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ABSTRACT
In recent years, path-tracking controllers for autonomous passen-
ger vehicles and Control Allocation (CA) methods for handling and
stability control have both received extensive discussion in the lit-
erature. However, the integration of the path-tracking control with
CAmethods for autonomous racing vehicles has not attractedmuch
attention. In this study, we design an integrated path-tracking and
CA method for a prototype autonomous racing electric vehicle with
a particular focus on the maximising the turning speed in tight cor-
nering. The proposed control strategy has a hierarchical structure to
improve the computational efficiency: the high-level path-tracking
Model Predictive Control (MPC) based on a rigid body model is
designed to determine the virtual control forces according to the
desired path and desired maximum velocity profile, while the low-
level CA method uses a Quadratically Constrained Quadratic Pro-
gramming (QCQP) formulation to distribute the individual control
actuator according to the desired virtual control values. The pro-
posed controller is validated in a high-fidelity simulation vehicle
model with the computational time of the optimisation controller
presented to demonstrate the real-time control performance.
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1. Introduction

The autonomous vehicle has been considered as the next generation vehicle and has
received increased attention in the recent literature. A vital part of the control architec-
ture of an autonomous vehicle is around the path following control, which includes two
parts: the high-level motion planner, which uses environmental sensing and perception
techniques to determine a desired path and speed profile, and the low-level path-tracking
controller which is designed to track the desired path with desired speed and maintain the
vehicle dynamics stability. In this study, we focus on the low-level path-tracking controller.

Many of earlier studies about the path-tracking used a driver model to determine
the steering control input [1–5], then the study on path-tracking for driver model has
been switched to autonomous passenger vehicle application recently [6–11]. In order
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to track the desired path and minimise the lateral tracking error, Attia et al. utilised a
Nonlinear Model Predictive Control (NMPC) to determine the control input of steering
angle [6]. In another study, based on the lateral tracking error, the H-infinity technique
was applied to design the lateral tracking controller [7]. Tagne et al. proposed a higher-
order Sliding Mode Controller (SMC) for the reference path-tracking control, since the
robustness of SMC can be beneficial to overcome the nonlinear terms of the vehicle
model [9].

In recent years, the independent wheel control in an over-actuated vehicle has been
widely discussed in the vehicle dynamics and control literature. The independent wheel
control provides redundant control actuators and is becoming popular due to the pos-
sibility of enhancing the performance of existing controller through the carefully design
of Control Allocation (CA) strategy [12]. It is also suggested that CA can improve
the cornering response by shaping the under-steer characteristics and ensuring stabil-
ity in limited-handing condition [13]. Thus, integrating the CA strategy with path-
tracking controller can greatly improve path-tracking and vehicle dynamics performance
of autonomous vehicle with in-wheel motor, which has become a very attracting research
area.

CA was originally used to control and allocate traction or brake toque of individual
tire for the vehicle handling and stability control of traditional human-driving passenger
vehicles [14–18]. In recent years, quite a few approaches integrate path-tracking with CA
based on Direct Yaw Control (DYC) for autonomous passenger vehicles [19,20]. Guo et al.
proposed a LinearTimeVarying (LTV) basedMPCas the path-tracking controller to deter-
mine the steering angle and required yaw moment, then a low-level CA law is applied to
distribute the individual wheel torque to achieve the required yaw moment [19]. Wang
et al. developed a modified Composite Nonlinear Feedback (CNF) controller to track the
desired yaw rate and lateral velocity and then the required yawmoment control value is dis-
tributed to longitudinal tire force of individual wheel [20]. In [13], a hierarchical structure
and a holistic structure of path-tracking controller is suggested and integrated with torque
vectoring controller. In the above studies, a distribution of the DYC command on the indi-
vidual wheel torque (also called torque vectoring) is applied. However, the CA problem
can be extended to the distribution of the steering angle, motor driving torque, motor
regenerating brake torque and hydraulic brake torque on the individual wheel. In this way,
the redundant vehicle control actuators can be fully utilised to achieve the best control
performance, but CA problem becomes more complex and requires a carefully designed
CA strategy. In our previous study [21], the hierarchical control structure is proposed by
including high-level PID based path-tracking controller and low-level CA approach. The
CA method can optimally distribute the individual wheel torque and front wheel steer-
ing angle. Nevertheless, the simple PID path-tracking controller can only track the desired
path with fixed longitudinal speed, which cannot optimise the path-tracking with maxi-
mum cornering speed in racing scenario (without the help of MPC). Furthermore, the CA
method still has not fully considered the control allocation of front and rear wheel steering
angle, motor driving torque, motor regenerating brake torque and hydraulic brake torque
of individual wheel.

MPC has been widely applied in the path-tracking control of autonomous passenger
vehicles since the control performance can be greatly improved by MPC through the
preview of the future road profile [19,22–27]. However, there are limited studies on the
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path-tracking control of the autonomous racing vehicles. Alcala et al. proposed a linear
parameter varying (LPV) MPC for autonomous racing vehicles [28]. The validation of
the controller is based on the scaled electric vehicle and the vehicle speed is relatively
low. It is questionable if the proposed controller can achieve good control performance
for the high-speed full-sized autonomous racing vehicle. Similarly, Liniger et al. proposed
a linearised MPC for the path-tracking of autonomous racing vehicle and an integrated
MPC contouring control to achieve the combined path planning and path-tracking con-
trol, where the nonlinear bicycle model considering the longitudinal and lateral friction
forces is modified as the LTV model [29]. In order to improve the internal model accu-
racy of the MPC, the learning based MPC approaches are proposed in [30]. The internal
MPCmodel includes a nominal simple vehiclemodel and a self-learningmodel to improve
the vehicle model accuracy. The major issue of this data-driven self-learning approach is
the uncertain stochastic internal model will render the predicted state a random variable.
This uncertainty will propagate throughout the whole prediction horizon, and the pre-
diction model system may be unstable with a longer prediction horizon. Furthermore,
the Gaussian Process Regression has been applied to train the self-learning model and
the large number of training data points will significantly increase the computational
burden.

In summary, in the current literature, the path-tracking controller design for
autonomous racing vehicles is mainly based on the linearised MPC approach with sim-
ple internal model to improve the computational efficiency and guarantee the controller
reliability. Although the self-learning MPC approach has been tried to improve the inter-
nal model accuracy, the reliability of this approach is questionable. Although CA andMPC
approaches have been extensively applied in the path-tracking control for passenger vehi-
cles, the integration of the path-tracking control and maximum speed control in tight
cornering for the racing vehicle is less focused. The optimisation of redundant steering
and driving actuators can greatly enlarge the working envelope of racing vehicles and push
the racing vehicles close to the friction limit.

The aim of our study is to design an integrated path-tracking and CA method for a
prototype autonomous racing electric vehicle in limited handling scenario, with the pro-
posed method being able to satisfy the requirement for real-time implementation. The
prototype vehicle under consideration has independent front- and rear-wheel steering,
two hub motors with driving/regenerating braking capabilities on the two rear wheels,
and one motor on the front axle that through an open differential equally distributes the
driving/regenerating torque among the two front wheels. In addition, there are two inde-
pendent hydraulic brake channels, one on the front axle and one on the rear axle of the
vehicle, which is shown in Figure 1. Motivated by the above shortcomings in current lit-
erature, a hierarchical control structure of integrated path-tracking and CA method is
presented in this study. In the high-level controller, a path-trackingMPC is proposed based
on a rigid body vehicle model including the virtual control inputs of the total longitu-
dinal, lateral force and yaw moment on the vehicle, while individual tire friction force
and tire model are considered in the low-level controller and decoupled from high-level
to improve the computational efficiency. This way a modular strategy is achieved, which
can be easily modified and applied to most of the existing actuator structures of an electric
vehicle.
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Figure 1. The structure diagram of the complete control system.

The major contribution of this study can be summarised as follows. First, the proposed
hierarchical controller applies the virtual forces and moment to performance high-level
path-tracking motion and effectively move the effect of the actual friction tire forces in the
lower CA level which also accounts for the various actuators. Secondly, the path-tracking
MPC with prediction horizon is proposed based on a rigid body vehicle dynamics model,
and the tire friction circle andmaximumyawmoment constraints are included in the high-
level MPC to guarantee the feasibility of the computed commands to be passed on the
low-level CA. Furthermore, a two-layer CA method is proposed to control and allocate
the various steering and driving actuators: the upper layer CA optimally distributes the
individual longitudinal tire force and steering angle according to the desired virtual con-
trol values from the path-tracking controller, formulated as a Quadratically Constrained
Quadratic Programming (QCQP) problem to improve the computational efficiency, while
the lower layer rules-based method is designed to distribute the required individual lon-
gitudinal tire force into the individual motor and hydraulic brake torques. Finally, the
time-efficient solver generated by Forces Pro is used to solve the high-level path-tracking
MPC and optimisation problem of CA in low-level in this study, which can satisfy the
requirement for real-time path-tracking control [31]. It is noted that our study only focuses
on the high-level path-tracking and low-level CA algorithm, and the detailed actuator
model of the powertrain system is out of the scope and not considered in our study. The
major novelty of our study can be suggested: (1) the path-tracking control and maximum
speed control in tight cornering (through the offline pre-calculation of maximum corner-
ing speed and the online speed control inMPC prediction horizon) are integrated together
for the autonomous racing vehicle; (2) throughmore powerful in-wheel motor system and
the potent racing tire (tire-road friction coefficient > 1), the proposed controller can fully
utilise the potential of the racing vehicle and reach the acceleration limit; (3) in the high-
level MPC path-tracking controller, the virtual total desired tyre force and yaw moment
(yaw moment constraint is not well addressed in the literature) are constrained so that the
low-level CA can successfully allocate individual actuators.

This paper is organised as follows: the high-level path-tracking MPC is presented in
section II, then low-level CA strategy is introduced in section III, and finally simulation
examples are used to validate the effectiveness of the proposed integrated control method
in section IV.
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Figure 2. The structure diagram of the complete control system.

2. High-level path-trackingMPC design

The proposed hierarchical controller includes the high-level path-tracking controller and
low-level CA method. The high-level path-tracking MPC method tracks the desired path
and velocity profile and sends the required virtual control forces into the low-level CA
to distribute the individual control actuator value to the vehicle. Vehicle measurements
are also used to feed back the necessary vehicle state values to the high-level and low-
level controllers. The detailed structure of the complete control system is presented in
Figure 2.

2.1. Vehicle dynamicsmodel for high-level path-trackingMPC

In this section, a three degrees-of-freedom (DOF) rigid-body nonlinear dynamics model
considering the combined longitudinal, lateral and yaw dynamics is used to design the
path-tracking MPC. The virtual control inputs of total longitudinal tire force, lateral tire
force and yaw moment are utilised to simplify the vehicle dynamics model. In addition,
the yaw angle error and lateral tracking error are also included in the vehicle model to
present the path-tracking performance [20]. The 3 DOF vehicle model is presented by the
following equations:

v̇x = vyr + Fxd
m

(1a)

v̇y = −vxr + Fyd
m

(1b)

ṙ = Mzd

Iz
(1c)

ψ̇e = r − κvx (1d)

Ẏe = vx sinψe + vy cosψe (1e)

where vx, vy, r represent the vehicle longitudinal velocity, lateral velocity, and yaw rate,
respectively, Iz and m are the moment of vehicle inertia in terms of yaw axis and vehicle
mass, Fxd, Fyd,Mzd are total longitudinal tire force, lateral tire force and yaw moment, Ye
and ψe are the vehicle lateral deviation and yaw angle error from the reference path and κ
is the curvature of desired path.
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2.2. The design of high-level path-trackingMPC

The general formulation of a nonlinear MPC can be presented as following equations by
selecting the best control input to satisfy the cost function J:

min
x,u

N−1∑
k=0

J(xk, uk, pk)

Subject to: xk+1 = f (xk, uk, pk)

k = 0, 1, . . .N − 1 (2a)

xk ∈ Xk = 1, . . .N − 1 (2b)

x0 = x(t) (2c)

where N is the horizontal number of predicted time steps, xk is the predicted vehicle state
in the prediction horizon and uk is the predicted control input, f (xk, uk, p) in equation (2a)
is the nonlinear system prediction model, which is the discrete formulation of nonlinear
dynamics system (1) and is formulated in (4) and p is the external changing parameters
determined outside of MPC. The boundary constraints of vehicle states are presented in
(2b) while the initial values x0 can be determined by the measured feedback state values at
current time t.

1) External parameters p

The external parameters of MPC include the curvature of desired path p1 = κ and
desired longitudinal velocity of vehicle in the body-fixed coordinate system p2 = vxd. Since
this study only focuses on the path-tracking controller design, it can be simply assumed the
desired path and the curvature of desired path are already known. The desired longitudinal
velocity is determined by an optimal velocity profile which can be pre-calculated offline or
online as part of the motion planning algorithm. Note that the optimal velocity profile cal-
culated offline and applied in this study can make the autonomous vehicle travel along the
desired path with maximum acceleration and minimum time [32].

The MPC design has N steps prediction horizon, determined as:

κk = κ(Xd(t)+ vxkTs)k = 0, 1, . . .N − 1 (3)

where Xd(t) is the vehicle current time (t) travelling distance along the desired path. vx is
the feedback vehicle velocity and Ts is the sampling time of discrete-time vehicle model
(2a).

2) Nonlinear prediction model

The nonlinear predictionmodel (2a) is determined by converting the nonlinear contin-
uous dynamics model (1) into discrete form:

vx,k+1 = vx,k + Ts

(
vy,krk + Fxd,k

m

)
(4a)
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vy,k+1 = vy,k + Ts

(
−vx,krk + Fyd,k

m

)
(4b)

rk+1 = rk + Ts
Mzd,k

Iz
(4c)

Fxd,k+1 = Fxd,k + TsḞxd (4d)

Fyd,k+1 = Fyd,k + TsḞyd (4e)

Mzd,k+1 = Mzd,k + TsṀzd (4f)

ψe,k+1 = ψe,k + Ts(rk − p1,kvx,k) (4g)

Ye,k+1 = Ye,k + Ts(vx,k sinψe,k + vy,k cosψe,k) (4h)

where the model states xk = [vx,k; vy,k; rk; Fxd,k; Fyd,k;Mzd,k;ψe,k;Ye,k]T , and the control
inputs uk = [Ḟxd,k; Ḟyd,k; Ṁzd,k]k. It should be noted that in (4) the control inputs have
been revised as the change rate of total desired longitudinal tire force, lateral force and
yawmoment to reduce the oscillation of control inputs and improve the stability of control
performance.

3) Cost function

The control targets of proposed MPC include the minimisation of yaw angle error and
lateral deviation from desired path and achieving the desired target speed. The detailed
mathematical presentation of the cost function can be presented as following:

J =
N−1∑
k=0

Qv(vxd,k − vx,k)2 + Qψ(ψe,k)
2 + QY(Ye,k)

2 + ukTQuuk + Qs1s21 + Qs2s22 (5)

where Qv, Qψ , QY are scaling factors corresponding to the cost function terms of the
longitudinal velocity tracking error, yaw angle tracking error and lateral deviation tracking
error. Qu is a 3-by-3 diagonal matrix which include the relative penalties on the control
effort. Qs1 and Qs2 are penalties on the soft constrains s1 and s2. In order to achieve good
control performance, all the scaling factors in cost function are normalised and written in
discrete-time form:

Qv = qvTs

(vxm)2
(6a)

Qψ = qψTs

(ψem)
2 (6b)

QY = qYTs

(Yem)
2 (6c)

Qu =

⎡
⎢⎣

qu1
(dFxm)2

0 0
0 qu2

(dFym)2
0

0 0 qu3
(dMzm)

2

⎤
⎥⎦ (6d)

Qs1 = qs1Ts

(s1m)2
(6e)
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Qs2 = qs2Ts

(s2m)2
(6f)

where vxm, ψem and Yem are nominal values of longitudinal velocity, yaw angle error
and lateral deviation, respectively. dFxm, dFym, dMzm are nominal values of change rate of
desired longitudinal force, desired lateral force and yaw moment. s1m and s2m are nominal
values of soft constraints. qv, qψ , qY , qu1−u3, qs1−s2 are scaling values of each term, which
need to be tuned as the following procedure. First the weighting of penalties terms qu1−u3,
qs1−s2 are tuned and fixed. Then qv, qψ , qY related to velocity error, yaw angle error and
lateral deviation can be tuned individually based on the relative importance of individual
term.

4) Constraints

Equations (2b) suggests that states should satisfy certain constraints. Specifically, the
total desired longitudinal and lateral tire force should satisfy the friction circle limit:

F2xd,k + F2yd,k − s21 ≤ (μmg)2 (7)

where μ is the tire-road friction coefficient and g is the constant of gravitational accel-
eration. The tyre-road friction coefficient can be assumed to be known through friction
coefficient estimators [33].

The desired yaw moment is also constrained by its upper and lower limit:

Mzd,k − Mzmax − s22 ≤ 0 (8a)

− Mzd,k − Mzmin − s22 ≤ 0 (8b)

The total desired yawmoment includes the yawmoment induced by the longitudinal force
Mxz and lateral forceMyz. Since longitudinal and lateral vehicle forces are coupled by fric-
tion limit, it is quite hard to determine the analytical solution of total yaw moment limit.
Thus, in this study, a look-up table is built to explore the whole working envelope and
determine the yaw moment limit, which is presented in Table 1. In Table 1, δsf and δsr are
the searching increments of front-wheel and rear-wheel steering angle. It is also noticed
the soft constraints s1 and s2 are applied in constraints (7, 8) to prevent the optimisation
solver reaching an infeasible solution.

In order to improve the computational efficiency and satisfy the needs of real-time opti-
misation, the above NMPC problem can be linearised and solved using the fast NLP solver
developed by Forces Pro [34], the detailed solving method is explained in Appendix B.

2.3. The high-level feedback path-tracking controller

In order to have the comparative study with our proposedMPC strategy, a high-level feed-
back path-tracking controller is presented here to calculate the desired total tire force and
yaw moment [35]. The desired total longitudinal tire force can be calculated as:

Fxd = m(−rvy + v̇xd − k1e1) (9a)

where e1 = vx − vxd, k1 > 0. v̇xd is the desired longitudinal acceleration and can be
assumed as zero. Since the specific longitudinal acceleration target is not set in our study,
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Table 1. Algorithm to calculate the yawmoment limit.

Assume feedback values vx , vy , r, ax , ay ,μ, Fzi(For i = fl, fr, rl, rr) are already available
1. For δf (i) = [δfmin : δsf : δfmax ]
2. For δr(j) = [δrmin : δsr : δrmax ]
3. If vx = 0
4. Fyfl = Fyfr = Fyrl = Fyrr = 0
5. Else
6. Calculate the side-slip angle of individual wheel syi
7. Calculate the lateral tire force of individual wheel Fyi
8. End
9. Myz = lf (Fyfl + Fyfr)− lr(Fyrl + Fyrr)
10. Calculate the maximum available individual longitudinal force

Fmaxxi =
√
(μFzi)2 − Fyi2

11. CalculateMmin
xz andMmax

xz according to Fmaxxi
12. Mmin

z (i)(j) = Mmin
xz + Myz , Mmax

z (i)(j) = Mmax
xz + Myz

13. End
14. End
15. Mmin

z = min[Mmin
z (i)(j)],Mmax

z = max[Mmax
z (i)(j)]

we just set the desired longitudinal acceleration as zero to minimise the velocity change
and improve the comfort during the desired speed tracking. The desired total lateral tire
force can be calculated as:

Fyd = m
cosψe

[−(v̇x sinψe + (r − κdvx)(vx cosψe − vy sinψe))

+ vxr cosψe − k2(vx sinψe + vy cosψe)− k3Ye] (9b)

where k2 > 0 and k3 > 0. The desired yaw moment can be calculated as:

Mzd = [−k4(r − κdvx)− k5ψe + ṙd]Iz (9c)

where ṙd is the desired yaw acceleration, which is assumed as 0 to improve the yaw stability
of the vehicle. k4 > 0 and k5 > 0.

3. Low-level control allocation design

After the virtual control input u = [Fxd; Fyd;Mzd] has been determined by the upper-level
MPC, the low-level CA optimisation algorithm is designed to control and allocate the indi-
vidual actuator to achieve the desired virtual control force. In this study, the low-level CA
algorithm is designed assuming a steer-by-wire and brake-by-wire architecture. The pow-
ertrain system includes a motor with an open differential on the front axle and two hub
motors attached to the rear wheels. Two independent hydraulic brake channels are also
present on the front and rear axle, respectively. Finally, the steering system can control the
front- and rear-wheel steering independently.

3.1. Vehicle dynamicsmodel for low-level CA

In this study, the design of low-level CAmethod are based on a two-track vehicle dynamics
model. Thismodel ismore complex than the rigid-body dynamicsmodel (1) and considers
the individual wheel tire forces [36]. Note that the suspension and roll and pitch dynamics



10 B. LI ET AL.

are neglected, a reasonable assumption for the on-road autonomous vehicle used in this
paper.

The longitudinal motion is defined by:

mv̇x = mvyr +
∑

i = f , r
j = l, r

Fxij (10a)

the lateral motion:

mv̇y = −mvxr +
∑

i = f , r
j = l, r

Fyij (10b)

and the yaw motion:

Izṙ = lf (Fyfl + Fyfr)− lr(Fyrl + Fyrr)+ bf
2
(Fxfl − Fxfr)+ br

2
(Fxrl − Fxrr) (10c)

where Fxij and Fyij are longitudinal tire force and lateral tire force of individual wheel in
the body-fixed coordinate system, ij = fl, fr, rl, rr represent the front left, front right, rear
left and rear right wheels respectively, lf and lr are the front and rear wheel base lengths,
while bf and br are the front and rear track widths.

The longitudinal and lateral tire force of individual wheel can be determined by the
following equations:

Fxij = Ftij cos δij − Fsij sin δij (11a)

Fyij = Ftij sin δij + Fsij cos δij (11b)

where Ftij and Fsij are tire traction/brake force and side force of individual wheel in the
wheel-centred coordinate system. For the front and rear wheel independent steering vehi-
cle, δfl = δfr = δf and δrl = δrr = δr. The individual lateral tire force can be calculated by
the following equations:

Fsfl = Cαfαfl = Cαf
[
δf − tan−1

( lf r + vy
vx − 0.5bf r

)]
(12a)

Fsfr = Cαfαfr = Cαf
[
δf − tan−1

( lf r + vy
vx + 0.5bf r

)]
(12b)

Fsrl = Cαrαrl = Cαr
[
δr + tan−1

(
lrr − vy

vx − 0.5brr

)]
(12c)

Fsrr = Cαrαrr = Cαr
[
δr + tan−1

(
lrr − vy

vx + 0.5brr

)]
(12d)

where Cαf and Cαr are cornering stiffness of front tire and rear tire, respectively. The indi-
vidual longitudinal tire force can be determined by thewheel dynamics equation, assuming
the wheel acceleration is zero:

Ftij = Tij

Rω
(13)

where Rω is the wheel radius and Tij is the traction or brake torque of each wheel.
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3.2. Low-level CA design

The proposed low-level CA includes two layers: in the first layer, the individual longitudi-
nal force and steering angle are optimally distributed according to desired virtual control
input; in the second layer, the distributed individual longitudinal tire forces are mapped to
individual motor torque and hydraulic brake torque.When the vehicle is braking, in terms
of the energy saving, we would like to try to use the negative motor torque as much as
possible. After the negative motor torque reaches the maximum value, the friction brake is
used to compensate the remaining required negative brake torque. This mapping strategy
in the second layer can be easily achieved by a simple rule-basedmethod.We designed this
hierarchical structure to separate the first layer QCQP optimisation and the second layer
rule-based method to improve the computational efficiency.

1) The first layer of CA method

According to the total virtual control force and based on the vehicle dynamics model
(10)-(13), the CA equation can be presented as followings:

∑
i=1,2,3

ui = Fxd (14a)

Cαf (2u4 − αfld − αfrd)+ Cαr(2u5 + αrld + αrrd) = Fyd (14b)

− 1
2
bru2 + 1

2
bru3 + lf Cαf (2u4 − αfld − αfrd)− lrCαr(2u5 + αrld + αrrd) = Mzd (14c)

where the allocated control actuator input u1 = Ftf , u2 = Ftrl, u3 = Ftrr, u4 = δf and
u5 = δr. It can be noticed from Equation (13) that the steering angle in tire force
mapping Equation (10) is considered as very small value, so Fxi ≈ Fti and Fyi ≈ Fsi.
αfld, αfrd, αrld, αrrd can be determined from (11):

αid = f (δf , δr, vxd, vyd, rd) (15)

where vyd is the desired lateral velocity and is assumed zero to minimise the undesired
side-slip angle and vxd and rd are the desired longitudinal and yaw rate, as determined in
the high-level MPC.

In addition, the control actuation input u1−5 should also satisfy the actuation con-
straints. First, the individual control actuator has its physical constraint, which is math-
ematically presented as follows:

u1−3 ≤ Tdmax

Rω
(16a)

θmin ≤ u4 ≤ θmax (16b)

θmin ≤ u5 ≤ θmax (16c)

where Tdmax represents the maximum driving toque of the individual motor, and θmin,
θmax are the minimum and maximum steering angle respectively. Then the friction circle
constraint should also be considered to show the maximum available friction force of each
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tire:

0.25u21 + C2
αf (u4 − αfld)

2 ≤ (μFzfl)2 (17a)

0.25u21 + C2
αf (u4 − αfrd)

2 ≤ (μFzfr)2 (17b)

u22 + C2
αr(u5 + αrld)

2 ≤ (μFzrl)2 (17c)

u23 + C2
αr(u5 + αrrd)

2 ≤ (μFzrr)2 (17d)

where Fzfl, Fzfr, Fzrl, Fzrr are the vertical loads on the wheels. Considering load transfer
effects, the vertical load of each wheel can be estimated by the following equations [37]:

Fzfl = m
lf + lr

(
1
2
glr − 1

2
(v̇x − vyr)h − lr

bf
(v̇y + vxr)h

)
(18a)

Fzfr = m
lf + lr

(
1
2
glr − 1

2
(v̇x − vyr)h + lr

bf
(v̇y + vxr)h

)
(18b)

Fzrl = m
lf + lr

(
1
2
glf + 1

2
(v̇x − vyr)h − lf

br
(v̇y + vxr)h

)
(18c)

Fzrr = m
lf + lr

(
1
2
glf + 1

2
(v̇x − vyr)h + lf

br
(v̇y + vxr)h

)
(18d)

where h is the distance of the vehicle Centre of Gravity (CG) from the ground. It is noted
that the accelerations v̇x and v̇y and yaw rate r can be obtained from an Inertial Measure-
ment Unit (IMU), and the measurement signals of vx and vy are available through the
Global Positioning System (GPS) unit.

In order to solve the CA problem (14-18), the optimisation problem can be designed to
minimise the virtual input error and the cost of using the control actuators:

min
ui (for i=1,2,3,4,5)

J = (τRHS − Bu(k + j))TQ1(τRHS − Bu(k + j))+ u(k + j)TQ2u(k + j)

(19a)
The cost function (19a) can be re-written in the following QCQP form:

min
ui (for i=1,2,3,4,5)

J ≈ u(k + j)T(BTQ1B + Q2)u(k + j)+ (−2BQ1τRHS)u(k + j) (19b)

s.t.
[
u1
u4

]T [
0.25 0
0 C2

αf

] [
u1
u4

]
+

[
0 −2αfldC2

αf

] [
u1
u4

]
≤ (μFzfl)2 − (Cαfαfld)2 (19c)

[
u1
u4

]T [
0.25 0
0 C2

αf

] [
u1
u4

]
+

[
0 −2αfrdC2

αf

] [
u1
u4

]
≤ (μFzfr)2 − (Cαfαfrd)2 (19d)

[
u2
u5

]T [
1 0
0 C2

αr

] [
u2
u5

]
+ [

0 2αrldC2
αr

] [
u2
u5

]
≤ (μFzrl)2 − (Cαrαrld)2 (19e)

[
u3
u5

]T [
1 0
0 C2

αr

] [
u3
u5

]
+ [

0 2αrrdC2
αr

] [
u3
u5

]
≤ (μFzrr)2 − (Cαrαrrd)2 (19f)
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where uT = [
u1 u2 u3 u4 u5

]
,B =

⎡
⎣ 1 1 1 0 0

0 0 0 2Cαf 2Cαr
0 −0.5br 0.5br 2lf Cαf 2lrCαr

⎤
⎦

τRHS =
⎡
⎣ Fx

Fy + Cαf (αfld + αfrd)− Cαr(αrld + αrrd)

Mz + lf Cαf (αfld + αfrd)+ lrCαr(αrld + αrrd)

⎤
⎦ ,

Note also that the boundary constraint (16) should be satisfied. Q1 and Q2 are the
diagonal weighting matrices on the virtual control error and control effort respectively.
Q1 = diag[q11; q12; q13], q11 > 0, q12 > 0, q13 > 0, where q11 is the weighting factor for
achieving the desired total longitudinal tire force, q12 is the weighting factor for achieving
the desired total lateral tire force, q13 is the weighting factor for achieving the desired yaw
moment; Q2 = diag[q21; q22; q23; q24; q25], q21 > 0, q22 > 0, q23 > 0, q24 > 0, q25 > 0,
where q21 is the weighting factor for penalising the allocated total front tire longitudinal
force, q22 is the weighting factor for penalising the allocated rear left tire longitudinal force,
q23 is the weighting factor for penalising the allocated rear right tire longitudinal force,
q24 is the weighting factor for penalising the allocate front wheel steering angle, q25 is the
weighting factor for penalising the allocate rear wheel steering angle. In order to achieve
the good control performance, the weightings of q11, q12, q13 are set as much bigger than
the weightings of q21, q22, q23, q24, q25.

In order to improve the computational efficiency and satisfy the needs for real-time CA
optimisation, the above QCQP problem can be solved by the time-efficient solver based on
Primal Dual Interior Point (PDIP) method in Forces Pro [38] in appendix A.

2) The second layer of CA method

In the second layer of CA, the allocated individual longitudinal force from first layer is
mapped into the individual motor torque or hydraulic brake torque. The mapping strate-
gies of front axle and rear axle are presented in Figure 3(a,b), respectively. The main idea
of the mapping strategy is trying to use the electric motor as much as possible (as elec-
tric motor can generate both traction torque and regenerated brake torque). If the electric
motor cannot generate enough brake torque, the hydraulic brakewill compensate the brake
torque. In Figure 3(a), Tmf and Tbf represent the electric motor torque and hydraulic brake
torque on the front axle respectively. Tmin

mf and Tmax
mf are the motor torque limit. In Figure

3(b), Tmrl and Tmrr are electric motors of rear left and rear right wheel and Tbr is the
hydraulic brake torque on the rear axle. Tmin

mrl ,T
max
mrl , T

min
mrr and Tmax

mrr are the motor torque

limits. It is noted that constraints (16a) in first layer of CA has guaranteed u1 ≤ Tmax
mf
Rω ,

u2 ≤ Tmax
mrl
Rω and u3 ≤ Tmax

mrr
Rω , which is the precondition in Figure 3.

4. Simulation results

In this section, the proposed hierarchical path-tracking controller is validated using a
high-fidelity vehicle dynamics model in CarMaker. The vehicle model is built based on
an autonomous test platform developed by Delta Motorsport Limited. Specifically, the
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Figure 3. The allocation of motor torque and hydraulic brake toque (a) front axle (b) rear axle.

software simulation environment to test the optimisation control strategy is the jointed
simulation of Matlab Simulink, Forces Pro optimisation solver and IPG CarMaker. The
vehicle plant model and simulation environment (road and surrounding environment) are
implemented in IPG CarMaker, and the high-level MPC controller and low-level control
allocation method are implemented based on Matlab Simulink and Forces Pro optimi-
sation solver (a Simulink optimisation code package). The IPG CarMaker based vehicle
plant model and Simulink based optimisation strategy are integrated together through the
CarMaker-Simulink co-simulation. The computer hardware to run the simulation is a IBM
Thinkpad laptop (Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz and 8 GB RAM).

The simulation scenario chosen on the Silverstone racetrack, and the autonomous vehi-
cle is trying to track the road center-line. The velocity profile withminimum-time solution
along the whole racetrack is pre-calculated offline. Both the desired path and velocity pro-
file are inputted into the hierarchical controller, and the controller distributes the steering
and driving control inputs into the CarMaker vehicle model. The CarMaker model also
provides the necessary information on the state values which can be then fed back to the
hierarchical controller. The main vehicle parameters are presented in Table 2.
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Table 2. Main parameters of Carmaker model.

Symbol Meaning Values

m Vehicle total mass 700.28 kg
Iz Moment inertial around yaw axle 1597.717 kg.m2

lf Front wheel base 0.999m
lr Rear wheel base 0.996m
bf Front track width 1.52m
br Rear track width 1.52m
Rω Wheel radius 0.32m
Cα Cornering stiffness for front and rear tyres 29220 N/rad
μ Tire-road friction coefficient 1

k1−5 Control gains of high-level feedback controller [3 20 5 20 200]

A particular s-curve section of Silverstone track is selected to present the control
performance of proposed controller. In order to find out the best sampling time and pre-
diction horizon of the proposed high-level path-tracking MPC, the sensitivity analysis on
different sampling time and prediction horizons (sampling time = 0.05, 0.075 s; predic-
tion time = 2s, 4s, 6s) is carried out by comparing the path-tracking performance and
velocity-tracking performance. When sampling time and prediction time are 0.05 and 2
s. respective, the best control performance can be achieved. Thus, the simulation results
below are presented by using sampling and prediction time of 0.05 and 2 s. The control
performance of the proposed CA (‘MPC+CA’) in the low-level is compared with two
other, simpler vehicle configurations: the CA method without rear-wheel steering is sim-
ply presented as ‘MPC+CA without RS’ and the CA method without torque vectoring is
presented as ‘MPC+CA without TV’. It is noted that for the ‘MPC+CA without RS’, the
weighting value related to rear-wheel steering angle in Q2 is adjusted to disable the rear-
wheel steering in (19). For the ‘MPC+CAwithout TV’, the Bmatrix is adjusted to assume
the motor torque is equally distributed among two rear wheels in (19). In order to show
the advantage of proposed high-level MPC, the simulation results of a high-level feedback
path-tracking controller in (8) and proposed low-level CA method are also presented as
‘FB+CA’ in following figures. Figure 4(a) shows the desired path. Figure 4(b) presents the
path-tracking performance and Figure 4(c) shows velocity tracking performance of differ-
ent methods. According to Figure 4(b), ‘MPC+CA’ has the smallest lateral tracking error
compared with ‘MPC+CA without TV’, ‘MPC+CA without RS’ and ‘FB+CA’. Figure
4(c) demonstrates that ‘MPC+CA’ and ‘FB+CA’ can fast track the desired longitudi-
nal velocity profile though the online optimisation and achieve the maximum cornering
speed, while other two methods both show a certain level of delay. Figure 5 shows the total
normalised acceleration, which is calculated by the following equation:

ā =
√
a2x + a2y
μg

(20)

where ax and ay are actual longitudinal and lateral acceleration, respectively. It can be
observed from Figure 5 that the ‘MPC+CA’ and the ‘MPC+CA without TV’ have larger
normalised acceleration than ‘MPC+CAwithout RS’, whichmeans that CA andCAwith-
out TV can take greater usage of tire force to achieve the limit-handling performance. The
normalised acceleration of ‘FB+CA’ shows big spike, which causes the sudden increase
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Figure 4. The tracking performance in the simulation (left) desired path (middle) lateral path-tracking
error (right) velocity-tracking performance.

Figure 5. The normalised acceleration in the simulation.

of tracking error in Figure 4(b) and suggests the less stability of high-level feedback con-
troller compared with MPC. It should be noted that the normalised acceleration limit is
larger than 1 in this study because a more ‘potent’ tire model is assumed.

In Figure 6, the simulation results of robustness analysis on proposed ‘MPC+CA’
controller are presented. First, it is assumed that the friction coefficient can not be esti-
mated accurately. Figure 6 compares the path-tracking error and longitudinal velocity
tracking error when the estimated friction coefficient is 1 and 0.7, respectively (the actual
value is 1). When the friction coefficient is wrongly estimated as 0.7, the path-tracking
error is relatively larger. This is because the actual total acceleration is larger than the
wrongly estimated friction limit in low-level CA and the control allocation performance
is compromised. Nevertheless, the path-tracking error is still acceptable as it is smaller
than 0.5m. Secondly, the measurement white noise of the longitudinal acceleration (vari-
ance is 0.03m/s2), lateral acceleration (variance is 0.06m/s2) and yaw rate (variance is



VEHICLE SYSTEM DYNAMICS 17

Figure 6. The robustness analysis of the proposed control strategy

0.0003 rad/s) are considered in the simulation and the control performance is similar as
the results when the measurement noise is not considered. In general, Figure 6 suggests
that the proposed ‘MPC+CA’ controller has good robustness performance.

Figure 7 shows the tire forces and yaw moment performance for different controllers.
It can be seen in Figure 7 that the desired longitudinal force and yaw moment are tracked
quite well. The desired lateral force is much smaller than actual values. This is because
the desired lateral tire force is calculated based on the lateral position tracking error, the
small desired lateral force suggests that the vehicle has good lateral tracking performance.
Figure 7(a) suggests that the total longitudinal tire forces of ‘MPC+CA without RS’ are
much smaller than ‘MPC+CA’ and ‘MPC+CA without TV’, which can be the reason
why ‘MPC+CAwithout RS’ have worse longitudinal velocity tracking performance com-
pared to the other two strategies. According to Figure 7(b), the ‘MPC+CA without RS’
shows smaller total lateral tire force since the vehicle can only achieve front-wheel steering
and the total available lateral tire force that can be generated is reduced. Figure 7 (d) shows
that ‘MPC+CA without TV’ cannot generate additional torque-vectoring yaw moment.
Figures 7(a,b,d) demonstrate that the total forces and the additional torque-vectoring yaw
moment in the case of the ‘MPC+CA’ are larger than the othermethods and consequently
the overall path-tracking and velocity-tracking performance is the best amongst the con-
trollers. The CA without TV disables the torque vectoring function and cannot generate
additional controlled yawmoment when the vehicle is making the sharp turning as shown
in Figure 7(d), so the tracking performance is compromised as shown in Figure 4. The
CA without RS disables the rear-wheel steering function and limits the available total lat-
eral tire force so the tracking performance is also compromised (as shown also in Figure
4). Finally, Figure 7(a-d) suggest that tire forces and yaw moment of ‘FB+CA’ method
shows big spike during the sharp turning, which cause the compromised path-tracking
performance.

Figure 8 compares the torque outputs of the three motors. The torques from two rear
hubmotors of ‘MPC+CA’ and ‘FB+CA’ in Figures 8(a,d) and ‘MPC+CAwithout RS’ in
Figure 8(c) show obvious torque vectoring performance. Figure 9 suggests that the steering
angles from the ‘MPC+CA’ and ‘MPC+CA without TV’ are larger than ‘MPC+CA



18 B. LI ET AL.

Figure 7. The actual tire force and yaw moment in the simulation (a) total longitudinal force (b) total
lateral force (c) total yawmoment (d) torque vectoring yawmoment.

without RS’, which is consistent with the results for the total lateral force in Figure 7(b). In
Figure 9(c), the rear wheel steering angle of ‘MPC+CA without RS’ is zero. Figure 9(d)
shows the steering angles of ‘FB+CA’ is much bigger than other methods, which impairs
the stability of the vehicle.

In order to validate the real-time performance of the proposed hierarchical controller,
the solving time of high-level path-tracking MPC and low-level CA method are presented
in Figure 10. Since the sampling time of the proposed controller is 0.05s, the solving time in
Figure 10 is smaller than 0.05 s and demonstrates that the real-time computational require-
ment can be satisfied. It is noted that the high-level MPC solver takes longer time to find
a solution around 2, 5.5, 17, 19 and 21.5 s. The reason behind this is more iterations are
required for the solver to find the optimal solution, or even the optimal solution cannot be
found within the max iteration and only the sub-optimal solution is found. It is also noted
that unlike the high-level MPC controller which required to solve the MPC optimisation
problem in prediction steps, the low-level CA controller only need to solve the standard
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Figure 8. The motor torque in the simulation (a) MPC+ CA (b) MPC+ CA without TV (c) MPC+ CA
without RS (d) FB+ CA.

Figure 9. The wheel steering angle in the simulation (a) MPC+ CA (b) MPC+ CA without TV (c)
MPC+ CA without RS (d) FB+MPC.

QCQP optimisation problem without the prediction model. So the optimisation solving
time of low-level controller is much smaller than the high-level controller.

In the literature, the execution time ofMPCpath-tracking controller [39] based on vehi-
cle lateral dynamics is 100ms with the prediction steps of 20. Wang et al. suggests a classic
Linear-Time-Varying (LPV) MPC based on a 3 DOF nonlinear vehicle dynamics model
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Figure 10. The solving time of CA in the simulation.

including the Brush tyre model and the analysis on the computational efficiency is carried
out [40]. They set the sampling time as 50ms (The execution time is close to 50ms) with
the time steps of 14. For our designed two-layer MPC, the execution time is around 20ms
with time steps of 40, which shows better computational efficiency compared with above
two holistic MPC approaches.

5. Conclusion

In this study, a hierarchical two-level integrated path-tracking and CA controller is
designed. The high-level path-tracking controller is composed by on a nonlinear rigid
body dynamicsmodel and low-level CA is designed using aQCQP formulation. Themajor
findings can be summarised as follows:

(1) By selecting the best sampling time of 0.05 s and prediction time of 2 s, and reduce the
lateral tracking error within 0.5m with maximum cornering speed during limit han-
dling scenario in the suggested simulation platform, and shows better performance
than a benchmark feedback path-tracking controller.

(2) The proposed low-level CA method fully utilizes torque vectoring of two rear motors
and front and rear-wheel independent steering, and the path-tracking and velocity-
tracking performance are improved when compared with a controller without torque
vectoring or a controller without rear-wheel steering.

(3) The total solving time of high-level MPC and low-level CA is smaller than the sam-
pling time for the whole strategy, which shows that the proposed method can be
implemented in real-time.

In future work, the real-time performance will be tested on a real-time target machine
(such as dSpace or Speedgoat) before deploying the final solution on the autonomous test
platform.
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Appendices

Appendix A

The QCQP optimisation problem (19b) can be rewritten as:

min
ui (for i=1,2,3,4,5)

J = l(ui(k + j)) (A1a)

The inequality constraints (19c–19f) can be rewritten as:

gj(ui(k + j)) ≤ 0 (A1b)

In order to solve the MPC optimisation problem (A1) in a time-efficient manner, a primal-dual
interior point method is applied. Particularly, the computation of search direction is achieved by
solving the Karush-Kuhn-Tucker (KKT) system and the details are given as followings:

a) The formulation of KKT system

The KKT optimal condition for problem (A1) is given as:

h(ui)+ J(ui)Tλ = 0 (A2a)

gj=1,2,3,4(ui)+ s = 0 (A2b)

∧ S = 0 (A2c)

where h(ui) = ∇l(ui(k + 1)), gj(ui) = gj(ui(k + 1)),J(ui) = blkdiag[∇gj(ui(k + 1))]. λ is the
Lagrange multiplier. s is the slack variable and S = diag(s), ∧ = diag(λ).

b) Search direction

The Newton system is determined by linearising KKT system:
⎡
⎣H(ui, λ) J(ui)T 0

J(ui)T 0 I
0 S ∧

⎤
⎦

⎡
⎣
ui

λ


s

⎤
⎦ = −

⎡
⎣rC
rI
rs

⎤
⎦ (A3)

Where H(ui, λ) = ∇h(ui)+ blkdiag[∇2gj(ui)λk].

c) Block elimination

Block elimination can be applied to simplify the search direction computation. It can be assumed
that the elements of ∧ are strictly positive, 
s can be eliminated from (A3) by using 
s =

https://extranet.cranfield.ac.uk/10.1109/,DanaInfo=doi.org,SSL+TITS.2019.2892926
https://extranet.cranfield.ac.uk/10.1115/,DanaInfo=doi.org,SSL+1.4042196
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∧−1(rs − S
λ). The Lagrange multiplier can be rearranged as following:


λ = S−1 ∧ (rI + J(ui)
ui)+ S−1rs (A4)

Thus, the search direction equations (B3) can be simplified as:

�
ui = −rd (A5)

where� = H(ui, λ)+ J(ui)TS−1 ∧ J(ui), rd = rC + J(ui)TS−1 ∧ rI + J(ui)TS−1rs. Thus, the search
direction of (A5) can be solved in a time-efficient manner.

Appendix B

The nonlinear optimisation problem (2-8) can be rewritten as the followings:

min
ui ,xj

J =
N∑
k=1

lk(zi+j(k)) (B1a)

subject to:

ck(zi+j(k + 1), zi+j(k)) = 0 (B1b)

hk(zi+j(k)) ≤ 0 (B1c)

The nonlinear MPC problem (B1) can be rewritten as the following linearised KKT version:⎡
⎢⎢⎣
H(zi+j, yc) Jeq(zi+j)

T

Jeq(zi+j) 0
Jineq(zi+j)

T 0
0 0

Jineq(zi+j) 0
0 0

0 I
S YD

⎤
⎥⎥⎦

⎡
⎢⎣

z

yc

yd

s

⎤
⎥⎦ = −

⎡
⎢⎣
rS
rC
rD
rN

⎤
⎥⎦ (B2)

where H(zi+j, yc) = ∇2
zi+j lk(zi+j(k))+

r−1∑
m=1

yc,k−1[m]∇2
zi+j ck−1[m](zi+j(k), zi+j(k − 1))+

r∑
m=1

yc,k[m]∇2
zi ck[m](zi+j(k + 1), zi+j(k)). yc is the Lagrangemultiplier of the equality constraints, and

yd is the Lagrangemultiplier of the inequality constraints. s is the slack variable and S = diag(s). Jineq
is the block diagonal consisting of ∇hk(zi+j), while Jeq is the block diagonal consisting of ∇ck(zi+j).
YD is the diagonal matrix with the elements of yd on its diagonal.

When dealing with the nonlinear MPC problem instead of convex QP problem,H is a nonlinear
function of zi+j and yc, while the Jacobians of equality constraints Jeq and inequality constraints
Jineq are a function of zi+j. It is important to mention that it is general difficult to ensure the KKT
formulation (B2) has the desired inertial as QP problem, so additional care must be taken to solve
(B2).

First, the linear system is reduced by eliminating
s and
yd :[
� Jeq(zi+j)

T

Jeq(zi+j) 0

] [

z

yc

]
= −

[
rd
rC

]
(B3)

where� = H(zi+j, yc)+ Jineq(zi+j)
TS−1YDJineq(zi+j), rd = rS + Jineq(zi+j)

TS−1YDrD − Jineq(zi+j)
T

S−1rN .
Secondly, a more compact and symmetric system can be obtained as following equation:

Y
yc = β (B4)

where Y = Jeq(zi+j)�
−1Jeq(zi+j)

T , β = rC − Jeq(zi+j)�
−1rd.

Forces NLP provides linear solver to solve the symmetric form (B3) and normal form (B4). For
the QP formulation, � and Y can be assumed as positive definite and the problem can be easily
solved by the Cholesky decomposition. However, for the nonlinear MPC formulation, the Hessian
of Lagrangian is potentially indefinite and Y cannot be factorised with the Cholesky decomposition.
A number of methods are applied to approximate the Hessian matrix and the positive definite can
be guaranteed [38,41].
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