
Titre:
Title:

On formalizing UML2 activities using TPNets: case studies

Auteurs:
Authors:

Sabine Boufenara, Kamel Barkaoui, Faiza Belala, & Hanifa
Boucheneb

Date: 2011

Type: Communication de conférence / Conference or Workshop Item

Référence:
Citation:

Boufenara, S., Barkaoui, K., Belala, F., & Boucheneb, H. (septembre 2011). On
formalizing UML2 activities using TPNets: case studies [Communication écrite].
5th International Workshop on Verification and Evaluation of Computer and
Communication Systems (VECoS 2011), Tunis, Tunisia (12 pages).
https://doi.org/10.14236/ewic%2fvecos2011.13

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/10609/

Version: Version officielle de l'éditeur / Published version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: CC BY

Document publié chez l’éditeur officiel
Document issued by the official publisher

Nom de la conférence:
Conference Name:

5th International Workshop on Verification and Evaluation of Computer
and Communication Systems (VECoS 2011)

Date et lieu:
Date and Location:

2011-09-15 - 2011-09-16, Tunis, Tunisia

Maison d’édition:
Publisher:

BCS Learning & Development

URL officiel:
Official URL:

https://doi.org/10.14236/ewic%2fvecos2011.13

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.14236/ewic%2Fvecos2011.13
https://publications.polymtl.ca/10609/
https://doi.org/10.14236/ewic%2Fvecos2011.13

On Formalizing UML2 Activities Using
TPNets: Case Studies

Sabine Boufenara
Department of Computer

Engineering,
École polytechnique de

Montréal,
*P.O Box 6079, Station Centre-

ville, Montréal, Québec
sabine.boufenara@polymtl.ca

Kamel Barkaoui
CEDRIC-CNAM,
Rue Saint-Martin,

Paris, France
barkaoui@cnam.fr

Faiza Belala
Department of Computer

Science,
Université Mentouri

 BP 325, Route Ain El
Bey 25017 Constantine,

 Algérie
belalafaiza@hotmail.com

Hanifa Boucheneb
Department of Computer

Engineering,
École polytechnique de Montréal,

*P.O Box 6079, Station Centre-
ville, Montréal, Québec

hanifa.boucheneb@polymtl.ca

ABSTRACT. Transactional Petri Nets (TPNets) are a new class of high-level Zero-Safe Nets (ZSNs),
defined as a more suitable semantic framework for UML2 activity diagrams. Indeed, they ensure
reactivity and synchronization of concurrent flows triggering with their junction. Reactivity is
guaranteed due to the real time massive cancellation semantics based on the definition of new
dynamic enabling rules and the imposed priority among executions. Global synchronization in turn
is assured thanks to non-locality principle, an outcome of exploiting atomic stable transactions.
Rewriting logic is defined as the operational semantics framework of TPNets.

KEYWORDS: Zero-safe nets, UML2 activity diagrams, reactivity, non-local behaviors, synchronization.

1. INTRODUCTION

UML2 represents a milestone in the evolution of
software development technologies. This is
essentially due to the object management group
launching of the UML modeling in the context of
Model Driven Architecture ‘MDA’ (OMG, 2003). In
particular, activity diagrams syntax has been
written from scratch in UML21 (OMG, 2005), new
constructions have been defined to meet complex
systems modeling requirements; defining thus non-
local behaviors that can also be reactive and
transactional. Indeed, to rigorously represent the
behavior of such complex systems with UML
activities, it is essential to capture non-local actions
triggering related behaviors as well as cancellation
patterns and the advanced resulting
synchronization mechanisms. Indeed, elementary
Petri nets based semantics for these new concepts
still currently ambiguous and too basic. The lack of
formalization in UML2 can lead to confusion and
different interpretations in the analysis model,
which reduces the ability to develop required tools
to assist formal specification process. For their part,

1 The current published version of UML is the UML2.3 (OMG,
2010). With regard to Activity Diagrams, UML versions 2.1.1 to
2.3 are minor revision to UML2.0 specification.

designers require more adequate formal models to
verify, validate and refine UML models.

Moreover, the standard does not provide adequate
examples to illustrate the intent behind these
concepts and clarify their meaning. A series of
Bock publications (Bock, 2003a), (Bock, 2003b),
(Bock, 2003c) (Bock, 2004) (Bock, 2005), a founder
of UML2 activities, clarified some concepts and
dynamics of inherent execution, yet, in a natural
language.

The UML2 standard hinted that there is a quasi
isomorphism between activities and Petri nets; this
has launched many researchers’ attempts to
investigate in the formalization of activities via Petri
nets. But they quickly noticed that place/transition
Petri nets are not enough expressive to handle
such complex semantic (streams, expansions,
exceptions, etc). Two solutions are suggested to
overcome the problem: 1) Expand some activity
parts and then formalize them via place/transition
Petri nets concepts (Barros, et al., 2003) and 2)
Resort directly to high level class Petri nets. Yet,
giving rise to a multitude of models, each one
handling a particular activity concept. Our works
are situated in this mind set. We have shown in our
previous publications (Boufenara, et al., 2009a)
(Boufenara, et al., 2009b) (Boufenara, et al., 2010)
that the place/transition Petri nets do not preserve

On Formalizing UML2 Activities Using TPNets: Case Studies
S. Boufenara, K. Barkaoui, F. Belala, H. Boucheneb

the semantics of the original addressed activity
concepts and we have proposed its formalization
via another Petri nets high level class inspired from
Zero Safe Nets (ZSNs) of Bruni (Bruni, et al.,
1997). In this paper, our purpose is to give a unified
formal model (TPNets) that encompasses the
whole activity model and resolves problematic
situations, whilst being intuitive; we offer solutions
to many concepts that have not been treated in the
literature: reactivity, non-local behavior,
synchronization of fork/join nodes, special
synchronization at the final node, streaming
parameters, etc.

The paper is structured in 6 sections: in Section 2,
we give the most pertinent related work and
discuss their weaknesses. Section 3 is devoted to
presenting zero-safe nets, UML2 activity diagrams
(by means of our proposed formalism AD2s
“Activity Diagrams in UML2”) and rewriting logic. In
Section 4, we informally (for lack of space) present
our approach which encompasses the proposed
model TPNets along with syntactic and behavioral
aspects and the transformation of AD2s to TPNets.
Three case studies are presented in Section 5 to
illustrate our formalization approach of UML2
activities. Finally, we conclude by giving the most
relevant contribution of the paper.

2. RELATED WORK

The feasibility of a particular semantic approach
depends largely on how it addresses the
characteristics of the diagrams it covers. The most
interesting activities formalization are those that
define a literally formal semantics contribution. In
the state of the art, few works are relevant to
mention; Barros and Gomes proposed in (Barros,
et al., 2003) a translation of a subset of activities
concepts, including streaming and expansions, to
Petri nets. They focus on some streaming aspects
and try to overcome the failure of place/transition
Petri nets to support this concept by defining a rich
semantics for actions. To do so, they expand
actions to activities. In fact, this is an improper
manipulation of activity diagrams, since the UML
standard states that an action is elementary and
represents a single step and may be complex in its
effect (refer to (OMG, 2005) p.321) so it can not in
any way be interrupted. Effectively, when
translating actions, considered now as activities, to
Petri nets, additional places are created, leading to
intermediate states and hence to the UML
underlying semantics violations. Moreover, only
local behaviors are considered in place/transition
Petri nets, while the non-locality semantics is an
important and innovative feature of UML2.

A series of Störrle culminating publications focuses
on a thorough study of activities semantics and

proposes different formalizations of some concepts.
In (Störrle, 2004a), the author defines a
denotational and compositional semantics of
activities by means of transformation rules to the
procedural Petri nets. Emphasis is set on control
flows; including procedural calls, nevertheless
without any indication about data. The first work is
extended in (Störrle, 2004b) to cover exceptions.
These ones involve non-local control flow to
capture the overall state distribution which is
obviously complex to model with place/transition
and procedural Petri nets. To address the problem,
the author defines an exception colored Petri nets
based approach. The author only focuses on
directing the control flow to the exception handler.
Exception semantics is related to the internal
behavior of action raising the exception, creating
thus a non-deterministic internal choice. We do not
need adding artifacts because deterministic choice
naturally directs control to the exception handler. In
(Boufenara, et al., 2009b), we give an intuitive
solution to exception problems. In (Störrle, 2004b),
the author formalizes structured nodes by non-
formal transformations (examples) to procedural
colored Petri nets. We consider that Störrle work is
quite relevant, it is rather criticized the multitude
semantic domains while a UML model typically
includes multiple concepts at once, which cannot
be formalized according to the different Störrle
work to obtain a single Petri net.

In our previous papers (Boufenara, et al., 2009a)
(Boufenara, et al., 2009b) (Boufenara, et al., 2010),
we solved many related problems to activities
formalization and adapted zero-safe nets to best
meet activities requirements. However, during our
research, we noticed that ZSNs are not completely
adapted to preserve the whole UML2 activities
features. That was a revelation for a real change in
our study. In this paper, we define a unified and
precise operational semantics of UML2 activities.
We develop a double sided integrated approach:
On one hand, we define a new dedicated model to
UML2 activities called Transactional Petri Nets
(TPNets in short). TPNets are based on a stable
transaction semantics inherited from Zero-Safe
Nets: ZSNs (Bruni, et al., 1997), a class of high
level Petri nets. On the other hand we define a
more structured way to describe an abstraction of
activity diagrams called AD2s (these ones cover all
previously addressed concepts, and new ones:
synchronization at join nodes, initial and final nodes
and the overall activities static and operational
semantics). AD2s resume UML2 activities syntactic
concepts, while limited to most but not all
expressiveness levels. They serve to define
TPNets model rigorously assigned to UML2
activities. We also define, in our work, algebraic
equations for formal mapping AD2s to TPNets. This
is a critical key step in our development. In fact, it
allows transparency of formalization process; we

On Formalizing UML2 Activities Using TPNets: Case Studies
S. Boufenara, K. Barkaoui, F. Belala, H. Boucheneb

build on earlier analyses rather than discard them,
so developers have no longer to worry about
rewriting their informal activities models in formal
ones (TPNets over here) thereby engendering
transformation omissions and mistakes. We
moreover define TPNets operational semantics
under the rewriting logic, so TPNets firing rules are
described by rewriting rules and firing conditions
are expressed via membership equations.

3. BACKGROUND

The objective of this section is to present
elementary concepts of formalisms used in this
paper: Zero-Safe Nets model, UML2 activity
diagrams and rewriting logic.

3.1 Zero safe nets

Zero-safe nets have been introduced by Bruni in
(Bruni, et al., 1997) to define synchronization
mechanism among transitions, without introducing
any new interaction mechanism besides the
ordinary token-pushing rules of nets. Their role is to
ensure the atomic execution of complex transitions
collections, which can be considered as
synchronized. Formally, a ZSN is a 6-tuple B = (SB,
TB, FB, WB, uB, ZB) where NB = (SB, TB, FB, WB, uB)
is the underlying place/transition net SB is a non-
empty set of places TB is a non-empty set of
transitions, FB  (SB x TB)  (TB x SB) is a set of
directed arcs WB is the weight function that
associates a positive integer to each arc uB is the
places marking associating positive tokens number
to each place ZB  SB is the set of zero places (also
called synchronization places and pictured by small
circles). The places in SB\ZB are called stable
places. A stable marking is a multiset of stable
places. The presence of one or more zero places in
a given marking makes it unobservable, while
stable markings describe observable states of the
system.

A firing sequence s = u0[t1>u1…un-1[tn>un is a stable
step of a ZSN if it guarantees the two following
properties: 1) The concurrent enabling property
which insures the initial simultaneous not conflicting
enabling of all sequence transitions by stable
places and not only those transitions allowing the
initial triggering of the first execution2 and 2) The
stable fairness property which assumes that u0 and
un are stable markings.

A stable step s is a stable transaction3 of B if in
addition: 3) markings u1,…, un-1 are not stable and

2 This property prohibits the consummation of stable tokens
produced in the step.
3 In a stable transaction, each transition represents a micro-step
carrying out the atomic evolution through invisible states. Stable

4) The perfect enabling property that ensures the
consummation of all initial stable tokens before the
transaction ends, is satisfied.

3.2 UML2 Activities

Activities are a kind of graphs having their nodes
defined in the meta-model of UML standard (OMG,
2005). We formally define an underlying structure
of UML2 activities called AD2s. It takes back the
first four activities expressivity levels and some
aspects of the fifth one. We incrementally define
the AD2s by first designing the core composed of
the lowest level including basic fundamental
concepts of activities, which is ADs. Its structure is
a tuple AD = (EN, BN, CN, IN, fN, CF, Guard)
where elements stand respectively In the
underlying activity diagram for executable nodes,
branch nodes (decisions and merges), concurrent
nodes (forks and joins), initial nodes (will represent
the initial marking in the TPNet), final node, control
flows and guards on decisions output edges. On
the other hand, an AD2 is more expressive, it is
defined by a tuple AD2 = (AD, ON, OF, CR, SA,
EA, IAR, EVT, Cancel, Weight) where elements
respectively stand for AD defined above, object
nodes (pins), object flows (data flows), concurrent
region (a sub-activity diagram delimited by a global
fork and a global join), streaming actions (actions
with streaming parameters), exception actions
(actions with exception outputs), interruptible
activity region (a sub activity diagram containing
interruptible actions due to reception of an external
interrupting event)4, interrupting event, cancel
(action handling the exception) and finally edges
weight.

3.3 Rewriting logic

In rewriting logic, a dynamic system is represented
by a rewriting theory ব = (઱,ણ,ۺ,܀) describing the
complex structure of its states and the various
possible transitions between them. In rewriting
theory definition, (઱,ણ) represents an equational
membership theory, ۺ is a set of labels and ܀ is a
set of labelled conditional rewriting rules. These
rewriting rules can be of the following form:

:ܚ(܆∀) ܜ → ܒ܅ሥ܎ᇱܑܜ : ܔܜሥ⋀	ܒ܁ → ܔ′ܜ
۸∋ܒۺ∋ܔ

Where ܚ is a labeled rule, all the terms (pi ,qi ,wj ,sj
,tl ,tl’) are ઱-terms and the conditions can be

tokens produced during the transaction are frozen. They
become active in the system, only at the end of the transaction.

4 Only nodes that might generate places via transformation rules
in the TPNet are considered in the IAR. Since our purpose is not
modeling but defining static and operational semantic, so it is of
no interest to reconsider all syntactic IAR elements. Only those
important for interrupting the activity in the region are to be
considered. In a perspective of TPNets, interrupting the
execution of some transitions means to disable them by
destroying tokens of their preconditions.

On Formalizing UML2 Activities Using TPNets: Case Studies
S. Boufenara, K. Barkaoui, F. Belala, H. Boucheneb

rewritings, membership equations in (઱,ણ), or any
combination of both. Given a rewriting theory, we
say that  implies a formula [t][t’] if and only if, it
is obtained by a finite application of the rewriting
logic deduction rules, Reflexivity, Congruence,
Replacement and Transitivity (Meseguer, 1992).
The theoretical concepts of the rewriting logic are
implemented through the Maude language (clavel,
et al., 2006). Its objective is to extend the use of the
declarative programming and the formal methods
to specify and verify critical and concurrent
systems. A Maude program represents a rewriting
theory, i.e., a signature and a set of rewriting rules.
The computation in this language corresponds to
the deduction in rewriting logic. Furthermore, it is
implemented through a running environment,
allowing prototyping and formal analysis of
concurrent and complex systems.

In (Meseguer, 1992), the author has shown that
rewriting logic naturally describes place/transition
Petri nets and correctly captures atomic behavior
and concurrency in these nets according to
semantic choices that may be interleaving or true
concurrency. In our work, we do not directly
execute TPNets, we rather define executions by
means of rewriting logic. This will make us avoid
the combinatory explosion of the Petri net states
space.

4. TRANSACTIONAL PETRI NETS FOR UML2
ACTIVITIES

Petri nets are not reactive, well known by their
locality feature, while most of systems are reactive
and might admit a non-local activation of
computational steps. Looking ahead to faithfully
describe the operational semantics of activities
reactivity and global synchronization patterns, we
define a new variant of ZSNs called TPNets, with
special enabling and firing rules well adapted to
model complex systems, including a priority among
transitions execution and many other features that
make them eligible to constitute a formal semantic
framework of UML2 activities.

TPNets include static net structures to unfold
activities actions. Actions appear atomic, but really
they enclose a complex internal behavior, such as
actions with exception outputs or streaming
parameters. In UML2 activities, no synchronization
is needed at the final node, whereas Petri nets just
define ‘and’ synchronization at transitions entries.
In TPNets, we define special transitions
synchronization at final nodes.

For lack of space, we do not give detailed
definitions in this paper; we refer interested reader
to (Boufenara, 2010).

4.1 Definitions

A TPNet is the tuple TPN = (P, T, F, W, Z, RF, SIAR,
Cancel, Zcancel, NTRexcept, NSstream, IP, sp, tfin). It is
also a bipartite graph composed of two types of
nodes: places and transitions. We define six types
of places: stable places, zero places Z, source
(initial) places IP, final place sp, cancellation places
Zcancel (interface places) and decision zero places.
Each stable initial place has only one output
transition, cancellation places are zero places used
as the system interface with external events5, and
decision places are zero colored places used to
make atomic non-deterministic choices. A TPNet
contains only one stable final place.

Transitions are of three types: simple (elementary)
transitions, cancellation transitions Cancel and final
transition tfin. Elementary transitions are ordinary
transitions, cancellation transitions have only SIAR

6
as input places, defined to exclusively handle
massive cancellation behavior (emptying SIAR
places, the set SIAR is constructed by the
AD2/TPNet transformation process) and directing
control flow to exception handler. They are pictured
by a highlighted rectangle in Figure 1. Final
transition has only one output stable place sp, it is
pictured via two parallel lines.

Figure 1: A generic TPNet

Places are connected to transitions via three types
of directed arcs: non-labeled weighted/non-
weighted arcs, labeled arcs (edges with guards) but
with a weight equal to ‘1’ and reset arcs which can
be interpreted as functions (places×transitions) that
allow to a transition to delete all tokens of its input
place connected via the reset arc. TPNets may also
include sub-nets for exceptions NTRexcept

7, or for

5 Interface places are necessary to express, once marked, the reception
of an interrupting event
6 SIAR is a set of places that have to be emptied to disable transitions of
the interruptible region.
7 NTRexcept is a sub-TPNet with a predefined static structure, composed
of a decision zero place along with output transitions that are enabled
according to the color of the decision place token. It is introduced to allow
posting tokens exclusively at some output places of the same transition.
We introduced some mechanisms that make the sub-net non-
interruptible.

On Formalizing UML2 Activities Using TPNets: Case Studies
S. Boufenara, K. Barkaoui, F. Belala, H. Boucheneb

streams NSstream
8. Concurrent regions, meanwhile,

do not need special notations or constructions and
that is why they do not appear in this section. The
passage from AD2s to TPNets will make them
stand out. Figure 1 shows a generic TPNet.

4.2 TPNets behaviors

A TPNet can evolve in two different states:
observable (stable) states and non-observable
(atomic) states. This is possible thanks to stable
places and ZSNs zero-places along with the
resulting atomic execution semantics. This feature
has been exploited in TPNets to establish
coordination between fork nodes (triggers of
parallel threads) and join (parallel threads
synchronization node). Although fork and join are
simply mapped into transitions in TPNets, the
related semantics is preserved via a global
synchronization mechanism. Fork and Join nodes
have special semantics under the principle of
traverse-to-completion9, which is a global behavior
principle of tokens offer and acceptance.

In TPNets, behaviors are related to tokens initial
distribution in the graph, called initial marking, and
transitions firing rules among the net. The initial
marking is not user-defined; it rather assigns a
positive number of tokens to each source place ip
 IP. M0 = {ip1, ip2, …, ipn} such that n is the initial
places number in the net.

Graphically, a token is a dark dot inside the place.
There are two kinds of tokens; stable ones,
associated to stable places and zero tokens
associated to zero places. A marking M is said to
be stable iff pM, pP\Z. In other words, a
marking is stable if it does contain any zero token.
It is non-observable otherwise. Initial marking is
stable.

A transaction is a firing sequence which includes a
set of transitions ti with place/transition Petri nets
elementary enabling and firing rules. Enabling
transaction on the other hand, requires a whole
concurrent enabling of internal transitions. Firing
atomic transitions of a transaction tr does not
require any new mechanism besides
place/transition Petri nets one. But it is constrained
by static rules inherent to ZSNs and which
guarantee atomicity, stable fairness and perfect
firing.

Cancel transitions are necessary to abort special
regions in the net called SIAR. They need to satisfy

8 NSstream is a sub-TPNet introduced to bypass the basic Petri nets
synchronization at transitions inputs/outputs and to allow global
synchronization where streams can move along without any interne
synchronization. No interruption of the execution of the NSstream is
permitted.
9 ttc

two enabling conditions: Initial Enabling condition:
zcanc  M and Effective Enabling condition: The
effective marking M that enables a transition cancel
 Cancel is calculated dynamically (at runtime) and
is equal to the instant marking of incoming places
(each place p  SIAR) of the transition Cancel
calculated when zcanc is marked. Firing an enabled
transition cancel  Cancel, destroys a token of
interface place zcanc and all tokens of places p such
that p  SIAR and creates tokens in the outgoing
places of cancel, enabling hence the transition
corresponding to exception handler.

A transition t having incoming edge labeled by an
expression from the set Expr should satisfy in
addition to enabling rules the following rule: The
tokens type (color) of each place p required to
enable t is equal to the arc (p, t) label. Firing such
transitions destroys tokens of the same color as the
(place,transition) edge label.

Enabling final transition tfin assumes that no tokens
synchronization is required. Its firing is the same as
Petri nets elementary transitions firing. We give
some case studies in section 5 to better clarify
TPNets principles.

In our work, we assign an operational semantics to
TPNets. To achieve this, we first define a revised
rewriting logic based semantic framework for ZSNs.
Then we adapted this mathematical model to give a
sufficient and precise semantics to TPNets. Thus,
we do not only define an operational semantics to
the TPNet behavior, but we also be able to produce
executable specifications through Maude system
that may be formally analyzed. Maude (Clavel, et
al., 2006) is a practical environment implementing
rewrite theories.

4.3 From AD2 to TPNets

In this step, a formal mapping is established
between AD2s and TPNets. It defines a formal
semantic to the syntactic structure of AD2s using
algebraic equations. In what follows, we give
transformation equations. These ones are
illustrated via case studies in section 5.

Let AD2 be an activity diagram AD2 = (AD, ON,
OF, CR, SA, EA, IAR, EVT, Cancel) where AD =
(EN, BN, CN, IN, fN, CF, Garde). The semantic
model (AD2) of AD2 is a marked transactional
Petri net (TPNet, M0) = (P, T, F, W, Z, RF, SIAR,
Cancel, Zcancel, NTRexcept, NSstream, IP, sp, tfin, M0,
Couleur, Expr) such as NSstream = (synch1, synch2,
connect, pst, zst, tst1, tst2) and NTRexcept = (zdec, EF,
tac, tN, TE). The corresponding TPNet is obtained by
the following rules:

On Formalizing UML2 Activities Using TPNets: Case Studies
S. Boufenara, K. Barkaoui, F. Belala, H. Boucheneb

 P = BN  ON \ {poi of = (poi, poi+1) and

tb on of}  {IN, fN}  {pc c  CF}  {p 
(NTRexcept  NSstream)}.

 T = EN \{SA  EA}  CN\ {j1, …, jm'} for (ji
OF onf)  (ji CF Af’)  {toi of  OF  of =
oi  oi' and tb on of}  {tdidi'  (di, di')  (OF
 CF)}  {tmimi'  (mi, mi')  (OF  CF)} 
{canceli  canceli  speci }  {tof of  OF 
(of.source  IN  of.target  ON) 
(of.source  ON  of.target = fN)}  {t 
(NTRexcept  NSstream)}  tfin.

 F = (OF  CF)  if {x’, y’}  (EN  CN) 
((x, q), (q, y)) ((x  T)  (y T)  (q  P))
 {(x, y)(x, y)  (NTRexcept  NSstream)}.

 W = Weight.
 M0 = IN.
 Z = {p (p = n)  (n  CR)} \ {p Ai  (f,

Ai)  (OF*  CF*)  (Ai, j)  (OF*  CF*)}
 EVT  {z –z  (NSstream  STRexcept}.

 SIAR = {p  (p  P)  (p = n  n  IAR}.
 Cancel = Cancel.
 Zcancel = EVT.
 NTRexcept = EA.
 NSstream = SA.
 IP = IN.
 sp = fN.
 tfin = Ai  (Ai, fN)  CF.
 Expr = Garde.
 Couleur = {o ↦o.type  o  ON}

Decisions and merges, initial nodes and final node
are transformed into TPNet places. Also, a place is
created for each control flow arc. When two object
nodes are connected through an edge not carrying
a behavior, then they are mapped into one place
for both. If the edge does carry any transformation
behavior, then two places are created for each
object node. Executable nodes are transformed
into elementary transitions. Concurrent nodes fork
are transformed into elementary transitions and join
nodes followed by actions (and thus pins) are not
transformed, i.e. they do not create any transition in
the corresponding TPNet. Join nodes which
outputs are different from actions with input pins
are transformed into transitions. Edges carrying a
transformation behavior tb also generate
transitions. Other transitions are generated for
sequential decision nodes and sequential merge
nodes. For each action cancel, a special transition
cancel of type Cancel is created. A transition is
created when a source node is directly attached to
an object node or when an object node is directly
linked to a final node. Actions with input/output
stream are converted into TPNets net structures
NSstream and actions with exception output
parameters are converted to net structures
NTRexcept. All generated places of concurrent
regions are zero ones. Some exceptions to that
rule ensure the preservation of the traverse-to-

completion principle10. A final transition
corresponds to the last action in the underlying
AD2.

5. CASE STUDIES

In our definition of TPNets, we do not associate to
them any application domain, preventing hence a
restricted use of such a powerful model. They are
merely associated to UML2 activities as shown in
figure 2.

To better illustrate our contribution, we present
three case studies selected from literature and
adapted to the modeling of some of the relevant
aspects of our approach. The first one, business
activity of the order process, illustrates the
application of TPNets to capture the non-
interruptible concurrent region activity. A variant of
the basic diagram of this case study illustrates how
TPNets handle interruptible regions. Finally,
through the third example (Automatic cash
dispenser), we illustrate how powerful are TPNets
to detect deadlocks due to non-observation of the
traverse-to-completion property in activities.

Figure 2: Our Transformation process

5.1 Process Order Commercial Activity

Figure 3 presents a classical example of the
commercial activity of the ordering process taken
and adapted from the UML2 specification (OMG,
2005). Partitions are illustrated in the example to

10 The traverse-to-completion principle assumes that the edge traversal is
constrained by the token offer acceptation by both source and
destinations. The principle requires in some special cases a global
synchronization between the fork and join nodes.



On Formalizing UML2 Activities Using TPNets: Case Studies
S. Boufenara, K. Barkaoui, F. Belala, H. Boucheneb

highlight responsible actors of different actions in
the workflow.

The control begins when a customer sends an
order “Send order”, this one triggers sequential
actions “Check availability” and “Calculate amount”.
A data “Price estimation is generated and sent to
customer to make a choice (decision node, pictured
here by a diamond) whether to cancel order and
pass control to close customer record action “Close
record” via the guard [Cancel] or change his order
or validate order and hence route control to two
concurrent threads via the fork node. Each
concurrent thread is composed of sequential
actions that are synchronized once all involved
threads are finished via the join node. Hence, if a
thread finishes before the other one, it cannot rout
the control to join node because of the traverse-to-
completion principle waiting until all threads finish
and can offer their tokens to join node for
synchronization. The final action terminates control
in the activity diagram.

Figure 3. Activity diagram of the process order
commercial activity

5.1.1. Identifying AD2 elements
Figure 3 presents AD2, the abstraction of the
activity diagram corresponding to this case study.
AD2 = (EN1, BN1, CN1, IN1, fN1, CF1, ON1, OF1,
CR1, Garde1) where:

EN1 = {Send-order, Check-availability,
Calculate-amount, Estimation-acceptance,
Prepare-bill, Pay-bill, Validate-payment,
Prepare-order, Order-shipment, Close-
record}.

BN1 = {d1}
CN1 = {f1, j1}
IN1 = {in1}
fN1 = {fn1}
CF1  ((EN1, BN1, CN1, IN1)  (EN1, BN1, CN1,

fN1))
ON1 = {dt1, dt2, dt3, dt4, dt5, dt6} where dt1= dt2 =

Price-estimation, dt3= dt4 = Bill and dt5= dt6
= payment.

OF1 = {(dt1, dt2), (dt3, dt4), (dt5, dt6)}
CR11 = {{Prepare-bill, Pay-bill, Validate-

payment, Prepare-order}{dt3, dt4, dt5,
dt6}{(f1, Send-order), (f1, Prepare-order),
(dt3, dt4), (dt5, dt6), (Validate-payment, j1),
(Prepare-order, j1)}}

Garde1 = {modify, validate, cancel}

5.1.2. Design of the corresponding TPNet
Figure 4 models the generated TPNet. This one is
generated using equations defined in the
transformation model.

Figure 4. TPNet model of the process order commercial
activity

TPNet = (P1, T1, F1, Z1, IP1, sp1, tfin1, M01, Couleur1,
Expr1) such as:

P1 = {ip1, p1, p2, p3, sp1, Price-estimation, d1,
Bill, Payment, z1, z2, z3, z4}

T1 = {Send-order, Check-availability, Calculate-
amount, Estimation-acceptance, Prepare-
bill, Pay-bill, Prepare-order, Order-
shipment, f1, tfin1, t1, t2}

On Formalizing UML2 Activities Using TPNets: Case Studies
S. Boufenara, K. Barkaoui, F. Belala, H. Boucheneb

F1  (P1  T1)  (T1  P1)
Z1 = {z1, z2, z3, z4, Bill, Payment}
IP1 = {ip1}
M01 = {ip1}
Couleur1: d1 {Modify, Validate, Cancel}
Expr1 = {Modify, Validate, Cancel}

Note. Place d1 corresponds to decision node. Firing
transition Estimation-acceptance generates the d1
internal token which value is Price-estimation. d1
type is composite, at a logical level it is a record
containing at least two fields: Price-estimation and
acceptance-state that is calculated by Estimation-
acceptance. This later takes one of three values
modify, validate or cancel.

5.1.3. Model Execution and comments
The TPNet of figure 4 may be associated to the
following rewrite theory TB1 = (ΣB1, EB1, LB1, RB1),
defined by:

ΣB1 = {Marking, ip1 p1 p2 p3 sp1 Price-estimation
d1: splace,  : Marking, Bill Payment z1
z2 z3 z4 : zplace, init-marking, fin-marking,
 :Marking Marking Marking, __:
Marking Marking Marking}

EB1 = {p   = p, p  p′ = p′  p, (p  p′) 
p′′ = p  (p′  p′′), p   = p, p  p′ = p′ 
p, (p  p′)  p′′ = p  (p′  p′′)}

LB1 = {Send-order, Check-availability,
Calculate-amount, Estimation-acceptance,
Prepare-bill, Pay-bill, Prepare-order, Order-
shipment, f1, tfin1, t1, t2}

RB1 = {
Send-order: <ip1,id> <p1,id>,
Check-availability: <p1,id> <p2,id>,
Calculate-amount: <p2,id> <Estimation-

price,id>,
Estimation-acceptance: <Estimation-price,id>

<d1,c1>,
f1: <d1,c1>E(d1,f1> <z1,id><z2,id> E(d1,f1) if

c1=validate,
Prepare-bill: <z1,id> <Bill,id>,
Pay-bill: <Bill,id> <payment,id>,
Prepare-order: <z2,id> <z3,id>,
Order-shipment: <z4,id> <z3,id> p3,
tfin1: <p3,id>  <d1,c1>E(d1,tfin1) 

<sp1,id>E(d1,tfin1) if c1=cancel,
t1: <d1,c1>E(d1,t1> <ip1,id> E(d1,t1) if

c1=modify,
t2: <payment,id> <z4,id>
 }

Notice that no synchronization is defined on final
transition. This is expressed by the operator 
(logic OR) on rule tfin1. If we transformed our AD2 to
a place/transition Petri net, this would have
synchronized flows at the final transition,
synchronizing hence order-shipment and the
cancel process. What is semantically wrong and

would lead to a deadlock because P3 and cancel
cannot be both marked. The traverse-to-completion
principle assumes that in our case study, no
interruption of the concurrent region is allowed.
Transforming our AD2 to a place/transition Petri net
will create intermediate stable places, thus
intermediate states that can be interrupted. If we
assume that once the billing process is started, no
interruption is allowed, then the TPNet meets this
requirement. Creating zero-places in the concurrent
region will make it impossible to abort, because no
zero token can be left at a stable state and a
correct firing sequence has to end at a stable one.

In what follows, we give a simple execution
example of our proposed model through some
rewriting rules of TB1. The initial marking is {ip1}.

Send-order: <ip1,id> <p1,id>;
Check-availability: <p1,id> <p2,id>;
Calculate-amount: <p2,id><Estimation-

price,id>;
Estimation-acceptance:<Estimation-price,id>

<d1,c1>; --init-marking
f1: <d1,valider> <z1,id> <z2,id>;
Prepare-bill: <z1,id> <Bill,id>;
Pay-Bill: <Bill,id> <Payment,id>;
t2: <Payment,id><z2,id> <z4,id>)//
(Prepare-order: <Payment,id><z2,id>

<z3,id>);
Order-shipment: <z4,id> <z3,id> p3; --fin-

marking;
tfin1: <p3,id>  <d1,Cancel>  <sp1,id>.

The operator «;» expresses sequential rewriting
steps whereas the operator « // » expresses
parallel rewriting steps.

States between init-marking and fin-marking are of
type zmarking, so they are not interruptible. In our
definition of rewriting rules, we impose that once a
rewriting rule generates a z-marking, at runtime the
left hand side of the rule is considered as an init-
marking and that we must obtain a fin-marking so
that proof is correct if not this one is forbidden.
Hence, once billing process and order processing
have begun, cancellation is no longer allowed.

5.2 Variant of the Process Order Commercial
Activity

In the previous section, we presented a classical
example of a commercial order treatment process
where the customer belonging to the system could
intervene and stop the order processing procedure
through the action Estimation-Acceptance. Note
that there exists only one point where customer
could interrupt the process.

On Formalizing UML2 Activities Using TPNets: Case Studies
S. Boufenara, K. Barkaoui, F. Belala, H. Boucheneb

Figure 5. Activity diagram of the process order
commercial activity, including Interruptible region

In this section, we discuss the same process but
from another view (see figure 5): customer
becomes an external entity to the system and
therefore, he interacts with it through external
events. Interrupting event «cancellation»:
Cancellation-Order-Request corresponds to the
guard cancel of figure 3, however not restricted to
some exact and predefined interruption points. In
the current view, the system becomes more
flexible, accepting external real time interrupting
events at multiple points of the interruptible region
delimited by dashed rectangle. In the example, we
do not accept interrupting order process once
billing process is started. Hence, billing process
does not belong to the interruptible region.

5.2.1. Identifying AD2 elements
Abstracting case study 2 activity diagram (figure 5)
gives raise to the following AD2.
AD2 = (EN2, CN2, IN2, fN2, CF2, ON2, OF2, CR12,
IAR2, EVT2, Cancel2) where:

EN2 = {Receive-order,Check-availability,
Calculate-amount, Prepare-bill, Validate-
payment, Prepare-order, Order-shipment,
Close-record,Cancel-order}.
Transform.bill.payment is a transformation
behavior noted tb1:

CN2 = {f1, j1}

IN2 = {in1}
fN2 = {fn1}
CF2  ((EN2, CN2, IN2)  (EN2, CN2, fN2))
ON2 = {dt1, dt2, dt3, dt4, dt5, dt6} where dt1= dt2 =

Estimation-price, dt3= Bill and dt4=
Payment.

OF2 = {(dt3, dt4)}
CR12 = {{Prepare-bill,Validate-payment,

Prepare-order}{dt2,dt3,dt4}{(f1,dt2),
(f1,Prepare-order), (dt3,dt4), (validate-
payment, j1), (Prepare-order, j1)}}

IAR2 = {Receive-order,Check-availability,
Calculate-amount }

EVT2 = {Cancellation-order-request}
Cancel2 = {Cancel-order}

5.2.2. Generating the corresponding TPNet
Figure 6 models the corresponding TPNet of the
given AD2, its formal definition is omitted and
replaced by explanation.

Figure 6. A TPNet handling cancellation event

Once receiving a cancellation event i.e. once
interface-place is marked, we do need to satisfy
two conditions: 1) Raising and handling the
exception: all places of the SIAR2= {p1,p2,Estimation-
price} have to be emptied at once and the control is
moved to the handler (transition cancel) and 2)
Priority and isolation of the abort execution:
receiving an external event triggers the immediate
blocking and abort activity in the interruptible
region. In terms of Petri nets: firing two
simultaneously enabled transitions is non-
deterministic. The TPNet of figure 6 satisfies both
conditions.

On Formalizing UML2 Activities Using TPNets: Case Studies
S. Boufenara, K. Barkaoui, F. Belala, H. Boucheneb

5.2.3. Discussion
Behaviors of the process order commercial activity
including interruptible region are discussed via
executions of the proposed TPNet model. In a
similar way, we obtain TB2 = (ΣB2,EB2,LB2,RB2), the
rewrite theory associated to TPNet, for lack of
space, it is not given here.

In what follows, we give four model execution
examples (proofs). Only ip1 is initially marked.

Proof 1.

Receive-order: <ip1,id> <p1,id>;
Check-availability: <p1,id> <p2,id>;
Calculate-amount: <p2,id><Estimation-

price,id>; --init-marking
f1 : <d1,Validate> <z1,id> <z2,id>;
(Prepare-bill: <z1,id> <Bill,id>;
Transform-bill-payment : <Bill,id>

<Payment,id>;
Valider-payment : <z2,id><Payment,id>

<z4,id>) //
(Prepare-order: <z2,id><Payment,id>

<z3,id>);
Order-shipment: <z4,id> <z3,id> p3; --fin-

marking;
tfin1 : <p3,id>  <sp1,id>.

No interrupt event raises in this execution of TB2 so
it ends in a normal final state sp1.

Proof 2.

Receive-order: <ip1,id> <p1,id> ;
canc1: <Interface-place1,id>  <_p1,id>

<_p2,id> <_Estimation-price,id> 
<sp1,id>.

Proof 2 ends in a normal final state sp1 upon receipt
of a cancellation event (marking interface-place1)
while processing Receive-order. Indeed, the initial
enabling condition is satisfied when interface-
place1 is marked, on the other hand effective
enabling condition is calculated dynamically and
contains {p1} in this case. Isolation is ensured
because running Check-availability prior to canc1
will disable this latter and keep the system in a non-
observable state. One can think that p1 can be
provided another token to continue executing the
TPNet, but this is not allowed since other tokens
generated tokens will be frozen until the transaction
ends.

Similarly, Rewriting rules 3 and 4 end after
receiving cancellation event respectively while
processing Check-availability and Calculate-
amount.

Proof 3.

Receive-order: <ip1,id> <p1,id>;
Check-availability: <p1,id> <p2,id>;
canc1: <interface-place1,id>  <_p1,id>

<_p2,id> <_Estimation-price,id> 
<sp1,id>.

 Proof 4.

Receive-order: <ip1,id> <p1,id>;
Check-availability: <p1,id> <p2,id>;
Calculate-amount: <p2,id> <Estimation-

price,id>;
canc1: <interface-place1,id>  <_p1,id>

<_p2,id> <_Estimation-price,id> 
<sp1,id>.

5.3 Automatic Cash Dispenser

In this case study, we illustrate how powerfull
TPNets are to reveal conception errors in the UML
activities development process. This is done
through a hypothetical example of an automatic
cash dispenser (see figure 7).

Figure 7. Activity diagram of the automatic cash
dispenser process

Fork node triggers two parallel branches; the left
one may contain, in some executions, no
executable node. According to the traverse-to-
completion principle, the activity diagram contains a
deadlock due to circular dependency between fork
and join nodes. A fork/join global synchronization is

On Formalizing UML2 Activities Using TPNets: Case Studies
S. Boufenara, K. Barkaoui, F. Belala, H. Boucheneb

necessary to capture such global behavior;
nevertheless this is not possible within
place/transition Petri nets. TPNets can observe
such deadlock and forbid executions leading to it.

5.3.1. Identifying AD2 elements
This AD2 is the abstraction of case study 3 activity
diagram. AD2 = (EN3, CN3, BN3, IN3, fN3, CF3,
ON3, CR13) such as:

EN3 = {Check-access-code, Handling-incorrect-
access-code, Ask-for-Amount, Prepare-
receipt, Dispense-cash, Finish-transaction}.

CN3 = {f1, j1}
BN3 = {d1, d2, d3, m1}
IN3 = {in1}
fN3 = {fn1}
CF3  ((EN3, CN3, BN3, IN3)  (EN3, CN3, BN3,

fN3))
ON3 = {dt1, dt2, dt3, dt4}, dt1, dt2, dt3, dt4

respectively stand for Access-code, Result,
Amount and Receipt.

CR13 = {{Prepare-receipt, Dispense-cash}
{dt3, dt4} {(f1, dt3), (f1, d3), (d3, dt3), (dt1, d1),
(dt2, d2), (dt4, j1), (Dispense-cash, m1)}}

Garde3 = {correct, incorrect, Resolved, Not-
resolved, Amount-available, Unavailable-amount}

5.3.2. Generating the corresponding TPNet
In the same way, we obtain the corresponding
TPNet = (P3, T3, F3, Z3, IP3, sp1, tfin1, M03, Couleur3,
Expr3).

Figure 8. Automatic dispense cash TPNet

Notice that p1 is stable, hence once marked, the
token is frozen until the transaction ends (no zero
token is left), this is impossible because of the
circular dependency in the region. The TPNet
execution semantic ensures to forbid such
runnings.

5.2.3. Discussion
We associate the rewrite theory TB3 to this TPNet.
TB3 = (ΣB3, EB3, LB3, RB3):

ΣB3 = {Marking, ip1 p1 sp1 Access-code Amount
Result Receipt1: splace, : Marking, z1
z2 z3 z4: zplace, init-marking, fin-marking,
: Marking Marking Marking, __:
Marking Marking Marking}

EB3 = {p   = p, p  p′ = p′  p, (p  p′) 
p′′ = p  (p′  p′′), p   = p, p  p′ = p′ 
p, (p  p′)  p′′ = p  (p′  p′′)}

LB3 = {Check-access-code, Handling-incorrect-
access-code, Ask-for-amount, Prepare-
receipt, Dispense-cash, f1, j1, tfin1, t1, t2, t3}

RB3 = {
Check-access-code: <ip1,id> <Access-

code,c1>,
Handling-incorrect-access-code: < Access-

code,c1> E(Access-code, Handling-
incorrect-access-code)
<Result,id>E(Access-code, Handling-
incorrect-access-code -incorrect) if
c1=correct,

Ask-for-amount: <Access-code,c1>E(Access-
code,Ask-for-amount)
<Amount,id>E(Access-code,Ask-for-
amount) if c1=incorrect,

t3: <Result,c2>E(Result,t3) <Access-
code,c1>E(Result,t3) if c2=Resolved,

f1: <Amount,id> <z1,id> <z2,c3>,
Prepare-receipt: <z1,id> <z4,id>,
Dispense-cash: <z2,c3>E(z2, Dispense-cash)

<p1,id>E(z2, Dispense-cash) if c3=Amount-
available,

t1: <z2,c3>E(z2,t1) <z3,id>E(z2,t1) if
c3=Unavailable-amount,

t2: <p1,id> <z3,id>--p1 token is frozen untill
reaching a smarking ,

j1: <z3,id> <z4,id> <Receipt1,id>
tfin1: <Receipt1,id>  <Result,c2>E(Result,tfin1)

 <sp1,id>E(Result,tfin1) if c2=Not-resolved
 }

The following executions show how the defined
TPNet preserves activity initial operational
semantics.

Check-access-code: <ip1,id> <Access-
code,c1> ;

Ask-for-amount: <access-code,c1>
<Amount,id>;--init-marking

f1 : <Amount,id> <z1,id> <z2,c3> ;
(Prepare-receipt: <z1,id> <z2,c3>  <z4,id>)//
(Dispense-cash: <z1,id> <z2,c3>  <p1,id>)

Running TB3 gives a zmarking <z4,id><p1,id> from
which no other rule is applied. We cannot apply
rule t2 because p1 token is frozen since we still are
in a zmarking, Hence the underlying TPNet can be

On Formalizing UML2 Activities Using TPNets: Case Studies
S. Boufenara, K. Barkaoui, F. Belala, H. Boucheneb

stuck in a non-final state. To avoid this, TPNet will
forbid this execution.

6. CONCLUSION

This paper has addressed the issue of defining a
unified semantic framework for UML2 activities by
means of TPNets model. It is a new class of ZSNs
that offers a non-local behavior related to
transitions enabling allowing handling cancellation
and advanced synchronization patterns. The
TPNets are reactive since they are receptive to
external events via zero-places also called
interface places. The handling of external events is
immediate in TPNets, suggesting execution priority
semantic that defies Petri nets semantics. In fact, a
Petri net enabled transition may be fired or not,
also with no execution priority. Taking into account
external events is done in transactional mode
thereby ensuring isolation property, i.e. transaction
is the unique to see the data it manipulates and
that other system actions (transitions in TPNets)
see only statements prior to the transaction
(statements which triggered the transaction).
Durability is an important feature of TPNets
because it allows them to maintain the system
stability lasting after a transaction is finished. This
property is necessary to prevent calculations that
may lead to unstable states (eg. not completed
transactions). None of Petri nets variants can
express reactivity and priority of transitions firings
as we do by isolation and with no conflict in
executions. Extended Petri nets (Petri nets with
priority) explicitly express priority among transitions
by associating a non negative integer to each
transition, this leads to indirect conflict situations
among concurrent transitions having the same
priority.

REFERENCES

Barros, J. P. and Gomes, L. 2003. Actions as
Activities and Activities as Petri nets. Bernhard
Rumpe, Robert France, and Eduardo B. Fernandey
Jan J¨urjens.Proc.Ws.Critical SystemsDevelopment
with UML. 2003, pp. 129-135.

Bock, C. 2003a. Activity and action models part 2:
Actions. 2003a, Vols. Journal of Object
Technology, 2(5): pp. 41-56.
Bock, C. 2003b. Uml 2 Activity and action models.
Journal of Object Technology. 2003b, Vol. 2(4), pp.
43-53, July-August 2003.
Bock, C. 2003c. Uml 2 activity and action models
part 3: Control nodes. Journal of Object
Technology. 2003c, Vol. 2(6), pp. 7-23, 2003.

Bock, C. 2004. Uml 2 activity and action models
part 4: Object nodes. Journal of Object Technology.
pp. 27-41, January-February 2004, 2004, Vol. 3, 1.
Bock, C. 2005. UML 2 Activity and action models
Part 6: Structured Activities. Journal of Object
Technology. May-June 2005, 2005, Vol. 4, 4.
Boufenara, S. 2010. Les Réseaux de Petri
Transactionnels (TPNs), Un Cadre Sémantique des
Activités dans UML2. [Thèse d'état]. Constantine,
Département d'Informatique : Université Mentouri,
Octobre 2010.
Boufenara, S., Belala, F. and Barkaoui, K. 2010.
Mapping UML2.0 Activities to Zero-Safe Nets. J.
Software Engineering & Applications JSEA. 2010,
Vol. doi: 10.4236/jsea.2010.35048, 3.
Boufenara, S., Belala, F. and C.Bouanaka. 2009a.
Les Zero-Safe Nets pour la préservation de la TTC
dans les diagrammes d’activité d’UML. Revue des
Nouvelles Technologies de l’Information RNTI-L-3,
15ème Conférence Internationnale sur les
Langages et Modèles à Objets : LMO 2009.
Cépaduès éditions, 2009a, pp. 91-106.
Boufenara, S., F. Belala and Debnath, N. 2009b.
On Formalizing UML 2.0 Activities: Stream and
Exception Parameters. 22nd International
Conference on Computers and Their Applications
in Industry and Engineering CAINE. 2009b.
Bruni, R. and Montanari, U. 1997. Zero-safe Nets,
or transition synchronization made simple.
Proceedings EXPRESS’97, ENTCS 7, Elseive.
1997.
Clavel, M., et al. 2006. All About Maude. 1997-
2006 SRI International, 2006.
E.Guerra and J.D.Lara. 2003. A framework for the
verification of UML models. Examples using Petri
nets. .JISBD. 2003, pp. 325-334.
Meseguer, J. 1992. Conditioanl rewriting logic as a
unified model of concurrency. Theoretical computer
science. 1992, Vol. 96(1), pp. 73-155.
OMG. 2003. MDA Guide 1.0.1. Object
management group. 2003, Document 03-06-01.
OMG. 2005. Unified Modelling Language:
Superstructure. Version 2.0. s.l.: Object
Management Group. Available at www.omg.org,
2005.
OMG. 2010. Unified Modelling Language:
Superstructure. Version 2.3. s.l.: Object
Management Group. Available at www.omg.org,
2010.
Störrle, H. 2004a. Semantics of Control-Flow in
UML 2.0 Activities. VLFM. 2004a.
Störrle, H. 2004b. Semantics of Exceptions in UML
2.0 Activities. Journal of Software and Systems
Modeling. 2004b.
Trickovic, I. 2000. Formalizing activity diagrams of
UML by Petri nets. Novi Sad J. Math. 2000, Vol. 30,
3, pp. 161-171.

