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Abstract: Model Predictive Control (MPC) predictive’s nature makes it attractive for controlling
high-capacity structures such as thermally activated building systems (TABS). Using weather
predictions in the order of days, the system is able to react in advance to changes in the building
heating and cooling needs. However, this prediction horizon window may be sub-optimal when
hybrid geothermal systems are used, since the ground dynamics are in the order of months and even
years. This paper proposes a methodology that includes a shadow-cost in the objective function to
take into account the long-term effects that appear in the borefield. The shadow-cost is computed for
a given long-term horizon that is discretized over time using predictions of the building heating and
cooling needs. The methodology is applied to a case with only heating and active regeneration of the
ground thermal balance. Results show that the formulation with the shadow cost is able to optimally
use the active regeneration, reducing the overall operational costs at the expenses of an increased
computational time. The effects of the shadow cost long-term horizon and the predictions accuracy
are also investigated.

Keywords: hybrid geothermal systems; model predictive control; control-oriented modeling; long-term
predictions; shadow cost

1. Introduction

Model Predictive Control (MPC) is an optimal control methodology that has shown a significant
potential for energy and cost savings in building energy systems operation. In some real pilot buildings
where it has been implemented, it has achieved savings between 15 and 30% [1–3]. The MPC principle
is based on using a model of the system and disturbances predictions to forecast its future behavior
over a prediction horizon. Using this information, an optimization problem is solved to find the
optimal control sequence that minimizes a given cost or objective function under a specific set of
constraints. MPC relies on a ‘receding horizon’ strategy, i.e., at each control time-step only the first
control signal of the sequence is applied and the prediction horizon is shifted towards the future step,
where the optimization problem is solved again. The concept of MPC is not new, since it originated in
the chemical and automotive industries in the late 70s [4], but only over the last decade it has been
more extensively researched within the building sector. Applied to buildings, MPC uses a model
of the building envelope and energy system along with weather and occupancy forecasts to predict
the building dynamic behavior and the energy system efficiencies. Typical objective functions in
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buildings include energy use, costs and CO2 emissions which can have variable prices and emission
factors over time [5]. The objective is minimized while satisfying thermal comfort, humidity and air
quality constraints.

MPC is especially interesting in buildings that need to handle significant time-delays such as
massive concrete structures or buildings with radiant heating and cooling (RHC) emission systems.
To increase the efficiency of the RHC system, it is preferred to connect them to heat pump systems,
as their efficiency increases at lower supply temperatures in heating mode and higher supply
temperatures in cooling mode. Thermally activated building structures (TABS) have relatively stable
water supply temperatures that are close to the required comfort temperatures, and ground-source
heat pumps (GSHPs) rank the highest in terms of performance due to the stable temperatures of the
ground. Additionally, the geothermal borefield coupled to the GSHP can allow the use of almost-free
passive cooling in the summer season. These GEOTABS buildings are typically supplemented with
secondary fast-reacting systems to tackle the comfort problems that may arise from their high inertia,
increasing the complexity of the distribution system and making MPC even more attractive to ensure
optimal integration of the different energy systems [6].

Nevertheless, GSHP systems are still hampered by their elevated initial investment cost, mainly
due to the drilling costs of the geothermal borefield. To reduce these costs, a typical strategy to reduce
the borefield size is to use the secondary system to meet the peak loads while the GSHP system should
provide most of the building energy needs, i.e., the baseload. When applying the ASHRAE borefield
sizing equation [7], which calculates the borefield length as the sum of three contributions (hourly,
monthly and annual loads), it seems that in most cases more than 70% of the ground heat exchanger
length is required to handle the hourly loads (representing the ground peak loads) [8]. Another strategy
involves the installation of devices that actively regenerate the ground thermal balance, such as solar
collectors that inject excess heat into the ground or dry coolers that cool down the field using fresh air
at night. In order to size the geothermal borefield, the ground loads need to be estimated, e.g., using a
dynamic simulation where a control strategy needs to be assumed. Prediction horizons in MPC applied
to buildings typically range from several hours to a few days, depending on the time constant of the
building structure and the availability of disturbance forecasts. However, the time constant of the soil
temperature in geothermal borefields is much larger than that. It requires several months and even
years of heat injection/extraction into/from the soil to appreciate the change in the soil temperature.
In that sense, typical MPC strategies are not able to forecast the long-term impact of the control actions,
not fully guaranteeing the optimality and the sustainable use of the borefield. For example, when a
peak load occurs, if the GSHP is more efficient than the secondary system, a classical MPC strategy
will find it optimal to use the GSHP during the peak load in the short-term. However, a continuous
use of the GSHP during the peak loads can cause premature depletion of the ground source thereby
making it necessary to rely on the secondary system for the baseload. The contribution of this research
is to introduce a novel methodology for MPC that takes into account the long-term dynamics of the
geothermal system not captured by the short MPC horizon.

2. Literature Review

The literature about MPC in (hybrid) geothermal systems are reviewed in this section, with special
emphasis on the short term and long term dynamic behavior. In Section 2.1, the MPC concept is first
introduced, after which Section 2.2 describes the main insights reported in the literature and concludes
by identifying the main gap in this knowledge. This paper focuses on filling this gap.

2.1. Model Predictive Control (MPC) Concept

Model Predictive Control discretizes the continuous time-domain in control time steps and,
for each step, solves an optimization problem that minimizes a given objective function over a finite
period called prediction horizon. The prediction horizon is discretized in a number of N steps, which do
not necessarily coincide with the control step resolution, i.e., each step k can have a different length ∆tk.
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The prediction horizon length defines the range of the optimization and it has to be sufficiently long so
that the building energy system can react to sudden predicted disturbances that may appear in the
last time-steps without hampering the occupants comfort. A prediction horizon length of 2–3 days
for heavyweight buildings is usually sufficient. Applied to buildings with hybrid systems, the MPC
general formulation is given by Equation (1):

min
uk

J = min
uk

N

∑
k=1

Jk = min
uk

N

∑
k=1

[
n

∑
i=1

ci,k J̇i,k

]
∆tk (1a)

s.t. xk+1 = f (xk, uk, dk) ∀k ∈ 1, ...N (1b)

yk = g(xk, uk, dk), ∀k ∈ 1, ...N (1c)

zk = h(xk, uk, dk), ∀k ∈ 1, ...N (1d)

xk ∈ X , uk ∈ U , yk ∈ Y . (1e)

The first sub-equation represents the cost or objective function, which seeks the optimal sequence
of free control inputs uk that minimizes the energy used by the sum of all the n considered building
energy components Jk for all the N time-steps defined within the prediction horizon. Weighting factors
ck can be used to balance or transform each of the energy terms to monetary costs, CO2 emissions,
non-renewable energy, etc. [5]. The optimization problem has thus nuN optimization variables,
where nu is the number of free control inputs. The next set of three sub-equations represent the system
model, i.e., the set of functions that characterize the dynamic behavior of the building and its energy
system states x, and the different output y and parameter/variable z relations: how the outputs of
the building such as the comfort temperature are defined and how the variables or parameters such
as efficiencies and energy used by the different components are calculated. The vector d represents
the disturbances affecting the building system, such as external and internal gains. Finally, the last
sub-equation defines the feasible regions and limits the different states, inputs and outputs within
certain bounds or constraints that the optimization problem has to meet. To ensure the feasibility of the
optimization problem, it is typical that some of the constraints are relaxed using slack variables σ that
can be added to the cost function as a penalty cost. Examples of constraints include the supply system
capacity limits and comfort constraints. All the sub-equations within Equation (1) define whether the
class of this optimization problem is linear (LP), non-linear (NLP), mixed-integer linear (MILP), etc.

In geothermal heat pump systems, the different energy terms to minimize include the compressor
power (both in heating and active cooling) and the passive cooling circulation pump power.
Temperature constraints to ensure proper operation can be set for the working fluid both at the
condenser and the evaporator side. In the literature, research on optimal control of geothermal systems
is rather scarce. The following section introduces the main insights found in the literature, concluding
with the gap that this paper tackles.

2.2. MPC in (Hybrid) Geothermal Systems

A control-oriented borefield modeling review can be found in Atam and Helsen [9]. Many of these
control-oriented models are validated or based on data from the TRNSYS duct-storage model (DST) of
Hellström [10]. For instance, Verhelst and Helsen [11] used the DST model to develop three different
models: a black-box where system identification was used, a grey-box one-dimensional ground heat
diffusion model where the initial guess of the parameters was dependent on the desired model order,
and a white-box one-dimensional ground heat diffusion model of 11-th order, where the parameters are
calculated as proposed by Eskilson guidelines [12] and then model order reduction (MOR) was applied.
The proposed models were used by Verhelst [13] with known building loads, making a total abstraction
of the interaction between the building and the geothermal energy system. An optimal control problem
(OCP) of one year was set up with hourly and weekly time-steps and assuming perfect predictions,
i.e., no mismatch between the prescribed OCP disturbances and the real ones. It was found that the
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optimization tends to maximize the share of energy coming from the ground. However, the effect
of different electricity gas/price ratios and a variable coefficient of performance (COP) was not
investigated. To capture the short-term dynamic behavior, Atam et al. [14] approximated the borefield
model to a model of a single borehole and the immediate ground surroundings, and applied proper
orthogonal decomposition (POD) to reduce the order of the model. This model was used in optimal
control applications in (i) a convexification approach where the GSHP COP linearly depends on the
fluid temperature [15]; and (ii) a comparison between a non-linear MPC strategy where the GSHP COP
is correlated with a second-order polynomial, a linear approach where the GSHP COP is considered
constant and a dynamic programming strategy [16]. In all these cases, the use of an operating fluid
temperature-dependent COP showed savings potential, while the results of using a constant COP
were heavily impacted by the chosen COP. However, in these studies, the building thermal loads
were known a priori, thereby decoupling the building thermal dynamics from the geothermal system.
Moreover, relatively large time steps of 4 h were used. Variable energy prices were tested but they
were not compared in a rigorous way and strong conclusions concerning electricity-gas price ratios
were lacking. De Ridder et al. [17] also used results from the DST model to describe the dynamics
of the underground storage with a single-state model representing the average storage temperature.
The sampling time of the proposed model is however one week, which is more oriented towards
district-level systems rather than building level control. Models based on the DST model are limited
by the fact that (i) they do not take into account the fast dynamics within the borehole; and (ii) they
assume uniformly placed boreholes within a cylindrical storage region.

Differing from calibration approaches using the DST model, Atam et al. [18] identified non-linear
Hammerstein-Wiener models using simulation data from the BASIMO model [19]. Another approach
found in the literature involves the use of artificial neural networks (ANNs) [20]. These approaches,
however, require a considerably large number of simulation data to properly calibrate the models.
Sundbrandt [21] set up a mixed-integer linear programming (MILP) approach where the on-off
behavior of the GSHP was included, but no ground dynamics were incorporated assuming that the
ground can absorb any load demanded by the GSHP.

Within the range of white-box models, Witte et al. [22] developed a control-oriented borehole
model that includes the geothermal gradient, modeling the ground difussion using an RC network.
However, axial heat transfer due to advection is not modeled and the fluid temperature is lumped by
using the borehole thermal resistance Rbor:

Tf = Tbor + RborQ̇bor, (2)

where Tf is the average fluid temperature and Q̇bor is the heat flow being injected/extracted into/from
the ground. Using a similar approach to model the ground, Cupeiro Figueroa et al. [23] included the
advection component and applied the model into a non-linear MPC approach to prove the added
value of a variable COP and of the borefield model. An analysis of the RC ground diffusion network
was made, proving that the predictions of the fluid temperature are accurate within the week range.
Although state estimation can reduce the short-term error [24,25] that appears due to not capturing the
thermal interactions between boreholes, the RC network is not suitable for long-term predictions.

In the long-term, the ground dynamics are affected by the thermal interactions between different
boreholes and the axial effects due to the finite length of each borehole. To account for these long-term
effects, Eskilson [12] introduced the concept of borefield thermal response factors or ‘g-functions’,
characteristic for a specific borefield geometry and selected ground properties. The g-functions
represent the evolution of the average borehole wall temperature over time for a step heat extraction
rate input. These g-functions can be analytically calculated in an accurate way using Finite Line Source
(FLS) approximations and spatial superposition. The solution of the FLS problem can be computed
in an efficient way using pygfunction [26], which follows the methods proposed by Cimmino and
Bernier [27] and Cimmino [28]. A representation of a set of g-functions is given by Figure 1. Under a
variable heat load, temporal superposition of the discretized ground load history of the borefield needs
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to be applied to compute the borehole wall temperature. Since the effects of a single load fade away
with time, the load history further in the past can be aggregated in cells using aggregation schemes to
reduce the computational cost [29,30]. At a given time-step k, each aggregated load proportionally
contributes to the borehole wall temperature variation:

Tbor(tk) = Ts +
nc

∑
n=1

Q̇agg,n(tk)

2πks Hbornbor

[
g(τagg,n)− g(τagg,n−1)

]
= Ts +

nc

∑
n=1

Q̇agg,nκagg,n, (3)

where Tbor is the borehole wall temperature, Ts is the undisturbed ground temperature, Hbor is the
length of one individual borehole, nbor is the number of boreholes, ks is the conductivity of the soil,
Q̇agg,n is the aggregated load at the n-th cell, nc is the total number of cells and τ is the time moving
backwards through the load history starting at the k-th step such that τagg,n = tk − tagg,n and κagg,n is
the weighting factor given by the difference of the g-functions evaluated at τn and τn−1. The number of
studies with focus on optimal control of geothermal systems that follow this approach is very limited,
probably due to the complexity of modeling the cell-shifting phenomena across the aggregation cells in
comparison to the approaches previously seen. Weeratunge et al. [31] modeled a single borehole using
the infinite line source (ILS) solution [32] instead of the g-function in a solar-assisted configuration,
disregarding however the short-term dynamics within the borehole. The work does not give details
about whether a load-aggregation algorithm was used or the length of the considered load history.
More recently, Laferrière and Cimmino [33,34] used a GSHP model represented by second-degree
polynomial correlations and a borefield model that requires a discretized thermal response factor as
input to compute the fluid temperature in a self-assisted water-to-air GSHP configuration, i.e., it uses
a heating element on the source side of the GSHP to prevent too low operating fluid temperatures.
Both works considered relatively short horizons of 5 days and 6 days respectively, for which the RC
diffusion approximation is also suitable.
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process. Region II: heat transfer is affected by the thermal interaction between boreholes. Region III:
axial 2D heat transfer effects influence the heat transfer process. Region IV: steady-state region.

It can be concluded that most of the research in optimal control of geothermal systems is focused
on the short-term dynamic aspects. Few authors have proposed formulations that take into account
the long-term dynamics: Verhelst [13] proposed the introduction of a penalty cost in the objective
function to the daily passive cooling budget, yet the weighting factor/cost for this term is not defined.
Antonov [35] developed the Short-and-Long-Term-Optimization (SALTO) method, imposing yearly
cyclic conditions on the ground nodes temperatures. However, although guaranteeing a sustainable
use of the ground over the years, this approach may not be optimal as it curtails the freedom of MPC
while a certain yearly imbalance can be allowed in the borefield depending on its size.
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3. Proposed Methodology

The method of the shadow-cost aims to optimize the operation beyond the MPC prediction
horizon, e.g., a full season/year, by using an estimation of the heating and cooling needs of the
building. Section 3.1 describes the implementation of the shadow-cost in the MPC cost function.
Sections 3.2–3.4 elaborate on how the estimations of the heating and cooling needs are used to define
the building, energy system and borefield models that compute the long-term predictions necessary to
calculate the shadow-cost. Finally, Section 3.5 formulates the shadow-cost.

3.1. Cost Function

To account for the long-term dynamics processes that occur in the ground (such as thermal
interference between boreholes) in the optimization, we propose a reformulation of Equation (1),
extending it by including a “shadow-cost”, equivalent to “long-term cost” or “cost of opportunity” in
the cost function, such as:

min
uk ,uLT

J = min
uk ,uLT

NST

∑
k=1

Jk + JLT = min
uk ,uLT

JST + JLT , (4)

where JLT is the shadow-cost or long-term objective term and uLT are the optimization variables
associated to this shadow-cost, while we denote the existing term in the optimization as the
short-term objective JST . The idea of the shadow-cost is to introduce an estimation of the objective
cost starting from the end of the prediction horizon of the short-term optimization tNST at the
NST step until a given longer period tNST+NLT at the NST + NLT step, e.g., a season or a full year,
as depicted by Figure 2. A priori, an equivalent solution is to increase the prediction horizon length.
However, a long prediction horizon is associated with an increased number of time-steps, thus
increasing the number of all optimization variables and as a consequence the scale and complexity
of the problem. Moreover, the longer the prediction horizon is, the higher the uncertainty there is
related to the model and disturbance predictions: the prediction error of the building model increases
with each time-step and not all information that the model requires (e.g., solar gains) is available in
the long-term.

t

J

k
t = t0

NST

t = tNST

JST JLT

NST +NLT

t = tNST+NLT

Figure 2. The shadow cost concept.

3.2. Building Long-Term Model

Since the weather predictions uncertainty is high, we need to rely on its seasonality and weather
historical data as used for building design. This weather historical data could be calibrated with
long-term seasonal predictions. Employing these rough weather projections, the future building
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heating and cooling needs could be estimated using for example a dynamic simulation or static
methods, such as the heating or cooling degree-day method [36]. The long-term period considered to
compute the shadow cost can be discretized in a number of long-term prediction steps, in the same
way, the MPC short-term horizon is discretized in prediction time-steps. Assuming that the long-term
prediction steps are sufficiently long so that the impact of the exact building dynamic behavior is
diminished, for a building with n heat supply systems and m cold supply systems a steady-state
building energy balance yields:

Qp
bui,h =

n

∑
i=1

Qp
i,h (5a)

Qp
bui,c =

m

∑
j=1

Qp
j,c (5b)

∀p ∈ {1, . . . , NLT}

where Qp
bui,h and Qp

bui,c are the pre-computed building heating and cooling energy needs, Qp
i,h is the

heating supplied by the i-th heat production system and Qp
j,c is the cooling supplied by the j-th cold

production system at the p-th long-term prediction step. The supplied heat and cold are subjected to
capacity constraints as in Equation (1).

3.3. Energy System Long-Term Model

A heat/cold production system supplies thermal energy to the building by transforming an
energy input according to its efficiency/performance over the considered period. Let Jp

i,h and Jp
j,c be

the energy used by the i-th heat production system and the j-th cold production system at the p-th
long-term prediction step, and η

p
i,h and η

p
j,c the efficiencies of the i-th heat production system and the

j-th cold production system over the p-th prediction step. We have:

Qp
i,h

Jp
i,h

= η
p
i,h (6a)

Qp
j,c

Jp
j,c

= η
p
j,c (6b)

∀p ∈ {1, . . . , NLT}

In the particular case of a GSHP, its performance is quantified by the seasonal coefficient of
performance (SCOP) for heating and the SEER for cooling over the p-th long-term prediction step.

Qp
con

Wp
com

= SCOPp
i (7a)

Qp
eva

Wp
com

= SEERp
j (7b)

∀p ∈ {1, . . . , NLT},

where Qp
con, Qp

eva and Wp
com are the energy supplied by the condenser, the energy absorbed by the

evaporator and the energy used by the compressor, respectively. The SCOP and SEER of the GSHP
depend, among others, on the working fluid temperatures. Since the building long-term model
is formulated using energy balance equations, it is not possible to determine the water supply
temperature of the condenser. To account for the performance dependency on the temperature,
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a higher condenser temperature is expected for colder outdoor temperatures in heating regime and
a lower evaporator temperature is expected for warmer outdoor temperatures in cooling regime.
A dependency with the predicted average external temperature within the interval Tp

e is then assumed.
Hence, the GSHP performances can be formulated using the following correlation:

SCOPp
i = C1 + C2Tp,n1

f + C3Tp,n2
e (8a)

SEERp
j = C4 + C5Tp,n3

f + C6Tp,n4
e (8b)

∀p ∈ {1, . . . , NLT},

where Tp
f and Tp

e are the average fluid temperature at the source side and external temperature
predictions respectively at the p-th long-term prediction, n1, n2, n3, n4 are the power coefficients that
determine the order of the correlation and C1, C2, C3, C4, C5, C6 are constants that depend on the
used GSHP.

3.4. Borefield Long-Term Model

The fluid temperature at the source side is required to determine the GSHP performance.
Moreover, this fluid temperature is constrained by the GSHP and passive cooling limits. It is assumed
that the outlet of the geothermal borefield is connected to the inlet of the GSHP. From Equations (2)
and (3) it is clear that the working fluid temperature depends on the load history of the borefield.
In order to know the GSHP performances and the passive cooling capacity, the working fluid
temperature needs to be estimated. Analogously to Equation (5), for ν components that can extract
heat from the ground and µ components that can inject heat into the ground, an energy balance for the
borefield side gives:

Q̇p
bor =

ν

∑
i=1

Q̇p
i,ext +

µ

∑
j=1

Q̇p
j,inj

∀p ∈ {1, . . . , NLT},
(9)

where Q̇p
bor is the average net heat load in the borefield, Q̇p

i,ext is the average extracted load by the i-th
component (e.g., the GSHP evaporator, a dry cooler, etc.) and Q̇p

j,inj is the average injected load by
the j-th component (e.g., the passive cooling heat exchanger, solar regeneration, etc.) over the p-th
long-term prediction step. The sign convention is such that a load injection into the ground is positive
and a load extraction from the ground is negative. Let tk be the discrete time in the short-term horizon,
and tLT,q the discrete time in the long-term horizon at the q-th prediction, such that tNST = tLT,0.
We then have τagg,n = tk − tagg,n the time at the end of each cell in the aggregated load history,
and in the long-term horizon we have τLT,q = tLT,q − tk at the q-th prediction. Applying temporal
superposition, the p-th long-term prediction of the average borehole wall temperature difference is
given by:

Tp
bor,LT − Ts =

nc

∑
n=1

Q̇agg,n(tNST )

2πks Hbornbor

[
g(τagg,n + τLT,p)− g(τagg,n−1 + τLT,p)

]

+
p

∑
q=1

Q̇q
bor

2πksHbornbor

[
g(τLT,p − τLT,q−1)− g(τLT,p − τLT,q)

]

=
nc

∑
n=1

Q̇agg,n(tNST )κ
p
ST,n +

p

∑
q=1

Q̇q
borκ

p
LT,q

∀p ∈ {1, 2, . . . , NLT}

(10)

where the first term of the equation represents the average borehole wall temperature difference
due to the complete short-term prediction horizon, while the second term represents the increase of
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the borehole wall temperature due to the superposition of the net heat energy borefield predictions.
A graphical representation of Equation (10) is captured in Figure 3. The complete short-term prediction
horizon is necessary to compute the long-term cost. Therefore, it is important to use the vector of
aggregated loads at the last short-term horizon step k = NST since otherwise there would be a ‘gap’
in the borefield load history. At each long-term prediction step, the vector of aggregated loads is
further away in the past and its effect fades away with time. In essence, there is a different κ vector of
weighting terms affecting each individual borefield load for each long-term prediction step. These extra
κ vectors can be pre-computed prior to the optimization. In theory, a moving long-term prediction
horizon strategy could be applied to account for the ‘gap’ between the vector of aggregated loads
and the predicted loads and computing a shadow cost at each short-term optimization time-step.
However, this would require the recomputation of the κ vectors at each short-term optimization step,
increasing the computational burden of the optimization problem. Moreover, there is no point in doing
so since the objective is to optimize the control inputs over the short-time horizon.

The borehole resistance Rbor can be used to calculate the average fluid temperature prediction at
the p-th prediction Tp

f .

Tp
f = Tp

bor + RborQ̇p
bor

∀p ∈ {1, . . . , NLT}.
(11)

t

Qbor{ Qagg

Q
Q

Q

Q NST+p
t = tNST+p = tLT,p

k
t = tk

NST

t = tNST = tLT,0 

NST +NLT

t = tNST+NLT

g-function

p
bor

2
bor

1
bor

NLT
bor

.

.

.
.

.

.

Figure 3. Graphical representation of Equation (10), with the vector of aggregated loads evaluated at k = NST.

3.5. Formulation of the Shadow-Cost

The shadow cost is formulated as:

JLT =
NLT

∑
p=1

[
n

∑
i=1

cp
i Jp

i,h +
m

∑
j=1

cp
j Jp

j,c

]
, (12)

where cp
i and cp

j are the weighting cost factors in line with the ones used in the short-term objective
JST at the p-th long-term prediction step. Adding this shadow cost to minimize the objective function
involves the addition of m+n− 2 long-term optimization variables up

LT per prediction step p, i.e., a total
of (m + n− 2)NLT extra optimization variables, which can be a significant reduction compared to
hypothetically extending the horizon. For passive cooling, the energy used by the circulation pump
is considered.

In summary, the shadow cost long-term optimization and the building operation cost short-term
optimization are coupled through the borefield model. The control actions of short-term optimization
have an impact on the vector of aggregated loads Q̇agg at the end of the short-term prediction horizon,
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which in turn has an impact on the long-term predictions of the fluid temperatures that are used to
minimize the shadow cost.

4. Validation Case Study

The proposed methodology is tested in the case study illustrated in Figure 4. A 1200 m2 building,
modeled as a single zone building, is equipped with a GSHP connected to an undersized borefield.
An auxiliary electrical heating source is connected in series to the GSHP to provide extra heating
during the peak hours. The heat is supplied to the building through an RHC embedded system.
The building can regenerate the ground using a heat exchanger connected to an ideal source at a
constant temperature of 16 ◦C, however, the availability of this source is restricted to the summer
months. In reality, this ideal source could represent an available heating source from solar collectors,
waste heat, etc. No cooling system is installed in the building. The control input variables of
the building include the GSHP modulation u1, the regeneration heat exchanger circulation pump
signal u2 and the auxiliary heating modulation u3 signal. All signals are bounded between 0 and 1.
The condenser and evaporator pumps operate at a constant rate. Ideal sourceT = 16 °C Zone modelu1 u3u2

Figure 4. Schematic of the validation case study. The optimization variables are the ground-source
heat pumps (GSHP) modulation signal (u1), the regeneration heat exchanger circulation pump (u2),
the auxiliary electric heater signal (u3) .

Thermal comfort is guaranteed in the case study building using an MPC that delivers the control
inputs that minimize the operational cost. The MPC optimization is performed at regular control
time-steps of 1 h with a prediction horizon of 1 week. The first set of inputs of the optimal sequence is
applied to the different components. The MPC framework used in this work can handle non-linear
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optimization problems (NLPs), provided that all equations are continuous and twice differentiable.
Only time-based events are allowed. To facilitate the optimization process, only relevant non-linearities
(such as the ones appearing in the Heating, Ventilation and Air Conditioning (HVAC) system) are kept
in the optimization problem, while the non-relevant ones (such as the ones related to the building
envelope, excluding solar radiation which is treated as an input) are linearized according to the work
of Picard et al. [37]. As a consequence, the model used for simulation slightly differs from the model
used for the optimization. Perfect state update from the simulation model to the optimization model is
applied prior to each optimization to avoid error accumulation due to model mismatch. The building
is assumed to be in Denver, Colorado and therefore the BESTEST TMY weather file is used, with
extreme cold temperatures down to −24.4 ◦C. There is no difference between the weather file used
in the simulation model and the optimization model, implying perfect weather predictions. The
different component models, as well as further details of the MPC formulation, are presented in the
next subsections.

4.1. Building Envelope and Energy System Models

The models are constructed in the Modelica language [38] using verified component models from
the IBPSA [39] and IDEAS [40] libraries. In practice, these models are calibrated using information
from the real building. The building model corresponds to the IDEAS RectangularZone model,
which assumes a perfectly mixed air volume within a rectangular construction geometry subjected
to dynamic heat transfer relations. The zone temperature Tz in the model is equal to the operative
temperature given by the average of the air and radiant temperatures. The envelope is oriented
towards south and the thermal characteristics of the construction can be found in Table 1. An equal
number of windows is placed on each façade. The infiltration losses are computed based on an n50

value of 0.5 ACH. Internal gains are accounted between 7 a.m. and 11 p.m. coming from 50 occupants
at a heating rate of 73 W per occupant. Since the thermal mass of the building is large, it is decided not
to take into account the re-heating load for the design load calculation. The building static design load
according to the standard ISO12831 [41] is 40 kW when this re-heating load is not taken into account.
The heat supply equipment is sized such that the GSHP capacity is 65% of this value and the auxiliary
heating can provide 100%. The idea is that the GSHP is able to provide most of the energy while
the auxiliary heating supports the GSHP during the peak hours. For the optimization, the building
envelope is linearized using the methodology from Picard et al. [37].

The heat pump is non-reversible and modulating and its energetic performance relations are
derived from an equation-fitting procedure based on a ClimateMaster TMW036 heat pump scaled
to have a nominal capacity of 26 kW. However, this maximum capacity may vary depending on the
GSHP operation conditions. Starting from the correlation defined by Cupeiro Figueroa et al. [23],
we encountered some issues during the optimization as the fitted COP tended to very high values at
low modulation levels. Therefore, the condenser Q̇con and evaporator Q̇eva capacities were chosen as
the preferred variables to be fitted, while calculating the compressor power Ẇcom and the COP starting
from these. In addition and for simplification, the temperature and modulation dependencies are kept
linear in the correlations given by Equation (13).
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Table 1. Summary of the building envelope parameters. The layers are ordered from inside to outside.

Element k [W/mK] t [m] U [W/m2K] ρ [kg/m3] cp [J/kgK]

Outer wall

Concrete block 0.51 0.20 2.55 1400 1000
Foam insulation 0.04 0.17 0.235 10 1400
Wood siding 0.14 0.01 14.0 530 900
Total 0.195

Floor

Concrete slab 1.13 0.08 14.13 1400 1000
Insulation 0.04 0.20 0.2 10 10
Concrete slab 1.13 0.35 3.23 1400 1000
Total 0.123

Roof

Plasterboard 0.16 0.01 16.0 950 840
Concrete slab 1.13 0.08 14.13 1400 1000
Fibreglass quilt 0.04 0.15 0.266 12 840
Roofdeck 0.14 0.02 7.0 430 900
Total 0.184

Windows: U-value: 1.0 W/m2K g-factor: 0.598

Q̇con = (A1 + A2(Teva,in − Teva,nom) + A3(Tcon,in − Tcon,nom)) u1 (13a)

Q̇eva = (B1 + B2(Teva,in − Tcon,nom) + B3(Tcon,in − Tcon,nom)) u1 (13b)

Ẇcom = Q̇con − Q̇eva (13c)

COP =

{
Q̇con
Ẇcom

i f Ẇcom 6= 0

1 i f Ẇcom = 0
, (13d)

where Teva,in and Tcon,in are the inlet fluid temperatures of the evaporator and condenser and Teva,nom

and Tcon,nom are the nominal temperatures of the evaporator and condenser respectively. The values of
the fitted coefficients in Equation (13) are given in Table 2. The nominal condenser and evaporator
temperatures are set at 35 ◦C and 0 ◦C respectively. The condenser and evaporator pumps work at a
constant mass flow rate of 1.6 kg/s.

Table 2. Heat pump fit coefficients used in Equations (13) and (20).

1 2 3

A 23,152 522.3 −51.7
B 17,138 522.0 −170.5
C −34.59 0.138 0.0071

The borefield is comprised of 4 × 125 m single-U boreholes placed in a square configuration with
a relative spacing of 6 m between adjacent boreholes. Further details on the borefield parameters
are given in Table 3. The borefield model is based on the borefield model developed by Picard and
Helsen [42] and refined by Laferrière et al. [43] for the IBPSA library. The heat transfer process
within the borehole is axially discretized. A thermal-capacity network is used to model the radial
heat transfer and the fluid nodes at each discretization are connected with advection heat transfer
equations. The ground response is modeled using temporal superposition as defined by Equation (3).
The load-shifting algorithm is modified from an event-based formulation to a continuous one using
a QUICK (Quadratic Upstream Interpolation of Convective Kinetics) method [44] as presented in
Equation (14), so that the MPC NLP solver is able to handle it.
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dQ̇agg,n

dt
=

Q̇agg,n−1/2 − Q̇agg,n+1/2

∆τn
(14a)

Q̇agg,n−1/2 =
Q̇agg,n−1 + Q̇agg,n

2
− (τn − τn−1)

2

8∆τn−1

(
Q̇agg,n − Q̇agg,n−1

τn − τn−1
− Q̇agg,n−1 − Q̇agg,n−2

τn−1 − τn−2

)
(14b)

Q̇agg,n+1/2 =
Q̇agg,n + Q̇agg,n+1

2
− (τn+1 − τn)2

8∆τn

(
Q̇agg,n+1 − Q̇agg,n

τn+1 − τn
− Q̇agg,n − Q̇agg,n−1

τn − τn−1

)
(14c)

Q̇agg,1/2 = Q̇bor, (14d)

where Q̇bor is the heat load injected/extracted into/from the ground, Q̇agg,n is the aggregated load in
the n-th aggregation cell, and Q̇agg,n−1/2 and Q̇agg,n+1/2 are the interpolated loads at the left and right
faces of the n-th load aggregation cell, respectively. The borefield g-function is prescribed as a separate
input file precomputed using the Python package pygfunction [26], based on the methods of Cimmino
and Bernier [27] and Cimmino [28]. The ground response model is slightly modified to include the wall
temperature predictions, implementing the long-term temporal superposition algorithm described in
Equation (10) and require an array of predicted long-term borefield loads.

Table 3. Summary of the borefield parameters of the building.

Borehole Parameters Piping Parameters

Notation Description Value Unit Notation Description Value Unit

rbor Borehole radius 75.0 mm rp Pipe radius 20.0 mm
Hbor Borehole height 125.0 m kp Pipe conductivity 0.5 W/(mK)
dbor Borehole burial depth 0 m tp Pipe thickness 2.0 mm
nbor Number of boreholes 4 - xp Pipe spacing 80.0 mm

Ground Parameters Grout Parameters

Notation Description Value Unit Notation Description Value Unit

ks Ground conductivity 2.0 W/(mK) kg Grout conductivity 1.15 W/(mK)
cs Ground heat capacity 1200 J/(kgK) cg Grout heat capacity 800 J/(kgK)
ρs Ground density 1800 kg/m3 ρg Grout density 1600 kg/m3

Ts Undisturbed ground temperature 10 ◦C
dTs/dz Geothermal gradient 0.01 ◦C/m

The heat exchanger is a counter-flow plate heat exchanger with a heat transfer coefficient UA
listed in Table 4. The computation of the heat transfer rate is based on the NTU-epsilon method [45].
For a counter-flow heat exchanger, Equation (15) holds.

Cr =
Cmin
Cmax

(15a)

NTU =
UA
Cmin

(15b)

ε =
1− e−NTU(1−Cr)

1− Cre−NTU(1−Cr)
(15c)

Q̇hex = εCmin(Thex,hot,in − Thex,cold,in) (15d)

where Cmin and Cmax are the minimum and maximum heat capacity rates, Cr is the heat capacity
ratio, NTU is the number of transfer units, ε is the effectiveness of the heat exchanger and Thex,hot,in
and Thex,cold,in are the inlet temperatures in the heat exchanger both at the hot and the cold side.
The circulation pump model corresponds to the one from the IBPSA library based on similarity
laws [46]. The modulation signal can set the pressure drop input of the pump ∆phex to overcome the
pressure loss in the regeneration heat exchanger. Consequently, the mass flow rate in the regeneration
heat exchanger ṁ is calculated using a flow coefficient k in Equation (16). The flow coefficient
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is calculated using the nominal parameters from Table 4. Since the ideal source is only available
during the summer months, the optimization variable of the regeneration pump u2 is multiplied by a
time-dependent variable Ψ that allows its operation during that period only. To compute the electric
power, the default curve and efficiencies of the model are used. Essentially, the pump electric power
Wpum cubically increases with the mass flow rate up to its nominal power Wpum,nom:

Ψu2∆pnom =

(
ṁ
k

)2
(16a)

Ẇpum = Ψu2
3Ẇpum,nom (16b)

Finally, the auxiliary electric heater model is assumed to supply heating in a linear relation to its
modulation signal. It is assumed that it transforms electricity into heat with 100% efficiency.

Q̇aux = u3Q̇aux,nom (17a)

Ẇaux = Q̇aux. (17b)

Table 4. HVAC equipment parameters.

Notation Description Value Unit

Q̇con,nom GSHP nominal capacity 26 kW
Q̇aux,nom Auxiliary system nominal power 40 kW
UA Heat exchanger heat transfer coefficient 10,000 W/K
∆pnom Pump nominal pressure drop 120 kPa
ṁnom Pump nominal mass flow rate 1.6 kg/s
Ẇpum,nom Pump nominal power 400 W

4.2. Control Strategies

The described model is extended with the optimization specifications using Optimica [47]
and translated into an optimization problem using TACO [48]. The implementation of the NLP
is made through CasADi [49]. An external C-code links the optimal control inputs resulting from the
optimization to the model during the simulation.

The building heating system operates to keep the zone temperature Tz given by the IDEAS zone
model equations higher than a pre-set lower comfort bound Tz that follows a night set-back profile.
During the day, when the building is occupied, the limit is set at 21 ◦C while at night the bound is
reduced to 16 ◦C. Three MPC strategies, differing in the way regeneration is controlled, are tested:

1. A state-of-the-art MPC for the whole system;
2. A state-of-the-art MPC combined with an RBC that activates the regeneration pump during the

summer period, i.e., maximizes the amount of regenerated heat;
3. An MPC that includes the shadow-cost methodology.

The horizon is divided in 14 NST intervals, structured as depicted in Table 5. Perfect state updates
and perfect weather predictions are assumed, avoiding uncertainties from these aspects. The first
strategy comprises a full MPC scenario that aims to minimize the operational costs of the installation
according to the formulation given by Equation (18).
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min
uk

J1 = min
uk

NST

∑
k=1

[
cel

(
Ẇcom,k + Ẇaux,k + Ẇpum,k

)
+

S1

∑
s=1

σs,k

]
∆tk (18a)

σ1 =

{
cσ1(Tz − Tz)2 i f Tz > Tz

0 i f Tz ≤ Tz
(18b)

σ2 =

{
cσ2(Teva,out − Teva,out)2 i f Teva,out > Teva,out

0 i f Teva,out ≤ Teva,out
, (18c)

where Teva,out is the outlet fluid temperature of the evaporator, Teva,out is the safety minimum
temperature constraint of the GSHP, and cel is the electricity price. The GSHP safety constraint
is set at 0 ◦C and the electricity price at 0.204 $/kWh. A set of S1 quadratic penalization costs σs are
introduced to keep (i) the comfort limits in the building and (ii) the temperature operation range within
the GSHP evaporator, and weighted with a scaling factor to speed-up the optimization cσs .

Table 5. Prediction horizons considered for the Model Predictive Control (MPC) and shadow cost.

Interval No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

MPC (NST )

Interval size 1 h 1 h 1 h 1 h 2 h 2 h 4 h 4 h 8 h 12 h 12 h 24 h 48 h 48 h
Time elapsed 1 h 2 h 3 h 4 h 6 h 8 h 12 h 16 h 1 d 1.5 d 2 d 3 d 5 d 7 d

Shadow cost (NLT )

Interval size 1 w 1 w 1 w 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m
Time elapsed 2 w 3 w 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m 11 m 12 m

In the second strategy, the pumping power of the regeneration heat exchanger Ẇpum is removed
from the objective function in Equation (18) and this component is now controlled by a traditional
rule-based controller (RBC). In the period where regeneration is possible, the pump operates at
nominal conditions.

The third strategy follows an MPC approach similar to the first one, but with the addition of
the shadow cost term. The optimization problem uses the building heating energy needs computed
from a previous simulation as input. The long-term horizon comprises a full year divided in 14 NLT
long-term prediction steps, structured as presented in Table 5: the first three steps have a weekly
resolution up to the first month, while the remaining 11 steps cover the rest of the year with monthly
steps. Therefore, for each long-term prediction step p the energy balances for both the building and
the borefield yield:

Qp
bui,h = Qp

con + Qp
aux (19a)

Q̇p
bor∆tp = −SCOPp − 1

SCOPp Qp
con + Qp

hex, (19b)

where ∆tp is the size of the p-th long-term interval. The first term in Equation (19) for Q̇p
bor represents

the predicted evaporator energy, which coincides with the extracted heat energy from the ground,
and the second term represents the heat injected into the ground as a result of the regeneration heat
exchanger. To compute the COP on the long-term, we assume a linear relation with the borefield
predicted fluid temperature Tp

f calculated using Equations (10) and (11), and the average external

temperature prediction Tp
e . The coefficients can be found in Table 2.

SCOPp = C1 + C2Tp
f + C3Tp

e . (20)
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Equations (13) and (17) are used to compute the predictions of the compressor and auxiliary
power. The regeneration heat exchanger flow can be computed using Equation (15) for each p-th
long-term prediction step, where Thex,hot,in is the ideal source temperature of 16 ◦C and Thex,cold,in
coincides with the predicted fluid temperature Tp

f . Then, applying Equation (16) the pump electrical
power can be predicted. The shadow cost can be formulated as:

JLT =
NLT

∑
p=1

[
cel

(
Ẇp

com + Ẇp
aux + Ẇp

pum

)
+

S2

∑
s=1

σLTs

]
∆tp, (21)

and the MPC is formulated as:

min
uk

J3 = min
uk

(J1 + JLT) (22a)

σLT1 =





cσLT1 ∑NLT
p=1(Q̇

p
con)

2 i f Q̇p
con < 0

cσLT1 ∑NLT
p=1(Q̇

p
con − Q̇con)2 i f Q̇p

con > Q̇con

0 i f 0 ≤ Q̇p
con ≤ Q̇con

(22b)

σLT2 =





cσLT2 ∑NLT
p=1(Q̇

p
aux)

2 i f Q̇p
aux < 0

cσLT2 ∑NLT
p=1(Q̇

p
aux − Q̇aux)2 i f Q̇p

aux > Q̇aux

0 i f 0 ≤ Q̇p
aux ≤ Q̇aux

(22c)

σLT3 =





cσLT3 ∑NLT
p=1(Q̇

p
hex)

2 i f Q̇p
hex < 0

cσLT3 ∑NLT
p=1(Q̇

p
hex − Q̇hex)

2 i f Q̇p
hex > Q̇hex

0 i f 0 ≤ Q̇p
hex ≤ Q̇hex

(22d)

σLT4 =

{
cσLT4 ∑NLT

p=1(T
p
f − Tf )

2 i f Tp
f > Tf

0 i f Tf ≤ Tp
f

, (22e)

where Q̇con, Q̇aux and Q̇hex are the capacity limits of the GSHP, auxiliary system and regeneration
heat exchanger, and Tf is the safety average temperature constraint at the source side of the GSHP.
An additional set S2 of long-term quadratic penalization terms σLT is added to the problem formulation.
Penalizations in Equation (22) ensure that the power distribution resulting from the optimization is
within the system capacity limits. The capacity limits of the GSHP and auxiliary system are given by
the nominal values in Table 4, while the capacity limit for the heat exchanger is given by Equation (15)
with ε = 1. Analogous to Equation (18), the penalization term σLT4 ensures that the fluid is within the
temperature range of the GSHP. However, in this case the constraint Tf is set at 0.75 ◦C as it is the
mean fluid temperature.

5. Results and Discussion

5.1. Comparison of Control Strategies

The case study is simulated for a 10-year long period starting at the beginning of the winter
season, using an Euler integrator with a variable time-step of 15 s, i.e., the time-step can become shorter
if an event (e.g., change in a control input condition) is triggered. After each hour and following the
described MPC strategies, the cost-optimization is solved and a new set of inputs is prescribed to the
simulation. The weather data file range comprises one full year, therefore these forecasts are repeated
each year.

The results in Table 6 show a negligible use of the regeneration pump in the strategy with full
MPC control (i.e., strategy 1). In summer, heat injection into the borefield is usually detrimental to the
system operational costs over the short-term horizon, so MPC tends to not use it. Among the three
strategies, strategy 2 is able to maximize the use of the GSHP and minimize the use of the auxiliary
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system by injecting the highest amount of energy into the ground. Despite this, the cost savings by
the increased GSHP use are not able to offset the cost savings from the regeneration pump in strategy
3. In essence, strategy 2 could be seen as an upper bound to the energy actively regenerated into the
borefield since regeneration is applied whenever possible, whereas strategy 3 regenerates energy in a
cost-effective way over the considered long-term horizon. Comparing strategy 2 against strategy 3,
the energy used by the regeneration pump is increased by almost a factor 9, while the regenerated
energy only increased by 7.7% and the energy use of the GSHP by 0.6%. The regenerated energy/pump
energy use ratio is far higher for strategy 3. The SCOP shows a slight increase in the order of the
second decimal since the GSHP is typically working at the evaporator temperature limit in all cases.
The shadow cost formulation (i.e., strategy 3) is able to reduce the operational costs by 9.7% when
compared to strategy 1 and by 4.9% when compared to strategy 2. The main drawback is the increase
in computational time by about a factor 3.5.

Table 6. Comparison of control strategies 1, 2 and 3 over 10 years.

Strategy 1: Strategy 2: Strategy 3:
Key Performance Indicator Unit MPC MPC + RBC MPC + Shadow Cost

GSHP condenser energy use MWh 380.01 401.18 398.85
GSHP compressor energy use MWh 70.27 73.89 73.20
SCOP − 5.41 5.43 5.45
Auxiliary (thermal) energy use MWh 93.01 72.23 73.29
Regeneration pump energy use MWh ~0 8.88 1.00
Regenerated energy MWh 0.28 148.85 137.45
Total operational costs $ 33,309 31,623 30,090
Average number of iterations − 48.19 49.36 72.95
Average time per iteration s 0.0115 0.0088 0.0311

The behavior of the control input variables for a typical year is represented in Figure 5 using
their daily average values. Strategy 1 rarely uses the regeneration pump during the allowed period
(summer/red background), as the MPC cannot appreciate any benefit of using the regeneration pump
within its short prediction horizon. At the end of the summer season, when the short-term horizon
(1 week) can start predicting the future heating needs, there is a timid but late use of the regeneration
pump. The regeneration pump signal of strategy 3 halves the one of strategy 2, incurring much less
energy use from the pump. An oscillatory behavior in the regeneration pump is observed for strategy 3.
These oscillations are likely caused by the small impact of the pumping cost during the 1 h control time
step in the yearly cost objective. As a consequence, it is difficult for the NLP solver to find a smooth
optimum at the selected tolerance settings. At the end of the summer season, the pump signal slightly
increases in strategy 3, in order to increase the fluid temperature and maximize the COP in the heating
season that starts in the short term.

A closer look at the regeneration heat exchanger variables for strategies 2 and 3 during the
summer season are shown in Figure 6. From Equation (15), it is known that the maximum heat
exchange is determined by the inlet temperature difference, minimum heat capacity rates and a unitary
effectiveness. By using a lower signal, the mass flow rate and, as a consequence, the heat capacity rate
of strategy 3 decreases. However, this effect is modestly mitigated by the fact that the inlet temperature
in the heat exchanger at the borefield side decreases. On the other hand, by decreasing the heat capacity
rate of the heat exchanger the number of transfer units NTU increases, therefore increasing the heat
exchanger effectiveness ε. Consequently, the actual heat transfer occurring within the heat exchanger
is similar for the two strategies, while strategy 3 uses much less pumping power.

Figure 7 shows the yearly distribution of the thermal energy in the building while Figure 8 shows
the yearly distribution of the operational costs as well as the accumulated costs over the simulation
period. Since there is no ground regeneration in strategy 1, the share of the GSHP decreases after each
year, while strategies 2 and 3 are able to abate this thermal depletion. As a consequence, and despite
having a smaller operational cost in the first year, the costs of strategy 1 increase after each year as the
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borefield is more and more depleted, necessitating the use of the auxiliary system. The cost of heating
the building are lower for strategy 2, yet by adding the regeneration cost the total yearly cost is higher
for strategy 2 than for strategy 3. The regeneration pumping cost represents between 5.6–5.9% of the
yearly cost in strategy 2 and 0.7% in strategy 3. Compared to strategy 1, it is not until the fourth year
that the cost savings of strategy 2 begin to be noticeable, while in strategy 3 the return on investment
of using the regeneration pump is apparent already from the second year.

Figure 5. Behavior of the daily average of control input variables for the different strategies in year 10.
The background color indicates the different seasons: autumn (yellow), winter (blue), spring (green)
and summer (red).

,

,

Figure 6. Comparison of the regeneration heat exchanger variables for strategies 2 and 3 during the
last year summer season. From top to bottom: inlet temperatures at the borefield side, heat capacity
rates, heat exchanger effectiveness and heat exchanger actual/maximum heat flow.
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Figure 7. Yearly share of the thermal energy supplied to the building by the GSHP and the auxiliary
heater for the different strategies over the 10 years period.

,

,

,

,

,

Regeneration

S1    S2    S3 S1    S2    S3 S1    S2    S3 S1    S2    S3 S1    S2    S3 S1    S2    S3 S1    S2    S3 S1    S2    S3 S1    S2    S3 S1    S2    S3

Figure 8. Yearly distribution of operational costs (left-axis, bar plot) and accumulated operational costs
(right-axis, line plot) for the different strategies (S1-first bar, S2-second bar and S3-third bar) over the
10 years period.

5.2. Effect of Different Long-Term Horizons

The model is now used to assess the impact of the shadow cost long-term horizon on the results.
Strategy 3 is thus modified both in terms of long-term horizon length and resolution. Strategy 3b
reduces from a yearly long-term horizon to a seasonal one, i.e., 6 months. Strategy 3c considers the
same seasonal horizon length as 3b, but reducing the number of long-term intervals NLT from 14 to 8.
The modified strategies are summarized in Table 7.

Table 8 compares the results for these variations in the long-term prediction horizon parameters.
As expected, Strategy 3 is able to achieve the lowest operational cost since it is able to anticipate
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the full yearly needs, followed by Strategy 3b which has more resolution compared to Strategy 3c.
However, the operational cost reduction by capturing the cyclic yearly heating needs is more noticeable
(difference between Strategies 3 and 3b) than increasing the resolution of the horizon (difference
between Strategies 3b and 3c). By lowering the long-term horizon resolution, we observe a clear
reduction of the computational cost: the average number of iterations is reduced by 16.3% and the
average time per iteration by 13.8%. This computation time reduction is mainly caused by the reduction
of the number of optimization variables associated with each additional interval. Each additional
long-term optimization variable will have a dependency on all the previous ones, increasing the
complexity of the problem. Moreover, TACO optimization variables are defined for the whole
prediction horizon resolution, while in practice only the values at the last step of the short-term
prediction horizon are used for the energy balance calculations. In that sense, the computational
time could be possibly reduced with a different implementation. However, TACO does not provide
enough information on the computational metrics to confirm this hypothesis. From this perspective,
we recommend to use a long-term horizon large enough to capture the building cyclic conditions but
with the smallest possible number of intervals (i.e., resolution). All three scenarios (3, 3b, 3c) have
a lower operational cost than strategies 1 and 2. Thus, including the shadow cost in the objective
function leads to a decrease in operational costs in all studied cases.

Figure 9 compares the regeneration pump input signals along with the total predicted heat supply
distribution of the building for the last summer season. Strategies 3b and 3c signals tend to increase
over the summer period, in accordance with the total predicted building heating energy. The long-term
horizon covers an increasing fraction of the next season, so it is increasingly beneficial to regenerate
the soil. Strategy 3 always covers the full heating season, so the signal is flatter. At the beginning of
the summer season, Strategies 3b and 3c predict that the building heating needs are small enough to
supply all the necessary heating with the GSHP by applying a small amount of active regeneration to
the ground. However, these heating needs increase over the season to the point where the auxiliary
system needs to cover the remaining predicted amount of heat energy supply. As a consequence,
not enough regeneration energy is injected into the ground. Note that the step changes in the plot are
caused by the time-dependent variable Ψ, and are more noticeable in Strategy 3c as it has larger but
more impactful intervals.

Table 7. Long-term horizons considered for the shadow costs in strategies 3, 3b and 3c.

Interval No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Strategy 3

Interval size 1 w 1 w 1 w 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1m
Time elapsed 2 w 3 w 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m 11 m 12 m

Strategy 3b

Interval size 1 w 1 w 1 w 1 w 1 w 1 w 1 w 1 w 1 w 1 w 1 w 1 m 1 m 1 m
Time elapsed 2 w 3 w 4 w 5 w 6 w 7 w 8 w 9 w 10 w 11 w 3 m 4 m 5 m 6 m

Strategy 3c

Interval size 1 w 1 w 1 w 1 m 1 m 1 m 1 m 1 m
Time elapsed 2 w 3 w 1 m 2 m 3 m 4 m 5 m 6 m
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Table 8. Comparison of long-term control strategies 3, 3b and 3c over 10 years.

Key Performance Indicator Unit Strategy 3 Strategy 3b Strategy 3c

GSHP condenser energy use MWh 398.85 398.65 398.21
GSHP compressor energy use MWh 73.20 73.24 73.13
SCOP − 5.45 5.45 5.45
Auxiliary (thermal) energy use MWh 73.29 74.18 74.43
Regeneration pump energy use MWh 1.00 0.69 0.66
Regenerated energy MWh 137.45 130.69 129.48
Total operational costs $ 30,090 30,214 30,239
Average number of iterations − 72.95 72.82 61.01
Average time per iteration s 0.0311 0.0312 0.0268

aux

Figure 9. Comparison of different long-term horizons length and resolution during last year summer
season. Top: regeneration pump input signal. Bottom: total predicted heat supplied and its share over
the GSHP and auxiliary heater for the forecasted long-term horizon.

5.3. Effect of the Predictions Accuracy

The previous simulations with shadow cost use a prescribed set of building heating needs coming
from an offline dynamic simulation that uses the same weather file, thus having relatively accurate
predictions. In reality, these weather predictions will have a large uncertainty, yet an estimation of the
energy needs of the building can be obtained using historical weather data and a static method such
as the degree-days method. Additionally, weather services provide long-term seasonal forecasts that
indicate whether the next season is expected to be warmer or colder than usual, thus allowing extra
tuning of the building load needs accordingly. On the other hand, the prediction of the average fluid
temperature limits the amount of energy that can be provided by the GSHP. Based on the observations
from Section 5.2, the prediction accuracy of this parameter can have an impact on the final outcome.
Two extra simulations are therefore carried out: a simulation 3d with a different long-term fluid
temperature constraint Tf = 1.5 ◦C; and a simulation 3e with a different set of prescribed building
heating needs, extracted from the heating degree-day information for the year 2019 in the city of
Denver [50]. The HDD data is used for the long-term predictions, but still the TMY data from the
previous strategies is used for simulation.

Results of these simulations are shown in Table 9. Strategy 3d injects more heat into the ground
but, at the same time, the amount of condensing energy from the GSHP is reduced. This may be caused
by an overestimation of the average fluid temperature, which causes the control strategy to be on the
conservative side. However, the impact on the results is not significant. On the other hand, Strategy
3e has a significant reduction of the injected energy into the ground, which results in increased use
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of the auxiliary heating system. The reason is the underestimation of the required heating needs:
the prescribed heating needs for strategy 3e are 43 MWh per year, about 10% lower compared to the
48 MWh per year of the previous strategies.

Figures 10 and 11 compare the first weekly and monthly predictions with the actual shifted results
for one year, and confirm the aforementioned hypothesis. The overestimation of the average fluid
temperature constraint in Strategy 3d causes that the predicted amount of heating delivered by the
GSHP is lower than the one from Strategy 3, driving the optimization towards an increased use of
the auxiliary system. Increasing the amount of active regeneration does not seem to be the optimal
choice. The heating predictions from Strategy 3e cause the system to provide a lower amount of active
regeneration, since based on the simplified (HDD-based) heating needs prediction it would suffice to
satisfy almost all of the heating requirements with the GSHP. Strategy 3e predicts almost no use of
the auxiliary system. These incorrect predictions ultimately have a negative impact in the final result.
Still, these strategies lead to lower cost compared to strategies 1 and 2, again confirming the added
value of including the shadow cost in the objective function.

energy

Strategy 3 Strategy 3d Strategy 3e

energy energy

GSHP GSHP GSHPenergy energyenergy

Figure 10. Comparison of the first weekly predictions and the actual values from the simulation.
From top to bottom: GSHP condenser energy, auxiliary energy, regenerated energy, SCOP and average
fluid temperature. From left to right: Strategy 3, 3d and 3e.
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Table 9. Comparison of long-term control strategies 3, 3d and 3e over 10 years.

Key Performance Indicator Unit Strategy 3 Strategy 3d Strategy 3e

GSHP condenser energy use MWh 398.85 398.24 397.45
GSHP compressor use MWh 73.20 73.10 73.08
SCOP − 5.45 5.45 5.45
Auxiliary (thermal) energy use MWh 73.29 73.54 75.26
Regeneration pump energy use MWh 1.00 1.06 0.26
Regenerated energy MWh 137.45 137.85 118.28
Total operational costs $ 30,090 30,132 30,316
Average number of iterations − 72.95 73.64 74.76
Average time per iteration s 0.0311 0.0314 0.0329

Strategy 3 Strategy 3d Strategy 3e

GSHP energy GSHP energy GSHP energy

energy energy energy

Figure 11. Comparison of the first monthly predictions and the actual values from the simulation.
From top to bottom: GSHP condenser energy, auxiliary energy, regenerated energy, seasonal coefficient
of performance (SCOP) and average fluid temperature. From left to right: Strategy 3, 3d and 3e.
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6. Conclusions

This paper presents a novel methodology to account for the long-term effects of the geothermal
borefield in hybrid geothermal installations that use MPC. The objective function is extended with a
shadow cost that represents the cost of opportunity in the period not accounted in the MPC short-term
prediction horizon. The shadow cost is calculated using prescribed predictions of the building heating
and cooling needs and imposing energy balance equations for the different supply components of the
system. These long-term predictions can be discretized in several intervals in the same way as the
MPC short-term prediction horizon. The MPC and the shadow cost are connected through the load
history of the borefield model. As a consequence, the actions of the MPC modestly affect the shadow
cost calculation.

The methodology is verified in a single zone building of 1200 m2 that is equipped with a hybrid
geothermal system and an ideal regeneration system that can only be used in the summer period,
i.e., when heating is not needed in the building. Three different control strategies are compared: an
MPC approach, an MPC + RBC for the regeneration system approach and an MPC + shadow cost
approach. Results show that the MPC + shadow cost approach is able to optimally use the active
regeneration, minimizing the pumping cost and reducing the total operational cost over 10 years by
9.7% when compared to the MPC approach and 4.9% when compared to the MPC + RBC approach.
However, the shadow cost approach increases the computational time by a factor of 3.5. The effects
of the long-term horizon length and resolution are analyzed. It is concluded that it is important to
have a long-term horizon that captures the cyclic heating and cooling needs of the building, but with a
limited number of steps to reduce the computational cost. The effect of the prediction accuracy is also
investigated. An overestimation of the minimum fluid temperature constraint causes increased use of
the auxiliary system. An underestimation of the building heating needs causes a reduced use of the
active regeneration, leading to increased use of the auxiliary system. For this specific case, the impact
on the operational cost is not substantial but this cannot be generalized, so attention should be paid.
Even with these inaccuracies, the shadow cost formulation achieves greater cost savings than the
formulations where it was not used.

This methodology fills the gap in the literature towards the optimization of the operation of
geothermal systems over a full year, introducing a novel long-term shadow-cost formulation and
demonstrating that there is potential for savings from a MPC approach integrating yearly costs in the
optimization. Even with the known drawback that the building needs prediction uncertainty is high in
the long-term, the methodology still outperforms in cost-saving terms the pure MPC (no regeneration)
and the combined RBC + MPC (maximum regeneration) cases even when a standard historical method,
such as the degree-day method, was used.

Further work should reduce these uncertainties using other methods or meteorological models.
Moreover, it should be investigated where the application of this methodology is most beneficial.
Potentially, all hybrid GSHP systems could benefit from this methodology, but also systems where
a seasonal optimal planning is of interest, such as solar systems, district heating systems, thermal
energy storage systems and other systems where the time constant is long. The methodology could
also be included in an integrated optimal design and control framework, where the optimal long-term
control actions are taken into consideration to reduce the total amount of investment and operational
costs over the considered lifetime. Finally, a smarter implementation of the methodology in the MPC
framework should be investigated to reduce the computational burden.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial neural network
COP Coefficient of performance
DST Duct-storage model
EER Energy efficienct ratio
GSHP Ground source heat pump
HVAC Heating, ventilation and air conditioning
LP Linear problem
MILP Mixed integer linear problem
MPC Model predictive control
MOR Model order reduction
NLP Non-linear problem
NTU Number of transfer units
OCP Optimal control problem
POD Proper orthogonal decomposition
QUICK Quadratic upstream interpolation of convective kinetics
TABS Thermally activated building systems
RBC Rule based control
RC Resistance-capacitance
RHC Radiant heating and cooling
SALTO Short- and long-term optimization
SCOP Seasonal coefficient of performance
SEER Seasonal energy efficiency ratio
TACO Toolchain for automated control and optimization
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