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ABSTRACT Conventional authentication systems, that are used to protect most modern mobile applications,
are faced with usability and security problems related to their static and one-shot nature. Indeed, one-shot
authentication mechanisms challenge the user at the beginning of a session leaving them vulnerable to
attacks on lost/stolen devices or session hijacking. In addition, static authentication mechanisms always use
the same challenges to authenticate the user without considering the dynamic nature of the risk related to
the authentication context. To mitigate these challenges, we propose RLAuth, a risk-based authentication
system that can automatically adapt the level of challenge presented to the user on each authentication
request based on the current context. RLAuth is based on binary anomaly detection, which is solved using
a deep reinforcement learning agent that acts as the classifier. To cope with the high class imbalance in
the anomaly detection problem, we propose to use a balanced sampling technique during experience replay
and an imbalanced correction factor during reward computation. We evaluate RLAuth on a public dataset
using the G-mean metric which is the square root of the product of sensitivity with specificity. This metric is
efficient to measure the classification performance of a model under class imbalance since it does not overfit
to the majority class. Finally, RLAuth obtained a G-Mean of 92.62%. In addition, the reinforcement learning
agent can be trained offline for acceptable results in about 130 s and can then be periodically retrained to
improve its performance over time.

INDEX TERMS Anomaly detection, deep reinforcement learning, imbalanced classification, risk-based
authentication.

I. INTRODUCTION
The sanitary crisis caused by the COVID-19 pandemic has
shown the great benefits linked to the recent growth in mobile
applications’ offer and mobile device usage. These mobile
applications, which range from entertainment to personal
health, leverage a safe and contactless society. We now
see more than ever the crucial need for reliable, secure,
and efficient applications. The large majority of available
mobile applications rely on traditional explicit authentication
systems using static and one-shot knowledge-based methods
(i.e., password, PIN and graphic patterns) or physiological
biometrics, which are known to be vulnerable to various
presentation attacks [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zijian Zhang .

Static systems rely on a static set of authentication
methods, where the same challenges are presented to the
user on each request. In contrast, dynamic authentication
systems were proposed to eliminate the problems linked
to static authentication [9] by dynamically choosing the
authentication challenge on each request. An early example
of dynamic authentication system is proposed in [11] where
an upgraded multi-factor authentication mechanism is used
based on a question-response challenge. In this system, the
main authenticator as well as the second layer challenge are
chosen dynamically based on the assessed security level. This
mechanism can effectively increase the security level of the
authentication system but, in its basic form, still falls into one-
shot authentication category.

One-shot authentication mechanisms initiate an authen-
tication request when the user starts a session that stays
open until manually closed or by an application [13].
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This behavior makes applications protected by one-shot
authentication vulnerable to attacks on lost/stolen devices or
session hijacking [16], [17].

Continuous authentication can be applied to mitigate the
vulnerabilities related to one-shot authentication [19]. Most
recent works in continuous authentication on behavioral
biometrics [20], [21], [22], context-awareness [25], [26]
or hybrid approaches [29], [30] can effectively increase
authentication conviviality, since they authenticate the user
using implicit methods. However, they often rely on complex
machine learning algorithms that can be greedy in resource
consumption because of their continuous nature.

A dynamic approach to mitigate one-shot authentication’s
vulnerabilities is risk-based authentication, which asserts the
current level of risk based on surrounding context infor-
mation. On authentication request, it dynamically chooses
the challenge presented to the user based on that evaluated
risk [9]. In recent years, strong interest has been shown
towards risk-based authentication in the research commu-
nity to balance security and usability. This authentication
approach has the potential to increase user conviviality
and security while remaining usable in resource-constrained
environments [31], [32]. Indeed, without overflowing the
system, a risk-based authentication system increases the level
of difficulty of the authentication challenge when a high risk
is detected. Conversely, it reduces the need for obtrusive
authentication in low-risk environments.

However, risk-based authentication systems proposed in
the literature face applicability problems. Indeed, someworks
do not take into consideration the sensitivity of the protected
service or asset which directly informs on the potential risk
occurring [3], [24]. Other works rely on static components
like reauthentication methods or methods based on static
contextual values [8], [18], [28]. Finally, most authors did
not integrate mobile deployment in their design, leading to
greater delays of authentication and privacy issues added by
network communication [4], [27].

In this paper, we propose RLAuth, a durable and
dynamic cross-application risk-based authentication system
that efficiently reinforces mobile applications’ authentication
methods without compromising user’s privacy. RLAuth uses
an anomaly detection deep reinforcement learning (DRL)
agent to predict if the current context is related or not to
an anomaly on each application access. The system then
dynamically chooses an authentication method based on the
context status and the sensitivity of the application accessed.
An explicit authentication is only triggered when an anomaly
is detected. To the best of our knowledge, this is the first
time that reinforcement learning is used in user authentication
systems.

The use of deep reinforcement learning in decision-making
problems compared to other machine learning algorithms
offers several important advantages: 1) it intrinsically enables
online learning and fast real-time inference, 2) it does
not require prior knowledge of the environment and 3) it
efficiently self-adapts to new observations by learning by trial

and error [33], [34]. Hence, reinforcement learning is a good
candidate to manage the dynamic nature of security problems
in mobile environments. The contributions of this research
work are detailed as follows:
1. We design RLAuth, a risk-based authentication system

that dynamically adapts the challenge presented to the
user on authentication requests based on the evaluated risk
of the authentication context. The proposed system can
be deployed directly on mobile devices leading to better
privacy and using commonly used authentication methods
available on most modern mobile devices.

2. We design a risk modeling technique based on the current
authentication context, the last successful authentication
data, and the data sensitivity of the accessed resource.

3. We design a binary anomaly detection module that uses
a DRL agent as a classifier. The reinforcement learning
agent continuously learns how to classify the current state
by trial and error, which leads to periodic retraining and
dynamic context discovery.

4. We propose a balanced training batch sampling technique
to increase the imbalanced classification performances.

5. We evaluate RLAuth on a public dataset where data
were collected without constraints on mobile devices, user
activity or user environment.
The rest of this paper is organized as follows. In Section II,

we present an overview of the related works in risk-
based authentication and recent applications of reinforcement
learning in cyber-security. In Section III, we introduce a brief
background on reinforcement learning frameworks analyzed
in this paper. We detail the main components of the proposed
risk-based authentication system in Section IV. In Section V,
we discuss the experimental results. We finally conclude in
Section VI.

II. RELATED WORKS
A. RISK-BASED AUTHENTICATION SYSTEMS
Several sources of information are used in the literature to
compute the level of risk in risk-based authentication, mainly
historic information on the identity of the user, contextual
information on the current environment of authentication
and data sensitivity. Each of these contextual information
provides important information and when combined, they
can lead to a well-balanced risk engine and overall risk-
based authentication system. Data sensitivity is the most
informative element because it directly impacts the compu-
tation of the risk of potential attacks. Indeed, if the context
is untrusted but the data that we try to protect is of non-
importance, then there is no need to protect it and vice
versa.

One of the important early work in risk-based authentica-
tion was presented in [2] with the introduction of Context-
Aware Scalable Authentication (CASA). This system was
designed to dynamically choose an active authentication
factor for user authentication on mobile devices based on
passive factors. A major contribution of this work was to
highlight the importance of location in the daily routine
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TABLE 1. Comparison of related works.

of a typical user. While their method could be extended
to use multiple passive factors, only location was used in
this work as context information which is not sufficient to
accurately represent the context of an authentication request.
The system proposed in [3] also uses location as context
data but considers it as a spatio-temporal feature in which
users profiles are formed based on mobility patterns. These
mobility patterns are represented as spatial entropy vectors
ensuring user privacy. While informative, both works did
not consider data sensitivity when choosing the appropriate
authenticator.

In recent years, some domain-specific risk-based user
authentication systems were proposed to secure various
applications. The authors in [4] proposed a risk engine
based on a fuzzy inference system for online banking
that considers the cost and benefits of each action. The
authors of [7] proposed a risk engine based on fuzzy logic
applicable to energy management tasks in smart homes.
In [15], a system is proposed to dynamically choose the
appropriate authenticator for the authorization process of
payment at the point of service (POS) based on a predefined
set of rules. While these systems show that risk-based
authentication systems are usable in real-life applications,
they are not transferable to other domains because the pro-
posed risk engines are too intertwined with their respective
application domain. Therefore, in this paper, we propose
a risk engine that is application agnostic and can be used
to protect any mobile applications, even intra-application
processes.

Interesting works were proposed to enable risk-based
authentication in a multi-device context. Progressive Auth [1]
was designed to secure mobile applications by using informa-
tion collected from multiple devices to determine the level of
confidence in the identity of the user. CORMORANT [24]

is similar to Progressive Auth, but it offers more complex
features. It dynamically determines the available behavioral
biometrics and trusted devices. In CORMORANT, a risk
threshold is computed based on location, time, and proximity
between the trusted devices. When a device is used, the user
confidence is compared to the risk threshold and an explicit
authentication is asked if needed. While an interesting
concept, these mobile authentication systems based on multi-
device context assume that users are, at all times, using
multiple devices simultaneously or at the very least carrying
multiple mobile devices that are not realistic. Google Smart
Lock [28] is an Android locking mechanism that keeps the
device unlocked when a known context is detected. The
user can specify trusted locations and devices that represent
the trusted contexts. In contrast to progressive auth and
CORMORANT, Google Smart Lock does not entirely rely
onmulti-device context. However, the trusted contexts cannot
be automatically inferred. Indeed, it requires that the user
manually identifies trusted contexts, which increases the
burden of the users instead of decreasing it. In addition,
an attacker who takes control of the devices can easily change
these trusted contexts at will.

Some researchers in risk-based authentication concentrate
on re-authentication after a login attempt. In [8], a risk engine
evaluates the contextual information, e.g., IP address and
user agent, surrounding the login attempt to determine if
further information is needed to safely assess the online
user’s identity. More recently, the author of [10] proposed
a risk engine based on Bayesian inference that assess the
level of confidence of a login attempt using the historic
number of failed login attempts. In [12], the authors
proposed a risk-based authentication system for mobile
passenger at land/sea border controls based on novelty
detection machine learning. While these methods show
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good features, they do not take into consideration the data
sensitivity. In addition, they are designed to adapt the level
of challenge presented after a performed authentication.
Thus, the first layer of authentication is always the same
no matter what the surrounding context is, leading to static
authentication.

Few works consider features related to the user’s identity
confidence level in the evaluated context. The authors of [14]
proposed a risk engine based on anomaly detection usable
in risk-based authentication systems for online browsing.
The risk is derived from the context classifier confidence
on each classification step and an authenticator is chosen
according to the level of risk inferred. The authors used a
one-class SVM (OCSVM) classifier to solve the anomaly
detection problem. Context information, software and device
fingerprinting, location, time and last authentication data are
used by the proposed risk engine. However, the sensitivity of
the data accessed on authentication requests is not considered
when choosing the authenticator. More recently, a risk-
based authentication for intra-process anomaly detection
was proposed in [23]. The system dynamically chooses the
authentication method based on the sensitivity of the action
taken. However, it only relies on the identity confidence
obtained from biometric authentication methods in a con-
tinuous mode. Therefore, it relies more on the continuous
authentication paradigm which is more computationally
greedy.

The authors of [18] proposed a risk engine that is based
on formal mathematical modeling of the risk. This model
describes a Level of Security that is attributed to a given
context and a computed Level of Risk based on the current
context, the data sensitivity, and the probability of attack.
The components involved in the risk analysis can take values
in a predetermined pool of discrete values. In this paper,
we use a similar risk modeling. However, our work differs
in the fact that the components used in risk analysis are
computed dynamically leading to better usability because
it can cover an infinity of scenarios without needing the
user’s involvement. Finally, the system that is closest to our
work is RSA Adaptive Authentication [27], a commercial
system that acts as an authentication plugin to secure either
websites or mobile applications. A Naïve Bayes classifier
acts as a risk engine for fraud detection and computes a
risk score based on current context data, such as location,
time, and device fingerprinting. The organization can choose
custom policies that will be used to mitigate the risk based
on data sensitivity. The fraud detection model self-adapts
over time to new context data. The major difference with
our work is that our anomaly detection module is designed
to operate directly in the mobile environment. This limits
the exchange of sensitive information related to the user,
leading to better privacy, and decreasing the delay of authen-
tication. In addition, our system works with any installed
application without registration needed. Therefore, we focus
on securing the user’s assets rather than the organization’s
assets.

Table 1 shows a brief comparison of the related works pre-
sented in this sectionwith our proposedmethod. In addition to
previously identified challenges, we can see that few related
works proposed a mechanism for periodic retraining. This
feature is important because it ensures the durability of the
system by adapting to previously unseen contexts.

B. DEEP REINFORCEMENT LEARNING APPLIED TO
CYBER-SECURITY
In recent years, applied reinforcement learning has gained
popularity in the cyber-security research community in many
security applications such as intrusion detection [35], [36],
[37], [38], attack detection [39], [40] or signal and device
authentication [41], [42]. In this section, we present an
overview of the reinforcement learning techniques used in the
most recent works in cyber-security.

Authentication is an important security requirement in
any computer system. Furthermore, achieving accurate and
efficient authentication is a main challenge in resource
constraint environments. A signal and devices authentication
model in massive IoT systems was proposed in [41]
to increase authentication efficiency. In this work, multi-
agent deep reinforcement learning (DRL) using neural
fictitious self play algorithmwas proposed to choose between
authenticating or not an IoT device. Similarly, a PHY
authentication mechanism in Vehicular Ad-Hoc Networks
(VANETs) was proposed in [42] to increase authentication
accuracy while decreasing security overhead. In this work,
the best authentication mode and the spoofing test threshold
are chosen with a DRL agent based on Neural Episodic
Control.

Reinforcement learning applied to attack detection is
beginning to raise interest in the research community.
In [39], a face anti-spoofing method using REINFORCE was
proposed to improve spoofing detection accuracy. In this
work, local extracted features of face pictures are passed
to a policy gradient agent that infers the position of
suspicious areas that are investigated for spoofing detection.
In [40], an efficient and adaptive DDoS detection agent
in Internet of Vehicle environment is proposed based on
transfer learning and reinforcement learning using DDQN
framework.

To the best of our knowledge, reinforcement learning
was never used for anomaly detection in user authentication
systems. However, recent studies on Intrusion Detection
Systems (IDS) based on anomaly detection using rein-
forcement learning are greatly relevant in the context of
our research work, since they acknowledge the challenges
introduced by imbalanced classification. An adversarial
environment reinforcement learning (AE-RL) algorithm for
IDS based on Double Deep Q-Networks (DDQN) was
proposed in [35] to enable fast inference and accurate online
training with class imbalance. In [36], the authors built upon
AE-RL to propose AESMOTE, an adversarial reinforcement
learning algorithm that uses Synthetic Minority Over-
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sampling Technique (SMOTE) to cope with class imbalance.
In this work, the authors effectively increased anomaly
detection accuracy but at the cost of a much higher training
time. Finally, authors of [37] proposed a DDQN agent for
IDS based on anomaly detection. They compared DDQN
with Deep D-Networks (DQN), Policy Gradient and Actor
Critic frameworks. They proved that DQN and DDQN are
more appropriate for solving anomaly detection problems.
Moreover, it was shown that low values for the discount
factor are more suited for classification problems since the
objective is to predict the class for the current state only.
Finally, in [38], the authors proposed an Anomaly Network
Intrusion Detection System (ANIDS) based on Deep SARSA
framework to increase attack detection accuracy in highly
imbalanced environment. In this work, the DRL agent acts as
an attack detector where each action is assigned to different
attacks or normal behavior. They compared their method
with the State-of-the-art and showed that Deep Sarsa is
effective to solve classification problems under high class
imbalance.

III. BACKGROUND
In this section, we clarify some concepts used in the rest of the
paper. We also detail the assumptions on which the research
rests as well as the adversary model.

Deep reinforcement learning (DRL) framework is a
relatively new branch of reinforcement learning that was
first introduced in [43] and later popularized in [44] with
the introduction of Deep Q-Networks (DQN). DRL enables
the use of reinforcement learning in continuous state and
action spaces by introducing a neural network (NN) as
a function approximator in the framework [33]. In this
section, we present four model-free reinforcement learning
frameworks that can be used to solve continuous state space
and discrete action space problems: DQN, DDQN, Deep
Sarsa (DS) and Deep Expected Sarsa (DES).

We chose DQN and DDQN because they were proven to
be effective in anomaly detection problems [37]. DS and DES
are deep reinforcement frameworks less frequently used than
Q-learning frameworks. However, the nature of our problem
increases the cost of an error in anomaly detection since it
would lead to a security breach. Hence, the stability provided
by Sarsa learning makes DS and DES attractive candidates to
solve the anomaly detection problem at hand [45].

These frameworks optimize their parameters by minimiz-
ing the loss function denoted by (1).

L (θ) = (δ)2 , (1)

where δ (2) is the temporal difference (TD) error computed
for each transition:

δ = r + γ · Q′
(
s′, a′

)
− Qθ (s, a) , (2)

where r is the reward, γ is the discount factor, Qθ (s, a) is
the approximated Q-values for the current state-action and
Q′

(
s′i, a
′
i

)
is the approximated Q-values for the next state-

action which varies for each framework.

Reinforcement learning agents are based either on off-
policy or on-policy. On-policy agents use the same policy
to determine the next action and to learn from the reward.
Conversely, off-policy agents use two different policies: one
to determine the next action and another one to learn from the
reward [33]. In this article, we explore both types of agents.

A. Q-LEARNING-BASED FRAMEWORKS
DQN [46] is an off-policy framework that trains a deep
convolutional neural network, called the online network,
using Q-Learning algorithm [47] and experience replay [43].
A separate Q-network, called the target network, is used to
estimate the target Q-values. For each transition

{
si, ai, ri, s′i

}
of the randomly sampled batch of size B, the TD error
δ is computed using (2) with Q′

(
s′i, a
′
i

)
computed as

maxa′Qθ̄

(
s′i, a
′
i

)
here Qθ̄ and Qθ are the Q-values predicted

by the target network and online network, respectively.
The weights of the target network are updated for each T

learning step by copying the online network weights, leading
to a more stable learning. The periodic updating of the target
network in DQN can increase the learning overhead and
increases the memory used by the agent. Therefore, this
can negatively impact its usability in resource-constrained
environments.

DDQN is an extension of DQN that was proposed
in [48] to cope with its maximization bias. The difference
with DQN lies in the computation of the next state-action
Q-value as Qθ̄

(
s′i, argmaxQθ (s′i, a

′
i)
)
. The maximization step

is performed to estimate the next action on the online network
which is then used to estimate the action-value on target
network. Therefore, it reduces the overestimation problems
by separating the action selection and its evaluation.

B. SARSA-BASED FRAMEWORKS
Deep Sarsa learning [45] is an on-policy DRL method based
on Sarsa algorithm. It updates its Q-Network based on the
estimated Q-Value Qθ

(
s′, a′

)
of the next transition

{
s′, a′

}
where a is the action that will effectively be taken. Sarsa
learning is considered more stable than Q-Learning [45]
because it does not rely on a purely greedy estimation of a.
Deep Expected Sarsa (DES) is a DRL algorithm that can

be on- or off-policy. In this paper, we consider its on-policy
version as introduced in [49] as well as its off-policy version.
In DES, the expected value of the next transition Q′

(
s′, a′

)
is computed as

∑
a
(
π

(
a | s′i

)
· Qθ

(
s′i, a

))
according to the

policy π
(
a | s′i

)
for each action. In this work, the action

is chosen with an ε-greedy method. Hence, the action
probabilities can be computed using (3).

π
(
a | s′i

)
=

{
1− ε, a = argmax

(
Qθ

(
s′i
))

ε
|A| , else

(3)

With this formulation, the policy π
(
a | s′i

)
resolves to

Q-Learning when ε equals 0. Thus, Expected Sarsa learning
produces an updating process that offers a good balance
between Sarsa and Q-Learning [50].
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IV. PROPOSED MODEL
In this paper, we present a risk-based authentication designed
to complement existing authentication methods. The idea of
this authentication system is to add a layer of security when
accessing a mobile application by authenticating the user
directly on the mobile device. Indeed, in the proposed model,
information on the behavior of the user is kept on the device
and is never shared with accessed applications leading to
better privacy.

FIGURE 1. System architecture.

In this section, we detail the different components of the
proposed risk-based authentication system. Fig. 1 presents an
overview of the complete system architecture. The context
information is gathered by the Information Gatherer in a
continuous mode and is propagated to the risk engine and
the authentication manager as new information is available.
When the user accesses a new application, an authentication
request is triggered in the Authentication Manager. The
Authentication Manager then sends context and foreground
application information to the Anomaly Detector, which then
returns the status of the current state. Finally, based on the
state status and the level of sensitivity of the application, the
Authentication Manager can decide if further authentication
is needed and the authenticator that will be used if necessary.
Hence, the proposed system is composed of four main
components:

1. The Information Gatherer is an active listener that
continuously runs in the background. It actively listens to
changes in context and is triggered when new information
on the current context is available, such as changes in
WiFi connection, location, screen locking/unlocking, and
foreground application. This information is then relayed
to either the Authentication Manager or the Risk Engine
for further processing.

2. The Authentication Manager is the core module of
RLAuth. It oversees user authentication and the post-
authentication process. Moreover, it acts as a bridge
between the Risk Engine and the Anomaly Detector.

3. The Risk Engine computes the current risk based on
identity and context information.

4. The Anomaly Detector determines the status of the
current context by flagging it as either normal or abnormal.
The model proposed in this research paper is based on

some assumptions detailed as follows:

1. We assume that humans tend to be predictable in their
living patterns and are more likely to visit the same places
and do the same actions on a regular basis.

2. Based on the previous assumption, we assume that most of
the time, the level of risk is quite low. Indeed, we assume
that sensitive applications (such as banking applications)
are usually accessed in safer environments and are
rarely accessed compared to entertainment applications.
Thus, causing a great imbalance between the number of
abnormal events and regularities.
A detailed description of the Authentication Manager, the

Risk Engine and the Anomaly Detector is provided in the
subsequent sections.

A. RISK ENGINE
The risk engine computes the current estimated risk based on
the evaluated identity and context confidence level. Identity
confidence and context confidence are continuously updated
as new information are made available by the Information
Gatherer and the Authentication Manager. However, the risk
is computed only when needed. Fig. 1 presents an overview
of the Risk Engine’s components and its relations with other
modules of the proposed system.

1) IDENTITY CONFIDENCE ANALYSER
The Identity Confidence Analyzer evaluates the confidence
level in the identity of the current user. The identity
confidence level Cid ∈ [0, 1] is directly proportionate to
the confidence level of the last successful authentication
Cla ∈ [0, 1] , which is weighted by a dynamic factor
σ ∈ [0, 1]. σ is a function of the delay dla ∈ R+ between
the current confidence evaluation and the last authentication
and is computed using (4).

σ = 1−
dla

MAXdla
, dla ≤ MAXdla (4)

Therefore, σ decreases when it gets older and as the time
lapse reaches the maximum allowed delay MAXdla , the
identity confidence level reaches 0. We choose to design the
decrease of σ as a linear decrease because it is a simple and
effective relation.

2) CONTEXT CONFIDENCE ANALYSER
The context confidence level CCo ∈ [0, 1] is evaluated with
a simple technique where the frequency of appearance of
a given context fco is divided by a constant MAXfco which
denotes the threshold for contexts regularity.

The Context Confidence Analyzer keeps track of the user’s
context history and maps each encountered context to the
frequency fco ∈ Z+ that is incremented each time the user is
correctly authenticated. The context confidence level reaches
its maximum value when fco equals MAXfco .

MAXfco is a hyperparameter that directly impacts the
balance between usability and security and must be chosen
carefully. Indeed, if MAXfco is too high, the usability of
the system will decrease because the Context Confidence
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Analyzer will take too much time to reach confidence in
regular contexts. Such a situation would lead to an increase
in explicit authentication requests. Inversely, if MAXfco is too
low, the security of the systemwill decrease since the Context
Confidence Analyzer will reach confidence in unregular
contexts too quickly.

3) RISK MANAGER
In this section, we take the classic formulation of the risk
as defined in [51] based on the probability of unsatisfactory
outcome and the cost of an unsatisfactory outcome. Thus, the
risk manager computes the actual risk R ∈ [0, 1] associated
to the current state based on the sensitivity S ∈ [0, 1] of the
application accessed and the probability of a successful attack
derived from the current confidence in the identity of the user:

R = (1− (µCId + (1− µ)CCo)) · S, (5)

where CId is the identity confidence level, CCo is the context
confidence level and µ ∈ [0, 1] is an hyperparameter
of the model that weights the impact of both confidence
levels on the overall user confidence. The sensitivities
are stored in a database that maps each encountered
application to a level of sensitivity. In this work, three
levels of sensitivities were defined: low (0), medium (0.5)
and high (1). The level of sensitivity of an application
is chosen automatically based on the category assigned
by Google Play. For example, applications associated with
Finance category are more sensitive and are assigned to
the highest level of sensitivity. In contrast, application
associated to Entertainment are assigned to the lowest level
of sensitivity. These sensitivities should be customizable by
the user to reflect their personal needs in security. It is
worth noting that these levels of sensitivities were chosen
to ease the evaluation of the model and can be changed as
needed.

B. ANOMALY DETECTOR
The anomaly detection process is modeled as a binary
classification problemwhere the Anomaly Detector classifies
the current context as normal or abnormal. To solve this
classification problem, we propose to use a DRL agent with
experience replay [52]. As stated in Section I, DRL allows an
organic form of learning by trial and error that fluidly adapts
to new environments. Hence, it is a well-adapted framework
to solve a classification problem embedded in a dynamic
environment. Fig. 1 presents an overview of the proposed
Anomaly Detector.

1) STATE
The state st contains the contextual data represented as
the vector (conn, loc, day,month, period, laM , σ, S), where
conn, loc, day,month, period and laM are discrete variables
that respectively describes the internet connection status of
the device; the current location of the user, the day of the
week, the month of the year, the period of the day (either

night, morning, afternoon or evening) and the authenticator
used on last authentication. σ and S are continuous variables
that describes the identity confidenceweighting factor (4) and
the application sensitivity respectively.

2) ACTION
The problem is modeled as anomaly detection using binary
classification where at each time t , an action at ∈ {0, 1} is
taken. Action 0 flags the current context as abnormal which
means that the device could be under attack. Action 1 flags
the current context as normal when the risk is low enough
to allow the user to continue to use the application without
requesting an explicit authentication. The selected action at
directly influences the next state s,t . Indeed, it dictates how
the next authenticator will be chosen which directly impacts
variables laM and σ .

Reward: The anomaly detection of contextual data faces
a major challenge linked to class imbalance because the
expected number of anomalies is much lower than the
expected number of regularities, which makes the learning
task harder. To tackle this challenge, the authors of [53]
proposed to balance the reward by assigning a lower value
to the majority class or action 1 in our design which
is linked to anormal context. Therefore, the reward r is
modeled based on the risk Rs associated to a given state as
well as the imbalance correction factor λ ∈ R+, and is
denoted by:

r =


1 , a = ae and ae = 0
λ

|Cca − Rs|
−λ |Cca − Rs|

, a = ae and ae = 1
, a ̸= ae and ae = 0
, a ̸= ae and ae = 1

, (6)

where the expected action ae is obtained by comparing the
current risk Rs to a risk threshold RTr ∈ [0, 1]. Therefore,
if Rs > RTr , then ae is set to 0 else, ae is set to 1. In this
formulation, the reward is balanced using the imbalance
correction factor λ only if the expected action ae corresponds
to the majority class. This mechanism reduces the impact of
observations related to a normal context to give more place to
observations related to an abnormal context leading to a more
balanced overall training process. The risk is involved in the
reward computation only in case of a misclassification.When
a classification error occurs, the reward is the difference
between the chosen authenticator’s confidence level Cca and
the evaluated risk Rs. This penalty does not only inform the
agent that an error was made, but it provides information
of its impact on the security as well as the usability
level.

When Cca < Rs, the misclassification leads to a security
problem since the confidence of the chosen authenticator was
not high enough to mitigate the evaluated risk. In contrast,
Cca > Rs leads to a usability problem because the confidence
of the chosen authenticator was too high for the evaluated
risk. Therefore, the absolute value in the reward computation
on misclassification allows to equally penalize the agent on
security or usability errors.
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Algorithm 1 Anomaly Detector Training Process With
Balanced Experience Replay

Input: experience tuple (st , at , rt , s′j, a
′
j) and expected action ae

1: store (st , at , rt , s′j, a
′
j) in memae

2: evaluate b0 and b1 with (8) and (9)
3: for j=1, b0 do
4: batchj ← sample random experience from mem0
5: end for
6: for j= b0, b1 do
7: batchj ← sample random experience from mem1
8: end for
9: for j=1, B do
10: sj, aj, rj, s′j, a′j ← batchj
11: Yj ← NN(θ ) prediction for sj
12: update Yj

(
sj, aj

)
using next state-action Q-value estimation

(2)
13: Xj ← sj
14: end for
15: train NN(θ ) on X and Y with loss function of (1)
16: ε← ε ∗ decay
17: update NN(θ̄ ) if needed

3) Q-NETWORK
It is a fully connected layered neural network using back-
propagation. The activation function used for each hidden
layer is RELU and the output layer is linear. The input
layer is composed of eight nodes that correspond to the size
of the state vector. The output layer is composed of two
nodes that correspond to the size of the action space. The
Q-Network outputs the estimated Q-values Q (st ; θ) given a
state vector st .

4) ACTION SELECTOR
At each time t , the action is chosen based on ε-greedy
method [46]:

at =

{
argmaxQ (st ; θ) , pt > ε, pt ∈ [0, 1]
rand (L) , else

(7)

where L is the set of possible actions that is equal to {0, 1}.
To enable exploration, the action selector randomly chooses
the next action with a probability of ε,. The agent is created
with an ε value of 1 that is slowly decreased throughout the
training phase by a chosen decay factor. This decay process
allows the agent to perform more exploration iterations at
the beginning of the training phase. While the agent gains
confidence, the frequency of exploration slowly decreases,
and the frequency of exploitations increases until the actions
are completely chosen based on the policy.

5) EXPERIENCE MEMORY
The agent uses a process known as Experience Replay [52]
that uses past experiences to train the agent. On each
training iteration t , the experience tuple

(
st , at , rt , s′j, a

′
j

)
is stored in the experience memory. The training batch is
then created by sampling B experiences from the experience
memory. Because of the presence of great class imbalance
in our classification problem, if all experiences are stored in

the same memory, the probability of sampling experiences
from the minority class is too small. To increase the
probability of sampling experiences from the minority class,
we could increase the batch size. We could also use over
and under sampling algorithms to artificially decrease the
class imbalance in the training batch [54]. However, these
techniques would considerably increase the training time of
the agent [36]. To ensure a good class balance in the training
batch, we propose to divide the experiences in two memories
of size N , one for each class. Thus, when sampling the
training batch, the number of experiences from each class will
be derived from the batch size B:

b0 =

{
min (B · (1− bf ) ,mem0) , bf < 1

min
(
B
bf ,mem0

)
, else

, (8)

b1 = B− b0, (9)

where b0 ∈ Z0+ and b1 ∈ Z0+ are the batch sizes for
the minority class and majority class respectively, mem0
is the number of experiences in the experience memory of
the minority class and bf ∈ [0,B[ is the balance factor
that determines the balance between the minority and the
majority class in the training batch. To ensure that b0 and
b1 are integers, the value of bf must respect the constraint
Bmod bf = 0. In this design, if bf is less than 1, the proportion
of experiences that are drawn from the minority class is larger
than the proportion of experiences drawn from the majority
class. If bf is larger than 1, we see the opposite behavior.
In both cases, the number of experiences drawn from the
minority class is always floored by mem0.

Combining all these elements lets us define the training
process of the Anomaly Detector detailed by Algorithm 1.
Through the training process, this algorithm describes the
process that is run on each training iteration. The first step
is to store the current experience vector in the appropriate
memory. Then, b0 and b1 are computed using (8) and (9) and
experiences are sampled from their respective database. For
each sampled experience, Q-values are predicted and updated
using the chosen action-value estimation technique. Finally,
the Q-Network is trained on the B pairs of data associating
states to Q-values and ε is decayed. Note that with this
formulation, any action-value estimation technique can be
applied in the update step.

C. AUTHENTICATION MANAGER
The Authentication Manager is the brain of the proposed user
authentication system. When a new application is accessed
by the user, a new authentication request is triggered.
The Authentication Manager is then responsible to choose
the appropriate authenticator autht in a pool of available
authenticators given chosen action at (7) and the application’s
sensitivity:

autht =
{
argmini

(∣∣CAi − St ∣∣) , if at = 1, i ∈ I
argmine

(∣∣CAe − St ∣∣) , if at = 0, e ∈ E
, (10)
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where A is the set of available authenticators on the
user’s mobile device, I is the set of implicit authenticators,
I ⊆ A, and E is the set of explicit authenticators,
E ⊆ A. Therefore, if the status of the current state is flagged
as normal, the system chooses an authenticator in the pool
of available implicit authenticators. Inversely, if the current
state is flagged as abnormal, then the system chooses an
authenticator in the pool of available explicit authenticators.
This is based on the assumptions that explicit authentication
mechanisms are generally more established and thus more
accurate than implicit authentication techniques. An even
more secure authenticator would combine both methods, but
multimodal authentication is not taken into consideration in
this work. In both cases, the best authenticator is the one with
the confidence level closer to the application’s sensitivity.

Each authentication request is resolved in six steps:
1. Observe state: The Authentication Manager gathers the

current context and authentication confidence information
from the Risk Engine.

2. Select action: The state vector is sent to the Anomaly
Detector to be classified as normal or abnormal.

3. Choose authenticator: The appropriate authenticator is
chosen using (10).

4. Perform user authentication: The user is then asked
to perform the required authentication. The user has
three attempts to authenticate themselves. This mitigates
problems related to brute force attacks by restricting the
number of tries that an attacker can perform. If they are
correctly authenticated, the Authentication Manager can
then process to post-authentication resolution. If they can-
not be authenticated after three attempts, then the authen-
tication process restarts from the beginning. Ultimately,
if the system reaches a point where no authentication
method is adequate to correctly authenticate the user given
the current state s, the access to the application should be
refused.

5. Resolve post-authentication: Each authentication event
is resolved in the background. The authentication informa-
tion is sent to the Risk Engine to update the last authenti-
cation information and retrieve the risk R computed using
(5) giving the current state s along with the new state s.
The reward r is then computed using (6).

6. Complete iteration: Depending on the current phase
(which are detailed below), the experience tuple is either
stored in a transition buffer in the operational phase or
directly sent to the Anomaly Detector to complete the RL
iteration in the training phase.
This authentication process is represented in Fig. 2 and

Fig. 3. Finally, during its lifetime, the proposed authentication
system passes through two main phases:
1. Training phase: When the user starts the authentication

service for the first time, a training process is trig-
gered. This phase is necessary to train the Q-Network
parameters to a level of satisfaction where the system
can be comfortably used by the user without affecting
its usability. If the Q-Network is not previously trained

FIGURE 2. Main algorithm detailing training and operational phases.

FIGURE 3. Step algorithm performed on each authentication request.

before the operational phase, then the system could be
too intrusive or could be unsecure. During this phase,
we assume that the user is legitimate. Therefore, if the
Authentication Manager chooses an explicit authenticator
on a given iteration, it immediately assumes that the
user was correctly authenticated by this authenticator.
In this phase, any change in the context or any application
accesses triggers an authentication request and thus a
training iteration. This is done to increase the number
of states that are used in the training process. When
the Anomaly Detector reaches an appropriate level of
accuracy, the system goes into the operational phase.

2. Operational phase: In this phase, the system is actively
waiting for a new application access. Each authentication
request is resolved by the Authentication Manager as
described above. The experience tuples stored in the local
buffer are periodically sent to the Anomaly Detector to
train the RL agent with fresh observations.
The main algorithm of RLAuth is illustrated in Fig. 3.

The computational time complexity of the proposed model is
mostly affected by the neural network’s training and inference
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tasks occurring in the anomaly detector. The computational
time complexity of a neural network is polynomial and is a
function of its architecture’s complexity. Of course, training
the neural network is greedier than the simple feedforward
pass occurring on inference. Indeed, the time complexity of
the neural network’s training is also dependent on the number
of epochs, the number of training samples and the size of the
training batch. If we take into consideration that training only
occurs in offline settings, the inference is themain contributor
to the real-time complexity of the proposedmodel. Therefore,
since we chose a neural network with low complexity, the
proposed model is efficient and can be considered usable in
a real-life setting.

V. EVALUATION
In this section, we first detail the experimental setup for
the evaluation of RLAuth. Then, we evaluate the impact
of different hyperparameters of the Anomaly Detector on
the system performances. Finally, we compare our proposed
method with popular machine learning algorithms for
anomaly detection.

A. EXPERIMENTAL SETUP
1) ENVIRONMENT
A prototype of the reinforcement learning agent was
implemented on a PC with a processor Intel(R) Core (TM)
i5-7200U CPU@ 2.50GHz 2.70GHz. The Q-Networks were
implemented using Keras based on Tensorflow. Using the
Tensorflow Lite converter, the trained agent was converted to
a Tensorflow Lite model, which was successfully embedded
in an Android application for on-device inference. In our
design, training and retraining is always performed on a
server.

2) PARAMETERS SETUP
Table 2 details the model constant and the default parameters
used during the experiments. Two explicit authenticators
were used in this evaluation: the default OS authenticator,
which could be PIN, password or pattern on an Android
device, and the fingerprint authenticator available on most
Android devices. As an implicit authentication method,
we only use the context. The Risk Engine and Authentication
Manager constants were chosen to maximize the security,
but they could eventually be changed to fit the user’s needs.
Because of the low dimensionality of the state in the current
formulation, we chose to use a simple neural network with
only one fully connected hidden layer of 8 neurons. The
reinforcement learning constants and default parameters were
set as described in [53] except for λ that was set to 1 to
accurately evaluate its impact on system performances.

3) DATASET
We use a portion of the Mobile Phone Use (MPU) public
dataset from CRAWDAD [55] to evaluate the performances
of our system. This dataset contains data collected over four

TABLE 2. Model constant and default parameters.

weeks from multiple mobile phone sensors. During the data
collection phase, users were instructed to use their personal
smartphone as usual, without restrictions on device model
or user activity. Hence, this dataset contains data collected
in-the-wild that provides realistic information. Therefore,
42 users form our validation (25 users) and testing (17 users)
sets with a total of 886 915 samples. The data for each
user were cleaned to fit our needs. Only information on
foreground application, Wi-Fi connection, location, and time
were kept. In the following experiments, all data are sampled
continuously from the beginning to ensure that the model for
each user is trained and evaluated under realistic conditions.

4) PERFORMANCE MEASURES
Accuracy is commonly used to evaluate the performances of
classification models. However, this metric cannot be used
appropriately in case of imbalanced classification problems.
Indeed, accuracy tend to favor the majority class, which
is highly problematic [56]. Hence, in this paper, we use
the G-mean that has been accepted as a good performance
metric to evaluate classifiers for problems with class imbal-
ance [54], [56]. The G-Mean

(
(sensitivity · specificity)1/2

)
is computed based on sensitivity (TP/(TP + FN )) and
specificity (TN/(FP+ TN )). We also evaluate the efficiency
of the model in terms of training computation time and testing
computation time.

B. IMPACT OF BALANCE AND IMBALANCE CORRECTION
FACTORS
We evaluate the proposed techniques to mitigate the problems
related to class imbalance. To this end, we study the joint
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effect of the balance factor (bf) and the imbalance corrector
factor (λ ) in terms of the G-Mean. The authors of [53]
proposed to use the class imbalanced ratio ρ between the
minority and majority classes to compute λ . However, it is
not possible in this model because we do not know the
value of ρ at the beginning of the training phase. Therefore,
we evaluate the effect of fixed values of λ where λ ∈

0.05, 0.25, 0.5, 0.75, 1, 1.25, 1.5}. The minimum value of λ

was chosen based on the average imbalance ratio of the
data used in this work. In addition, to respect the constraint
B mod bf = 0 with B = 8, we evaluate the effect
of the balance factor where bf = {8, 4, 1/2, 1/4, 1/8}.
Moreover, we evaluate the performances of the system when
no balancing is applied on the training batch sampling. The
results are depicted in Fig. 4.

FIGURE 4. Impact of imbalance correction parameters on agent
performances.

Fig. 4. (a) shows that when bf decreases, better per-
formances are obtained with higher values of λ . This is
explained by the fact that with lower values of bf, more
samples from the minority class are sampled. Thus, in this
situation, if λ is too low, too much weight is applied
to the minority class and the model loses its ability to
correctly classify samples from the majority class. Moreover,
we observe that when no class balancing is applied on the
batch sampling, λ can effectively improve the quality of the
classifier when its value is close to the class imbalance ratio.
However, the effectiveness of λ is outperformed by bf when
bf < 1. This effect can better be observed in Fig. 4. (b), where
λ has a considerable impact on the model performances only
when bf > 1 or is not applied. In addition, we can see
that the use of bf considerably improves the classification
performances with λ ≥ 0.25.
Finally, apart from the case where bf = 1/8 and λ = 0.05,

the G-Mean is improved by the application of the balanced
sampling technique whatever are the values of bf and λ . The

best average G-Mean of 88.86% on the validation set was
obtained with bf = 0.25 and λ = 1.

C. IMPACT OF TRAINING SIZE
The optimization of the training size (ts) is important since it
greatly impacts the security of the system. Indeed, when the
training process is too long, the mobile applications are left
unprotected for too long after the service is started by the user,
which can negatively impact its adoption. However, if the
training process is not long enough, the authentication service
could switch to operational mode too quickly, which can
have a great impact on security and/or usability. Therefore,
we study the impact of the number of samples used in the
training process on the performances of the model with
ts ∈ {1000, 2000, 3000, 4000, 5000, 6000, 7000}, where a
thousand samples represent about a day of context data. The
results for this experiment are shown in Fig. 5.

FIGURE 5. Impact of training size on agent performances.

We can see that the G-Mean is improved when ts increases
from 1000 to 6000 with average values on validation
set ranging from 74.29% to 88.99%. However, no more
improvements are observed when ts takes values greater than
6000. Therefore, the anomaly detection agent can effectively
converge to a satisfying solution in about 6000 training
iterations, which represents less than a week of observations.
This means that under these conditions, the system would
be usable after approximately one week of training data
collection.

As expected, the total training time increases linearly with
the training size, but it does not impact the training time per
sample, which is≈25ms for each value of ts. Hence, a greater
value of ts only impacts the delay before the authentication
system is usable to protect the user’s assets.

D. IMPACT OF PERIODIC RETRAINING
One of the main advantages of using a reinforcement
learning agent as a classifier is its ability to continu-
ously adapt to new observations while interacting with
the environment. Therefore, we evaluate the impact of the
retraining interval (nrt) on the performances of the agent
with nrt ∈ {1, 500, 1000, 1500, 2000}. The retraining interval
corresponds to the number of observations between each
retraining process. Hence, when nrt = 1, the agent is
continuously trained on each observation. In the current
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implementation of the system, the agent is retrained on each
nrt observations only if the G-Mean on these observations is
less than 80%. This ensures that the agent is retrained only
when needed. Moreover, we compare the performances of
the agent with and without retraining. The results obtained
for this experiment are shown in Fig. 6.

FIGURE 6. Impact of retraining intervals on agent performances.

As expected, the G-Mean slowly decreases as nrt increases
with obtained values ranging from 86.64%without retraining
to 91.01% with continuous retraining. This behavior is
also observable on testing time when nrt ∈ [1000, 2500].
However, when nrt goes from 1000 to 500, the testing
time considerably increases with very little variations on
the G-Mean. This could be explained by the fact that
the retraining threshold is related to the classification
performance of the agent on the last nrt observations. Indeed,
when the interval between each retraining step is too low,
not enough data is available to correctly evaluate the clas-
sification performance. Therefore, unnecessary retraining
steps are performed, leading to an increase in testing time.
Interestingly, we can see a drop in the testing time when the
agent is retrained on each new observation. This is related
to the fact that the agent is always up to date with the
newest context information, which leads to better overall
classification performances. Thus, fewer retraining steps are
performed on a long-term run.

While the best performances are obtained on a continuous
retraining basis, it is not usable when the agent is embedded
on the device because it would lead to too much commu-
nication traffic on the training server. In addition, constant
communication with the server would consume too many
resources on the device. However, if the agent is hosted
by a remote server, then continuous retraining could be
considered. Therefore, we propose to retrain the agent every
1000 observations when the agent is embedded directly on
the device. This configuration led to an average G-Mean of
89.06% and a testing time per sample of 4.946 ms.

E. IMPACT OF DIFFERENT DRL LEARNING ALGORITHMS
The choice of the appropriate learning framework to solve
the classification problem is of great concern while designing
a DRL agent classifier. It was already shown in [37] that
DQN and DDQN frameworks are more appropriate than
Policy Gradient or Actor-Critic to solve anomaly detection
problems. However, to the best of our knowledge, DS and
DES were never evaluated in this context.

TABLE 3. Performances comparison of different reinforcement learning
algorithms.

TABLE 4. Optimized configuration for model parameters.

In this study, we compare the use of on-policy (DS and
DES) and off-policy (DES, DQN and DDQN) DRL agent
as anomaly classifiers. Table 3 shows the performances of
each agent with optimized configuration presented in Table 4.
Overall, as expected, the performances obtained from each
agent are quite similar. The major difference is observable in
the computation time, which is greater for the DDQN agent.
Indeed, the added prediction step inDDQN learning increases
the computation time on each learning iteration. Moreover,
we can see that agents that act off-policy outperformed those
that act on-policy. This is due to the fact that off-policy
algorithms continuously try to learn the optimal policy while
on-policy algorithms learn a near-optimal policy.

As expected, DES can effectively increase the classifica-
tion performance over DS by slightly increasing the training
time. Surprisingly, the agent using off-policy DES was able
to reach a G-Mean of 91.72%, which is comparable to
the G-Mean obtained by the DDQN agents that is 91.85%.
Therefore, DES is the best candidate to act as the anomaly
detection agent because it reaches high performances without
the complexity added by the target network used in DQN and
DDQN frameworks.

F. COMPARISON WITH MACHINE LEARNING
ALGORITHMS
Using deep reinforcement learning provides many advan-
tages over conventional machine learning techniques. Indeed,
a DRL agent learns online as it interacts with its environment
and can continuously adapt to new observations. However,
it comes with major drawbacks, such as high training time
and high memory consumption. Therefore, to justify the use
of a complex DRL agent in RLAuth architecture, we must
ensure that it can effectively outperform conventional
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TABLE 5. Performances comparison of different machine learning algorithms.

machine learning classifiers in terms of classification
performance.

To this end, we compare our proposed Anomaly Detector
using a DES agent with supervised (SVM, DNN, Gaussian
Naïve Bayes (GNB) and k-Nearest Neighbors (k-NN) and
unsupervised (Isolation Forest and OCSVM) classifiers
commonly used to solve anomaly detection problems.We use
the optimized configuration to perform this experiment and
each classifier was evaluated under the same conditions. The
DES agent was trained on each observation in an online mode
and the other classifiers were trained in an offline mode once
all training observations were available. The SVM classifier
was initialized to consider the class imbalance in training
and the neural network used by the DNN classifier has the
same architecture as the Q-Network of the DRL agent. This
experiment was conducted with data from the testing set. The
results obtained are shown in Table 5.

Unsupervised classifiers generally used in one-class
anomaly detection were unable to correctly learn how to
distinguish anomalies from regularities. This is not surprising
in the case of OCSVM, since it is known to be too sensitive
to anomalies when trainedwith contaminated data.Moreover,
we evaluate the performances of OCSVMwhen only samples
from normal states were used to train the classifier and similar
results were obtained. The performances of Isolation Forest
and OCSVM could probably be improved by optimizing their
respective hyper-parameters. However, the major problem
with these classifiers is that we need to specify the ratio of
outliers anticipated in our data that cannot be known in the
context of a real-life application.

Supervised classifiers obtained better results than unsuper-
vised classifiers. A closer analysis to the recall obtained for
each class reveals that GNB is the only classifier that can
adequately recall samples from the minority class, apart from
RLAuth. However, it may poorly recall samples from the
majority class, which makes it too sensitive to the minority
class. In contrast, DNN and k-NN classifiers can adequately
recall samples from the majority class but are unable to
correctly recall samples from the minority class. SVM stands
out as the best conventional machine learning classifier with
a G-Mean of 82.29%, which represents a non-negligible
difference of about 10% with the proposed DRL classifier.

Finally, the computation time needed to train our anomaly
detection agent is much higher than for other classifiers.

This is mostly related to the batch training performed
on each iteration. The training of the agent is done in
approximately 130 s, which is acceptable considering that
the training iterations are performed asynchronously. RLAuth
successfully outperformed all other classifiers in terms of
G-Mean with an average value of 92.62%.

VI. CONCLUSION
In this paper, we proposed RLAuth, a risk-based authen-
tication system that uses a deep reinforcement learning
agent to classify the authentication context as an anomaly
or a regularity. To this end, in addition to the Anomaly
Detector, we designed a Risk Engine that computes the risk
on authentication requests based on the context, the last
authentication information and the application’s sensitivity.
Moreover, an Authentication Manager was proposed to deal
with each authentication request and dynamically choose an
appropriate authentication method, implicit or explicit, based
on the application’s sensitivity and the state status inferred by
the DRL agent.

The proposed system faces some limitations that we plan
to correct in future works. The main limitation with RLAuth
is related to the fact that it does not protect the user in familiar
contexts. Therefore, the proposed authentication system is
vulnerable to attacks performed by coworkers at work or by
family members at home. To solve this problem, we could
use the proximity of the device in the identity confidence
evaluation. Another limitation is related to the choice of the
confidence level for each authenticator used in this work and
the choice of the application sensitivities. Indeed, these values
were arbitrarily chosen based on our domain knowledge.
However, mathematical or machine learning models could
be used to choose such values more accurately. Finally,
in this implementation, all context information is kept on the
device memory that could lead to high memory consumption
on long-term utilization. To solve this problem, context
information could be modeled with machine learning to
reduce the memory consumption on the device.

RLAuth was designed to reinforce mobile application’s
authentication methods by adding a transparent and dynamic
layer of security without compromising user’s privacy.
By taking into consideration the sensitivity of the protected
services, we ensure that the proposed system can balance
usability and security by design. Moreover, by enabling
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periodic retraining and dynamic context discovery, we ensure
that the system will be able to adapt to new environments
in its lifetime. Finally, we have shown overall that deep
reinforcement learning can effectively be applied in the
context of user authentication. Indeed, our Anomaly Detector
obtained a G-Mean of 92.62% on the testing set with its final
configuration.
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