employed ECG, GSR, and respiration signals as inputs to an LSTM
network. However, the dataset used by Han et al. was not a publicly accessible dataset,
unlike our study and studies [20,29,34,35], which were all publicly available. While their
results were promising, the small sample size and lack of a public dataset may limit the
generalizability of the findings. In addition, our approach achieved an accuracy of 86%
in detecting mental states, which is a substantial improvement over Han et al. study’s
performance of 77.7%. Hernández-Sabaté et al. [43] developed a CNN model to classify
different mental workloads of pilots using EEG signals. Although they made their dataset
publicly available, they divided a signal state to multiple states.

In comparison to our previous study [29], where we evaluated the impact of different
preprocessing techniques on the performance of ML algorithms for classifying pilots’ mental
states, the current study represents a significant improvement in mental state detection.

In this study, we developed a novel multimodal approach that includes advanced
automated preprocessing techniques, Riemannian geometry-based feature extraction, and
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a hybrid ensemble learning technique that combines the results of several machine learning
classifiers. The use of Riemannian geometry analysis for feature extraction and the hybrid
ensemble learning technique outperforms traditional approaches and shows the impor-
tance of advanced techniques in improving the accuracy of mental state detection. Our
approach is the first of its kind because it combines advanced techniques proposed in three
different fields: Autoreject, from the neuroscience field for data preprocessing; Tangent
space mapping, from BCI for feature extraction; and hybrid ensemble learning artificial
intelligence for pilot’s mental states classification.

This study can have significant implications for improving pilots’ performance and
safety in the aviation industry. Our approach has the potential to benefit several sectors
within the aviation industry. One important application is in pilot training and performance
evaluation. By accurately characterizing pilot mental states using EEG data, the proposed
approach can be used to identify areas where pilots may need additional training or support,
and to evaluate the effectiveness of training programs in improving cognitive performance.

Another potential application is in aviation safety, particularly in identifying potential
safety hazards related to pilot mental states. By providing a detailed and accurate char-
acterization of pilot mental states during flight, the proposed approach can help identify
situations where pilots may be at higher risk of making errors or experiencing cogni-
tive overload, allowing for proactive interventions to be taken to prevent accidents and
improve safety.

Additionally, our approach has the potential to improve human–machine interaction
in the aviation industry. By using EEG data to monitor pilot mental states, future BCI
systems can be developed that are better able to adapt to the cognitive state of the pilot,
improving the efficiency and safety of the aviation system as a whole.

Overall, the potential applications of our approach are diverse and have the potential
to make a significant contribution to the aviation industry by improving safety, training,
and human–machine interaction.

5. Conclusions

We conducted an exploratory investigation using uncontaminated EEG data and
ensemble learning algorithms to characterize the pilot’s mental states (i.e., channelized
attention, diverted attention, startle/surprise, and normal). We also demonstrated how
the pilot’s varied mental states impacted physiological indicators. With the goal of iden-
tifying the neural signal related to cognitive processes reflective of brain activity while
disregarding the other artefacts and extracting significant information, we proposed a
feasible approach for automatically preprocessing EEG data. In order to proceed to the
classification phase, the processed data underwent feature extraction, during which spatial
covariance matrices were calculated and subsequently mapped onto the Riemannian tan-
gent space. Four ensemble learning models, namely RF, ERT, GTB, and AdaBoost, and a
hybrid ensemble model were trained using tangent space vectors.

Based on the findings, it was clear that the proposed method successfully identified
artifacts in the EEG epochs and either fixed or discarded them automatically. In addition,
the results indicated the viability of implementing EEG-based BCI systems, such as tangent
space mapping, to characterize the pilot’s mental states. According to the findings of the
pilot’s mental states detection investigation, we observe that the RF, GTB, and the hybrid
ensemble models are the best at predicting NE, CA, SS, and DA states, with an accuracy
rate of 86%.

The innovative nature of this study lies in its combination of advanced automated
preprocessing techniques, Riemannian geometry-based feature extraction, and ensemble
learning models, which, together, provide a detailed and accurate characterization of pilot
mental states, ultimately leading to a safer and more efficient aviation system.

The models’ performances will be further refined, and the training dataset will be
enlarged, in subsequent work. We also aim to apply the aforementioned approach to a
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broad range of machine learning and deep learning models. In further studies, we can also
investigate the possibility of extracting other meaningful features.
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Appendix A

Appendix A.1. Advanced Brain Monitoring X24 EEG Headset

The X24 EEG headset was employed to gather the EEG dataset. This headset offers a
wireless option for acquiring and recording EEG signals without the need for scalp abrasion.
It is equipped with 20 electrodes arranged in the standard 10–20 format and one additional
electrode, POz, as shown in Figure A1. These electrodes are located at specific locations
on the head, such as Fz, Cz, Pz, F3, F4, C3, C4, P3, P4, O1, O2, T5, T3, F7, Fp1, Fp2, F8, T4,
T6, and Linked Mastoids. The wireless technology allows for freedom of movement for
the user during data collection and display in real-time. The headset collects EEG signals
from the sensors on the participant and processes the signals through analog-to-digital
conversion, encoding, formatting, and transmission. It operates at a sample rate of 256 Hz
and uses the system’s bi-directional capabilities to check scalp-electrode impedance and
monitor battery capacity in the X24 Headset. Figure A1 illustrates the names and locations
of the electrodes on the EEG sensor.
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Appendix A.2. Flight Simulator

The dataset was obtained from 18 commercial aviation pilots who participated in
a research flight deck simulation at NASA Langley Research Center. The flight deck,
which is known as the cockpit motion facility, is an all-glass reconfigurable cockpit that
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is equipped with a programmable sidestick and pedal control inceptors. The simulator,
which can operate in both motion-based and fixed-base modes, is designed to provide a
high-fidelity, full-systems flight experience for pilots. It is used to evaluate and improve
research concepts related to flight crew operations, covering everything from engine startup
to engine shutdown.
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