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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Machine learning expounds energy 
poverty in the global south. 

• Financial resilience necessary to 
modernize household energy systems in 
developing countries. 

• First-of-a-kind data-driven analysis of
fers practical clean-cooking pathways. 

• Electricity access is not linked to tack
ling energy poverty in developing 
countries. 

• A rapid paradigm shift necessary to 
address energy poverty.  
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A B S T R A C T   

Efforts towards achieving high access to cooking with clean energy have not been transformative due to a limited 
understanding of the clean-energy drivers and a lack of evidence-based clean-energy policy recommendations. 
This study addresses this gap by building a high-performing machine learning model to predict and understand 
the mechanisms driving energy poverty - specifically access to cooking with clean energy. In a first-of-a-kind, the 
estimated cost of US$14.5 trillion to enable universal access to cooking with clean energy encompasses all the 
intermediate inputs required to build self-sufficient ecosystems by creating value-addition sectors. Unlike pre
vious studies, the data-driven clean-cooking transition pathways provide foundations for shaping policy and 
building energy models that can transform the complex energy and cooking landscape. Developing these path
ways is necessary to increase people’s financial resilience to tackle energy poverty. The findings also show the 
absence of a linear relationship between electricity access and clean cooking - evidencing the need for a rapid 
paradigm shift to address energy poverty. A new fundamental approach that focuses on improving and sustaining 
the financial capacity of households through a systems approach is required so that they can afford electricity or 
fuels for cooking.   

1. Introduction 

Achieving high access to clean cooking has continued to elude the 

global south despite worldwide attention and research activities. Even 
though the access rate to clean cooking increased by 12% between 2010 
and 2020, about 2.4 billion people lacked access to efficient and non- 
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polluting cooking technologies [1]. The increment in access rate was 
only in India, Pakistan, Indonesia, China, and Brazil. The access rate to 
clean cooking was static for the other global south countries [1]. Pre
vious studies show that 470 million more people will lack access to clean 
cooking in 2030 [2]. The global south will not attain universal access for 
4.5 billion people by 2030 [3], including over 1 billion people in 
Sub-Saharan Africa by 2025 [4]. This slow-moving access rate to clean 
cooking causes deforestation, habitat loss, indoor pollution and 
inequality, sustains low economic activities, and causes about 3.2 
million deaths per year, including over 237,000 deaths of children under 
the age of 5 in 2020 [1,3,5]. It is important to mention that clean 
cooking can mean many things, among which it can mean cooking food 
cleanly or cooking clean food. Clean cooking in this study implies 
cooking with clean energy. 

Existing literature aimed at improving access to clean and affordable 
energy for everyone focused on increasing electricity access, techno- 
economic comparative analyses, energy efficiency measures, and 
behavior analysis [6,7,16,17,8–15]. Studies centred around the access 
rate to clean cooking focus on fuel stacking, population heterogeneity 
and affordability constraints to explore the access rate of clean cooking 
[2-4,18–23]. These studies use structured energy-econometric ap
proaches that hypothesize perfect markets and predictable consumer 
behavior. The models assume that access to clean cooking depends on 
income and fuel choices with negligible interconnection to other 
socio-economic sectors. This fragility highlights why the efforts towards 
achieving high access to clean cooking have not been transformative. 
For example, the number of people with access to electricity in 
Sub-Saharan Africa is more than 2.5 times the number of people with 
access to clean cooking. In addition, the models lean on policy-based 
scenarios, such as climate-based mitigation policies [2,18,20] and low 
energy demand scenarios [24], thus exposed to high variability. There 
are few data-driven approaches in the literature. These studies focus on 
predicting Africa’s electricity mix [25] and analysing the progress and 
failure of electric utilities to adapt to the energy transition [26]. 

Data-driven modeling approaches that can expound and predict the 
potential future of the clean-cooking landscape without generalizing 
regions are lacking in the literature. The existing studies are limited in 
their investigation by utilizing sales data to assess the adoption of liq
uefied petroleum gas cylinder (LPG) stoves for cooking [27] and surveys 
to model supply and demand-side factors of LPG stoves consumption 
[28]. Other studies employ statistical analysis techniques such as 
chi-square, linear, logistic and quantile regression models on preselected 
variables to investigate factors that affect access to clean cooking in 
rural India, Latin American and Caribbean countries [29–32]. There is 
an acute shortage of holistic studies that employ a systems approach to 
generate an accurate image of the cooking landscape through historical 
data-based learning to inform future decisions. 

The lack of data-driven modeling approaches translates into a lack of 
evidence-based clean cooking policy recommendations. There is limited 
understanding of the drivers to improve access to clean cooking. Yet, it is 
crucial to understand the constraints and enablers of clean cooking. And 
an accurate representation of the cooking sector will enable decision- 
makers and investors to make informed decisions. Data-driven 
modeling approaches will add significant value to the literature by 
helping to propound the mechanisms affecting access to clean cooking. 
Thus, the key central question in this study is to identify, verify, and 
quantify the recommendations and steps necessary to transform the 
cooking landscape in the global south. 

To bridge these research gaps and answer this central question, the 
objectives of this study were to (i) develop a data-driven approach to 
understand the drivers of access to clean cooking in Africa by using 
holistic country-level data, (ii) determine the variables with the most 
impact on access to clean cooking from a historical dataset and predict 
the potential future, (iii) establish and quantify the pathways required to 
attain universal access to clean cooking, and (iv) estimate the costs of 
achieving universal clean cooking for everyone in Africa. 

To meet these objectives, Section 2 provides a detailed description of 
the data sources and the machine learning model. Section 3 investigates 
the variables with the most impact on access to clean cooking, while 
Section 4 details the predicted the potential future. Section 5 describes 
the clean cooking transition pathways before discussing the results and 
concluding in Section 6. 

2. Materials and methods 

2.1. Data sources 

The data in this study was collected from world-leading databases. 
The country-level indicators were collected from the World Bank in
dicators [33]. The data on primary energy consumption was collected 
from Our World in Data [34] that collects its data from EIA [35] and BP 
[36]. The data on access rates of clean cooking was collected from the 
World Health Organization [37]. The data on gross value outputs, in
termediate inputs, and gross value added was collected from United 
Nations [38]. These databases provide publicly accessible high-quality 
data, and country-level comparable statistics about development, 
combating climate change, and poverty reduction. Supplementary 
Table 1 gives a summary of the data. 

The data points included the past three decades. Reducing the data 
points to the past two decades reduced the learning capability of the 
model. The final features in the dataset comprised 11,480 data points. 
These included 31 African, 1 South American (Mexico), and 6 Asian 
countries (India, Indonesia, Papua New Guinea, Myanmar, Bangladesh, 
and Philippines. Asian and South American countries were added in the 
data set to reinforce the learning and provide an unbiased predicting 
capability of the model. The countries were selected because they are 
transitioning to clean cooking and have all the country-level data. 

2.2. Machine learning model 

The machine learning model is based on a state-of-the-art open- 
source gradient boosting library that successfully handles categorical 
and numerical data and outperforms existing publicly available 
gradient-booting-based algorithms LightGBM, XGBoost, and H2O [39, 
40]. Gradient boosting on decision trees is a powerful machine learning 
technique that trains complex models to maximize the prediction ac
curacy, thus making it one of the most effective ways to build ensemble 
models [41,42]. The dataset containing the target and features is 
described as D = {(xi, yi)}

n
i=1, where xi = (xn

i , …xn
i ) is a vector of the 

features. yi ∈ R is the target (access to cooking with clean energy). The 
features (input) are the independent variables while the target (output) 
is the dependant variable. 

Gradient boosting constructs an ensemble predictor by performing 
gradient descent in a functional space. Robust predictors are constructed 
through an iterative process that combines weaker models in a greedy 
fashion [43]. The aim of a learning task in gradient boosted decision 
trees is training a function F : Rm→R that minimizes a differentiable loss 
function L (F):= L(yi, F(x)) [43]. The training involves building trees 
and computing the difference between the observed probability and the 
predicted probability (r), Eq. (1). This is the derivative of the loss 
function that gradient boost derives its name from. M denotes the 
number of trees and n denotes the samples in the dataset. 

rim = −

[
∂L(yi, F(xi))

∂F(xi)

]

F(x)=Fm−1(x)

for i = 1…n (1) 

The model was built in python using Catboost (categorical boosting), 
an open source algorithm developed by Yandex and freely available on 
GitHub [44]. CatBoost is a modification of the standard algorithm based 
on gradient boosting by applying ordered boosting [40]. The algorithm 
prevents target leakage (a type of overfitting in gradient-boosted algo
rithms) and implements a new and efficient algorithm for processing 
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categorical features. The algorithm handles categorical features during 
training unlike during pre-processing thus enabling the usage of the 
entire dataset for training [39]. These advantages were important in the 
analysis to obtain unbiased results by reducing the likelihood of 
over-fitting. The model attained excellent predictive performance. See 
Section 2.7 and Supplementary Table 2. 

Obtaining reproducibility and high predictive performance of the 
machine learning model required substantial data preprocessing 
(feature engineering), determining important features, optimizing the 
hyperparameters, evaluating the model performance, validating the 
model, and interpretating the black-box model. These processes are 
outlined in the following subsections. 

2.3. Feature engineering 

The numerical features were converted to categorical data. This 
conversion was done through normalization, multiplying by 120, and 
rounding the features to integers, Eq. (2). A CatBoost classifier recog
nises integers as categories while floats are recognised as continuous 
variables. By doing this, the numerical country-level indicators were 
converted to categorical indicators during training and converted back 
to numerical features during result analysis and presentation. 

x′ =
x − xmin

xmax − xmin
× 120 (2) 

This simple yet powerful feature engineering technique increased the 
prediction power and reduced convergence time by a magnitude. The 
data was split into a training set comprising 8120 data points and a test 
set comprising 3360 data points. Each data point comprises a target yi 
(access to clean cooking), and features xi (mechanisms driving access to 
clean cooking), from i = 1 − 8, 120 in the training set and i = 1 −3, 360 
in the testing set. 

2.4. Model interpretation 

Interpreting black-box models is crucial in machine learning. SHAP 
(Shapley Additive Explanations) was applied to interpret the model. 
SHAP is based on game theory introduced by Lloyd Shapley [45] and is a 
unified approach that explains the output of any machine learning 
model [46,47]. This state-of-art framework introduced by Lundberg and 
Lee in 2017 [46] has been successfully applied in literature to explain 
the results of black box models [48–52]. The SHAP values explained the 
impact of features on predicting access to clean cooking. The importance 
of a feature is computed by evaluating the model’s output with and 
without this feature. The SHAP algorithm derived for tree ensembles 
lowers the complexity of calculating the precise SHAP values from 
O(TL22) to O(TLD2) where T is the number of trees, L is the maximum 
number of leaves in any tree, M is the number of features, and D is the 
maximum depth of any tree [53]. This exponential reduction in model 
complexity enables explainability and prediction from previously 
hard-to-deal with models with thousands of trees and features in a 
fraction of a second. The SHAP values explained the impact of features 
(mechanisms driving access to clean cooking) on predicting access to 
clean cooking. The importance of a feature was computed by evaluating 
the model’s output with the feature, fx(S), and without this feature, 
fx(S ∪ {i}), Eq. (3). The difference gives the contribution of the feature to 
the subset. ∅ is the Shapley value, F is the number of input features and 
N is the set of all input features. S is the set of non-zero feature indices 
(the features observed and unknown). fx(S) = E[f(x)|xs] is the model 
prediction for an input x, where E[f(x)|xs] is the expected value of the 
function conditioned on a subset S of the input features. 

∅i(f, x) =
∑

S⊆N{i}

|S|!(F − |S| − 1)!

F!
[fx(S ∪ {i}) − fx(S)] (3) 

The Shapley value is the only method that satisfies the desirable 

properties efficiency, symmetry, dummy, and additivity resulting in a 
fair distribution. The efficiency property assures that feature contribu
tions sum up to the difference of prediction and the average. Symmetry 
assures that the contributions of two feature values must be the same if 
they contribute equally to all possible groups of features. Dummy as
sures that features that do not change the predicted value in any group of 
features have a Shapley value of 0. Additivity assures that the Shapley 
values for a feature can be computed individually for each tree and 
averaged. 

To explain SHAP simply, shapley values can be thought of in terms of 
a game. If access to clean cooking (the target) is winning a game, and the 
mechanisms (the features) are the players. Then shapley values explain 
the average contribution of a player to winning a game. Each player 
contributes differently to winning a game and interacts differently with 
other players. Thus, SHAP compares the performance of the team with 
and without a specific player. This computation gives the marginal 
contribution (marginal value) of a player to a team. In the machine 
learning model, the features are treated like a player to compute their 
contribution to predicting access to clean cooking. 

The global feature importance was computed by averaging the ab
solute Shapley values per feature across the data, Eq. (4). 

1
F

∑F

i=1
|∅i|, ∅i ∈ R (4)  

2.5. Feature selection 

Feature selection is another crucial process when building machine 
learning models. Selecting the right combination of features signifi
cantly improves the model performance by capturing critical spatial 
effects. SHAP was applied [46] analysis in the model to select the fea
tures that have a high marginal contribution to predicting access to 
clean cooking. After identifying the top 20 features, dropping 
low-ranking features during the analysis resulted in a different order of 
feature importance. For example, a feature ranked number 19 can rank 
as number 16 after dropping the 20th feature. Therefore, the process was 
iterated to capture the relative importance of features in the absence of a 
feature and to rigorously select features. All the features that had a low 
marginal contribution on predicting access to clean cooking were 
dropped to remain with 9 features out of 34 features. The important 
features are (in order of importance) energy consumption, households 
and NPISHs final consumption expenditure, female literacy, services 
value addition, electricity access, industry value addition, GDP per 
capita, agric-forestry-fishing value addition, and fertilizer consumption. 

The features that have a low marginal contribution on predicting 
access to clean cooking included agriculture land, forest area, Gini co
efficient, poverty head count ratio, corruption, urban population, rural 
population, total unemployment rate, female unemployment rate, male 
waged salaried workers, female waged salaried workers, female 
employment in agriculture, male employment in agriculture, adult lit
eracy rate, cereal yield, crop production index, food production index, 
energy investment by the private sector, expense per GDP, energy im
ports, medium and high-technology exports, renewable electricity con
sumption, fossil fuel consumption, total population, and adjusted net 
national income per capita. Supplementary Table 1 gives a summary of 
the model data. 

2.6. Hyperparameter optimization 

Hyperparameter optimization is a critical and delicate aspect when 
building machine learning models to enhance model performance. 
Hyperparameters are parameters not determined by a model but control 
the learning process. Thus, the optimization process determined the 
optimal mix of hyperparameters that maximized the model 
performance. 

Optuna was applied in this model, an open-source, state-of-the-art, 
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and first-of-its-kind optimization algorithm. Optuna built the hyper
parameter optimization by maximizing the objective function that took 
a set of hyperparameters as an input and returned its score to evaluate 
the performance of hyperparameters [54]. The MultiClass objective 
function was applied in the model, Eq. (5). wi is the weight of the ith 
sample. ti is the label value for the i th sample from the input data for 
training and ai is the result of applying the model to the ith sample. C is 
the number of classes, n is the total number of samples. 

∑n

i=1
wilog

(
eaiti

∑C−1

j=0
eaij

)

∑n

i=1
wi

, t ∈ {0, ⋯, C}
(5) 

The evaluation metric applied in the model is the area under the 
curve (AUC), Eq. (6). The AUC is the ability of a classifier to differentiate 
between classes. AUC(j|k) is the AUC with class j as the positive class and 
class k as the negative class. The objective function builds the searching 
space of neural network architecture without depending on variables 
specified externally. The algorithm significantly outperforms existing 
optimization frameworks through a versatile and efficient sampling and 
pruning algorithm. The algorithm facilitated the construction of the 
search space dynamically. See Supplementary Table 3 for all the opti
mized hyperparameters. 

1
C(C − 1)

∑C

j=1

∑C

k>1
(AUC(j|k) + AUC(k|j)), AUC(j|k) ∕= AUC(k|j) (6)  

2.7. Model performance and validation 

After hyperparameter optimization and training, the sci-kit-learn 
evaluation metrics were implemented [55] to assess the model perfor
mance. The ability of the model to correctly predict classes was deter
mined by computing the model accuracy, Eq. (7). 
∑n

i=1wi
[
argmaxj=0,…,C−1

(
aij

)
== ti

]

∑n
i=1wi

, t ∈ {0, …, C − 1} (7) 

The fraction of positive predictions was determined by computing 
the precision of the model, Eq. (8). The precision of the model is 
computed independently for each class numbered from 0 to C − 1. TP 
denotes positive and FP denotes false positive. 

TP
TP + FP

(8) 

The fraction of positive classes correctly predicted as positive was 
determined by computing recall, Eq. (9). Recall is computed indepen
dently for each class numbered from 0 to C − 1. FN denotes false 
negative. 

TP
TP + FN

(9) 

The weighted harmonic mean of the precision and recall F1 score 
was determined by computing the F1 score (F-measure), Eq. (10). F1 
score is computed independently for each class numbered from 0 to C −

1. 

2 ×
Precision ∗ Recall
Precision + Recall

(10) 

The fraction of wrongly predicted classes was determined by 
computing the zero one loss, Eq. (11). 

1 −

∑n
i=1wi

[
argmaxj=0,…,C−1

(
aij

)
== ti

]

∑n
i=1wi

, t ∈ {0, …, C − 1} (11) 

Like the zero one loss, the hamming loss is the fraction of the 
imperfectly predicted classes to the total classes, but it is computed as 
the hamming distance between two sets of samples and penalises the 

individual classes, Eq. (12). 
∑n

i=1wi
[
argmaxj=0,…,C−1

(
aij

)
= ti

]

∑n
i=1wi

(12) 

The trained model was validated with the testing (validation) dataset 
to ensure the reliability and reproducibility of the model. The empiri
cally acceptable fraction of validation datasets is 20 - 30% to ensure 
robustness of validation results. Thus, 29.2% of the dataset was used for 
validating the model (see Section 2.3). The stratified k-fold cross- 
validation iteration technique in sci-kit-learn was implemented to vali
date the model [55]. The stratified k-fold cross-validation is an extension 
of the conventional k-fold cross-validation. Using the stratified 5-fold 
cross-validation technique guaranteed that the size of the target fea
tures is equal within the training and validation data sets. This approach 
reduced overfitting, thus creating a robust and high-performing model. 

The ability of the model to correctly predict classes (accuracy) on the 
trained and test datasets is 93% and 96%, respectively. The fraction of 
the imperfectly predicted classes (hamming loss) on the trained and test 
dataset is 6.65% and 2.58%, respectively. The fraction of positive pre
dictions (precision) on the trained and test dataset is 94% and 95%, 
respectively. The fraction of positive classes correctly predicted as pos
itive (recall) on the trained and test datasets is 93% and 96%, respec
tively. See the performance metrics in Supplementary Table 2. The 
performance of the model was compared with XGBoost [56] (a 
gradient-boosted algorithm) to ascertain the robustness of the results. 
The Catboost classifier outperformed the gradient-boosting classifier by 
preventing overfitting through regularization. Even though both models 
perform well on the trained and test data sets, the XGBoost 
gradient-boosting classifier achieved very high metrics - denoting low 
bias and high variance in the model. Machine learning models with low 
bias and high variance are ineffective when dealing with real-world data 
because of their inability to resist learning the noise stemming from 
determinate-sized data sets [57]. 

2.8. Clean-cooking pathways and future access rates of clean cooking 

Furthermore, SHAP dependence plot analysis was applied to estab
lish evidenced-based clean-cooking scenarios. The feature values were 
plotted on the x-axis and the corresponding Shapley value on the y-axis, 
Eq. (13). ∅ is the marginal contribution of a feature i and x is a feature 
from i to F (the number of input features). The effects of the features by 
varying the values were also explored. This analysis was achieved by 
creating varied synthetic data sets. This analysis revealed the model 
behavior and enabled the postulation of data-driven clean-cooking 
pathways. 

{(xi, ∅i)}
F
i=1 (13) 

The future access rates of clean cooking were determined by 
comparatively evaluating two assumptions. The assumptions are (1) the 
past three decades influence the next three decades, and (2) the past two 
decades influence the next three decades. The future country-level in
dicators were estimated through linear extrapolation based on these 
assumptions and ensured the robustness of the results by comparing the 
results internally and externally. For example, the percent difference 
between the South African GDP forecast is only 1.64% between the first 
assumption and the forecast by OECD [58]. The percentage difference 
between the second assumption and the OECD estimate is 15.8%. The 
second assumption was applied in the model because it captures the 
combined effects of the UN millennium development goals and the UN 
2030 Sustainable Development Goals. 

2.9. Energy balance and cost analysis 

The data on primary energy consumption was extracted from Our 
World in Data - which gets most of its data from BP. Our World in Data 
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and BP use the substitution method to calculate the share of energy 
consumption by source [59]. This approach accounts for energy losses 
during conversion processes. For example, about two-thirds of fossil fuel 
energy is lost through thermal losses, while renewable energy has 
negligible transformation losses. Thus, the total primary energy is not 
the final energy consumption because it includes fossil fuels. Primary 
energy also includes renewable and nuclear energy. This complex fossil 
fuel energy loss was compensated in the analysis by multiplying primary 
energy consumption with a correction factor of 0.5 derived from Eq. 
(14). This correction factor accounts for the primary energy consumed 
(PEC) and the average share of fossil fuels in the primary energy (SFF) 
from 1990 to 2020, and a standard thermal efficiency factor of 0.38 (ηt). 
The average share of fossil fuels from the EIA [35] is 82%, see Supple
mentary Fig. 11. The correction factor allows the quantity of renewable 
electricity generated to equal the final energy consumed. 

(PEC − % SFF ∗ PEC) + %SFF ∗ PEC ∗ ηt (14) 

By applying this conversion in the energy balance analysis, the 
postulated total energy required equals the renewable electricity gen
eration and the planned electricity generation from existing studies. The 
sectoral enery consumption was estimated by considering the postulated 
contribution of each sector to the total required energy. The residential 
energy consumption was estimated by accounting for the households 
without access to clean cooking and the growing population, Eq. (15). 

RREC =

[
CP − PWACC

H
+

FP − CP
H

]

∗
∑

(φC + φHW + φL + φRC + φO)

(15) 

Where RREC is the required residential energy consumption and CP 
is the current population. PWACC is the population without access to 
clean cooking. The PWACC also denotes the population in energy 
poverty. H is the average number of households [60] and FP is the 
forecasted population. C, HW, L, RC, and O are the average cooking, hot 
water, lighting, refrigeration and cooling, and other household energy 
needs respectively. The required renewable energy capacity accounts for 
the predicted installed generation capacity in 2030 and required energy 
consumption for all the sectors, Eq. (16). RIGC is the required installed 
generation capacity, ER is the energy required, and PGC is the predicted 
generation capacity. CP is the capacity factor of the respective genera
tion technology, GT. 

RIGC =
ER − PGC

CPGT
(16) 

Extending the SHAP analysis described in Section 2.8 that informed 
the clean-cooking transition pathways enabled us to estimate the cost 
required to transition to clean-cooking ecosystems. These estimates 
encompass all the intermediate inputs required to build self-sufficient 
clean-cooking communities by creating value-addition sectors - 
thereby creating jobs and eliminating poverty. The gross value added to 
gross value output ratios of the agric-forestry-fishing, industry 
(including construction), and services value addition from the UN [38] 
were applied onto the transition pathways to estimate the costs required 
to transition to clean-cooking ecosystems. These ratios were applied in 
the cost analysis because they are steady from 1990 to 2020 - implying 
the ratios will remain unchanged during the next decades. The different 
regional material efficiencies were captured by capturing regional ef
fects. See the ratios in Supplementary Figs. 7–10. Finally, energy effi
ciency improvements were included in the energy balance analysis to 
account for technological learning and energy efficiency measures. GO 
and GVA in Eq. (17) are the gross output and gross value added, 
respectively. The industry value addition includes value added in 
manufacturing, construction, mining, electricity, water, and gas. The 
agric-forestry-fishing value addition comprises forestry, hunting and 
fishing, including crop and livestock production. The services value 
addition constitutes wholesale and retail, transport, government, 

financial, professional, and personal services such as education, health 
care, and real estate. Fig. 1 shows a flowchart of the machine learning 
model and analysis. 

Totalcosts=
∑

industry
(GO−GVA)+

∑

services
(GO−GVA)+

∑

agric−forst−fishing
(GO−GVA)

(17)  

3. Impact of country-level features on access to clean cooking 

The findings indicate that primary energy consumption, households 
and NPISH (non-profit institutions serving households) final expendi
ture, and female literacy have more impact on predicting access to clean 
cooking (Fig. 2). GDP per capita, agric-forestry-fishing value addition, 
and fertilizer consumption have the lowest impact. On the other hand, 
the results reveal that female literacy has a lower impact on countries 
that have transitioned to class 4 (80 - 100%) - denoting that it is not a 
crucial driver to sustain access to clean cooking in countries with more 
than 80% access to clean cooking. Apart from the agric-forestry-fishing 
value addition with lower impact, all the features have more impact for 
countries to transition from class 0 (0 - 19%) to class 1 (20 - 39%). Beside 
energy consumption and household expenditure, the features share 
comparable importance to transition to class 2 (40 - 59%) from class 1. 
Interestingly, services value addition and agric-forestry-fishing value 
addition have more impact on class 4. This finding underscores that 
income-generating activities are crucial to sustaining high access rates of 
clean cooking in a country. 

Contrasting feature importance were noticed when the analysis was 
applied to the African regions to understand how the features drive 
access to clean cooking regionally (Fig. 3). The features have more 
impact in North Africa than in the rest. This region has successfully 
transitioned to class 4 of access to clean cooking apart from Libya. For 
example, the overall impact of primary energy consumption in North 
Africa is four times more than in other regions (Fig. 3a). In addition to 
services and agric-forestry-fishing value addition, the findings reveal 
that industry value addition, fertilizer consumption, and household 
expenditure have integral roles in sustaining access to clean cooking 
above 80% - further highlighting the importance of income-generating 
activities. 

Even though North Africa has high levels of access to clean cooking, 
the importance of electricity access is lower in classes 1, 2 and 4 
(Fig. 3b). This finding indicates the significance of using alternative 
clean cooking technologies for societies to transition to class 4 and ev
idences the role that gases such as green hydrogen can play in improving 
the levels of clean cooking while solving the hydrogen chicken-egg [61] 
problem. For example, over 75% of the households in Egypt use lique
fied petroleum gas cylinder stoves for cooking because they do not 
require grid connections and are cheaper than using electricity for 
cooking [62]. Income-generating activities such as industrialization 
have more impact in West Africa - indicating the importance of indus
trial activities in the region in improving access to clean cooking 
(Fig. 3f). Fertilizer consumption, agric-forestry-fishing value addition, 
and services value addition have more impact in Southern Africa, 
whereas Central Africa shows the lowest impact. 

The results indicated the existence of various relationships between 
the features and their effect on predicting access to clean cooking (Fig. 4 
and Supplementary Fig. 1 to Fig. 4.). The impact of primary energy 
consumption on predicting class 4 depicted the existence of a logarith
mic progression. This finding denotes that continued growth in energy 
consumption for a country that has transitioned to class 4 (80 - 100%) 
has a static effect on access to clean cooking. Electricity access depicts 
the existence of an exponential relationship with access to clean cooking 
- which reveals that high electricity rates are required to transition to 
class 4 access to clean cooking. 

On the other hand, household expenditure indicates a linear rela
tionship. Female literacy shows that high rates have a negligible impact 
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on sustaining access to clean cooking in countries with over 80% of 
access to clean cooking. Agric-forestry-fishing value, industry, and ser
vices value addition, as well as fertilizer consumption and GDP, appear 
to plateau, showing that these features have boundaries beyond which 
more growth has less impact on access to clean cooking. 

4. Predicted access to clean cooking 

There are currently about 940 million people in Africa without ac
cess to clean cooking [63,64] (Fig. 5a). The model predicts that the 

number of people with access to clean cooking in Africa will increase by 
69 million in 2030 and 121 million in 2050 compared to 2020 (without 
the countries with missing data, Fig. 5a, b, and c). The average rate of 
accessing clean cooking in 2030 and 2050 is thus about 8% and 11%, 
respectively. The estimated access rates to clean cooking are in line with 
existing studies [3,65]. 

The findings show that these access rates are too low to outpace 
population growth - implying that over 840 million people in Africa will 
have no access to clean cooking in 2030. And over 1.1 billion people in 
Africa will have no access to clean cooking in 2050. Instead of reducing 

Fig. 1. Flowchart for the machine learning model and analysis.  

Fig. 2. The impact of country-level features on predicting the different classes of access to clean cooking. (Class 0: 0 - 19% population with access to clean cooking, 
class 1: 20 - 39%, class 2: 40 - 59%, class 3: 60 - 79%, class 4: 80 - 100%). For example, Algeria is a class 4, while Kenya is a class 0 (See Fig. 4). Higher values of SHAP 
values in a class indicate a higher average impact. SHAP (Shapley Additive Explanations) values explain the marginal contribution of features on predicting access to 
clean cooking. The marginal contribution of a feature, in mean absolute SHAP values, is computed by evaluating the model’s output with and without this feature. 
See Methods 2.4. Primary energy consumption is the most important feature with an overall impact in all the classes higher by 47% to the second most important 
feature, households and NPISHs (non-profit institutions serving households) final expenditure per capita. 
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Fig. 3. The impact of country-level features on predicting regional access to clean cooking. Higher values of features in a class indicate a higher average impact. See 
Methods 2.4. (Class 0: 0 - 19% access to clean cooking, class 1: 20 - 39%, class 2: 40 - 59%, class 3: 60 - 79%, class 4: 80 - 100%). (NPISHs - non-profit institutions 
serving households). 

Fig. 4. The Impact of country-level features on predicting class 4 (80 - 100% access to clean cooking). a-i, The plots show the type of relationship between the 
features and class 4. See Methods 2.4. For example, lower values of primary energy consumption and electricity access reduce the probability of transitioning to class 
4 of access to clean cooking. (a) The impact of primary energy consumption, (b) electricity access, (c) households and NPISHs (non-profit institutions serving 
households) per capita converted by power purchasing parity conversion factor (PPP), (d) agric-forestry-fishing value addition (includes forestry, hunting and fishing, 
as well as cultivation of crops and livestock production), (e) industry value addition (it comprises value added in manufacturing, construction, mining, electricity, 
water, and gas), (f) fertilizer consumption (nitrogenous, potash, and phosphate fertilizers), (g) female literacy, (h) GDP per capita converted by power purchasing 
parity, and (i) services value addition (includes wholesale and retail, transport, government, financial, professional, and personal services such as education, health 
care, and real estate services). 
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from 940 million, an additional 117 million people in Africa may not 
have access to clean cooking in 2050. This stark image of the clean- 
cooking landscape indicates the need to postulate data-driven clean- 
cooking pathways with an achievable potential. 

5. Clean cooking transition pathways 

Evidenced-based clean-cooking scenarios were established by vary
ing the feature values (Fig. 5). The results revealed that primary energy 
consumption impacts transitioning to class 1 (20 - 39%) between 3000 
and 9,000 kWh per capita per year (Fig. 5a). The maximum effect is 
around 6,000 kWh per capita per year. For countries to transition to 
classes 2 (40 - 59%), 3 (60 - 79%), and 4 (80 - 100%), energy con
sumption is impactful above 2,000 kWh per capita per year. The high 
primary energy consumption required to transition to class 1 signifies 
the importance of energy in a country to spur economic activities. The 
maximum impact in classes 2, 3, and 4 is around 17,000 kWh per capita 
per year before plateauing. The required final energy consumption per 
capita per year is about two times lower than the primary energy con
sumption after applying a correction factor of 0.5, see methods 2.9. 

The electricity access rate impacts transitioning to class 1 after about 
40% of electricity access (Fig. 5b). Meanwhile, electricity access impacts 
transitioning to class 2 up to about 45% of electricity access, whereas it 
impacts transitioning to class 3 after about 50% of electricity access. 
Access to electricity impacts transitioning to class 4 after about 85% of 
electricity access. These findings critically highlight the absence of a 
linear relationship between electricity access and access to clean cook
ing in the global south - implying that high rates of electricity access do 
not translate into high rates of access to clean cooking due to high 

electricity tariffs and load-shedding [66]. These significant findings 
underscore the need for a rapid paradigm shift in the developing world 
energy sciences. The evidence necessitates a fundamental change in 
approach to tackling energy poverty. Increasing the financial resilience 
of households through a systems approach should be the focal point 
because a house with financial capacity can afford electricity or fuels for 
cooking. 

The household expenditure impacts transitioning to class 1 between 
1500 and 7000 US$ per capita per year, with the maximum impact of 
around 3000 US$ per capita per year (Fig. 5c). Transitioning to over 
40% of access to clean cooking requires substantial household expen
diture between 4000 and 5000 US$ per capita per year. However, the 
impact stalls at around 7000 US$ per capita per year in class 3 and shows 
an exponential effect in class 4. The household expenditure of 7000 US$ 
per capita-year translates to a daily expenditure of US$19.18 per day for 
countries to transition to clean-cooking ecosystems. 

The income-generating activities in classes 2, 3, and 4, namely, agric- 
forestry-fishing, industry, and services value addition, including GDP, 
show plateauing characteristics after about US$200 billion per year and 
17,000 US$ per capita per year, respectively. This plateauing indicates 
boundaries beyond which more growth has less impact on sustaining 
clean cooking in an ecosystem. The female literacy rate impacts tran
sitioning to classes 1, 2, and 3 after about 70%, 85%, and 80% of the 
female literacy rate, respectively. On the other hand, it impacts tran
sitioning to class 4 up to about 80% of the female literacy rate. Fertilizer 
consumption impacts transitioning to class 4 between 300 and 400 kg 
per hectare per year (Fig. 6). 

Striking differences between the regions and countries were 
observed when the pathways were applied to determine the magnitude 

Fig. 5. The predicted access rate of clean cooking - A clean-cooking traffic light system. (a) Access rate to clean cooking in 2020, (b) access to clean cooking in 2030, 
(c) access to clean cooking in 2050. Libya, Chad, Somalia, Sierra Leone, Guinea Bissau, Liberia, Equatorial Guinea, Somali Land, Eritrea, Djibouti, Lesotho, and 
Swaziland were dropped from the analysis due to missing data. Supplementary Table 4 gives the country names and abbreviations. 
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of increment required for countries to transition to classes 1, 2, 3, and 4 
based on their current states (Fig. 7 and Supplementary Fig. 5). The 
primary energy consumption in West Africa should increase by 168 
MWh per capita per year to transition to class 4. The energy consump
tion in Southern and East Africa should increase by 103 and 111 MWh 

per capita per year, respectively. Central Africa should increase its 
consumption by 61 MWh per capita per year. The required final energy 
consumption per capita per year is two times lower than the primary 
energy consumption after applying a correction factor of 0.5, see 
methods 2.9. 

Fig. 6. Evidenced-based clean-cooking scenarios. See Methods 2.4 and 2.8. (Class 0: 0 - 19% access to clean cooking, class 1: 20 - 39%, class 2: 40 - 59%, class 3: 60 - 
79%, class 4: 80 - 100%). (PPP - purchasing power parity conversion factor. NPISHs - non-profit institutions serving households). 

Fig. 7. Data-driven postulated clean-cooking transition pathways. (class 1: 20 - 39% access to clean cooking, class 2: 40 - 59%, class 3: 60 - 79%, class 4: 80 - 100%). 
Class 0 is omitted because it is the lowest class to transition from (PPP - purchasing power parity conversion factor. NPISHs - non-profit institutions 
serving households). 
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The magnitudes of increment required for all the features apart from 
electricity access are higher in West Africa. Southern and East Africa 
have comparable required magnitudes, while Central Africa has the 
lowest. Female literacy has a negligible impact on transitioning to class 
4. Thus, its value is 0 in this class. The increment in the value of 
industrialization and fertilizer consumption required to transition to 
class 1 totals US$282 billion per year and 621 kg per hectare per year of 
fertilizer consumption, respectively. The estimated cost of achieving 
universal access to clean cooking (Supplementary Fig. 6) is higher in 
West Africa at US$5.2 trillion per year, followed by Southern Africa at 
US$4.7 trillion per year, East Africa at US$2.9 trillion per year, and 
Central Africa at US1.7 trillion per year. 

An energy balance analysis was conducted to understand and visu
alize the magnitude of energy flows required per sector (Fig. 8). The 
results reveal that the required increment in residential energy con
sumption is 29% of the total energy needed for countries to transition to 
clean cooking. This finding signifies the importance of energy con
sumption in spurring wealth-generating activities that will sustain a 
clean-cooking ecosystem. The rejected energy is a third of the required 
final energy consumption - underlying the importance of energy effi
ciency measures at the end user to optimise generation capacity and raw 
materials when developing the energy economy. 

Industrial activities consume more energy, followed by commercial 
and public buildings, residential buildings, agriculture and trans
portation. Producing fuels from renewable electricity to meet non- 
electrical energy consumption and energy storage results in slightly 
higher installed capacities to meet the power-to-fuel conversion losses. 
For example, producing hydrogen using conventional electrolysers re
quires increasing the generation capacity by about a third whereas using 
E-TAC electrolysers (Electrochemical-thermally Activated Chemical) 
with a system efficiency of 95% [67] requires an increment in the 
generation by only five hundredths. Moreover, the total final energy 
required in Sub-Saharan Africa is a staggering 183 times lower than the 
combined wind and solar PV potential. The combined renewable energy 

potential (wind, solar PV, and concentrated solar power) is 763,823 
TWh per year in Africa [68]. Even so, the planned electricity generation 
in Sub-Saharan Africa should increase three times to meet the required 
final energy consumption. 

6. Discussion and conclusions 

The drivers necessary to transition from energy poverty and trans
form the cooking landscape in the global south have been determined in 
this study. The country-level features with the most impact are (in order 
of importance) energy consumption, households and NPISHs final con
sumption expenditure, female literacy, services value addition, elec
tricity access, industry value addition, GDP per capita, agric-forestry- 
fishing value addition, and fertilizer consumption. 

The results reveal that income-generation activities (services, in
dustry, and agric-forestry-fishing value addition, fertilizer consumption) 
play integral roles in transitioning and sustaining access to clean cook
ing above 80%. Hydrogen could play a crucial role in these sectors by 
stimulating manufacturing supply chains on fertilizer production and 
farming, steel and cement production, and decarbonizing mining and 
transport sectors. For example, meeting the required final energy con
sumption for the industrial and transport sectors through a hydrogen- 
based economy [69] could increase the gross value added by US$92 
billion per year and create about 3 million jobs. Meeting the required 
energy for all sectors through solar photovoltaics [70] could create 
about 14 million manufacturing, construction, installation, and opera
tion and maintenance jobs. The findings also show that Sub-Saharan 
African countries should consume between 300 and 400 kg per hect
are per year of fertilizer - underscoring the integral role renewable 
ammonia will play in facilitating ecosystems with self-sufficient clean 
cooking. This consumption is 28 times more than the current fertilizer 
consumption. 

The impact of electricity access on improving access to clean cooking 
highlights the absence of a linear relationship - implying that high rates 

Fig. 8. Final energy consumption flows per sector required to transition to over 80% of access to clean cooking in Africa. The renewable energy capacity input is solar 
PV (see methods 2.9). A mix of renewable energy technologies will result in a lower required installed capacity due to a higher cumulative capacity factor. The 
additional (planned) generation capacity (947 TWh) in Sub-Saharan Africa in 2030 is extracted from Alova et al. (2021) and comprises fossil fuel, hydro, non-hydro 
renewable electricity, and nuclear electricity. 
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of electricity access do not translate into high rates of access to clean 
cooking due to high electricity tariffs and load-shedding. This finding 
necessitates the need for a new fundamental approach that focuses on 
improving the financial capacity of households through a systems 
approach so that they can afford electricity or fuels for cooking. It also 
indicates the significance of using decentralized clean cooking tech
nologies for countries to transition to clean cooking and evidences the 
role that gases such as green hydrogen could play in improving the ac
cess rates of clean cooking as hydrogen becomes cost competitive with 
liquid petroleum gas. On the other hand, household expenditure in
dicates a linear relationship, while female literacy shows that over 70% 
of female literacy rates are required to transition to over 20% of access to 
clean cooking. The ideal household expenditure to transition to over 
80% of access to clean cooking and clean-cooking ecosystems is around 
US$19.18 per day. 

The results show that the country-level indicators have boundaries 
beyond which more growth has less impact on access to clean cooking. 
The results revealed that the maximum effect of primary energy con
sumption in classes 2, 3, and 4 is around 17,000 kWh per capita per year 
before plateauing. This primary energy consumption translates into a 
final energy consumption of 8,500 kWh per capita per year after 
applying a correction factor of 0.5. The income-generating activities in 
classes 2, 3, and 4, namely, agric-forestry-fishing, industry, and services 
value addition, including GDP, show plateauing characteristics after 
about US$200 billion per year and 17,000 US$ per capita per year, 
respectively. This plateauing indicates boundaries beyond which more 
growth has less impact on sustaining clean cooking in an ecosystem. 

The increment in magnitude required for countries to transition to 
clean cooking has been determined. For example, the primary energy 
consumption in sub-Saharan Africa should increase by about 443 MWh 
per capita per year - equalling the total energy consumption of the UK, 
Australia, USA, Canada, Germany, Japan, China, France, and Norway 
(444 MWh per capita per year in 2021 [71]). However, the final energy 
consumption should increase by about 222 MWh per capita per year - 
two times lower than the required primary energy consumption. The 
required increment in residential energy consumption is only 29% of the 
total final energy needed for African countries to transition to clean 
cooking. This finding signifies the importance of energy consumption in 
spurring wealth-generating activities that will sustain a clean-cooking 
ecosystem. Furthermore, this important finding completely changes 
the narrative of an energy transition in energy-poor countries. The 
findings show that sub-Saharan African countries should increase their 
planned electricity generation to three times the planned generation in 
2030. Thus, for developing countries, it is not a matter of transitioning, 
but a matter of increasing energy capacity. The total renewable potential 
in Africa (solar PV, wind and concentrated solar power) is 300 times 
higher than the final energy consumption required to transition to clean 
cooking. This finding shows that Africa can transition to self-sufficient 
clean cooking ecosystems through renewable electricity production 
and energy storage. Beside, the world has sufficient minerals to power 
the world with renewable energy [72], and Africa has the largest min
eral reserves critical in transitioning to a renewable energy economy 
[73–75]. 

Finally, the estimated total cost of enabling universal access to 
cooking with clean energy in Africa is US$14.5 trillion. This cost equals 
yearly expenditures of US$2.1 trillion by 2030 or US$0.54 trillion by 
2050. Other previous studies underestimated the cost of enabling uni
versal access to clean cooking in the global south at US$4.5 - 156 billion 
per year by 2030 by focusing on expenditure towards stoves and fuels, 
funding subsidies, and installing modern energy cooking infrastructure 
[2,3,76]. The estimate in this study encompasses all the intermediate 
inputs required to build self-sufficient communities by creating 
value-addition sectors, thus, creating jobs and eliminating poverty. The 
annual cash flow (US$0.25 trillion) leaving Africa through unjust debt 
payments, multinationals exploiting tax loopholes, and corruption 
[77–79] can meet this estimated cost halfway. The annual cash flow 

from 148 developing countries can meet this estimated cost in just about 
five years. 
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