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Abstract: Unmanned aerial vehicles (UAVs) have become popular in surveillance, security, and remote
monitoring. However, they also pose serious security threats to public privacy. The timely detection
of a malicious drone is currently an open research issue for security provisioning companies. Recently,
the problem has been addressed by a plethora of schemes. However, each plan has a limitation,
such as extreme weather conditions and huge dataset requirements. In this paper, we propose a novel
framework consisting of the hybrid handcrafted and deep feature to detect and localize malicious
drones from their sound and image information. The respective datasets include sounds and occluded
images of birds, airplanes, and thunderstorms, with variations in resolution and illumination. Various
kernels of the support vector machine (SVM) are applied to classify the features. Experimental results
validate the improved performance of the proposed scheme compared to other related methods.

Keywords: AlexNet; feature extraction; localization; public safety; malicious drones; surveillance

1. Introduction

Mini drones, also known as unmanned aerial vehicles (UAVs), have played a vital role in the
development of smart cities. The UAVs have numerous industrial and agricultural applications.
The high-resolution images collected through UAVs help in various monitoring applications of the
cement industry [1]. Drones are helpful in the irrigation [2] and carrying chemical pesticides or
fertilizers to spray on plants [3]. So-called foggy drones use thermal cameras to scan the roads and
avoid accidents in foggy weather [4]. The UAVs can operate as mobile base transceiver stations (BTS) to
facilitate the surge traffic demands during disasters [5,6]. In smart cities, drones resolve cybersecurity
issues [7]. UAVs also help in the navigation and positioning of military targets during war [8].

Malicious UAVs are those which either carry restricted explosive payload or collect audiovisual
data from restricted private geographic territory. Moreover, a UAV can be considered malicious when
it loses control and enters the nonflying zone [9]. The low-altitude flight of a malicious drone enables it
to violate the security measures of a restricted zone, as shown in Figure 1. Restricted areas protect
sensitive locations, such as prisons and nuclear facilities. The official definition of such a restricted
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area is “an airspace of defined dimensions above the land areas or territorial waters of a State within
which the flight of aircraft is restricted under certain specified conditions”.
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There is a need for a technology that can detect and disarm such malicious UAVs in a timely
manner. Recently, various techniques for UAV detection have been reported in the literature, relying on
audio, video, thermal, and radio frequency (RF) signals [10]. Each scheme has its own advantages and
limitations. The video- and thermal-based detection techniques fail in adverse weather conditions.
The sound of a UAV’s motor fan and its images are useful to differentiate the amateur UAV from other
objects. The audio-based detectors are cost-effective as they require only an array of microphones to
capture the sounds and classify them in their respective class. However, environmental noise can
degrade the performance of sound-based detection [11].

We propose a machine-learning-influenced audio- and vision-based UAV detection method.
The proposed scheme is capable of detecting UAVs with higher accuracy, even in a noisy environment.
The proposed hybrid method consists of acoustic and image processing algorithms for the precise
detection of amateur drones [10,11]. The classification accuracy obtained using handcrafted and deep
neural network is compared with the proposed framework. Various handcrafted feature extraction
methods for image description, such as Local Binary Pattern (LBP) [12], Histogram of Oriented Gradient
(HOG) [13], Locally Encoded Transform Feature Histogram (LETRIST) [14], Gray Level Co-occurrence
Matrix (GLCM) [15], Completed Joint-scale Local Binary Pattern (CJLBP) [16], Local Tetra Pattern
(LTrP) [17], and Non-Redundant Local Binary Pattern (NRLBP) [18], have been employed to detect
objects based on their texture. Moreover, several handcrafted feature extraction methods for audio
have been proposed, such as Linear Predictive Cepstral Coefficients (LPCC) [19], and Mel Frequency
Cepstral Coefficients (MFCC) [20]. The deep neural network (DNN) models such as: AlexNet [21],
ResNet-50 [22], VGG-19 [23], Inceptionv3 [24], and GoogLeNet [25] have also been utilized for image
feature extraction. The support vector machine (SVM), along with various kernels, have been employed
to classify the extracted feature vectors. The proposed scheme is cost-effective as well as highly accurate,
even with a small dataset. The proposed scheme integrates the handcrafted sound descriptor with deep
features extracted from the image to detect the malicious drone. This hybrid method has provided
better accuracy even in adverse weather conditions [11].

2. Related Work

UAVs can efficiently be detected via several intrinsic signals, which are thermal images, the sound
of the UAV’s motors, and radio frequency (RF) radar [10]. In [26], the authors achieved 81% UAV
detection accuracy by extracting features from the input array of cameras and microphones. In [27],
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a pseudorandom sequence of binary values was presented to detect drones. The results show
that the pseudorandom sequence can only detect UAVs within the 100 m range for the 2 GHz band.
The technique in [28] proposed a radar that operates at 35 GHz frequency-modulated continuous-waves
(FMCW) equipped with fixed antennas. The results show that their estimated velocities efficiently
detected UAVs. This system can be made more efficient by employing circularly polarized antennas.
In [29,30], deep belief network (DBN) along with convolutional neural networks (CNNs) were reported.
The DBN accuracy depends on channel conditions; moreover, they require a huge dataset for accurate
detection. In [31,32], texture descriptors were developed that can classify surfaces into their respective
classes even in the presence of geometric and photometric variations. In [33], a tracker was developed
by employing the handcrafted descriptors proposed in [31,32].

Furthermore, the authors in [34] measured the radio signal in cellular networks using logistic
regression and decision tree to detect drones. The accuracy of these models is reduced when drones are
flying at lower heights. Similarly, in [35], plotted image machine learning (PIL) and K-nearest neighbors
(KNN) were developed for acoustic-based drone detection in the real-time scenario. The simulation
results show that PIL is 22% more accurate than KNN, while KNN is less complicated than PIL.
These approaches require a massive amount of data for better performance.

In [28], the authors present a limited-dataset-dependent algorithm for correlation-based sound
detection. The method is cost-effective, but it is not suitable for real-time applications. In [36,37],
a video-based mechanism was developed for robust detection of drones. In this scheme, the system
is equipped with two cameras with day and night vision sensors. The short-wave infrared (SWIR)
cameras along with high-resolution visual-optical (VIS) cameras were included with the above system.
Still, it failed to bring improvement in accuracy. The mechanism in [37] failed to work properly in
strong wind. In [38], Hidden Markov Model (HMM) was used to detect UAVs using acoustic sensors.
This model also has limitations, as it gives a poor performance for a small amount of training data
due to the complexity of classifiers. There is no such scheme, according to the authors’ knowledge,
that can detect UAVs accurately using a small amount of training data and machine learning algorithms.
This paper contributes to detecting UAVs through a hybrid approach; the first part is related to the
detection of UAVs by their sound, while the second part consists of UAV detection and localization
using images.

3. UAV Detection Methodology

UAVs have specific acoustic features that are different than other sounds in the surrounding
environment. The sounds play a vital role in UAV detection if appropriate features are extracted and
classified. On the other hand, UAVs are very different in shape than the surrounding object, so the
image can be a piece of information that is useful to detect UAVs. The image features are extracted
by a convolutional neural network (CNN) like AlexNet, and then the extracted features are classified
using some efficient classifier.

The proposed malicious UAV detection model depends on the audio and images collected within
the restricted zone, as shown in Figure 2. The arrays of microphones and high-resolution cameras
capture the audio and video within the restricted zone. First, the ground control stations (GCS) collect
the audio and visual information from the respective array of sensors. In the second stage, features
are extracted from the audio and visual information through a specified descriptor. In the third step,
the extracted features are classified using a trained classifier. In this paper, we have used a machine
learning technique to classify the audio and image features extracted through the MFCC and AlexNet
model, respectively. The SVM with various kernels is used as a classifier.
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3.1. Audio Feature Extraction

The audio features are extracted through Mel Frequency Cepstrum Coefficients (MFCC) descriptor.
In MFCC, the frequency axis is enveloped with Mel frequencies [20]. Firstly, the pre-emphasis and
windowing filter is applied to audio. Secondly, the Fast Fourier transform is applied over the filtered
sound signals, following the Mel filter banks. In the third stage, the log of the filter bank energies is
calculated. Finally, the discrete cosine transform (DCT) is applied, and the resultant values between 2
and 13 are preserved, while the rest are discarded. The output of DCT is MFCCs, and all the steps,
as mentioned earlier, are illustrated in Figure 3. The frequency in hertz (Hz) is converted into the Mel
frequency scale through the following Equation (1).
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)
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The symbol mel in Equation (1) represents the frequency in the Mel scale, while the symbol f
represents the frequency in hertz. The Mel spectrum is the result of the log of filter banks. The DCT is
applied on the Mel spectrum to get Mel cepstrum coefficients, as shown in Equation (2).

c(n) =
M−1∑
m=0

(
logD(m) cos(

πn(k− 0.5)
M

)

)
; n = 0, 1, . . . , C− 1 : 0 ≤ k ≤M− 1. (2)

The function c(n) in Equation (2) represents the MFCC coefficients, while the symbol C is the size
of MFCC coefficients. The function D(m) denotes the Mel magnitude spectrum. The Mel magnitude
spectrum is the product of the magnitude spectrum and the triangular Mel weighting filters. The m is
the m-th triangular filter coefficient. The variable k in Equation (2) denotes the index of the sample,
while M represents the total number of samples.

3.2. Visual Feature Extraction

AlexNet is used to extract features for the image. It has 25 layers: one input layer, one output layer,
and 23 hidden layers. The hidden layers consist of five convolutional layers, three max-pooling layers,
seven rectified linear unit (ReLU) layers, three fully connected layers, two cross-channel normalization
layers, two dropout layers, and one softmax layer. The feature extraction using AlexNet is shown in
Figure 4. The size of the input image is 227 × 227 × 3 at the input layer of AlexNet. This input is fed
into the first convolutional (C1) layer, which has 96 kernels, and stride size in it is 4 × 4. The remaining
convolutional layers are cascaded to C1 with the stride size of 1 × 1.
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3.3. Support Vector Machine (SVM)

In this paper, SVM is used to classify the extracted features. The SVM set its hyperplane based on
positive and negative training feature set to minimize the classification error. The hyperplane adjusts
itself in such a way that it reduces the classification error, as shown in Figure 5. The hyperparameters of
SVM that are linear, Gaussian, and polynomial kernel have been used to classify features. SVM chooses
the ideal choice limit contingent on the most extreme edge, which ideally isolates the information
focuses. Grouping mistake proportion is limited as edge increments, and thus increases the edge,
which results in the least mistakes [39]. The preparation guides closer toward the ideal isolating
hyperplane are the support vectors [40]. This can be written as in Equation (3).
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ωTx + β = ±1 (3)

where β denotes the bias, while the symbols x and ω are vectors representing the input and its weight,
respectively. When the extracted features have a higher dimensionality, then the learning process
selects those variables having a higher interclass variation. This technique is generally known as
a bit trap [41]. The favorable principle position of SVM kernels is their capacity to work in any
measurements with no extra calculations and multifaceted nature. SVM can perform better even for
the noisy high-dimensional feature vectors. This persuades us to choose SVM as a classifier. For SVM
grouping precision, selecting a suitable part plays an essential job. We compared the classification
accuracy of SVM with its linear, Gaussian, and polynomial kernel types. Equation (4) is for linear
kernel. For the polynomial kernel, Equation (5) is used.

K
(
xi, x j

)
= xT

i x j (4)

K
(
xi, x j

)
=

(
1 + xT

i x j
)p

(5)

Here the symbols xi and x j are vectors’ dot product and are plotted in the space of dimension p.
The following equation, Equation (6), is used for the Gaussian kernel.

K
(
xi, x j

)
=

exp
(
−‖xi − x j‖

2
)

2σ2 (6)

where ‖xi − x j‖ is used to calculate the euclidean distance of two different samples. The width of the
Gaussian kernel can be controlled by changing the value of the variance σ.

SVM is trained using features extracted from AlexNet for the visual dataset and MFCC-extracted
features in the case of the audio dataset. The hyperparameters for SVM training are kernels.

4. Experimental Results

In this section, we evaluated UAV detection using integrated audio and visual features by using
audio and image datasets. The dataset is classified by implementing an SVM classifier. Malicious
UAVs are localized by implementing handcrafted descriptors like HOG, LBP, CJLBP, LTrP, GLCM,
NRLBP, and LETRIST as well as deep neural networks like AlexNet, inceptionv3, VGG-19, resNet50,
and GoogleNet. While using an acoustic dataset, malicious UAVs can be detected by implementing
MFCC, LPCC, and ZCR in MATLAB. All the experiments were run on a computer with an Intel(R) Core i7
processor (3.6 GHz) and 16 GB DDR4 RAM. CyberpowerPC, Gamer Supreme Liquid Cool, SLC8260A2.
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4.1. Image Dataset Description

We implemented the proposed method with the dataset of 506 images. Three hundred fifty images
were used for training, while 156 images were used for the test. The images were selected randomly
with the ratio of 70% for training and 30% for testing. The dataset consists of five classes of the images
that are birds, airplanes, kites, balloons, and drones. The flight scenarios of the dataset are low altitude,
high altitude, bad weather, bad visibility, clear weather, and noisy environment. The images of the
dataset have variations in their resolution, scale, orientation, and illumination. Moreover, drone images
also have environmental occlusions. Several pictures from the dataset are presented in Figure 6.
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4.2. Audio Dataset Description

We implemented the proposed method with the dataset of 217 audio samples. One hundred
fifty-seven audio samples were used for the training model, and 60 audio samples were used for the
test. The audio samples were randomly selected with the ratio of 70% for training and 30% for testing.
The dataset contained audio samples of drones, airplanes, birds, and thunderstorms. All the audio
samples were different in length. The spectrograms with a sampling frequency of 44 kHz of audio
samples of drone, bird, thunderstorm, and plane are shown in Figure 7a–d, respectively. The drone
spectrogram contains a red line which means that the drone has specific frequencies, i.e., 2.4 kHz,
while this red line is not observed in spectrograms of other audio samples because they have low
frequencies as well as high frequencies.
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4.3. Malicious UAV Detection with Hand-Crafted Descriptors

We used hand-crafted descriptors such as HOG, LBP, CJLBP, NRLBP, GLCM, LTrP, and LETRIST
to detect malicious UAVs. We used SVM as a classifier. The implemented code of all handcrafted



Sensors 2020, 20, 3923 8 of 16

descriptors is available at [42]. Accuracy of each descriptor with various kernels of SVM has been
presented in the Table 1.

Table 1. Accuracy of the hand-crafted descriptors.

Descriptor Linear Gaussian Polynomial

HOG [13] 82.7% 50.6% 50.6%

LBP [12] 53.8% 59.0% 62.2%

GLCM [15] 74.4% 72.4% 73.1%

CJLBP [16] 75.6% 50.6% 50.0%

NRLBP [18] 50.6% 51.3% 50.0%

LTrP [17] 61.5% 50.6% 50.0%

LETRIST [14] 57.1% 50.6% 50.0%

4.4. UAV Detection with CNNs

Results proved that hand-crafted descriptors are not very efficient in malicious UAV detection,
as their maximum accuracy is 82.7%. Then, we used CNNs such as AlexNet, inceptionv3, resNet50,
GoogleNet, and VGG-19 for the detection of malicious UAVs. The CNN models are used as a descriptor
by collecting feature values from the fully connected layer of each respective model. The accuracy,
sensitivity, and specificity of all CNNs are shown in Table 2 using different kernels of the SVM classifier.
The source codes of all implemented CNNs are available at [43]. The accuracy of AlexNet using the
linear or polynomial kernel of the SVM classifier is the greatest among all other CNNs, and it is 97.4%.
The confusion matrices of AlexNet using the linear kernel, Gaussian kernel, and polynomial kernel of
SVM are shown in Figure 8a–c, respectively.Sensors 2020, 20, x FOR PEER REVIEW 9 of 16 
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A confusion matrix is a table that is often used to describe the performance of a classification
model (or “classifier”) on a set of test data for which the actual values are known. The diagonal
elements of the confusion matrix express the percentage of correct classification, while the other items
represent the wrong prediction of the classifier. As the accuracy of AlexNet using the linear and
polynomial kernel of SVM is 97.4%, we propose detection of malicious UAVs with AlexNet using the
polynomial kernel of SVM because its sensitivity is more significant than the linear kernel and it is
more robust by image variations such as resolution, scale, orientation, illumination, and occlusions.



Sensors 2020, 20, 3923 9 of 16

Table 2. Classification results of convolutional neural networks (CNNs) using different kernels of SVM.

AlexNet [21]

Kernel Accuracy Sensitivity Specificity

Linear 97.4% 98.7% 96.3%

Gaussian 50.6% 50.3% 100.0%

Polynomial 97.4% 100.0% 95.1%

Inceptionv3 [24]

Kernel Accuracy Sensitivity Specificity

Linear 95.5% 93.8% 97.3%

Gaussian 50.6% 50.3% 100.0%

Polynomial 63.5% 100.0% 57.8%

ResNet-50 [22]

Kernel Accuracy Sensitivity Specificity

Linear 96.8% 98.7% 95.1%

Gaussian 50.6% 50.3% 100.0%

Polynomial 95.5% 100.0% 91.8%

GoogLeNet [25]

Kernel Accuracy Sensitivity Specificity

Linear 95.5% 96.1% 944.9%

Gaussian 50.6% 50.3% 100.0%

Polynomial 96.8% 98.7% 95.1%

VGG-19 [23]

Kernel Accuracy Sensitivity Specificity

Linear 96.8% 97.4% 96.2%

Gaussian 50.6% 50.3% 100.0%

Polynomial 93.6% 97.2% 90.5%

The parameters TP, FP, TN, and FN are true-positive, false-positive, true-negative, and false-
negative test samples, respectively. For each threshold, two values are calculated: the true-positive
ratio (TPR) and the false-positive ratio (FPR). The TPR is the ratio of TP and the sum of TP and FN.
The TPR is known as sensitivity. Equation (7) is used to calculate sensitivity.

Sensitivity (TPR) =
TP

TP + FN
(7)

Specificity is another parameter which tells the proportion of correctly identified negative instances.
Equation (8) can be used to find specificity.

Speci f icity =
TN

TN + FP
(8)

Overall accuracy and error of classifier is calculated as in Equations (9) and (10) respectively.

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Error =
FP + FN

TP + FP + TN + FN
(10)
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As the accuracy of AlexNet is the greatest, we used it for the localization of malicious UAVs in full
images. We used training features and training labels of AlexNet that were calculated from the images
dataset for localization purposes. Localization procedure is explained in Algorithm 1 and Figure 9.
The input image is first scaled into various sizes by creating a scale pyramid, where the fixed size
patches are collected from each scale with a 50% overlap. Each local patch is described and classified
through the proposed model shown in Figure 9. The size, along with coordinate values of the detector
drone, is transformed into the actual image coordinated by the scaling process shown in the figure,
and a bounding box annotation is created against those coordinates. Results of localization are shown
in Figure 10.

Algorithm 1. Localization Algorithm
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4.5. Detection Using Audio

We used two descriptors, i.e., LPCC and MFCC, to detect UAVs using audio samples. We used the
SVM classifier and calculated accuracy by the confusion matrix in MATLAB. The implemented code is
available at [44]. Table 3 shows the accuracy, sensitivity, and specificity of all the descriptors using
different kernels of SVM. MFCC proved to be very effective in UAV detection with a Gaussian kernel of
SVM. This is because its frequency domain characteristics provide better diversity gain. The confusion
matrices of MFCC using the linear kernel, Gaussian kernel, and polynomial kernel of SVM are shown
in Figure 11a–c, respectively. We also created a combined dataset of images and audio samples [45].
The dataset contains four classes labeled as Drones, Thunder, Birds, and Planes. The dataset contains
two sections. The first one is training data, which includes 885 images and audio samples. The second
one is testing data, which consists of 400 images and sounds. We combined MFCC features of audio
samples and features extracted from AlexNet of images. The combined features are given to multiclass
SVM. We observed that the combined approach gives an accuracy of 98.5%. The accuracy of multiclass
SVM for this approach is shown in Figure 12, and its source code is available at [46].

Table 3. Classification results of audio descriptors.

MFCC [20]

Kernel Accuracy Sensitivity Specificity

Linear 81.7% 85.0% 75.0%

Gaussian 98.3% 97.5% 100.0%

Polynomial 63.3% 94.7% 48.8%

LPCC [19]

Kernel Accuracy Sensitivity Specificity

Linear 65.0% 100.0% 65.0%

Gaussain 63.3% 97.4% 64.4%

Polynomial 83.3% 86.7% 82.2%
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4.6. Computational Time

The time taken to extract features of one image of size 227 × 227 × 3 through AlexNet is 1.16 s,
while the time taken to extract features of one audio sample with MFCC is 0.3 s. The total time taken to
train the model for the visual dataset was 16 min, while the total time taken to train the model for
the audio dataset was 2 min. The time taken to train the model with a combined dataset was 30 min.
The trained model classifies the objects within 2 s.

4.7. Comparison with Present Detection Methods

Table 4 shows a comparison of our proposed method with existing drone detection methods.
We also compared our work with existing methods to detect drones, i.e., using conventional machine
learning and without machine learning, which have detection accuracies of 83% and 79%, respectively.
We adopted similar k-fold validation criteria as mentioned in recently published work. We adopted
k = 5 for audio, image, and combined datasets. Figure 13 shows that the proposed method achieved
almost 98.5% accuracy for drone detection. In the proposed technique, the challenges were low
resolution, occlusion, and noisy audio. These challenges are not considered in previous approaches.
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Table 4. Comparison of proposed method with existing methods.

Ref No. Audio Data Image Data Sample Approach Accuracy

[29]
√

- Deep Belief Network 88.0%

[36]
√

- Correlation 70%

[38]
√

- HMM 81.3%

[47]
√

- SVM with Genetic Algorithm 95.0%

This Paper
√

- MFCC 98.3%

[48] -
√

ResNet-50 96.8%

[49] -
√

FD-HOG 82.7%

[50] -
√

LBP and HOG 62.2% and 82.7%

This Paper -
√

AlexNet 97.4%

[26]
√ √

HOG and MFCC 82.7% and 98.3%

This Paper
√ √

AlexNet and MFCC 98.5%
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5. Conclusions

Malicious UAVs have been a challenge for national agencies to consider due to their ability to
carry explosive materials. There is a need to detect and localize these UAVs promptly in order to
disarm them. For this, a high precision rate model should be used. In this paper, we compared the
performance of various hand-crafted descriptors and different CNNs to detect and localize malicious
UAVs using a relatively small dataset of images, and we also used MFCC and LPCC to detect malicious
UAVs using an audio dataset. We used SVM as a classifier. Our goal was to achieve high accuracy,
and the experimental results showed that the accuracy of AlexNet is 97.4% using the polynomial kernel
of SVM. The accuracy of MFCC was 98.3% using Gaussian kernel of SVM. Finally, we conclude that
AlexNet performed accurately for localization of malicious UAVs, while MFCC had a high precision
rate in detecting UAVs based on sound, even in a noisy environment. The combined features of MFCC
and AlexNet gives an accuracy of 98.5%. The proposed model can quickly be adopted and deployed
by national security agencies to quickly and accurately detect and localize malicious UAVs. This model
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is cost-effective, as a relatively small dataset is used. In the future, we have a plan to include the RCNN
technique and wireless communication in the proposed model.
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