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ABSTRACT. Transactional Petri Nets (TPNets) are a new class of high-level Zero-Safe Nets (ZSNs), 
defined as a more suitable semantic framework for UML2 activity diagrams. Indeed, they ensure 
reactivity and synchronization of concurrent flows triggering with their junction. Reactivity is 
guaranteed due to the real time massive cancellation semantics based on the definition of new 
dynamic enabling rules and the imposed priority among executions. Global synchronization in turn 
is assured thanks to non-locality principle, an outcome of exploiting atomic stable transactions.  
Rewriting logic is defined as the operational semantics framework of TPNets.  

KEYWORDS: Zero-safe nets, UML2 activity diagrams, reactivity, non-local behaviors, synchronization.  

 

1. INTRODUCTION 

UML2 represents a milestone in the evolution of 
software development technologies. This is 
essentially due to the object management group 
launching of the UML modeling in the context of 
Model Driven Architecture ‘MDA’ (OMG, 2003). In 
particular, activity diagrams syntax has been 
written from scratch in UML21 (OMG, 2005), new 
constructions have been defined to meet complex 
systems modeling requirements; defining thus non-
local behaviors that can also be reactive and 
transactional. Indeed, to rigorously represent the 
behavior of such complex systems with UML 
activities, it is essential to capture non-local actions 
triggering related behaviors as well as cancellation 
patterns and the advanced resulting 
synchronization mechanisms. Indeed, elementary 
Petri nets based semantics for these new concepts 
still currently ambiguous and too basic. The lack of 
formalization in UML2 can lead to confusion and 
different interpretations in the analysis model, 
which reduces the ability to develop required tools 
to assist formal specification process. For their part, 

 
1 The current published version of UML is the UML2.3 (OMG, 
2010). With regard to Activity Diagrams, UML versions 2.1.1 to 
2.3 are minor revision to UML2.0 specification. 

designers require more adequate formal models to 
verify, validate and refine UML models.  
 
Moreover, the standard does not provide adequate 
examples to illustrate the intent behind these 
concepts and clarify their meaning. A series of 
Bock publications (Bock, 2003a), (Bock, 2003b), 
(Bock, 2003c) (Bock, 2004) (Bock, 2005), a founder 
of UML2 activities, clarified some concepts and 
dynamics of inherent execution, yet, in a natural 
language.  
 
The UML2 standard hinted that there is a quasi 
isomorphism between activities and Petri nets; this 
has launched many researchers’ attempts to 
investigate in the formalization of activities via Petri 
nets. But they quickly noticed that place/transition 
Petri nets are not enough expressive to handle 
such complex semantic (streams, expansions, 
exceptions, etc). Two solutions are suggested to 
overcome the problem: 1) Expand some activity 
parts and then formalize them via place/transition 
Petri nets concepts (Barros, et al., 2003) and 2) 
Resort directly to high level class Petri nets. Yet, 
giving rise to a multitude of models, each one 
handling a particular activity concept. Our works 
are situated in this mind set. We have shown in our 
previous publications (Boufenara, et al., 2009a) 
(Boufenara, et al., 2009b) (Boufenara, et al., 2010) 
that the place/transition Petri nets do not preserve 
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the semantics of the original addressed activity 
concepts and we have proposed its formalization 
via another Petri nets high level class inspired from 
Zero Safe Nets (ZSNs) of Bruni (Bruni, et al., 
1997). In this paper, our purpose is to give a unified 
formal model (TPNets) that encompasses the 
whole activity model and resolves problematic 
situations, whilst being intuitive; we offer solutions 
to many concepts that have not been treated in the 
literature: reactivity, non-local behavior, 
synchronization of fork/join nodes, special 
synchronization at the final node, streaming 
parameters, etc. 
 
The paper is structured in 6 sections: in Section 2, 
we give the most pertinent related work and 
discuss their weaknesses. Section 3 is devoted to 
presenting zero-safe nets, UML2 activity diagrams 
(by means of our proposed formalism AD2s 
“Activity Diagrams in UML2”) and rewriting logic. In 
Section 4, we informally (for lack of space) present 
our approach which encompasses the proposed 
model TPNets along with syntactic and behavioral 
aspects and the transformation of AD2s to TPNets. 
Three case studies are presented in Section 5 to 
illustrate our formalization approach of UML2 
activities. Finally, we conclude by giving the most 
relevant contribution of the paper.    

2. RELATED WORK  

The feasibility of a particular semantic approach 
depends largely on how it addresses the 
characteristics of the diagrams it covers. The most 
interesting activities formalization are those that 
define a literally formal semantics contribution. In 
the state of the art, few works are relevant to 
mention; Barros and Gomes proposed in (Barros, 
et al., 2003) a translation of a subset of activities 
concepts, including streaming and expansions, to 
Petri nets. They focus on some streaming aspects 
and try to overcome the failure of place/transition 
Petri nets to support this concept by defining a rich 
semantics for actions. To do so, they expand 
actions to activities. In fact, this is an improper 
manipulation of activity diagrams, since the UML 
standard states that an action is elementary and 
represents a single step and may be complex in its 
effect  (refer to (OMG, 2005) p.321) so it can not in 
any way be interrupted. Effectively, when 
translating actions,  considered now as activities, to 
Petri nets, additional places are created, leading to 
intermediate states  and hence to the UML 
underlying semantics violations. Moreover, only 
local behaviors are considered in place/transition 
Petri nets, while the non-locality semantics is an 
important and innovative feature of UML2.  
 
A series of Störrle culminating publications focuses 
on a thorough study of activities semantics and 

proposes different formalizations of some concepts. 
In (Störrle, 2004a), the author defines a 
denotational and compositional semantics of 
activities by means of transformation rules to the 
procedural Petri nets. Emphasis is set on control 
flows; including procedural calls, nevertheless 
without any indication about data. The first work is 
extended in (Störrle, 2004b) to cover exceptions. 
These ones involve non-local control flow to 
capture the overall state distribution which is 
obviously complex to model with place/transition 
and procedural Petri nets. To address the problem, 
the author defines an exception colored Petri nets 
based approach. The author only focuses on 
directing the control flow to the exception handler. 
Exception semantics is related to the internal 
behavior of action raising the exception, creating 
thus a non-deterministic internal choice. We do not 
need adding artifacts because deterministic choice 
naturally directs control to the exception handler. In 
(Boufenara, et al., 2009b), we give an intuitive 
solution to exception problems. In (Störrle, 2004b), 
the author formalizes structured nodes by non-
formal transformations (examples) to procedural 
colored Petri nets. We consider that Störrle work is 
quite relevant, it is rather criticized the multitude 
semantic domains while a UML model typically 
includes multiple concepts at once, which cannot 
be formalized according to the different Störrle 
work to obtain a single Petri net. 
 
In our previous papers (Boufenara, et al., 2009a) 
(Boufenara, et al., 2009b) (Boufenara, et al., 2010), 
we solved many related problems to activities 
formalization and adapted zero-safe nets to best 
meet activities requirements. However, during our 
research, we noticed that ZSNs are not completely 
adapted to preserve the whole UML2 activities 
features. That was a revelation for a real change in 
our study. In this paper, we define a unified and 
precise operational semantics of UML2 activities. 
We develop a double sided integrated approach: 
On one hand, we define a new dedicated model to 
UML2 activities called Transactional Petri Nets 
(TPNets in short). TPNets are based on a stable 
transaction semantics inherited from Zero-Safe 
Nets: ZSNs (Bruni, et al., 1997), a class of high 
level Petri nets. On the other hand we define a 
more structured way to describe an abstraction of 
activity diagrams called AD2s (these ones cover all 
previously addressed concepts, and new ones: 
synchronization at join nodes, initial and final nodes 
and the overall activities static and operational 
semantics). AD2s resume UML2 activities syntactic 
concepts, while limited to most but not all 
expressiveness levels. They serve to define 
TPNets model rigorously assigned to UML2 
activities. We also define, in our work, algebraic 
equations for formal mapping AD2s to TPNets. This 
is a critical key step in our development. In fact, it 
allows transparency of formalization process; we 
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build on earlier analyses rather than discard them, 
so developers have no longer to worry about 
rewriting their informal activities models in formal 
ones (TPNets over here) thereby engendering 
transformation omissions and mistakes. We 
moreover define TPNets operational semantics 
under the rewriting logic, so TPNets firing rules are 
described by rewriting rules and firing conditions 
are expressed via membership equations. 

3. BACKGROUND 

The  objective  of  this  section  is  to  present  
elementary  concepts  of formalisms used in this 
paper: Zero-Safe Nets model, UML2 activity 
diagrams and rewriting  logic. 

3.1 Zero safe nets  

Zero-safe nets have been introduced by Bruni in 
(Bruni, et al., 1997) to define synchronization 
mechanism among transitions, without introducing 
any new interaction mechanism besides the 
ordinary token-pushing rules of nets. Their role is to 
ensure the atomic execution of complex transitions 
collections, which can be considered as 
synchronized. Formally, a ZSN is a 6-tuple B = (SB, 
TB, FB, WB, uB, ZB) where NB = (SB, TB, FB, WB, uB) 
is the underlying place/transition net SB is a non-
empty set of places TB is a non-empty set of 
transitions, FB  (SB x TB)  (TB x SB) is a set of 
directed arcs WB is the weight function that 
associates a positive integer to each arc uB is the 
places marking associating positive tokens number 
to each place ZB  SB is the set of zero places (also 
called synchronization places and pictured by small 
circles). The places in SB\ZB are called stable 
places. A stable marking is a multiset of stable 
places. The presence of one or more zero places in 
a given marking makes it unobservable, while 
stable markings describe observable states of the 
system.  
 
A firing sequence s = u0[t1>u1…un-1[tn>un is a stable 
step of a ZSN if it guarantees the two following 
properties: 1) The concurrent enabling property 
which insures the initial simultaneous not conflicting 
enabling of all sequence transitions by stable 
places and not only those transitions allowing the 
initial triggering of the first execution2 and 2) The 
stable fairness property which assumes that u0 and 
un are stable markings. 
 
A stable step s is a stable transaction3 of B if in 
addition: 3) markings u1,…, un-1 are not stable and 

 
2 This property prohibits the consummation of stable tokens 
produced in the step. 
3 In a stable transaction, each transition represents a micro-step 
carrying out the atomic evolution through invisible states. Stable 

4) The perfect enabling property that ensures the 
consummation of all initial stable tokens before the 
transaction ends, is satisfied. 

3.2 UML2 Activities   

Activities are a kind of graphs having their nodes 
defined in the meta-model of UML standard (OMG, 
2005). We formally define an underlying structure 
of UML2 activities called AD2s. It takes back the 
first four activities expressivity levels and some 
aspects of the fifth one. We incrementally define 
the AD2s by first designing the core composed of 
the lowest level including basic fundamental 
concepts of activities, which is ADs. Its structure is 
a tuple AD = (EN, BN, CN, IN, fN, CF, Guard) 
where elements stand respectively In the 
underlying activity diagram for executable nodes, 
branch nodes (decisions and merges), concurrent 
nodes (forks and joins), initial nodes (will represent 
the initial marking in the TPNet), final node, control 
flows and guards on decisions output edges. On 
the other hand, an AD2 is more expressive, it is 
defined by a tuple AD2 = (AD, ON, OF, CR, SA, 
EA, IAR, EVT, Cancel, Weight) where elements 
respectively stand for AD defined above, object 
nodes (pins), object flows (data flows), concurrent 
region (a sub-activity diagram delimited by a global 
fork and a global join), streaming actions (actions 
with streaming parameters), exception actions 
(actions with exception outputs), interruptible 
activity region (a sub activity diagram containing 
interruptible actions due to reception of an external 
interrupting event)4, interrupting event, cancel 
(action handling the exception) and finally edges 
weight.  

3.3 Rewriting logic  

In rewriting logic, a dynamic system is represented 
by a rewriting theory ব = (઱,ણ,ۺ,܀) describing the 
complex structure of its states and the various 
possible transitions between them. In rewriting 
theory definition, (઱,ણ) represents an equational 
membership theory, ۺ is a set of labels and ܀ is a 
set of labelled conditional rewriting rules. These 
rewriting rules can be of the following form: 

:ܚ(܆∀) ܜ → ܒ܅ሥ܎ᇱܑܜ : ܔܜሥ⋀	ܒ܁ → ܔ′ܜ
۸∋ܒۺ∋ܔ

 

Where ܚ is a labeled rule, all the terms (pi ,qi ,wj ,sj 
,tl ,tl’) are ઱-terms and the conditions can be 
                                                                                        
tokens produced during the transaction are frozen. They 
become active in the system, only at the end of the transaction. 
 
4 Only nodes that might generate places via transformation rules 
in the TPNet are considered in the IAR. Since our purpose is not 
modeling but defining static and operational semantic, so it is of 
no interest to reconsider all syntactic IAR elements. Only those 
important for interrupting the activity in the region are to be 
considered. In a perspective of TPNets, interrupting the 
execution of some transitions means to disable them by 
destroying tokens of their preconditions. 
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rewritings, membership equations in (઱,ણ), or any 
combination of both. Given a rewriting theory, we 
say that   implies a formula [t][t’]  if and only if, it 
is obtained by a finite application of the rewriting 
logic deduction rules, Reflexivity, Congruence, 
Replacement and Transitivity (Meseguer, 1992). 
The theoretical concepts of the rewriting logic are 
implemented through the Maude language (clavel, 
et al., 2006). Its objective is to extend the use of the 
declarative programming and the formal methods 
to specify and verify critical and concurrent 
systems. A Maude program represents a rewriting 
theory, i.e., a signature and a set of rewriting rules. 
The computation in this language corresponds to 
the deduction in rewriting logic. Furthermore, it is 
implemented through a running environment, 
allowing prototyping and formal analysis of 
concurrent and complex systems.  
 
In (Meseguer, 1992), the author has shown that 
rewriting logic naturally describes place/transition 
Petri nets and correctly captures atomic behavior 
and concurrency in these nets according to 
semantic choices that may be interleaving or true 
concurrency. In our work, we do not directly 
execute TPNets, we rather define executions by 
means of rewriting logic. This will make us avoid 
the combinatory explosion of the Petri net states 
space. 
 
4. TRANSACTIONAL PETRI NETS FOR UML2 
ACTIVITIES 

Petri nets are not reactive, well known by their 
locality feature, while most of systems are reactive 
and might admit a non-local activation of 
computational steps. Looking ahead to faithfully 
describe the operational semantics of activities 
reactivity and global synchronization patterns, we 
define a new variant of ZSNs called TPNets, with 
special enabling and firing rules well adapted to 
model complex systems, including a priority among 
transitions execution and many other features that 
make them eligible to constitute a formal semantic 
framework of UML2 activities.  
 
TPNets include static net structures to unfold 
activities actions. Actions appear atomic, but really 
they enclose a complex internal behavior, such as 
actions with exception outputs or streaming 
parameters. In UML2 activities, no synchronization 
is needed at the final node, whereas Petri nets just 
define ‘and’ synchronization at transitions entries. 
In TPNets, we define special transitions 
synchronization at final nodes. 
 
For lack of space, we do not give detailed 
definitions in this paper; we refer interested reader 
to (Boufenara, 2010). 

4.1 Definitions  

A TPNet is the tuple TPN = (P, T, F, W, Z, RF, SIAR, 
Cancel, Zcancel, NTRexcept, NSstream, IP, sp, tfin). It is 
also a bipartite graph composed of two types of 
nodes: places and transitions. We define six types 
of places: stable places, zero places Z, source 
(initial) places IP, final place sp, cancellation places 
Zcancel (interface places) and decision zero places. 
Each stable initial place has only one output 
transition, cancellation places are zero places used 
as the system interface with external events5, and 
decision places are zero colored places used to 
make atomic non-deterministic choices. A TPNet 
contains only one stable final place.  
 
Transitions are of three types: simple (elementary) 
transitions, cancellation transitions Cancel and final 
transition tfin. Elementary transitions are ordinary 
transitions, cancellation transitions have only SIAR

6 
as input places, defined to exclusively handle 
massive cancellation behavior (emptying SIAR 
places, the set SIAR is constructed by the 
AD2/TPNet transformation process) and directing 
control flow to exception handler. They are pictured 
by a highlighted rectangle in Figure 1. Final 
transition has only one output stable place sp, it is 
pictured via two parallel lines. 

 

Figure 1: A generic TPNet 

Places are connected to transitions via three types 
of directed arcs: non-labeled weighted/non-
weighted arcs, labeled arcs (edges with guards) but 
with a weight equal to ‘1’ and reset arcs which can 
be interpreted as functions (places×transitions) that 
allow to a transition to delete all tokens of its input 
place connected via the reset arc. TPNets may also 
include sub-nets for exceptions NTRexcept

7, or for 

 
5 Interface places are necessary to express, once marked, the reception 
of an interrupting event 
6 SIAR is a set of places that have to be emptied to disable transitions of 
the interruptible region. 
7 NTRexcept is a sub-TPNet with a predefined static structure, composed 
of a decision zero place along with output transitions that are enabled 
according to the color of the decision place token. It is introduced to allow 
posting tokens exclusively at some output places of the same transition. 
We introduced some mechanisms that make the sub-net non-
interruptible.     
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streams NSstream
8. Concurrent regions, meanwhile, 

do not need special notations or constructions and 
that is why they do not appear in this section. The 
passage from AD2s to TPNets will make them 
stand out. Figure 1 shows a generic TPNet. 

4.2 TPNets behaviors 

A TPNet can evolve in two different states: 
observable (stable) states and non-observable 
(atomic) states. This is possible thanks to stable 
places and ZSNs zero-places along with the 
resulting atomic execution semantics. This feature 
has been exploited in TPNets to establish 
coordination between fork nodes (triggers of 
parallel threads) and join (parallel threads 
synchronization node). Although fork and join are 
simply mapped into transitions in TPNets, the 
related semantics is preserved via a global 
synchronization mechanism. Fork and Join nodes 
have special semantics under the principle of 
traverse-to-completion9, which is a global behavior 
principle of tokens offer and acceptance.  
 
In TPNets, behaviors are related to tokens initial 
distribution in the graph, called initial marking, and 
transitions firing rules among the net. The initial 
marking is not user-defined; it rather assigns a 
positive number of tokens to each source place ip 
 IP. M0 = {ip1, ip2, …, ipn} such that n is the initial 
places number in the net.  
 
Graphically, a token is a dark dot inside the place. 
There are two kinds of tokens; stable ones, 
associated to stable places and zero tokens 
associated to zero places. A marking M is said to 
be stable iff pM, pP\Z. In other words, a 
marking is stable if it does contain any zero token. 
It is non-observable otherwise. Initial marking is 
stable. 
 
A transaction is a firing sequence which includes a 
set of transitions ti with place/transition Petri nets 
elementary enabling and firing rules. Enabling 
transaction on the other hand, requires a whole 
concurrent enabling of internal transitions. Firing 
atomic transitions of a transaction tr does not 
require any new mechanism besides 
place/transition Petri nets one. But it is constrained 
by static rules inherent to ZSNs and which 
guarantee atomicity, stable fairness and perfect 
firing. 
 
Cancel transitions are necessary to abort special 
regions in the net called SIAR. They need to satisfy 

 
8 NSstream is a sub-TPNet introduced to bypass the basic Petri nets 
synchronization at transitions inputs/outputs and to allow global 
synchronization where streams can move along without any interne 
synchronization. No interruption of the execution of the NSstream is 
permitted. 
9 ttc 

two enabling conditions:  Initial Enabling condition: 
zcanc  M  and Effective Enabling condition: The 
effective marking M that enables a transition cancel 
 Cancel is calculated dynamically (at runtime) and 
is equal to the instant marking of incoming places 
(each place p  SIAR) of the transition Cancel 
calculated when zcanc is marked. Firing an enabled 
transition cancel  Cancel, destroys a token of 
interface place zcanc and all tokens of places p such 
that p  SIAR and creates tokens in the outgoing 
places of cancel, enabling hence the transition 
corresponding to exception handler. 
 
A transition t having incoming edge labeled by an 
expression from the set Expr should satisfy in 
addition to enabling rules the following rule: The 
tokens type (color) of each place p required to 
enable t is equal to the arc (p, t) label. Firing such 
transitions destroys tokens of the same color as the 
(place,transition) edge label.  
 
Enabling final transition tfin assumes that no tokens 
synchronization is required. Its firing is the same as 
Petri nets elementary transitions firing. We give 
some case studies in section 5 to better clarify 
TPNets principles. 
 
In our work, we assign an operational semantics to 
TPNets. To achieve this, we first define a revised 
rewriting logic based semantic framework for ZSNs. 
Then we adapted this mathematical model to give a 
sufficient and precise semantics to TPNets. Thus, 
we do not only define an operational semantics to 
the TPNet behavior, but we also be able to produce 
executable specifications through Maude system 
that may be formally analyzed. Maude (Clavel, et 
al., 2006) is a practical environment implementing 
rewrite theories. 

4.3 From AD2 to TPNets  

In this step, a formal mapping is established 
between AD2s and TPNets. It defines a formal 
semantic to the syntactic structure of AD2s using 
algebraic equations. In what follows, we give 
transformation equations. These ones are 
illustrated via case studies in section 5. 
 
Let AD2 be an activity diagram AD2 = (AD, ON, 
OF, CR, SA, EA, IAR, EVT, Cancel) where AD = 
(EN, BN, CN, IN, fN, CF, Garde). The semantic 
model (AD2) of AD2 is a marked transactional 
Petri net (TPNet, M0) = (P, T, F, W, Z, RF, SIAR, 
Cancel, Zcancel, NTRexcept, NSstream, IP, sp, tfin, M0, 
Couleur, Expr)  such as NSstream = (synch1, synch2, 
connect, pst, zst, tst1, tst2) and NTRexcept = (zdec, EF, 
tac, tN, TE). The corresponding TPNet is obtained by 
the following rules: 
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 P = BN  ON \ {poi of = (poi, poi+1) and 

tb on of}  {IN, fN}  {pc c  CF}  {p  
(NTRexcept  NSstream)}. 

 T = EN \{SA  EA}  CN\ {j1, …, jm'} for ( ji 
OF onf )  ( ji CF Af’ )  {toi of  OF  of = 
oi  oi' and tb on of}  {tdidi'  (di, di')  (OF 
 CF)}  {tmimi'  (mi, mi')  (OF  CF)}  
{canceli  canceli  speci }  {tof of  OF  
(of.source  IN  of.target  ON)  
(of.source  ON  of.target = fN)}  {t  
(NTRexcept  NSstream)}  tfin. 

 F = (OF  CF)  if {x’, y’}  (EN  CN)  
((x, q), (q, y)) ((x  T)  (y T)  (q  P)) 
 {(x, y)(x, y)  (NTRexcept  NSstream)}. 

 W =  Weight. 
 M0 = IN. 
 Z = {p (p = n)  (n  CR)} \ {p Ai  (f, 

Ai)  (OF*  CF*)  (Ai, j)  (OF*  CF*)} 
  EVT  {z –z  (NSstream  STRexcept}.  

 SIAR = {p  (p  P)  (p = n  n  IAR}.  
 Cancel = Cancel. 
 Zcancel = EVT. 
 NTRexcept = EA. 
 NSstream = SA. 
 IP = IN. 
 sp = fN. 
 tfin = Ai  (Ai, fN)  CF. 
 Expr = Garde. 
 Couleur = {o ↦o.type  o  ON} 

Decisions and merges, initial nodes and final node 
are transformed into TPNet places. Also, a place is 
created for each control flow arc. When two object 
nodes are connected through an edge not carrying 
a behavior, then they are mapped into one place 
for both. If the edge does carry any transformation 
behavior, then two places are created for each 
object node. Executable nodes are transformed 
into elementary transitions. Concurrent nodes fork 
are transformed into elementary transitions and join 
nodes followed by actions (and thus pins) are not 
transformed, i.e. they do not create any transition in 
the corresponding TPNet. Join nodes which 
outputs are different from actions with input pins 
are transformed into transitions. Edges carrying a 
transformation behavior tb also generate 
transitions. Other transitions are generated for 
sequential decision nodes and sequential merge 
nodes. For each action cancel, a special transition 
cancel of type Cancel is created. A transition is 
created when a source node is directly attached to 
an object node or when an object node is directly 
linked to a final node. Actions with input/output 
stream are converted into TPNets net structures 
NSstream and actions with exception output 
parameters are converted to net structures 
NTRexcept. All generated places of concurrent 
regions are zero ones. Some exceptions to that 
rule ensure the preservation of the traverse-to-

completion principle10. A final transition 
corresponds to the last action in the underlying 
AD2. 

5. CASE STUDIES 

In our definition of TPNets, we do not associate to 
them any application domain, preventing hence a 
restricted use of such a powerful model. They are 
merely associated to UML2 activities as shown in 
figure 2.  
 
To better illustrate our contribution, we present 
three case studies selected from literature and 
adapted to the modeling of some of the relevant 
aspects of our approach. The first one, business 
activity of the order process, illustrates the 
application of TPNets to capture the non-
interruptible concurrent region activity. A variant of 
the basic diagram of this case study illustrates how 
TPNets handle interruptible regions. Finally, 
through the third example (Automatic cash 
dispenser), we illustrate how powerful are TPNets 
to detect deadlocks due to non-observation of the 
traverse-to-completion property in activities. 
 

 

Figure 2: Our Transformation process 

5.1 Process Order Commercial Activity 

Figure 3 presents a classical example of the 
commercial activity of the ordering process taken 
and adapted from the UML2 specification (OMG, 
2005). Partitions are illustrated in the example to 

 
10 The traverse-to-completion principle assumes that the edge traversal is 
constrained by the token offer acceptation by both source and 
destinations. The principle requires in some special cases a global 
synchronization between the fork and join nodes. 


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highlight responsible actors of different actions in 
the workflow.  
 
The control begins when a customer sends an 
order “Send order”, this one triggers sequential 
actions “Check availability” and “Calculate amount”. 
A data “Price estimation is generated and sent to 
customer to make a choice (decision node, pictured 
here by a diamond) whether to cancel order and 
pass control to close customer record action “Close 
record” via the guard [Cancel] or change his order 
or validate order and hence route control to two 
concurrent threads via the fork node. Each 
concurrent thread is composed of sequential 
actions that are synchronized once all involved 
threads are finished via the join node. Hence, if a 
thread finishes before the other one, it cannot rout 
the control to join node because of the traverse-to-
completion principle waiting until all threads finish 
and can offer their tokens to join node for 
synchronization.  The final action terminates control 
in the activity diagram. 
 

 

Figure 3. Activity diagram of the process order 
commercial activity 

5.1.1. Identifying AD2 elements  
Figure 3 presents AD2, the abstraction of the 
activity diagram corresponding to this case study. 
AD2 = (EN1, BN1, CN1, IN1, fN1, CF1, ON1, OF1, 
CR1, Garde1) where: 

EN1 = {Send-order, Check-availability, 
Calculate-amount, Estimation-acceptance, 
Prepare-bill, Pay-bill, Validate-payment, 
Prepare-order, Order-shipment, Close-
record}. 

BN1 = {d1} 
CN1 = {f1, j1} 
IN1 = {in1} 
fN1 = {fn1} 
CF1  ((EN1, BN1, CN1, IN1)  (EN1, BN1, CN1, 

fN1)) 
ON1 = {dt1, dt2, dt3, dt4, dt5, dt6} where dt1= dt2 = 

Price-estimation, dt3= dt4 = Bill and dt5= dt6 
= payment. 

OF1 = {(dt1, dt2), (dt3, dt4), (dt5, dt6)} 
CR11 = {{Prepare-bill, Pay-bill, Validate-

payment, Prepare-order}{dt3, dt4, dt5, 
dt6}{(f1, Send-order), (f1, Prepare-order), 
(dt3, dt4), (dt5, dt6), (Validate-payment, j1), 
(Prepare-order, j1)}} 

Garde1 = {modify, validate, cancel} 

5.1.2. Design of the corresponding TPNet 
Figure 4 models the generated TPNet. This one is 
generated using equations defined in the 
transformation model. 
 

 

Figure 4. TPNet model of the process order commercial 
activity 

TPNet = (P1, T1, F1, Z1, IP1, sp1, tfin1, M01, Couleur1, 
Expr1) such as:  

P1 = {ip1, p1, p2, p3, sp1, Price-estimation, d1, 
Bill, Payment, z1, z2, z3, z4} 

T1 = {Send-order, Check-availability, Calculate-
amount, Estimation-acceptance, Prepare-
bill, Pay-bill, Prepare-order, Order-
shipment, f1, tfin1, t1, t2} 
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F1  (P1  T1)  (T1  P1) 
Z1 = {z1, z2, z3, z4, Bill, Payment} 
IP1 = {ip1} 
M01 = {ip1} 
Couleur1: d1  {Modify, Validate, Cancel} 
Expr1 = {Modify, Validate, Cancel} 

Note. Place d1 corresponds to decision node. Firing 
transition Estimation-acceptance generates the d1 
internal token which value is Price-estimation. d1 
type is composite, at a logical level it is a record 
containing at least two fields: Price-estimation and 
acceptance-state that is calculated by Estimation-
acceptance. This later takes one of three values 
modify, validate or cancel. 

5.1.3. Model Execution and comments  
The TPNet of figure 4 may be associated to the 
following rewrite theory TB1 = (ΣB1, EB1, LB1, RB1), 
defined by: 

ΣB1 = {Marking, ip1 p1 p2 p3 sp1 Price-estimation 
d1: splace,  : Marking, Bill Payment z1 
z2 z3 z4 : zplace, init-marking, fin-marking, 
__ :Marking Marking Marking, __: 
Marking Marking Marking} 

EB1 = {p   = p, p   p′ = p′   p, (p   p′)   
p′′ = p   (p′   p′′), p   = p, p    p′ = p′    
p, (p    p′)    p′′ = p   (p′   p′′)} 

LB1 = {Send-order, Check-availability, 
Calculate-amount, Estimation-acceptance, 
Prepare-bill, Pay-bill, Prepare-order, Order-
shipment, f1, tfin1, t1, t2} 

RB1 = { 
Send-order: <ip1,id> <p1,id>, 
Check-availability: <p1,id> <p2,id>,  
Calculate-amount: <p2,id> <Estimation-

price,id>,  
Estimation-acceptance: <Estimation-price,id> 

<d1,c1>,   
f1: <d1,c1>E(d1,f1> <z1,id><z2,id> E(d1,f1) if 

c1=validate,  
Prepare-bill: <z1,id> <Bill,id>,  
Pay-bill: <Bill,id> <payment,id>,  
Prepare-order: <z2,id> <z3,id>,  
Order-shipment: <z4,id> <z3,id> p3,  
tfin1: <p3,id>  <d1,c1>E(d1,tfin1)  

<sp1,id>E(d1,tfin1) if c1=cancel,  
t1: <d1,c1>E(d1,t1> <ip1,id> E(d1,t1) if 

c1=modify,  
t2: <payment,id> <z4,id> 
 } 

Notice that no synchronization is defined on final 
transition. This is expressed by the operator   
(logic OR) on rule tfin1. If we transformed our AD2 to 
a place/transition Petri net, this would have 
synchronized flows at the final transition, 
synchronizing hence order-shipment and the 
cancel process. What is semantically wrong and 

would lead to a deadlock because P3 and cancel 
cannot be both marked. The traverse-to-completion 
principle assumes that in our case study, no 
interruption of the concurrent region is allowed. 
Transforming our AD2 to a place/transition Petri net 
will create intermediate stable places, thus 
intermediate states that can be interrupted. If we 
assume that once the billing process is started, no 
interruption is allowed, then the TPNet meets this 
requirement. Creating zero-places in the concurrent 
region will make it impossible to abort, because no 
zero token can be left at a stable state and a 
correct firing sequence has to end at a stable one.   
 
In what follows, we give a simple execution 
example of our proposed model through some 
rewriting rules of TB1. The initial marking is {ip1}. 

Send-order: <ip1,id> <p1,id>; 
Check-availability: <p1,id> <p2,id>;  
Calculate-amount: <p2,id><Estimation-

price,id>;  
Estimation-acceptance:<Estimation-price,id> 

<d1,c1>;  --init-marking 
f1: <d1,valider> <z1,id> <z2,id>;  
Prepare-bill: <z1,id> <Bill,id>;  
Pay-Bill: <Bill,id> <Payment,id>;  
t2: <Payment,id><z2,id> <z4,id>)// 
(Prepare-order: <Payment,id><z2,id> 

<z3,id>);  
Order-shipment: <z4,id> <z3,id> p3; --fin-

marking; 
tfin1: <p3,id>  <d1,Cancel>  <sp1,id>.  

The operator «;» expresses sequential rewriting 
steps whereas the operator « // » expresses 
parallel rewriting steps. 
 
States between init-marking and fin-marking are of 
type zmarking, so they are not interruptible. In our 
definition of rewriting rules, we impose that once a 
rewriting rule generates a z-marking, at runtime the  
left hand side of the rule is considered as an init-
marking and that we must obtain a fin-marking so 
that proof is correct if not this one is forbidden.  
Hence, once billing process and order processing 
have begun, cancellation is no longer allowed. 

5.2 Variant of the Process Order Commercial 
Activity  

In the previous section, we presented a classical 
example of a commercial order treatment process 
where the customer belonging to the system could 
intervene and stop the order processing procedure 
through the action Estimation-Acceptance. Note 
that there exists only one point where customer 
could interrupt the process. 
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Figure 5. Activity diagram of the process order 
commercial activity, including Interruptible region 

In this section, we discuss the same process but 
from another view (see figure 5): customer 
becomes an external entity to the system and 
therefore, he interacts with it through external 
events. Interrupting event «cancellation»: 
Cancellation-Order-Request corresponds to the 
guard cancel of figure 3, however not restricted to 
some exact and predefined interruption points. In 
the current view, the system becomes more 
flexible, accepting external real time interrupting 
events at multiple points of the interruptible region 
delimited by dashed rectangle. In the example, we 
do not accept interrupting order process once 
billing process is started. Hence, billing process 
does not belong to the interruptible region.   

5.2.1. Identifying AD2 elements 
Abstracting case study 2 activity diagram (figure 5) 
gives raise to the following AD2. 
AD2 = (EN2, CN2, IN2, fN2, CF2, ON2, OF2, CR12, 
IAR2, EVT2, Cancel2) where: 

EN2 = {Receive-order,Check-availability, 
Calculate-amount, Prepare-bill, Validate-
payment, Prepare-order, Order-shipment, 
Close-record,Cancel-order}. 
Transform.bill.payment is a transformation 
behavior noted  tb1: 

CN2 = {f1, j1} 

IN2 = {in1} 
fN2 = {fn1} 
CF2  ((EN2,  CN2, IN2)  (EN2,  CN2, fN2)) 
ON2 = {dt1, dt2, dt3, dt4, dt5, dt6} where dt1= dt2 = 

Estimation-price, dt3= Bill and dt4= 
Payment. 

OF2 = {(dt3, dt4)} 
CR12 = {{Prepare-bill,Validate-payment, 

Prepare-order}{dt2,dt3,dt4}{(f1,dt2), 
(f1,Prepare-order), (dt3,dt4), (validate- 
payment, j1), (Prepare-order, j1)}} 

IAR2 = {Receive-order,Check-availability, 
Calculate-amount } 

EVT2 = {Cancellation-order-request} 
Cancel2 = {Cancel-order} 

5.2.2. Generating the corresponding TPNet  
Figure 6 models the corresponding TPNet of the 
given AD2, its formal definition is omitted and 
replaced by explanation.  

 

Figure 6. A TPNet handling cancellation event 

Once receiving a cancellation event i.e. once 
interface-place is marked, we do need to satisfy 
two conditions: 1) Raising and handling the 
exception: all places of the SIAR2= {p1,p2,Estimation-
price} have to be emptied at once and the control is 
moved to the handler (transition cancel) and 2) 
Priority and isolation of the abort execution: 
receiving an external event triggers the immediate 
blocking and abort activity in the interruptible 
region. In terms of Petri nets: firing two 
simultaneously enabled transitions is non-
deterministic. The TPNet of figure 6 satisfies both 
conditions. 
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5.2.3. Discussion  
Behaviors of the process order commercial activity 
including interruptible region are discussed via 
executions of the proposed TPNet model. In a 
similar way, we obtain TB2 = (ΣB2,EB2,LB2,RB2), the 
rewrite theory associated to TPNet, for lack of 
space, it is not given here. 
 
In what follows, we give four model execution 
examples (proofs). Only ip1 is initially marked. 
 
Proof 1. 

Receive-order: <ip1,id> <p1,id>; 
Check-availability: <p1,id> <p2,id>;  
Calculate-amount: <p2,id><Estimation-

price,id>; --init-marking  
f1 : <d1,Validate> <z1,id> <z2,id>;   
(Prepare-bill: <z1,id> <Bill,id>;  
Transform-bill-payment : <Bill,id> 

<Payment,id>; 
Valider-payment : <z2,id><Payment,id> 

<z4,id>) //  
(Prepare-order: <z2,id><Payment,id> 

<z3,id>);  
Order-shipment: <z4,id> <z3,id> p3; --fin-

marking; 
tfin1 : <p3,id>  <sp1,id>.  

No interrupt event raises in this execution of TB2 so 
it ends in a normal final state sp1. 
 
Proof 2.  

Receive-order: <ip1,id> <p1,id> ; 
canc1: <Interface-place1,id>  <_p1,id> 

<_p2,id> <_Estimation-price,id>  
<sp1,id>. 

Proof 2 ends in a normal final state sp1 upon receipt 
of a cancellation event (marking interface-place1) 
while processing Receive-order. Indeed, the initial 
enabling condition is satisfied when interface-
place1 is marked, on the other hand effective 
enabling condition is calculated dynamically and 
contains {p1} in this case. Isolation is ensured 
because running Check-availability prior to canc1 
will disable this latter and keep the system in a non-
observable state. One can think that p1 can be 
provided another token to continue executing the 
TPNet, but this is not allowed since other tokens 
generated tokens will be frozen until the transaction 
ends. 
 
Similarly, Rewriting rules 3 and 4 end after 
receiving cancellation event respectively while 
processing Check-availability and Calculate-
amount. 
 
Proof 3. 

Receive-order: <ip1,id> <p1,id>; 
Check-availability: <p1,id> <p2,id>; 
canc1: <interface-place1,id>  <_p1,id> 

<_p2,id> <_Estimation-price,id>  
<sp1,id>. 

 Proof 4. 

Receive-order: <ip1,id> <p1,id>; 
Check-availability: <p1,id> <p2,id>; 
Calculate-amount: <p2,id> <Estimation-

price,id>;  
canc1: <interface-place1,id>  <_p1,id> 

<_p2,id> <_Estimation-price,id>  
<sp1,id>. 

5.3 Automatic Cash Dispenser 

In this case study, we illustrate how powerfull 
TPNets are to reveal conception errors in the UML 
activities development process. This is done 
through a hypothetical example of an automatic 
cash dispenser (see figure 7). 
 

 

Figure 7. Activity diagram of the automatic cash 
dispenser process 

Fork node triggers two parallel branches; the left 
one may contain, in some executions, no 
executable node. According to the traverse-to-
completion principle, the activity diagram contains a 
deadlock due to circular dependency between fork 
and join nodes. A fork/join global synchronization is 
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necessary to capture such global behavior; 
nevertheless this is not possible within 
place/transition Petri nets. TPNets can observe 
such deadlock and forbid executions leading to it. 

5.3.1. Identifying AD2 elements 
This AD2 is the abstraction of case study 3 activity 
diagram. AD2 = (EN3, CN3, BN3, IN3, fN3, CF3, 
ON3, CR13) such as: 

EN3 = {Check-access-code, Handling-incorrect-
access-code, Ask-for-Amount, Prepare-
receipt, Dispense-cash, Finish-transaction}.  

CN3 = {f1, j1} 
BN3 = {d1, d2, d3,  m1} 
IN3 = {in1} 
fN3 = {fn1} 
CF3  ((EN3, CN3, BN3, IN3)  (EN3,  CN3, BN3, 

fN3)) 
ON3 = {dt1, dt2, dt3, dt4}, dt1, dt2, dt3, dt4 

respectively stand for Access-code, Result, 
Amount and Receipt. 

CR13 = {{Prepare-receipt, Dispense-cash} 
{dt3, dt4} {(f1, dt3), (f1, d3), (d3, dt3), (dt1, d1), 
(dt2, d2), (dt4, j1), (Dispense-cash, m1)}} 

Garde3 = {correct, incorrect, Resolved, Not-
resolved, Amount-available, Unavailable-amount} 
 
5.3.2. Generating the corresponding TPNet  
In the same way, we obtain the corresponding 
TPNet = (P3, T3, F3,  Z3, IP3, sp1, tfin1, M03, Couleur3, 
Expr3).  
 

 

Figure 8. Automatic dispense cash TPNet 

Notice that p1 is stable, hence once marked, the 
token is frozen until the transaction ends (no zero 
token is left), this is impossible because of the 
circular dependency in the region. The TPNet 
execution semantic ensures to forbid such 
runnings. 

5.2.3. Discussion  
We associate the rewrite theory TB3 to this TPNet. 
TB3 = (ΣB3, EB3, LB3, RB3): 

ΣB3 = {Marking, ip1 p1 sp1 Access-code Amount 
Result  Receipt1: splace, : Marking, z1 
z2 z3 z4: zplace, init-marking, fin-marking, 
__: Marking Marking Marking, __: 
Marking Marking Marking} 

EB3 = {p   = p, p   p′ = p′   p, (p   p′)   
p′′ = p   (p′   p′′), p   = p, p    p′ = p′    
p, (p    p′)    p′′ = p   (p′   p′′)} 

LB3 = {Check-access-code, Handling-incorrect-
access-code, Ask-for-amount, Prepare-
receipt, Dispense-cash, f1, j1, tfin1, t1, t2, t3} 

RB3 = {  
Check-access-code: <ip1,id> <Access-

code,c1>, 
Handling-incorrect-access-code: < Access-

code,c1> E(Access-code, Handling-
incorrect-access-code) 
<Result,id>E(Access-code, Handling-
incorrect-access-code -incorrect) if 
c1=correct,  

Ask-for-amount: <Access-code,c1>E(Access-
code,Ask-for-amount) 
<Amount,id>E(Access-code,Ask-for-
amount) if c1=incorrect, 

t3: <Result,c2>E(Result,t3) <Access-
code,c1>E(Result,t3) if c2=Resolved,   

f1: <Amount,id> <z1,id> <z2,c3>,  
Prepare-receipt: <z1,id> <z4,id>,  
Dispense-cash: <z2,c3>E(z2, Dispense-cash) 

<p1,id>E(z2, Dispense-cash) if c3=Amount-
available,   

t1: <z2,c3>E(z2,t1) <z3,id>E(z2,t1) if 
c3=Unavailable-amount,   

t2: <p1,id> <z3,id>--p1 token is frozen untill 
reaching a  smarking , 

j1: <z3,id> <z4,id> <Receipt1,id> 
tfin1: <Receipt1,id>  <Result,c2>E(Result,tfin1) 

 <sp1,id>E(Result,tfin1) if c2=Not-resolved 
 } 

The following executions show how the defined 
TPNet preserves activity initial operational 
semantics. 

Check-access-code: <ip1,id> <Access-
code,c1> ;  

Ask-for-amount: <access-code,c1> 
<Amount,id>;--init-marking 

f1 : <Amount,id> <z1,id> <z2,c3> ;  
(Prepare-receipt: <z1,id> <z2,c3>  <z4,id>)//  
(Dispense-cash: <z1,id> <z2,c3>  <p1,id>) 

Running TB3 gives a zmarking <z4,id><p1,id> from 
which no other rule is applied. We cannot apply 
rule t2 because p1 token is frozen since we still are 
in a zmarking, Hence the underlying TPNet can be 
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stuck in a non-final state. To avoid this, TPNet will 
forbid this execution. 

6. CONCLUSION 

This paper has addressed the issue of defining a 
unified semantic framework for UML2 activities by 
means of TPNets model. It is a new class of ZSNs 
that offers a non-local behavior related to 
transitions enabling allowing handling cancellation 
and advanced synchronization patterns. The 
TPNets are reactive since they are receptive to 
external events via zero-places also called 
interface places. The handling of external events is 
immediate in TPNets, suggesting execution priority 
semantic that defies Petri nets semantics. In fact, a 
Petri net enabled transition may be fired or not, 
also with no execution priority. Taking into account 
external events is done in transactional mode 
thereby ensuring isolation property, i.e. transaction 
is the unique to see the data it manipulates and 
that other system actions (transitions in TPNets) 
see only statements prior to the transaction 
(statements which triggered the transaction). 
Durability is an important feature of TPNets 
because it allows them to maintain the system 
stability lasting after a transaction is finished. This 
property is necessary to prevent calculations that 
may lead to unstable states (eg. not completed 
transactions). None of Petri nets variants can 
express reactivity and priority of transitions firings 
as we do by isolation and with no conflict in 
executions. Extended Petri nets (Petri nets with 
priority) explicitly express priority among transitions 
by associating a non negative integer to each 
transition, this leads to indirect conflict situations 
among concurrent transitions having the same 
priority. 
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