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Abstract— This paper addresses radar detection performance predic-
tion (via measured data) for drone targets using a frequency agility-
based incoherent (square-law) detector. To this end, a preliminary sta-
tistical analysis of the integrated Radar Cross Section (RCS) resulting
from frequency agile pulses is carried out for drones of different sizes
and characteristics, using data acquired in a semi-controlled environ-
ment for distinct frequencies, angles, and polarizations. The analy-
sis involves fitting the integrated RCS measurements with commonly
used one-parametric and two-parametric probability distributions and
leverages the Cramér-von Mises distance and the Kolmogorov Smirnov
test. Results show that the Gamma distribution appears to accurately
model the resulting fluctuations. Hence, the impact of integration
and frequency agility on the RCS fluctuation dispersion is studied.
Finally, detection performance of the incoherent square-law detector
is assessed for different target and radar parameters, using both
measured and simulated data drawn from a Gamma distribution whose
parameters follow the preliminary RCS statistical analysis. The results highlight a good agreement between simulated
and measurement-based curves.

I. INTRODUCTION

I
N recent years, Unmanned Aerial Vehicles (UAVs), com-

monly referred to as drones, have become increasingly pop-

ular in both commercial and military applications. However,

the use of drones has raised privacy and security concerns,

especially when they are used for nefarious purposes. Thus,

the need for effective surveillance systems has become more

pressing than ever before. However, due to their small size

and low Radar Cross Section (RCS), drones pose a significant

challenge to the radar detection task. As a result, in the open

literature significant effort has been devoted to the study of

drone RCS signatures and their impact on radar performance.

As a matter of fact, [1] focused on the RCS measurements of

small UAVs for different aspect angles in the frequency inter-

val 8-12 GHz and in VV polarization. Then, resorting to the

inverse synthetic aperture radar method, an accurate analysis

of the main drone scattering components has been provided.

In [2], the drone RCS data have been collected in the frequency

Massimo Rosamilia is with the National Inter-University Con-
sortium for Telecommunications, 43124 Parma, Italy (e-mail: mas-
simo.rosamilia@unina.it).

Augusto Aubry, Vincenzo Carotenuto, and Antonio De Maio are
with Università degli Studi di Napoli “Federico II”, DIETI, Via Clau-
dio 21, I-80125 Napoli, Italy, and also with the National Inter-
University Consortium for Telecommunications, 43124 Parma, Italy
(e-mail: augusto.aubry@unina.it; vincenzo.carotenuto@unina.it; ade-
maio@unina.it). (Corresponding author: Antonio De Maio)

Alessio Balleri is with the Centre for Electronic Warfare, Information
and Cyber, Cranfield University, Defence Academy of the United King-
dom, Shrivenham, SN6 8LA (email: a.balleri@cranfield.ac.uk).

interval 26-40 GHz, whereas in [3], the RCS of two off-the-

shelf UAVs has been collected in the frequency range 5.8-8.2

GHz. Drone signatures in the Ku-band have been collected

in [4], whereas 3D RCS data of a nano-drone between 23 GHz

and 25 GHz have been collected in [5]. Moreover, RCS data of

some nano and micro drones in the X-band have been collected

in [6] for several elevation angles, providing some statistical

features related to the measured dataset. The authors of [7]

carried out a statistical analysis of the RCS signatures and

presented a specific UAV recognition performance analysis

whereas [4] analyzed the detection performance in a short-

range battlefield context. In [8], experiments using a 35 GHz

Frequency Modulated Continuous Wave (FMCW) radar has

been conducted for small UAV-detection, whilst, in [9], the

imaging MIMO MIRA-CLE Ka system has been employed

to investigate drone detection performance. In [10], using an

experimental X-band FMCW radar, DJI-Phantom 4 RCS data

have been collected to assess detection performance, whereas

other discussions on UAV detection via FMCW radars can

be found in [11]. In addition, the problem of UAV payload

classification has been addressed in [12] exploiting micro-

Doppler signatures, whereas the detection and localization of

UAV swarms have been studied in [13] and [14], leveraging

gridless sparse techniques. Furthermore, [15] has offered a

literature review of drone activity monitoring using radars.

Last but not least, in [16] the RCSs of several drones have been

statistically analyzed and then, in the context of a coherent

detection, the radar detection performance has been studied
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with respect to the integrated Signal-to-Noise Ratio (SNR) at

the radar receiver, assuming a non-fluctuating RCS over each

Coherent Processing Interval (CPI).

Notably, one approach to mitigate the effects of RCS

fluctuations is the employment of an incoherent pulse-to-

pulse integration leveraging frequency agility technique, which

induce some diversity of the target RCS within a given CPI by

transmitting pulses at different frequencies [17]. In the open

literature, such strategy has been successfully applied to multi-

target parameter estimation [18] and target detection [19]–[23].

In this context, the aim of this paper is to extend the work

presented in [16] and study the performance of the square-

law incoherent detector using frequency agility to establish the

presence of drone targets leveraging measured data. Towards

this goal, a statistical analysis of the integrated RCS resulting

from frequency agile pulses is conducted for several UAVs

of different sizes and characteristics. The considered dataset

has been introduced in [16], which includes measurements

of the AscTec Firefly, AscTec Pelican, Venom VN10, Par-

rot AR.DRONE, and DJI Matrice 100, acquired in a semi-

controlled environment for different frequencies (in the range

8.2-18 GHz), polarizations (HH and VV), and azimuth aspect

angles (in the interval 0-360 degrees).

To analyze the resulting incoherent RCS sum, some one-

parametric and two-parametric probability distributions (com-

monly used to model RCS fluctuations) are considered.

Hence, the Cramér-von Mises (CVM) distance and the Kol-

mogorov–Smirnov (KS) test are employed to evaluate the

goodness-of-fit of the considered distributions. The results

show that a bespoke Gamma distribution is capable of accu-

rately modeling such fluctuations provided that its parameters

are tailored to the drone type, frequency hopping step, and

polarization. Moreover, the dispersion of RCS fluctuations

is studied versus the number of integrated pulses and fre-

quency agility step. Finally, the detection performance of the

(square-law) incoherent detector exploiting frequency agility

is evaluated using both the measured data and the theoretical

Gamma model (with distributional parameters inferred from

the measurements) for different operational scenarios, includ-

ing varying frequency hopping steps and number of pulses.

The rest of the paper is organized as follows. Section

II provides an overview of the experimental setup and the

pre-processing steps used for data acquisition. The statistical

behavior of the integrated measured RCS is studied in Section

III, while the radar detection performance is evaluated in

Section IV. Finally, Section V addresses concluding remarks

and outlines some possible future research avenues.

II. MEASUREMENTS SETUP

This section provides a brief description of the test-bed and

the data processing steps used to measure the drone RCS (the

interested reader may refer to [16] for further details).

The RCS data have been collected in a semi-controlled

environment by means of a 2-port Vector Network Analyzer

(VNA) equipped with a pair of identical standard horn anten-

nas (one on transmit and the other one on receive) and a fully

controlled turntable, which provided an angular step resolution

Fig. 1: Notional representation of the experimental setup.

of 0.1 degrees (see Fig. 1). Five drones with different shapes

and dimensions (see Table I and Fig. 2) have been analyzed

in the frequency interval 8.2-18 GHz, in both HH and VV

polarizations, for 3600 different aspect angles and elevation

close to 0◦.

The RCS data acquisition process involves coherent back-

ground subtraction and range-gating (employing a tailored

rectangular window) operations to obtain a clean high range

resolution target response. Then, the frequency spectrum of

the resulting signal is computed and the point-like response of

the target is extracted considering a moving bandwidth of 40

MHz. Hence, for a given polarization and central frequency

(in the measured X and Ku bands), the squared magnitude

peak in the time domain is obtained, which corresponds to the

non-calibrated target RCS. Therefore, using the substitution

method [24] with a 10 cm diameter calibrating sphere, the

aforementioned value is appropriately scaled and the absolute

RCS of the target is computed. Thus, for each analyzed UAV,

the process is repeated for all the aspect angles of interest

considering different central frequencies and polarizations.

More details can be found in [16].

III. STATISTICAL ANALYSIS

To provide accurate drone detection performance prediction

using a frequency agile radar, a statistical characterization

of the integrated RCS fluctuations versus the azimuth aspect

angle is essential. To this end, denoting by σ(θ, f, P ) the

drone RCS for azimuth θ, frequency f , and polarization

P ∈ {HH,V V }, the integrated RCS, assuming N pulses,

frequency hopping step ∆f , and starting frequency f0, is given

by

σ̃(θ, f0,∆f,N, P ) =
N∑

i=1

σ(θ, fi, P ), (1)

where fi = f0+(i−1)∆f . This is a very important parameter

as it rules the performance of the square law incoherent

detector [17], [25], [26].

In the following, a statistical analysis of the integrated RCS

measurements (1) of the five drones listed in Table I is thus car-

ried out, following the same line of reasoning as in [16] which

deals with the case of a single frequency RCS measurement.

In particular, a first-order statistical analysis is performed by

fitting (1) with (one-parametric and two-parametric) distribu-

tions typically employed to model fluctuations [17], such as the
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(a) (b) (c) (d) (e)

Fig. 2: Measured drones: (a) AscTec Firefly (b) AscTec Pelican (c) Parrot AR.DRONE 2.0 (d) Venom VN10 (e) DJI Matrice

100.

TABLE I: Measured Drones Specifications.

Drone # Rotors Weight Width Depth Height

AscTec Firefly 6 1600 g 470 mm 430 mm 165 mm
AscTec Pelican 4 1650 g 360 mm 360 mm 188 mm

Parrot AR.DRONE 2.0 4 420 g 517 mm 517 mm 127 mm
Venom VN10 4 148 g 290 mm 210 mm 38 mm

DJI Matrice 100 4 2355 g 759 mm 755 mm 205 mm

Exponential, Log-Normal, Weibull, and Gamma distributions.

The parameter vector of the distributions is determined via the

minimization of the CVM distance [27] between the empirical

and the theoretical Cumulative Distribution Functions (CDFs),

i.e., as a solution to the following optimization problem [16]

θ̂(f0,∆f,N, P ) = argmin
θ

CVM (σ̂(f0,∆f,N, P ), F (x;θ)) ,

(2)

where F (x;θ) is the CDF of the distribution under test,

θ denotes the vector whose entries are the distributional

parameters,

σ̂(f0,∆f,N, P )

= [σ̃(θ1, f0,∆f,N, P ), σ̃(θ2, f0,∆f,N, P ),

. . . , σ̃(θn, f0,∆f,N, P )]T∈ R
n

(3)

is the vector of the integrated RCS measurements observed at

the aspect angles θi ∈ {(i − 1)/10} degrees, i = 1, . . . , n,

with n = 3600, and [27]

CVM(σ̂(f0,∆f,N, P ), F (x;θ))

=

√√√√ 1

12n
+

n∑

i=1

[
2i− 1

2n
− F (σ̃(θi, f0,∆f,N, P );θ)

]2

(4)

is the CVM distance, with (·)T being the transpose operator

and R
N the set of N -dimensional column vectors of real num-

bers. The optimization problem in (2) is tackled by means of

the iterative algorithm proposed in [28] which is implemented

in MATLAB with the function fminsearch using, as initial

estimates of the distributional parameters, those obtained via

the MATLAB function fitdist.

Then, the most appropriate statistical model is selected by

examining the CVM distance and the KS test results. As a

matter of fact, the KS is a non parametric statistical procedure

which can be used to assess the goodness-of-fit between the

empirical and the theoretical RCS distributions [27], [29].

According to the obtained CVM distances, reported in

Table II for the AscTec Firefly’s integrated RCS at f0 = 13
GHz, the Gamma model accurately describes RCS fluctua-

tions, achieving in general the lowest average CVM distance,

while the Weibull distribution often ranks second. In particular,

for N = 8 pulses, the Weibull distribution reaches CVM

distances close to the Gamma model. Notably, unlike the

Weibull, the Gamma fluctuation law can enable a closed-

form analytical evaluation of the detection performance [30].

The KS test results unveils that, independently of the drone,

in all the analyzed cases the hypothesis that the data are

distributed according to the Gamma distribution cannot be

rejected (significance level αKS = 0.01) [31]. It is also

interesting to observe that the statistical analysis reveals that

the shape parameter ν of the fitted Gamma model, illustrated

in Fig. 3 with regard to the AscTec Firefly at f0 = 13
GHz, increases with the number of pulses, regardless of the

drone type, carrier frequency, and polarization. Indeed, as the

number of pulses increases, the integrated RCS becomes more

and more concentrated around the mean value. Furthermore,

not surprisingly, the shape parameter also increases with the

frequency hopping step for a given number of pulses, because

increasing the frequency leads to higher and higher RCS

decorrelation.

Single frequency RCS and integrated RCS (both normalized

to their maximum value) of AscTec Firefly for f0 = 13 GHz

and HH polarization are compared in Fig. 4. Specifically,

single frequency RCS is displayed in Fig. 4 (a) whereas,

assuming N = 16 pulses, integrated RCS for ∆f = 15
MHz and ∆f = 45 MHz are illustrated in Figs. 4 (b) and

(c), respectively. The plots clearly unveil the reduced RCS

fluctuations achieved with the frequency-agility technique.

In particular, it is worth noting that the normalized single

frequency RCS measurement can reach values below 10−3,

whereas the integrated RCS dynamic range becomes more and

more compact as the frequency hopping step increases. As a
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TABLE II: CVM distances between empirical and theoretical CDF of AscTec Firefly’s integrated RCS at f0 = 13 GHz at

varying polarization, frequency hopping steps, and numbers of pulses.

HH pol N = 8 pulses N = 16 pulses
Distribution ∆f = 15 MHz ∆f = 30 MHz ∆f = 45 MHz ∆f = 15 MHz ∆f = 30 MHz ∆f = 45 MHz

Exponential 0.61 1.73 2.87 1.77 3.86 5.42
Gamma 0.27 0.51 0.80 0.51 1.15 1.11
LogNormal 2.37 1.94 1.47 1.95 0.98 0.70
Weibull 0.28 0.56 0.96 0.56 1.42 1.67

VV pol N = 8 pulses N = 16 pulses
Distribution ∆f = 15 MHz ∆f = 30 MHz ∆f = 45 MHz ∆f = 15 MHz ∆f = 30 MHz ∆f = 45 MHz

Exponential 1.61 2.41 3.26 2.39 4.44 6.49
Gamma 0.47 0.39 0.76 0.41 1.07 0.76
LogNormal 2.66 1.99 1.44 1.94 1.08 1.31
Weibull 0.34 0.64 1.14 0.66 1.63 1.66
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Fig. 3: Analysis of the Gamma shape parameter ν versus

frequency hopping step for two values of the number of pulses,

i.e., N = {8, 16}. The Gamma shape parameters are fitted with

the RCS measurements of AscTec Firefly at f0 = 13 GHz and

(a) HH polarization, (b) VV polarization.

matter of fact, assuming N = 16 pulses and ∆f = 15 MHz,

i.e., the situation of Fig. 4 (b), the normalized integrated RCS

values belong to the range [10−3, 1], whereas for the case of

Fig. 4 (c), i.e., N = 16 pulses and ∆f = 30 MHz, the range

of values is further reduced, namely [10−2, 1].

To further shed light on the effect of frequency agility on

the resulting RCS, in Table III, two scale-invariant dispersion

score indicators (a measure of how spread is a dataset) are

provided: the Pearson Coefficient of Dispersion (PCOD) (also

known as coefficient of variation) [32] and the Quartile Coeffi-

cient of Dispersion (QCOD) [33], computed using the Asctec

Firefly measured data at f0 = 13 GHz. They are reported for

different numbers of pulses and frequency hopping steps. In

particular, the PCOD and the QCOD are defined as

PCOD =
Ŝ

µ̂
(5)

and

QCOD =
Q3 −Q1

Q3 +Q1

(6)

respectively, with the involved statistics computed from the

observations of integrated RCS at varying azimuth aspect

angles, i.e.,

• Ŝ the sample standard deviation;

• µ̂ the sample mean;

• Q1 the first sample quartile;

• Q3 the third sample quartile.

The reported results clearly show that, regardless of the

considered polarization and the employed frequency hopping

step, integrating the RCS results in a dispersion that is smaller

and smaller as the number of pulses increases. Moreover,

as expected, the inspection of the table reveals that, for a

given number of pulses, the dispersion of RCS fluctuations

is reduced by increasing the frequency agility step, due to the

higher and higher RCS diversity. It is worth pointing out that

a different estimate for the PCOD leveraging the theoretical

fitting Gamma distribution can be conceived (PCODt). It just

requires the knowledge of the fitting Gamma distribution shape

parameter (available in Fig. 3), and can be computed as

PCODt =
1√
ν
. (7)

Although the numerical values of the PCODt are not reported

here to avoid redundancy, the above considerations about RCS

dispersion are robust with respect to the chosen PCOD esti-

mation procedure. Furthermore, this trend holds considering

both PCOD and QCOD metrics, namely both the performance

indices support the obtained results.

As a final remark, despite the results presented in Table III

are related to the observation of the Asctec Firefly (which in

this work is considered as a sample study case), the dispersion
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(a)

(b)

(c)

Fig. 4: AscTec Firefly integrated RCS (normalized to the

maximum value), for f0 = 13 GHz and HH polarization. (a)

N = 1, (b) N = 16, ∆f = 15 MHz, and (c) N = 16,

∆f = 45 MHz.

fluctuation trend also holds for the other considered UAVs and

carrier frequencies (see e.g., the results reported in Table IV

for the case of N = 8, f0 = 13 GHz, and HH polarization).

In general, repeating the analysis of this section with the

measured data from the other drones listed in Table I and for

different frequencies, similar RCS fluctuation characteristics

TABLE III: PCOD and QCOD using measured AscTec Firefly

RCS for N = {1, 8, 16}, ∆f = {15, 30, 45} MHz, and f0 =
13 GHz.

PCOD QCOD
N ∆f MHz HH VV HH VV

1 - 0.999 0.908 0.656 0.625

8 15 0.964 0.875 0.640 0.608
8 30 0.914 0.866 0.606 0.561
8 45 0.854 0.863 0.571 0.530

16 15 0.913 0.871 0.605 0.561
16 30 0.796 0.820 0.522 0.481
16 45 0.723 0.682 0.462 0.409

are experienced.

Summarizing, the analysis presented in this section clearly

corroborates the benefits of employing frequency agile tech-

niques to counter the UAV RCS fluctuation.

IV. DETECTION PERFORMANCE ANALYSIS

In this section, the detection capabilities of the incoherent

square-law receiver are analyzed by comparing the perfor-

mance obtained under measured integrated target RCS fluctu-

ations with that resulting from an appropriate statistical model

using different carrier frequencies f0, frequency hopping steps

∆f , and number of pulses N . The Probability of detection

(Pd), computed assuming a desired Probability of false alarm

Pfa = 10−4, is used as performance metric. Moreover, due

to the unavoidable fluctuations in the integrated RCS and

hence in the resulting SNR of the received radar signal,

the performance is extremely dependent on the aspect angle.

This poses a problem in the evaluation of the radar detection

probability because its exact computation for each aspect angle

is both complicated and of no practical utility (a perfect

knowledge/estimate of the target aspect angle is reasonably

unavailable) [17]. Therefore, an average performance based

on a statistical framework for the integrated RCS (modeled as

a random variable, being subsumed random the aspect angle)

is a viable means to carry out a detection analysis [34]–[36].

In the following, let us consider a frequency agile radar

illuminating the target using N pulses at frequency fi =
f0 + (i − 1)∆f, i = 1, . . . , N . Let us also assume that

the azimuth aspect angle of the drone is constant within

the radar processing interval. Notably, due to the employed

frequency shift in the transmitted pulses and the UAV size, a

decorrelation between the target RCS measurements at each

pulse is expected. Assuming polarization P ∈ {HH,V V },

the radar sample collected from the range bin of interest and

the i-th pulse can be modeled as

zi =
√
σ̃(θ, fi, P )ejφi + ni, i = 1, . . . , N (8)

where

• φi accounts for the unknown UAV phase response at the

i-th pulse;

• ni ∼ CN (0, σ2

n), i = 1, . . . , N, are independent and

identically distributed (IID) zero-mean, circularly sym-

metric, Gaussian noise samples with unknown variance

σ2

n .
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TABLE IV: PCOD and QCOD using measured drones RCS for N = 8, ∆f = {15, 30, 45} MHz, f0 = 13 GHz, and HH

polarization.

PCOD QCOD
Drone ∆f = 15 MHz ∆f = 30 MHz ∆f = 45 MHz ∆f = 15 MHz ∆f = 30 MHz ∆f = 45 MHz

AscTec Firefly 0.964 0.914 0.854 0.640 0.606 0.571
AscTec Pelican 1.199 1.189 1.179 0.680 0.674 0.656
Parrot AR.DRONE 2.0 0.880 0.844 0.797 0.608 0.574 0.528
Venom VN10 0.957 0.918 0.857 0.613 0.575 0.527
DJI Matrice 100 1.315 1.172 1.038 0.653 0.575 0.498

-10 -5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

P
d

(a)

-10 -5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

P
d

(b)

-10 -5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

P
d

(c)

-10 -5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

P
d

(d)

-10 -5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

P
d

(e)

-10 -5 0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

P
d

(f)

Fig. 5: Pd curves versus SNR using measured and simulated AscTec Firefly RCS for two number of pulses, i.e., N = {8, 16},

f0 = 13 GHz, and: (a) and (d) ∆f = 15 MHz, (b) and (e) ∆f = 30 MHz, (c) and (f) ∆f = 45 MHz. Moreover, HH is

considered in (a), (b), and (c); VV in (d), (e), and (f).

Therefore, let us consider the incoherent square-law detec-

tor [17]

z =
N∑

i=1

|zi|2
H1

≷
H0

ζ, (9)

where H0 and H1 indicate the null and the alternative hypoth-

esis (i.e., target echo absence/presence within the received ob-

servation vector), respectively, and ζ is the detection threshold

set to ensure the desired Pfa. Precisely, for the case at hand,

the Pfa is given by [25]

Pfa = e−ζ

N−1∑

i=0

ζi

i!
. (10)

To proceed further, let us denote by SNR the average

single-pulse SNR over all aspect angles, the Pd for the decision

rule in (9) at the aspect angle θ can be obtained as [25]1

Pd(SNR, θ, f0,∆f,N, P )

= QN

(√
2NSNR

σ̃(θ, f0,∆f,N, P )

σ̄(f0,∆f,N, P )
,
√
2ζ

)
(11)

with σ̄(f0,∆f,N, P ) the sample mean (over aspect angle)

target integrated RCS value and QN (·, ·) the generalized

Marcum Q-function of N -th order [30]. Hence, the empirical

average detection performance over the aspect angle can be

computed as

Pd(SNR, f0,∆f,N, P )

=
1

3600

∑

θ∈T

Pd(SNR, θ, f0,∆f,N, P ),
(12)

1Notice that the performance analysis can be extended to the case of non-
Gaussian clutter. Specifically, the computation procedure remains the same;
however, it requires the utilization of the specific conditional Pd tied up to
the clutter statistical properties.
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Fig. 6: Pd curves versus SNR using measured AscTec Firefly RCS for three different frequency hopping steps, i.e., ∆f =
{15, 30, 45} MHz, f0 = 13 GHz, and: (a) and (c) N = 8, (b) and (d) N = 16. Moreover, HH is considered in (a) and (b);

VV in (c) and (d).

where T = {i× 0.1, i = 0, . . . , 3599}.

To corroborate the Gamma fluctuation model inferred in

Section III also from a radar detection point of view, the

resulting average Pd for the theoretical Gamma distribution

is considered too. Specifically, it is computed as

Pd(SNR, f0,∆f,N, P )

=
1

3600

3600∑

n=1

QN

(√
2NSNR

ρn(f0,∆f,N, P )

µ(f0,∆f,N, P )
,
√
2ζ

)
,

(13)

where ρn(f0,∆f,N, P ) are independent realizations

of a Gamma distribution with parameter vector

θ(f0,∆f,N, P ) = [ν(f0,∆f,N, P ), β(f0,∆f,N, P )]T

inferred from the fitting process, whereas µ(f0,∆f,N, P )
denotes the learned expected value, i.e., µ(f0,∆f,N, P ) =
ν(f0,∆f,N, P )β(f0,∆f,N, P ).
Pd versus SNR, related to the AscTec Firefly and f0 = 13

GHz is displayed in Fig. 5, assuming N ∈ {8, 16} pulses and

for three different frequency hopping values, i.e., ∆f = 15
MHz in Figs. 5 (a) and (d), ∆f = 30 MHz in Figs. 5 (b) and

(e), and ∆f = 45 MHz in Figs. 5 (c) and (f). Furthermore,

Figs. 5 (a), (b), and (c) refer to the HH polarization, whereas

the VV polarization is considered in Figs. 5 (d), (e), and (f).

The curves show nearly perfect adherence (with negligible

displacements) between the Pd obtained using measured and

simulated data in all the reported study cases, proving that, also

from a radar detection standpoint, the fitted Gamma distribu-

tion is capable of capturing the RCS fluctuation phenomena.

The results pinpoint that, for a given value of ∆f , increasing

the number of pulses leads to better and better detection

performance, as the average integrated SNR experiences inco-

herent gain and the integrated RCS becomes more and more

concentrated while growing the number of frequency hopping

steps. Furthermore, for a given SNR value and number of

pulses, similar Pd levels are achieved regardless of the adopted

polarizations. This is not surprising and agrees with the results

available in the open literature where it is reported that similar

average drone RCS values are obtained in both the HH and

VV polarizations [1], [16].

In Fig. 6, the Pd curves vs SNR, obtained using the

measured data of the AscTec Firefly drone for f0 = 13 GHz

and both polarizations, are reported varying the frequency

hopping within ∆f = {15, 30, 45} MHz. The case of N = 8
pulses is shown in Figs. 6 (a) and (c), while the case of N = 16
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pulses is analyzed in Figs. 6 (b) and (d).

The results highlight that in all the analyzed scenarios, for

a fixed number of pulses and under the high SNR regime,

an increase in the frequency agility parameter ∆f leads to

a performance improvement. Still, this is due to the more

concentrated nature of the integrated RCS fitting distribution

when a stronger frequency diversity is employed. Additionally,

it appears that similar achievements are reached regardless of

the considered polarization. Finally, it is worth mentioning that

the behaviors pinpointed in Figs. 5 and 6 are also observed

for other carrier frequencies and for the other drones (listed

in Table I). This further corroborates that:

• the Gamma model is suitable to describe and capture

the fluctuations in drones RCS when frequency agility

techniques are employed;

• the use of frequency agility effectively mitigates the RCS

fluctuation impairments, leading to a UAVs detectability

boost at the high SNR regime.

V. CONCLUSIONS

In this paper a performance analysis on the effectiveness

of frequency agility techniques to enhance the radar detection

capabilities of drones has been conducted by leveraging mea-

sured RCS data. Specifically, based on the statistical analysis

of measured drone integrated RCSs resulting from frequency

agile pulses, the Gamma distribution (with parameters inferred

from the acquired data) has been established as a suitable

model for the description of the intrinsic UAV RCS fluctu-

ations. Then, the performance of the incoherent square-law

detector has been assessed using both measured and simulated

data (whose parameters are set via the fitted Gamma model)

for distinct operational scenarios, with different frequency

hopping steps, polarizations, and number of pulses. The results

have highlighted that frequency diversity can mitigate RCS

fluctuation and there is a good agreement between Gamma

simulated and measurements-based Pd curves. This pinpoints

the important role of the presented analysis as a reliable

means for performance prediction and appropriate system

sizing/designing.

As possible future research avenues, it is worth mentioning

the analysis for some other values of the elevation angle as

well as the effect on RCS fluctuation and detection perfor-

mance of a joint integration in frequency and polarization

domains.
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