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ABSTRACT 

 

Dynamic imaging of source and functional connectivity 

(FC) using electroencephalographic (EEG) signals is 

essential for understanding the brain and cognition with 

sufficiently affordable technology to be widely applicable for 

studying changes associated with healthy ageing and the 

progression of neuropathology. We present an application for 

group analysis of recently developed state-space models and 

algorithms for simultaneously estimating the large-scale EEG 

inverse and FC problems. This approach reduces estimation 

bias and facilitates a detailed exploration and investigation of 

neuronal dynamics compared to current techniques. We 

present feasibility analyses for simulated and real EEG event-

related data. The latter analysis uses a sixteen subjects EEG 

(Wakeman and Henson’s) database, with signals recorded 

during a face-processing task. We implement a state-space 

methodology efficiently using an alternating least squares 

(ALS) algorithm. This application to neuroimaging analysis 

may be critical to reliably capture the brain dynamics despite 

interindividual variability, as demonstrated by the results 

presented. 

 

Index Terms— State-space models, EEG/MEG event-

related source imaging, Dynamic functional connectivity, 

Feasibility analysis, Machine learning 

 

1. INTRODUCTION 

 

Dynamic source imaging and functional connectivity (FC) 

analyses are essential to unravel the timing and localization 

of cognitive processing and identify the underlying brain 

integration and segregation networks [1]. The use of 

magneto/electro-encephalography (MEG/EEG) techniques is 

essential to study these problems due to their high-temporal 

resolution and non-invasiveness. Remarkably, the low cost 

and portability of wearable neurotechnology/EEG make it 

ideal for supporting the broader application of neuroimaging 

methods that may lead to a better understanding of brain 

dynamics. 

The current scientific efforts to extend the application of 

neuroimaging methods are seriously undermined by the 

amount of different source localization and functional 

connectivity methods, which regularly produce diverging 

results. At the same time, community experts have differing 

views on the importance of the same methods and their 

validation, with contradictory results and still inconclusive 

reproducibility analyses [2, 3]. 

Amidst recent examples, Hincapie et al. [4] showed that 

hyperparameter values selected for optimization of source 

power estimation differed significantly from selected values 

that optimize coherence-based FC assessment. The same 

researchers also evaluated the combination of multiple source 

localization and FC methods with a Monte-Carlo simulation 

without obtaining a clear advantage of any pipeline in the 

simulated scenarios [5]. Mahjoory et al. [2] also compared 

different pipelines through a general reproducibility analysis, 

which implemented combinations of inverse solutions and 

FC methods while using the implementation provided in three 

different software. Also, they included different methods to 

solve the EEG forward problem. The main findings were that 

reproducibility is higher when using spectral methods, 

particularly with sensor-based instead of source solutions, 

and lower when using undirected FC, but still significantly 

higher than the reproducibility of results in directed FC 

analysis. 

In summary, the main concerns from these studies are 

that the main results show that source methods do not 

significantly improve their sensor-based counterparts and 

that most methods employed have issues with volume 

conduction. The latter also manifests in the source solutions 

due to the ill-conditioned and non-uniqueness of inverse 

methods and the mixing of sensor signals. 

On the other hand, there is an increasing agreement that 

state-space models can unify the different approaches and 

produce less biased results [6, 7, 8, 9]. Recent studies have 

demonstrated that two-step approaches, i.e., approaches that 

first estimate the source time series from which the FC 

measures are calculated, such as those mentioned above, can 

lead to suboptimal/biased solutions [7, 10]. 

Our study also supports the hypothesis that state-space 

models can naturally model the mutual dependence between 

these solutions and may produce better results than 

alternative two-step methods [7, 10, 11]. Primarily, we 



demonstrate the feasibility of our recently proposed 

methodology [11] for group statistical analysis. 

 

2. RELATED WORK 

 

In a recent investigation by our group [11], we introduced the 

state-space models and estimation algorithms applied in the 

present study. Similarly, state-space models have also been 

used to solve brain source localization and functional 

connectivity problems simultaneously. Long et al. [6] 

claimed, as we do, to solve these models in high dimensions 

and use high-performance computing. However, most related 

works use assumptions to simplify the calculations, which 

may lead to bias [6, 9]. In contrast, our methodology does not 

utilize any simplification tricks. Other researchers have also 

used a similar trick to ours to establish the connection 

between source localization and FC estimators, which 

statistically constrain each other, as observed with 

mathematical closed-form solutions [11]. Although they 

could have exploited this relationship algorithmically, they 

used Bayesian filtering to estimate the solutions [10]. Finally, 

Manomaisaowapak et al. [12] also proposed a similar 

approach to ours while considering a group LASSO penalty 

for producing sparse estimators. However, their study used 

priori-selected regions to reduce dimensionality, which we 

avoid in our proposed methodology. 

 

3. STATE-SPACE MODELS OF BRAIN DYNAMICS 

 

We estimate the dynamic source imaging and FC problems 

using state-space models with an approach similar to the 

sliding-window technique [13]. In particular, we state the 

state-space model as follows: 

 

 
 �� = ��� + ��; for � = 1,2, … , 
, (1) 

 
 �� = ∑ ���������� + ��; for � = � + 1, … , 
, (2) 

 

where �� and �� represent the observation and state dynamics, 

respectively. ��ℛ�×� is the lead field matrix, and �� ϵ ℛ�×�, � = 1, … , �, are the autoregressive matrices, enabling the 

linear modelling of neuronal dynamics. The noise terms, �� ϵℛ�×�~ !0, #$%&�' and ��ϵℛ�×�~ !0, #(%&�', are 

identically and independently distributed (i.i.d.) Gaussian 

processes, which represent uncontrolled perturbations. 

Here, we use a more general framework to estimate state-

space models, as presented for the analysis of event-related 

potential (ERP) activity, using the optimization problem: 
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where ��!.'
 and ��!.'

 represent the measured and estimated 

dynamics for epochs = = 1, … , >. Here, � and � represent the 

dynamics for all epochs, i.e., � = ?��!.'@���,…,*
.��,…,+

, and similarly 

� = A��B���,…,�. Details for implementing this regularization 

framework for state-space models, which includes the data-

driven estimation of the model hyperparameters (i.e., 0 and 0%), are provided in [11]. 

 

4. EXPERIMENTAL SETTINGS 

 

We demonstrate the state-space models’ framework with 

simulated and real EEG data used for feasibility analyses to 

validate the application for group statistical analysis. Details 

of the simulations and EEG dataset are provided below. 

 

4.1. Simulated data 

 

We simulated thirteen subjects where each subject's lead field 

matrix was generated by (1) using the Gaussian normal 

distribution and (2) normalizing the lead fields per column a 

posteriori. Time series corresponding to five interacting 

regions were generated using an autoregressive model with 

order � = 5. We controlled the signal-to-noise ratio by fixing 

the state noise standard deviation as #$ = 1 while testing 

different observation noise scales by setting #$ = 0.1 and #$ =0.5. Lastly, we generated random autoregressive matrices for 

each subject using a Gaussian distribution with mean at the 

entries of a population connectivity matrix, which is: 
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where only the intraregional connections were perturbed, i.e., UV,V,�!$' ~ WUV,V,�, #X(YY% Z, for ; = 1, … ,5, � = 1,2, and [ = 1, … ,13, 

where we set #X(YY = 0.1 in order to minimize the instability 

of the simulated time series. For all the synthetic connectivity 

matrices, the stability of each multivariate autoregressive 

VAR(P) model was checked theoretically by reducing it to 

the corresponding VAR(1) general form and guaranteeing 

that the eigenvalues of the latter matrix are in the unit radius 

complex circle [14]. We also checked it numerically using a 

threshold for controlling larger values after generating 10,000 

samples for 200 epochs, finally retaining only the last 
 = 25 

or 
 = 125 samples for two different simulated scenarios. 

As an illustration, for two simulated subjects, the first 

autoregressive diagonal matrices (� = 1,2) are: 

 

����,%!\]^_.X� #�' = a b;79!c0.85,0.98,0.57,0.89,0.83f',           −b;79!c0.63,0.54,0.47,0.14,0.22f'i, 

 



����,%!\]^_.X� #%' = a b;79!c0.85,0.87,0.68,0.71,0.77f',           −b;79!c0.55,0.37,0.38,0.65,0.23f'i. 

 

Fig. 1 shows a graphical representation and colormap for 

the simulated ground-truth matrices (top rows), as well as the 

plot for the power spectral density (PSD) measure calculated 

from the synthetic time series generated for the two simulated 

subjects above (bottom row). PSD curves are calculated 

assuming the sampling frequency )$ = 125 Hz. In this 

simulated example, note that the small random perturbations 

to the diagonal entries, as described above, are sufficient to 

create a rich variation of the spectrum peak in the range from 

Theta (4-7.5 Hz) to Beta (13-30 Hz) brain rhythms. 

 

 

Fig. 1: Graph and colormap of interactions among the ground-truth 

5 simulated regions, together with examples of the power spectral 

density (PSD) for two simulated subjects, where the latter is 

calculated from the state-space model latent (variables) time series 

generated with the autoregressive matrices shown in the main text. 

 
4.2. Preprocessing of real EEG event-related data 

 

For the EEG event-related data analysis, we used the data and 

custom Matlab scripts provided in the Wakeman and Henson 

study [15]. From 70 original EEG channels, some were 

rejected for each subject following information provided in 

the scripts. Posteriorly, the signals were preprocessed using a 

low-pass 25 Hz Butterworth filter with order five and 

downsampled to )$ = 125 Hz. EEG signals were re-

referenced using the average reference, and epochs were 

extracted for the time window [-300; 1000] ms for the famous 

face stimulus. Then, epoch signals were baseline corrected 

using the pre-stimulus time window [-300; -100] ms. We 

rejected epochs with corresponding electrooculogram (EOG) 

signals higher than 100 µV to control for eye movements, 

resulting in more than 200 remaining epochs per subject on 

average. Finally, we used the Fieldtrip toolbox [16] to 

calculate the EEG lead field using a boundary element 

method with three compartments and tissue conductivities 

defined by default in the toolbox settings. The last procedure 

used the MRI images and skin/skull/cortical surface mesh 

data, provided together with the EEG channel locations. 

 

5. RESULTS 

 

5.1. Analysis of synthetic data 

 

Fig. 2 shows the estimated autoregressive coefficients for a 

particular simulated subject (top row). The matrices are 

arranged from left to right for each lag � = 1, … ,5. As can be 

appreciated, this estimator approximates the ground-truth 

connectivity with reasonable accuracy, as highlighted by the 

corresponding pruned outcome (bottom row), in which the 

one sample Student’s test allowed the evaluation of 

significant nonzero connections, with the degree of freedom  $ − 1, with  $ = 13 denoting the number of subjects in the 

simulated dataset. Particularly, note that the missed estimated 

diagonal entries for the negative connections (i.e., lagged 

influences for � = 2) are those related to the smaller entries 

of the simulated matrix ���%!\]^_.X� #�'
, as shown in Section 4.1. 

In the analysis, the use of Bonferroni’s correction 

controls for multiple comparisons, where the standard �-

value (0.05) is divided by the number of statistical tests 

( %� = 125) to produce the statistical cutoff value (4 × 10�j). 

 

 

Fig. 2: Estimated autoregressive coefficients for one simulated 

subject (top row) with its pruned outcome after using the one-sample 

Student's test for the whole simulated population (bottom row). 

 
Moreover, Fig. 3 shows the grand mean average of the 

estimated autoregressive matrices calculated from all the 

simulated subjects and pruned using the Student’s test 

statistics, separately for each of the four different simulated 

scenarios: (1) with a smaller or larger number of samples, and 

(2) with a smaller or larger observation noise. By simple 

visual inspection as compared to Fig. 1 (middle row), the 

results show a very high rate of true positive findings with 

very few false positive errors. These results demonstrate that 

our regularization framework for estimating state-space 

models can produce excellent results for group statistical 

analysis. This methodology is evaluated next with real data. 



 

Fig. 3: Grand mean average of estimated autoregressive coefficients 

for the different simulated scenarios. 

 
5.2. Analysis of real EEG event-related data 

 

Three subjects had to be discarded from sixteen subjects in 

the Wakeman and Henson dataset [15] due to numerical 

issues with Fieldtrip for the lead field calculation. After 

reducing the provided cortical meshes of 8196 points to 2052 

dipole locations, another two subjects were discarded due to 

the rough correspondence of dipoles to the template dipoles 

in the reduced parcellation. 

Fig. 4 shows a sparse plot (Matlab function “spy”) for 

the significant connections selected using the one-sample 

Student’s test as above, but showing only the connections 

with �-values lower than 10�j, highlighted separately with 

different colors for the positive and negative coefficients, as 

well as using a higher-size point marker for the more 

significant findings. Notably, for lag 1, autoconnections are 

mainly positive and to a lesser degree, for lag 3, 

autoconnections are mainly negative. In this analysis, we 

considered three overlapped time windows to explore the FC 

dynamical changes: approximately 100 to 200, 150 to 250, 

and 200 to 300 milliseconds. 

Additionally, we calculated the ERPs from the source 

time series, which were estimated together with the 

autoregressive matrices. As illustration, Fig. 5 shows the 

source activations for a single subject for the peak of 

maximum activity of the ERP components in different time 

windows, revealing the activation of the visual ventral stream 

as anticipated for the brain processing of face information. 

Note that sources are moderately symmetrical with greater 

magnitude in the inferotemporal than in occipital regions 

(0.15 vs 0.10) at 164 ms (see colormap). In contrast, at 276 

ms, inferotemporal regions’ activity is decreased. Also, note 

the lower but still prominent activity in the frontal lobe. 

 

Fig. 4: Significant connections among the 2052 cortical dipoles 

sampled from the SMP12 medium-size cortex template. Lagged 

connections are shown along the columns for � = 1, … ,5. Red/blue 

colors denote positive/negative influences. The larger, middle or 

smaller size markers correspond to very highly significant (� k10�l), highly significant (10�l m � k 10�n), and significant 

(10�n m � k 10�j) connections. 

 

Fig. 5: Source ERP activity peaks for face information processing 

during the 1st and 3rd time windows. Left: frontotemporal view (left 

hemisphere). Right: occipitotemporal view (right hemisphere).  

 

6. CONCLUSION 

 

Despite the small number of samples in our study, we have 

demonstrated the feasibility of using our proposed state-space 

models’ framework [11] for group statistical analysis using 

simulated and real EEG data analyses. In future studies, we 

plan to further validate this methodology with larger datasets 

for different experimental conditions. The main challenges 

are (1) the computational cost, as analyzing one subject can 

take few days and uses about 0.5 terabytes of RAM for a 17-

core parallel job, and (2) methodologically, as we plan to 

increase the number of brain cortical/volume dipoles, which 

overall will increase the demand on resources. 
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