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Simple Summary: Heart disease and stroke are major global health problems. There are many risk
factors for these conditions. However, the main risk factor is high levels of low-density lipopro-
tein cholesterol (LDL-C). LDL-C is involved in the formation of plaques which eventually lead to
either a heart attack or a stroke. The biology associated with this process is exceptionally complex.
Computational modelling can be used to understand this complexity. In this work computational
modelling was used to better understand the relationship between high levels of LDL-C and plaque
progression. The model was able to identify therapeutic interventions which are effective at slowing
plaque growth.

Abstract: Cardiovascular disease (CVD) is the leading cause of death globally. The underlying
pathological driver of CVD is atherosclerosis. The primary risk factor for atherosclerosis is elevated
low-density lipoprotein cholesterol (LDL-C). Dysregulation of cholesterol metabolism is synonymous
with a rise in LDL-C. Due to the complexity of cholesterol metabolism and atherosclerosis mathemat-
ical models are routinely used to explore their non-trivial dynamics. Mathematical modelling has
generated a wealth of useful biological insights, which have deepened our understanding of these
processes. To date however, no model has been developed which fully captures how whole-body
cholesterol metabolism intersects with atherosclerosis. The main reason for this is one of scale. Whole
body cholesterol metabolism is defined by macroscale physiological processes, while atherosclerosis
operates mainly at a microscale. This work describes how a model of cholesterol metabolism was
combined with a model of atherosclerotic plaque formation. This new model is capable of reproduc-
ing the output from its parent models. Using the new model, we demonstrate how this system can be
utilized to identify interventions that lower LDL-C and abrogate plaque formation.

Keywords: atherosclerosis; cholesterol; low density lipoprotein cholesterol (LDL-C); plaque; cardiovascular
disease (CVD); mathematical model

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death globally [1–5]. Many risk
factors are associated with CVD. Non-exhaustively, this includes; physical inactivity [6],
genetic predisposition [7], obesity [8], metabolic syndrome [9], nutrition [10,11], tobacco
smoke [12], gut microbiome changes [13], epigenetic changes [14], and elevated homocys-
teine [15]. However, among the risk factors for CVD, elevated low-density lipoprotein
cholesterol (LDL-C) remains the gold standard predictor of CVD risk [16]. The pathophys-
iological explanation for this is that LDL-C is pivotal to the aetiology of atherosclerotic
CVD (ASCVD). Atherosclerosis is a progressive disease which is underpinned by a chronic
inflammatory response [17]. The initial step in this process involves LDL penetrating the
arterial endothelium and entering the intima. Lipid laded foam cells are then generated as
a consequence of macrophages engulfing the LDL [18]. Foam cells generate fatty streaks
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which mature into plaques [19]. These plaques narrow the arterial lumen, resulting in
reduced blood flow [20]. If a plaque ruptures it can lead to a stroke or a heart attack;
diseases which are the principle clinical manifestations of ASCVD [21]. Thus, a medi-
cal imperative exists to identify therapeutic avenues which lower ASCVD risk. Existing
pharmacological agents target various aspects of cholesterol metabolism in order to lower
LDL-C and decrease CVD risk [22–24]. However, these therapeutics are not universally
effective [25–27]. As a result, a continual drive exists to identify novel modalities which are
capable of lowering LDL-C [28,29].

To identify suitable ways of lowering LDL-C, it is necessary to understand the regula-
tion of whole-body cholesterol metabolism [30]. Whole body cholesterol metabolism is an
inherently complex multicomponent system, and its behaviour is maintained by an array of
mechanisms interacting in a coordinated fashion [31,32]. The mechanisms which regulate
whole-body cholesterol metabolism are subject to interindividual variability due to both
lifestyle choices and genetic heterogeneity [33]. This means an individuals’ LDL-C level
can be influenced by their diet [34], differences in cholesterol absorption [35], variations in
endogenous sterol synthesis [36], and drug response [37]. Attempting to understand the
complex nature of whole-body cholesterol metabolism and atherosclerosis is further exacer-
bated by ageing. Ageing is associated with the dysregulation of this system [8,33,38–40].
Increasing age closely corelates with a rise in LDL-C in both males and females; a phe-
nomenon which has been observed across various population groups. Indeed, age is the
most significant risk factor for ASCVD [41,42].

ASCVD progression is influenced by a variety of other processes. These include
hemodynamic mechanisms such as arterial wall shear stress [43,44]. Other variables which
contribute to plaque development include reactive oxygen species [45], apoptosis [46],
vascular proliferation [47], matrix degradation and inflammaging [48]. Reductionist exper-
imental approaches have in the main been used to deal with this complexity [49]. Such
meticulous empirical work has contributed significantly to advancing the understanding of
cholesterol metabolism and ASCVD. However, reductionist approaches are an insufficient
way of gaining a complete understanding of any biological system. When cholesterol
metabolism and atherosclerosis are viewed through a systems biology lens, they can be
represented as a mathematical model, which is defined by a series of complex overlap-
ping biological networks [50,51]. When such a representation is dynamically simulated
this generates a more integrated interpretation of the biology which can lead to novel
insights [52].

Various aspects of cholesterol metabolism/atherosclerosis have been modelled previ-
ously [51,53]. Existing work is categorised into several areas; this includes models of choles-
terol biosynthesis/the mevalonate pathway [54,55], whole-body cholesterol metabolism [56,57],
intracellular cholesterol homeostasis [58], reverse cholesterol transport [59], lipoprotein pro-
cessing [60], LDL receptor mediated endocytosis [61], and haemodynamic/multi-physics/
pathophysiological models of atherosclerosis [62,63]. These models have generated a wealth of in-
sights which have deepened the understanding of cholesterol metabolism/atherosclerosis [53,64].
To date however, no model has been developed which fully captures how whole-body cholesterol
metabolism intersects with atherosclerosis. The main reason for this is one of scale. Whole body
cholesterol metabolism is defined by macroscale physiological processes, while atherosclerosis
operates mainly at the microscale. The aim of this work is to address this theoretical gap by com-
bining a model of cholesterol metabolism with a model of atherosclerosis. To do this, two existing
models were joined together to create a more complete representation of the nexus between
cholesterol metabolism and atherosclerosis. The combined model is capable of reproducing out-
put from its parent models. The new model is also used to conduct several in silico experiments.
Findings from the experiments broadly align with previous published experimental data and
suggest that pharmacological interventions can have a significant impact on LDL and plaque
size. Furthermore, the work illustrates the importance of diet in tandem with pharmacological
intervention in patients with hypercholesterolaemia.



Biology 2023, 12, 1133 3 of 14

2. Materials and Methods
2.1. Model Selection

After conducting an extensive literature review [53], a substantial number of models
were identified which represent various aspects of cholesterol metabolism/atherosclerosis.
Based on this survey, it was concluded that pre-existing models could be used for this work,
and that a bespoke model was unnecessary. A key criterion for selection was that model
code needed to be publicly available. To further increase experimental rigour, model output
had to have been validated. A way to ensure validation is to source the model from BioMod-
els (https://www.ebi.ac.uk/biomodels/, accessed on 14 May 2023) [65]. BioModels is a
database of models encoded in systems biology markup language (SBML) [66,67]. SBML is
the leading model exchange format used in systems biology. BioModels is subdivided into
curated and non-curated sections. Non-curated models may have valid SBML but are await-
ing curation. A curated model has been fully validated. Put simply, it has been published
in a peer-reviewed journal, and its output has been verified by BioModels curators.

BioModels contained one validated model of whole-body cholesterol metabolism
by Mc Auley et al. (2012) (BIOMD0000000434) [56]. The model has a simple topology
which includes the major processes that represent cholesterol balance in the human body.
The model has been extensively used to investigate cholesterol metabolism [57,68–71].
This recapitulated and underscored its utility for this work. BioModels has eight non-
curated models of atherosclerosis. There are no curated models. Two of the eight non-
curated models focus on atherosclerosis pathophysiology, specifically atherogenesis [72],
and atheroma formation [73]. Because both models capture the underlying pathophysiology
of atherosclerosis, their SBML was imported into the model development and simulation
software tool COPASI (version 4.30) [74]. After they were examined, the atherogenesis
model [72] (MODEL1002160000) was selected. The rationale for choosing this model was
that its seventeen-reaction structure precisely matched its description in its corresponding
publication. Moreover, when simulations were conducted in COPASI, model output
aligned with peer-reviewed published results. This provided confidence in model validity.
Another reason for its selection is that there is commonality with the cholesterol model that
was selected.

The model possesses a simple topology and a logical schema which captures the key
mechanisms underpinning atherosclerotic plaque formation. In addition, both models are
composed of ordinary differential equations (ODEs), which facilitated model merging.

2.2. Creating a Unified Network Diagram

The first step in model merging was to identify suitable intersection points. This
was undertaken by examining model network diagrams. The Mc Auley et al. (2012)
model is represented in systems biology graphical notation (SBGN) [75,76]. See Figure S1,
Supplementary File S1. The Gomez-Cabrero et al. (2011) [72] model has a Biological
Pathway Exchange Model (BioPAX) associated with it [77]. To visualise the BioPAX file in
SBGN, the BioPAX file was imported in to Vanted (Version 2.8.1), an SBGN visualisation
and analysis software tool [78]. When visualised in Vanted, the diagram did not describe
the model reactions completely (Figure S2, Supplementary File S1). To rectify this, Vanted
was used to update the network diagram (Figure 1). To do this, the model SBML was
imported into COPASI, and the reaction list identified. The reaction list was utilised to
add more detail to the SBGN diagram. The updated Gomez-Cabrero et al. (2011) [72]
diagram was then merged with the SBGN of the Mc Auley et al. (2012) [56] model to
create a unified network diagram. The logical points of intersection were the HDL (high
density liprotein)_blood and LDL_blood species (variables). These species refer to the
concentration of LDL-C and HDL-C in the blood. These are the same species as ‘LDLC’
and ‘HDLC’ in the Mc Auley et al. (2012) [56] model. These species were used to join the
two models in SBGN. The new network diagram is outlined in Figure 2.

https://www.ebi.ac.uk/biomodels/


Biology 2023, 12, 1133 4 of 14

Biology 2023, 12, 1133 4 of 15 
 

 

liprotein)_blood and LDL_blood species (variables). These species refer to the 
concentration of LDL-C and HDL-C in the blood. These are the same species as ‘LDLC’ 
and ‘HDLC’ in the Mc Auley et al. (2012) [56] model. These species were used to join the 
two models in SBGN. The new network diagram is outlined in Figure 2.  

 
Figure 1. SBGN diagram of the Gomez-Cabrero et al. (2011) [72] model of atherogenesis. 

 
Figure 2. Combined SBGN network diagram of whole-body cholesterol metabolism and its 
intersection with atherosclerosis. Adapted from [56,72]. 

2.3. Merging the SBML Files 
The SBML files for both models were imported into COPASI. This was done by using 

the import SBML function, followed by the ‘add to model’ feature to load the second 
model. At this stage, both models were located within the same file but behaved 

Figure 1. SBGN diagram of the Gomez-Cabrero et al. (2011) [72] model of atherogenesis.

Biology 2023, 12, 1133 4 of 15 
 

 

liprotein)_blood and LDL_blood species (variables). These species refer to the 
concentration of LDL-C and HDL-C in the blood. These are the same species as ‘LDLC’ 
and ‘HDLC’ in the Mc Auley et al. (2012) [56] model. These species were used to join the 
two models in SBGN. The new network diagram is outlined in Figure 2.  

 
Figure 1. SBGN diagram of the Gomez-Cabrero et al. (2011) [72] model of atherogenesis. 

 
Figure 2. Combined SBGN network diagram of whole-body cholesterol metabolism and its 
intersection with atherosclerosis. Adapted from [56,72]. 

2.3. Merging the SBML Files 
The SBML files for both models were imported into COPASI. This was done by using 

the import SBML function, followed by the ‘add to model’ feature to load the second 
model. At this stage, both models were located within the same file but behaved 

Figure 2. Combined SBGN network diagram of whole-body cholesterol metabolism and its intersec-
tion with atherosclerosis. Adapted from [56,72].

2.3. Merging the SBML Files

The SBML files for both models were imported into COPASI. This was done by using
the import SBML function, followed by the ‘add to model’ feature to load the second model.
At this stage, both models were located within the same file but behaved independently.
Before merging the models, some technical issues needed resolving. Firstly, it was necessary
to verify that the models entered a steady state. The Gomez-Cabrero et al. (2011) [72] model
entered an asymptotically stable steady state. The Mc Auley et al. (2012) [56] model did
not enter a steady state. However, once the concentrations of the following sink species, EC
(excreted cholesterol), HLDRLD (hepatic LDL receptor degradation), PLRLRD (peripheral
LDL receptor degradation), PSS (peripheral steroid synthesis), and EBS (excreted bile salts)
were fixed, the model entered a steady state.
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Next, the time setting of both models was aligned. The Mc Auley et al. (2012) [56]
model is set to days, whereas the Gomez-Cabrero et al. (2011) [72] atherogenesis model is
in weeks. All time dependent reactions and quantities, from this model, were converted to
days. All time dependent parameters for this model are listed as global quantities, and the
conversions can be found in Table S1, Supplementary File S1.

The models were coupled at two overlapping points (LDLC and HDLC). In the
Gomez-Cabrero et al. (2011) [72] work, LDL and HDL are represented by LDL_blood and
HDL_blood respectively. In the Mc Auley et al. (2012) [56] model, these are represented by
LDLC and HDLC. The species LDL_blood and HDL_blood were deleted, and the reactions
edited to join the models. Following this, the global quantity ‘M’ was created; M serves
as an implicit conversion constant to convert LDLC with units dL/mg to dimensionless
LDL_blood. This simple conversion is described in Equations (1) and (2):

LDLblood = LDLC ∗ M (1)

HDLblood = HDLC ∗ M (2)

LDL is a state variable described as the proportion of LDL-C in the intima with respect
to LDL-C in the blood [72]. M is important to not only facilitate the conversion from
concentration to a dimensionless state variable, but also to implicitly convert the scale
from whole-body to the cellular process of atherosclerosis. The value of M, was arbitrarily
set to 1 initially. To complete the reaction change, new rate laws were required as the
existing mass action (irreversible) rate laws only used two parameters which were KinLDL
and LDL_blood or KinHDL and HDL_blood. New functions with the name ‘Rate law for
InHDL’ and ‘Rate law for InLDL’ were created. The formula for the InLDL rate law was set
as KinLDL∗LDLC∗M. The formula for the InHDL rate law was set as KinHDL∗HDLC∗M.

Lastly, the compartment representing the endothelium, in the Gomez-Cabrero et al.
(2011) [72] model, was updated from ‘compartment’ to ‘endothelium’ to better describe the
new model. Initial concentrations of species and reactions list for the merged model are
found in Tables S2 and S3, Supplementary File S1. The ODEs can be found in Supplementary
File S2.

2.4. Reparameterization

A parameter estimation for two key components of the merged model, M and DC
(dietary cholesterol), was conducted. To do this, a simulation over 700 days was run in the
Gomez-Cabrero et al. (2011) [72] model. The output was saved as a text file and uploaded
into the merged file as experimental data for parameter estimation. There, PLAQUE was
selected as dependent. The parameter estimation identified a DC value of 1050.92 mg/day
(rounded to 1051 mg/day), and an M value of 0.0155561 as the optimal parameter values to
reproduce the experimental data. This is a significant amount of cholesterol to be ingested;
although it is biologically possible to consume cholesterol levels this high, it would be very
unusual. This results in elevated LDL-C, however, this is similar to the Gomez-Cabrero
et al. (2011) [72] model, where the LDL-C regime is defined as ‘high’.

To investigate the impact of M further, a parameter scan was conducted between the
values of 0.01 and 0.1, with interval sizes of 0.01. The behaviour of LDL, HDL, plaque size,
and oxidised LDL (oxLDL) was examined (Figure 3a). Increasing M raised the amount of
LDL entering the endothelium, with a peak plaque size observed between values of 0.02
and 0.07. To examine the effect of M on plaque size more closely, the parameter M was
investigated in tandem with DC (Figure 3b). To do this, the two parameters of interest
were scanned simultaneously using the parameter scan tool in COPASI. DC was scanned
between the values of 0–2000 mg/day using an interval size of 200 mg/day (11 values), and
M was scanned simultaneously between 0–0.15 using an interval size of 0.01 (16 values).
In total 176 data points were created. The simulations were run for 700 days. Data was
extracted from COPASI to Microsoft Excel version 1808 and a 3D surface map created
using the 176 data points; gaps between these points were interpolated as standard to the
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software. Increased DC was associated with an increase in plaque size. However, plaque
size was greatest when M was between 0.04–0.05. DC had a nominal effect on plaque size
when M was greater than 0.08. Furthermore, when DC was <600 mg/day, M had little
impact on the plaque size. The merged model, with these identified parameter values, was
found to be asymptotically stable at a resolution of 1 × 10−8 (Supplementary File S3).
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3.1. Comparing the Merged System with the Parent Models

When the inferred parameters were included in the merged system, its output was
similar to that of the parent models (Figure 4a,b). Figure 4a illustrates how the merged
model compares with the Gomez-Cabrero et al. (2011) [72] model. In this model, LDL is
reflective of the concentration within the intima. LDL in the merged model reaches a similar
level to the Gomez-Cabrero et al. (2011) [72] model. Likewise, plaque size is comparable at
700 days, although this is slower to form in the merged model. A plaque value of zero is
defined as the initial stage of plaque growth, and a value of one is defined as its final stage.
Specifically, growth of the plaque starts with a lag period of no, or limited, growth until
day ~100. After day ~100, growth increases exponentially before slowing at approximately
day 400, where growth heads towards a steady state value of one.

Figure 4b compares the merged model with the Mc Auley et al. (2012) [56] model.
LDL-C is recorded as mg/dL in line with the parent model, and refers to its concentration
in the plasma. The initial concentration of LDL-C is 100 mg/dL in each case. In each
of the three models, LDL-C rises to 136 mg/dL on day 1. However, in the Mc Auley
et al. (2012) [56] model, LDL-C then begins to decline before reaching a steady state after
approximately 100 days. Conversely, LDL-C increases within the merged model before
reaching a steady state. After 700 days, LDL-C in the Mc Auley et al. (2012) [56] model
is significantly lower than the merged model (130 vs. 192 mg/dL). However, once DC
is increased to 1051 from 304 mg/day in the Mc Auley et al. (2012) [56] model, LDLC
is comparable (193 mg/dL). HDL-C is similar between the merged model, and the Mc
Auley (2012) [56] model with and without adjusted DC. In each case, HDL-C increases from
45 mg/dL to 60–62 mg/DL at day 150. HDL stays relatively level after this point reaching
values of 62–64 mg/dL at day 700.
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3.2. Metabolic Control Analysis

A metabolic control analysis (MCA) was conducted in COPASI. Supplementary File S4
details the results of the MCA. Specifically, this file contains the flux control coefficient
analysis and metabolic control coefficient analysis. As cholesterol absorption, excretion,
hepatic synthesis are targets of pharmacological interventions we explored how pertur-
bations to these reactions impacted the model variables [LDLC] and [PLAQUE] (Table 1).
The concentration control coefficients in Table 1 demonstrate the impact of perturbations to
the rate of hepatic cholesterol synthesis, cholesterol absorption, and cholesterol excretion
has on the species [LDLC] and [PLAQUE]. In particular, [PLAQUE] is highly responsive
to these perturbations. The positive scaled concentration control coefficients for hepatic
cholesterol synthesis and cholesterol absorption indicate that as the rate of these reactions
increase, so do [LDLC] and [PLAQUE]. Conversely negative scaled concentration control
coefficients observed with cholesterol excretion demonstrate that as the rate of cholesterol
excretion increases, [LDLC] and [PLAQUE] decrease.

Table 1. Metabolic control coefficient analysis of 3 pharmacological targets.

Species Hepatic Cholesterol
Synthesis

Cholesterol
Absorption

Cholesterol
Excretion

LDLC 0.0471523 0.786053 −0.760712
Plaque 1.28131 2.136 −2.06714

3.3. Model Predictability: Therapeutic Interventions

It has been postulated that early and mid-stage atherosclerosis could be reversed via
lowering dietary cholesterol or using a nutritional or pharmacological intervention [79].
The merged model was used to explore this possibility. The two interventions that were
focused on are statins and plant sterols. Statins have previously been explored using the
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Mc Auley et al. (2012) model [70]. To do this, hepatic cholesterol synthesis was reduced
by 75%. This reduction of 75% was calculated based on an oral dose of 40 mg/day of
simvastatin [70]. This intervention was simulated by reducing the rate constant HCSmax
in the reaction hepatic cholesterol synthesis from 500 to 125.

Plant sterols have been shown to reduce cholesterol absorption by 30–50% experimen-
tally [80–83], with doses ranging from 50 µmol/L, 2% of dietary fat, and 1.5–2.2 mg/day.
This intervention was simulated in the merged model by reducing the rate constant K6,
from the cholesterol absorption reaction by 40% from 0.0005286 to 0.00031716. These simu-
lations were run independently and in combination. The change in plaque size and LDLC
was monitored over 700 days. Combined therapy had the greatest impact on LDLC and
plaque size. Statin therapy was more effective at lowering LDLC and slowing the rate of
plaque formation when compared to sterol therapy (Figure 5a,b).

Following this, the impact of these therapeutic interventions in the presence of dif-
ferent dietary regimes were assessed. Specifically, the above therapeutic strategies were
simulated in the presence of DC ranging from 0 to 1500 mg/day for 700 days. Interval
sizes of 100 mg/day were recorded. LDLC rose as the amount of DC increased and levels
were greatest when no treatment was simulated. Sterols resulted in greater LDLC when
compared to statins up to a DC value of approximately 1200 mg/day, where further DC
resulted in sterols giving lower LDLC (Figure 5c). Plaque growth was greatest when no
treatment strategy was simulated. Statins were more effective than sterols at slowing the
rate of plaque growth up to DC values of 1200 mg/day. Plaque growth could be halted
with statin therapy when DC was less than 100, and with combination therapy when DC
was less than 300 mg/day (Figure 5d).
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and atherosclerosis [53]. However, they do not fully capture these processes. The aim of this
investigation was to overcome this gap in the field by combining a model of whole-body
cholesterol metabolism and atherosclerosis. The merged model is an attempt to overcome
the longstanding obstacle of combining two models which exist on different scales. This
model was deposited in BioModels [65] and assigned the identifier MODEL2306300001.
Here it will be available for future analysis and modification.

The merged model is capable of replicating behaviour consistent with the parent
models. MCA of the merged model also revealed how changes to hepatic cholesterol
synthesis, cholesterol absorption, and cholesterol excretion can affect plaque growth by
raising circulating levels of LDL-C which ultimately drives atherosclerosis. The model
was also able to recapitulate the findings of a previous study which utilised the Mc Auley
et al. (2012) [56] model, to illustrate how statins affect LDL-C levels in addition to plaque
growth [70]. It has been demonstrated in vivo that statins resulted in a 38% reduction in
LDL-C after 6 weeks in hypercholesterolaemia patients. This change was maintained over
a 1-year period [84]. Although the merged model showed a 13.3% reduction after 6 weeks,
this rose to 31.2% after 1 year (Figure 5a). These results are akin to the results found by
Palvaast et al. (2015) [70] after simulating statin treatment in silico. Specifically, it was
found that a 75% reduction in hepatic cholesterol synthesis resulted in a 14% reduction
in LDL-C after 6 weeks, which rose to 33% after 1 year. Likewise, the model showed
that after 4 weeks, sterol treatment reduced LDL-C by 8.3%. This result is comparable to
the results found from a double-blinded, randomised study of 59 hypercholesterolaemia
subjects. In this study, it was demonstrated that ingestion of rapeseed sterol margarine
for 4 weeks induced an 8.2% reduction in LDL-C [85]. Similarly, a meta-analysis has
revealed that hypercholesterolaemia patients who took sterols concurrently (1.8–6 mg/day)
with statins (40–80 mg/day) exhibited on average 13.26 mg/dL lower LDL-C (95% CI
9.18–17.34 mg/dL) compared to subjects on statins alone [86]. Of the 8 included studies,
follow ups took place 4–16 weeks after treatment. When simulating combination therapy
in the merged model, a 13.2–14.6 mg/dL reduction in LDL-C was observed after 6 and
7 weeks respectively. Between weeks 4 and 16, the merged model found that LDL-C was
between 11.1–23.7 mg/dL lower than statin treatment alone (Table S4, Supplementary
File S1).

The model also demonstrated the important role of dietary cholesterol in tandem with
pharmaceutical interventions. The results from the merged model were similar to experi-
mental data. For example, it was demonstrated that 4 weeks of a very-low-saturated-fat
dairy and whole-wheat cereal diet, diet + statin, and the portfolio diet (containing plant
sterols and viscous fibres) resulted in LDL-C levels of 159.7, 112.53, and 122.58 mg/dL
respectively (9.6, 35.2, and 29.6% reductions in LDL-C after 4 weeks). These diets con-
tained 28, 33, and 55 mg/day of cholesterol respectively [87]. When this was simulated
in the merged model, after 4 weeks, LDL-C reduced to 125.69, 111.92 and 119.77 mg/dL
respectively, following a similar trend to the experimental data (Figure S3, Supplementary
File S1).

Despite these findings, the combined model has several limitations which are worth
outlining. The merged model was developed from two SBML encoded models. However,
many other models exist which are not encoded in this framework. These models poten-
tially have mechanisms which would add value to the merged model. For instance, the
merged model does not include the dynamics of blood flow and the anatomical features of
the artery. Atherosclerosis tends to occur at bifurcations within medium sized arteries [88].
Thus, the merged model does not represent these key physiological and anatomical features
which are important to atherogenesis. Nor does the merged model completely represent
the immuno-pathophysiology of atherosclerosis [89]. A further limitation is that the model
has been simulated over a relatively short period of 700 days, whereas atherosclerosis
is a long-term disease that can span many decades, with advancing age the major risk
factor [90]. These disadvantages should be looked upon as a challenge to the community
to continue the development of this area.
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In spite of the disadvantages of this model and the challenges which persist in the
field more broadly, there is a real need to continue developing models. A significant
reason for using computational models is the growing need to reduce the number of
animals used in research. Animal models are routinely employed to investigate both
cholesterol metabolism and ACVD [91,92]. However, there is an ethical imperative to
not use animals [93]. Furthermore, it is important to recognise that animals are imperfect
analogues for humans [94]. Therefore, it is our hope that modelling will be used to a much
greater extent in this field to overcome these issues.

5. Conclusions

This novel system combines whole-body cholesterol metabolism with atherosclerosis,
and is capable of performing in silico experimentations. The merged model is effective at
investigating therapeutic avenues to lower LDL-C and retard atherogenesis. It is hoped
this merged model will act as a meaningful template for future work, which aims to further
examine the nexus between cholesterol metabolism and atherosclerosis.
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