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Abstract Salient object detection is a challenging and1

fundamental research in computer vision and image pro-2

cessing. Although the fully convolutional network has3

made a great progress in the saliency detection task,4

most existing methods mainly rely on dense ground5

truth as labels for training, which takes extensive ef-6

fort and is time-consuming. This paper proposes a novel7

and e↵ective scribble-based weakly supervised approach8

named complementary characteristics fusion network9

(CCFNet), which learns from easily accessible scribbles10

such as centerlines instead of fully pixel-wise ground11

truth. To be more specific, in order to deal with the12

fact that scribbles are always located inside the ob-13

jects with lacking annotations close to the semantic14

boundaries, an edge fusion module is presented to equip15

our model with the power of aggregating edge infor-16

mation, which would be beneficial to generate saliency17

maps with more useful information. Alternatively, since18

scribbles are too sparse to provide enough supervision19

for the network, we design feature correlation modules20

based on low-level, high-level global and edge informa-21

tion, which will complement each other to obtain rel-22

atively complete salient regions using features of dif-23

ferent ways. To further improve the results of saliency24

maps in foreground and background, a self-supervised25

saliency detection loss is designed to ensure the network26
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with stronger generalization ability. Extensive experi- 27

ments using five benchmark datasets demonstrate that 28

our proposed approach performs favorably against the 29

state-of-the-art weakly supervised algorithms, and even 30

surpasses the performance of those fully supervised. 31

Keywords Salient object detection, Weakly super- 32

vised learning, Complementary characteristics fusion 33

network, Self-supervised saliency detection loss 34

1 Introduction 35

The objective of salient object detection (SOD) is to lo- 36

cate and segment the most dominant objects in a given 37

image. It plays an important role in a variety of com- 38

puter vision and image processing related fields, such 39

as image manipulation [5,10], robot navigation [6], se- 40

mantic segmentation [39] and object tracking [53,11]. 41

Following the previous studies, fully deep learning 42

methods have been developed, which broke the limits 43

of traditional handcrafted features since their capability 44

of extracting features at various scales. However, these 45

deep learning based methods usually su↵er from a key 46

problem, that they strongly depend on a large volume of 47

accurately labeled data with full pixel-wise annotations 48

for training. It takes extensive e↵ort and time to collect. 49

Therefore, this paper concentrates on designing weakly 50

supervised salient object detection methods based on 51

the sparse labels. 52

In order to address a trade-o↵ between label e�cien- 53

cy and model performance, some researchers attempt- 54

ed to develop a framework to learn saliency maps from 55

the sparse label [31,45,49,48,21], but there still remains 56

challenges. Image-level category labels are used in [34], 57

which requires large scale datasets with image-level la- 58

bels. A related work [21] utilized bounding box labels 59
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Fig. 1 Sample results of our method compared with other unsupervised and weakly supervised methods.

as supervision, which first produced the initial pseu-60

do ground truth saliency maps by unsupervised learn-61

ing, then adopted post-processing to obtain the final62

dense predictions. As shown in Fig. 1, WSS (image-63

level category labels) and SBBs (bounding box labels)64

only can detect part of salient regions with wrong er-65

rors. For example, given an image with an eagle in Fig.66

1, the forementioned approaches are only able to seg-67

ment the head of the eagle (white) whereas the body68

is also a salient object. Moreover, scribble annotations69

[48,27] are becoming more and more popular in com-70

puter vision, which belongs to a middle ground between71

image-level supervision and box-level supervision. The72

key problem for saliency detection based on scribble73

annotations lies in two aspects. The first one is that74

the scribbles are always located inside the objects with75

lacking annotations close to the semantic boundaries,76

and thus usually generate imprecise saliency maps on77

boundaries. The second one is the scribbles are too s-78

parse to provide enough supervision information for the79

network, which can’t make confident predictions.80

With respect to the first issue, as illustrated in [41,81

55], edge information has been widely used and has82

made a great progress in fully supervised saliency detec-83

tion, weakly supervised SOD models rarely have such84

ideas. Therefore, edge fusion module (EFM) is employed85

to capture edge information from local and global views,86

instead of the simple backbone features, which can ef-87

fectively improve edge performance of saliency map-88

s. To alleviate the second issue, we propose a feature89

correlation module (FCM) to capture rich information.90

Note that di↵erent level features have di↵erent func-91

tions, such as low-level features have rich details and92

high-level features have rich semantics. Our FCM achie-93

ves complement each other of di↵erent input that has 94

a large potential to exploit the relationship from di↵er- 95

ent views. The work in [48] which is di↵erent from our 96

approach, only use concatenation operation to fuse dif- 97

ferent features. Our FCM correlates low-level features, 98

high-level global features and edge features at di↵erent 99

stages, which is conductive to enhancing the saliency 100

maps. Furthermore, structural information is also cru- 101

cial for scribble supervised SOD except for context in- 102

formation. Inspired from [1], we design a self-supervised 103

saliency detection loss to learn structural information, 104

which ensures the network with stronger generaliza- 105

tion ability and distinguishes the foreground and back- 106

ground better. As shown in Fig. 1, benefiting from the 107

above, our proposed approach is able to detect more 108

accurate edge information with some challenging envi- 109

ronments compared with other methods, such as low 110

contrast scenarios (the background behind the deer) or 111

complex scene understanding (details of the sign). 112

Based on the above consideration, we propose a 113

complementary characteristics fusion network (CCFNet) 114

for weakly supervised salient object detection. We de- 115

sign edge fusion module to learn salient edge informa- 116

tion, which can better understand edge information. In 117

order to exploit complete salient regions with di↵eren- 118

t level features, this paper proposes feature correlation 119

modules for saliency detection. Meantime, the output of 120

global context guiding operation is fed into feature cor- 121

relation module as input, which could address the high- 122

level features gradually diluted as the top-down path- 123

ways. To boost the performance of our proposed mod- 124

el, a self-supervised saliency detection loss is presented 125

as well to distinguish foreground and background. Fi- 126

nally, to demonstrate the performance of our proposed 127
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method, we conduct experiment results on five well-128

known datasets. Some ablation studies are reported as129

well to evaluate the e↵ect of each module. From the130

above, our main contributions can be summarized as131

follows:132

– We develop a novel complementary characteristics133

fusion network (CCFNet) based on scribble annota-134

tions for salient object detection, without resorting135

to laborious pixel labeling.136

– We propose an edge fusion module to equip our137

model with the power of aggregating edge infor-138

mation. In addition, a feature correlation module139

is employed to make full use of the complementari-140

ties di↵erent features to improve saliency detection141

accuracy.142

– We introduce a self-supervised saliency detection143

loss, which encourages our network to learn struc-144

tural information and guides the network paying145

high attention to saliency objects.146

– Experimental results demonstrate that the proposed147

approach achieves comparable performance on five148

common datasets compared with other state-of-the-149

art methods, where it even performs comparably to150

some of the fully supervised methods.151

2 Related Work152

Fully supervised salient object detection Tradi-153

tional SOD approaches mainly depend on some hand-154

crafted features [2,4,14,46] to directly detect salient155

objects in each image while lacking in high-level se-156

mantic information, especially in the complex environ-157

ments. Compared with early researches on SOD, deep158

learning based methods [17,28,56,12,30,35,36,37,23,3,159

54,26,33,22] have become popular because of their ac-160

curate performance. On the one hand, a variety of ef-161

fective fully convolutional network based (FCN-based)162

architectures [23,13,36,37] have been proposed to en-163

hance the generation of saliency maps in literature. For164

example, Hou et al. [13] utilized short connections for165

multi-scale feature fusion from di↵erent layers in FCN166

to address the scale-space problem. In [36], Wang et al.167

employed fixation prediction to segment salient objects168

in an attentive saliency network (ASNet), demonstrat-169

ing that ASNet achieves more accurate results due to170

the computed fixation map. The F3Net was introduced171

in [37], to solve the problem generated by the di↵er-172

ent receptive fields of di↵erent convolutional layers. On173

the other hand, edge information has been attracted at-174

tention to assist the performance of saliency prediction175

[41,55,19,38]. Zhao et al. [55] designed an edge guid-176

ance network for salient object detection with binary177

cross-entropy. Liu et al. [19] adopt other edge dataset- 178

s as ground truth for joint training. [55,41] used edge 179

ground-truth as auxiliary supervision, it proves that is 180

helpful for saliency maps, especially object boundaries. 181

Moreover, a number of related works [3,54,56] leveraged 182

the attention mechanism to learn more distinctive fea- 183

tures, others [12,37] introduced multi-level features to 184

boost the performance of saliency maps. Although these 185

methods achieve highly-accurate results, deep models 186

require a large number of fully annotated images when 187

trained on datasets, which is a labor-intensive and cost- 188

ly process. 189

Weakly supervised salient object detection 190

To reduce the time and the cost of labeling, weakly- 191

supervised learning utilize weak labels for the saliency 192

detection task, such as noisy labels [25,47,49], bounding 193

boxes [31], scribble annotations [44,48] and image-level 194

labels [15,34], which have received a lot of attention 195

from researchers. Currently, Wang et al. [34] adopted 196

foreground inference network for object saliency pre- 197

diction with image-level labels, which is the first ap- 198

plication of image-level labels to SOD. Li et al. [15] 199

subsequently introduced a multi-task fully convolution- 200

al network (Multi-FCN) to generate saliency maps us- 201

ing image-level weak supervision. Piao et al [29] built 202

a saliency network and multiple directive filters to en- 203

hance the performance of SOD, which is a multiple- 204

pseudo-label framework. Furthermore, S-DUTS was pro- 205

posed in [48] first on saliency detection, which is based 206

on sparse labels and typically takes 1⇠2 seconds to label 207

each image. They also designed a network fusing edge 208

detection approach and a gated structure-aware loss 209

function to maintain the accuracy of the salient predic- 210

tion. Yu et al. [44] introduced a one-round end-to-end 211

training approach using scribbles for weakly-supervised 212

saliency detection. Unlike these methods, we cooperate 213

the characteristics and complementarity of di↵erent fea- 214

tures to reduce the gap between fully supervised learn- 215

ing and weakly-supervised learning. 216

Unsupervised salient object detection Early 217

methods have been proposed for predicting the salien- 218

cy map, which mainly used some handcrafted features, 219

contrast, di↵erent priors and so on [10,14,4]. A related 220

work [47] proposed a deep learning framework from un- 221

supervised methods with heuristics to produce saliency 222

maps. Li et al. [18] developed a contour-to-saliency net- 223

work based on the well-trained contour detection net- 224

work. Subsequently, Nguyen et al. [25] presented a two- 225

stage network for unsupervised saliency detection to im- 226

prove prediction quality, which was updated through 227

noisy labels generated. In conclusion, ground truth is 228

not required for these methods. Unsupervised learning 229

on salient object detection has been made a great and 230
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Fig. 2 Illustration of our proposed CCFNet architecture.

significant process, but the accuracy is limited due to231

the gap between fully supervised learning and unsuper-232

vised learning.233

3 Methodology234

In this section, we first introduce the proposed comple-235

mentary characteristics fusion network (CCFNet) for236

weakly supervised salient object detection. Then the237

details of the global context guiding operation (GC-238

GO), the edge fusion module (EFM) and the feature239

correlation module (FCM) are described. The network240

supervision strategy is presented at the end of this sec-241

tion.242

3.1 Overall pipeline243

The overall architecture of CCFNet is illustrated in Fig.244

2. Our model is designed based on FCN architecture245

and chooses ResNet-50 as the backbone, which consists246

of five convolutional blocks for feature extracting. Given247

an input image with size H⇥W , the encoder will gener-248

ate di↵erent level features, denoted as {fi|i = 1, · · · , 5}249

with resolutions [H2i ,
W

2i ]. Since the 1st level feature f1250

would increase computation cost and have a lot of nois-251

es, which yields limited performance improvements, we252

choose features from {fi|i = 2, · · · , 5} for later op- 253

erations. Specifically, to alleviate the problem of U- 254

shape networks as top-down ways gradually diluted, f5 255

is fed into GCGO to obtain {gi|i = 1, · · · , 3}, which 256

can guarantee global semantics delivered. Since low- 257

level features have more details such as boundaries, 258

which are useful and indispensable for generating ac- 259

curate saliency maps, we leverage the f2 to extrac- 260

t the boundaries. In contrast, high-level features have 261

more semantics but lacking details. Taking account of 262

these considerations, we aim to explicitly notice the 263

salient edges where salient objects are. Hence we mod- 264

el EFM to strengthen edge information, denoted as 265

{ei|i = 1, · · · , 4}. Besides, in view of di↵erent type- 266

s of features delivering di↵erent information, to this 267

end, we design FCM in this paper. FCM is performed 268

to refining low-level features {fi|i = 2, · · · , 4}, global 269

high-level features {gi|i = 1, · · · , 3} and edge features 270

{ei|i = 1, · · · , 4}. This way enables the network to un- 271

derstand scenarios from di↵erent views, which will gen- 272

erate the discriminative features. It may limit the ca- 273

pability of the network due to only choosing scribbles 274

to train our network. To address this limitation, we al- 275

so propose a self-supervised saliency detection loss for 276

joint training to enrich structural information. More de- 277

tails of CCFNet are described as follows. 278
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Image GT w/o. GCGOw/. GCGO

33 conv BN ReLU

33 conv
GAP

Fig. 3 Illustration of our proposed global context guiding
operation (GCGO).

3.2 Global context guiding operation279

Regarding the U-shape architecture exists an issue that
the high-level features will be gradually diluted as the
top-down pathways. Therefore, we propose a global con-
text guiding operation to strengthen high-level informa-
tion and obtain global information, as shown in Fig. 3.
Specifically, we apply a combination of 3 ⇥ 3 convolu-
tional ! batch normalization ! ReLU operation for
input feature f5. After that, a global average pooling
(GAP) layer is embedded on these features, denoted
as fg, which can capture a more robust spatial transla-
tions of the input and the strongest global context. The
refined feature fg is denoted as follows:

fg = GAP (�(�(Conv(f5, ✓)))), (1)

where each of Conv(·, ✓), denotes the convolution with280

parameter ✓, �(·), �(·) and GAP (·) denotes the batch281

normalization, Relu and global average pooling, respec-282

tively. Meantime, we apply 3 ⇥ 3 convolutional opera-283

tion to input features to squeeze the input feature f5284

and adopt a upsample operation, which retain useful285

information. Finally, we generate the mask W and bias286

b for multiplication and addition operation. The whole287

process is formally formulated as follows.288

g1 = �(W ⇤ fg + b), (2)

where ⇤ is element-wise multiplication and g1 is the final289

output. From Fig. 3, we can clearly see that with GCGO290

strategy achieves better performance than without it.291

Detailed quantitative studies of GCGO can be found in292

Section 4.293

3.3 Edge fusion module294

Ideally, a good weakly supervised salient object detec-295

tion algorithm should have the ability to capture accu-296

rate edge information. In other words, salient edge re-297

sult is able to help salient object detection tasks in both298

Image GT w/. EFM w/o. EFM

Fig. 4 Visual results by applying EFM and without EFM.

segmentation and localization. To this end, we propose 299

a series of edge fusion modules (EFM) to model the 300

salient edge information. As stated before, the f2 re- 301

tains edge information, even so, it is still local infor- 302

mation and not enough. We take account of high-level 303

semantics, which are essential and necessary for obtain- 304

ing salient edge information as well. 305

To be more specific, taking the first EFM as an ex-
ample, we take a 3⇥3 convolutional layer after extract-
ing the edge feature from f2. In order to increase the
reliability of salient edge information, we fuse high-level
semantic information from f5. We add a convolution-
al operation with kernel size 3 ⇥ 3 after fusing both
features, it is able to e↵ectively reduce the aliasing ef-
fect of upsampling. For the other EFMs, our goal is the
high level cue mined is applied over the corresponding
feature, which is further propagated to the next EFM
for edge generation. That is to say, the feature maps
from the corresponding feature correlation module are
replaced of the backbone feature from f5. The whole
process is formally formulated as follows.

hi =

⇢
Conv(f2, ✓) + Up(f5), if i = 1
Conv(f2, ✓) + Up( i), if i = 2, 3, 4

(3)

where  i is the output of feature correlation module.
Hence the final output of EFM can be described as
follows.

ei = ✓(�(Conv(hi, ✓))) i = 1, 2, 3, 4 (4)

where ei is the final output. To verify the e↵ectiveness 306

of our designed EFM, we visualize the saliency maps 307

by applying EFM or not in Fig 4, it is clearly observed 308

that our model with EFM has high quality in edge. 309

3.4 Feature correlation module 310

Given three pathway features: low-level features, global 311

high-level features and edge features in CCFNet, which 312
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33 conv BN ReLU

33 conv BN ReLU

33 conv BN ReLU

33 conv

33 conv

33 conv

C

Fig. 5 Illustration of our proposed feature correlation mod-
ule (FCM).

Image (a) (b) (c) (d)

FCM

b

d

a

c

Fig. 6 Visualization of the feature maps around FCM. (a)
Results of applying EFM. (b) Results of applying backbone.
(c) Results of applying GCGO. (d) The output results of
FCM.

can better preserve details, global semantics and edge313

information, respectively. However, there exists a issue314

that a single feature provides locally limited informa-315

tion. To solve this deficiency, considering that these fea-316

tures are complementary to each other, it is essential to317

form an e↵ective decoder to strengthen the quality of318

saliency maps.319

To this end, we define the feature correlation mod-
ule (FCM) to get rich features from di↵erent pathway
in this section, which is able to produce saliency maps
with accurate segmentation. The details of FCM is il-
lustrated in Fig. 5. Formally, we first conduct a series
of operations: Conv(3 ⇥ 3, 256) ! BN ! ReLU !
Conv(3⇥ 3, 256), denoted as Fi, Gi and Ei respective-
ly. Inspired by the attention mechanism [3], we evalu-
ate the interaction between the any embedding features
that is used to generate a global feature by aggregating
every local feature. Therefore, we adopt upsample to
feature Gi (cyan line as input) firstly so that it has the
same size as feature Fi (black line as input), then the
mutual influence of featureGi and feature Fi is achieved
by element-wise multiplication, that is Up(Gi)⇤Fi. This
way is used to capture more discriminative characteras-
tics representation from global context and details. On
the one hand, it is able to obtain features from details
and boundaries, on the other hand, it can gain fea-
tures in global dimension and in edge. Note that these
features complement each other to form feature corre-
lation module with more discerning capabilities, which
are critical for salienct detection. The whole process is

defined as follows.
8
<

:

⌥i = Cat(Up(Gi) ⇤ Fi,

Up(Ei) ⇤ Fi, Up(Ei ⇤Gi)), if i = 1, 2, 3
 i = Conv(⌥i, ✓),

(5)

where Cat(·, ·) denotes concatenate operation and  i 320

denoted the output of ith FCM, respectively. Further- 321

more, to verify the rationality of our proposed FCM, 322

we visualize the feature maps near the FCM in Fig. 323

6, which can see that FCM are helpful and combin- 324

ing them together are able to remedy for the deficiency 325

of each branch feature. Detailed quantitative studies of 326

FCM can be found in Section 4. 327

3.5 Self-supervised saliency detection loss 328

In view of the fact that we only choose scribble an- 329

notations to train our network, which contains a large 330

number of unlabeled pixels and thus may limit the ca- 331

pability of the network. The proposed modules focus 332

on obtaining context information, whereas structural 333

information also plays an important role in scribble su- 334

pervised saliency object detection. Partial cross-entropy 335

(PCE) loss [32] is widely used to weakly supervised 336

learning. However, it only calculates binary cross-entropy 337

loss between the scribbles and the predicted map while 338

not comprehensive for saliency detection. Based on this 339

consideration, to encourage better saliency maps with 340

more structural information from the network, we pro- 341

pose a novel self-supervised saliency detection (SSD) 342

loss to help the network better distinguish foreground 343

and background. 344

As shown in Fig. 7, it can be clearly seen that the
results of the first two phases (d & e) are not as good
as that of the third (f). Considering that the later EFM
maintains more information than the former, and the
results of the last EFM is the prediction result of the w-
hole network. To learn more structural information and
guide the network paying high attention to saliency ob-
jects, we produce pseudo ground truth masks from the
penult EFM by considering confidence > %60 (that is
MAE scores < 0.6), which generate saliency maps that
are closer near to ground truth, rather than scribbles.
Note that the pixels with low confidence are ignored by
the loss function. To this end, we design a gate function
to judge if it satisfy the needs of the above. The details
are described as follows.

g(x, y) =

⇢
1, if PSEMAE(x, y) < 0.6
0, otherwise

(6)

where PSEMAE(x, y) is the MAE scores of the results
from the penult EFM. Motivated by semantic segmen-
tation method [1], we use pixels cross-entropy loss, but
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Table 1 Main characteristics of the datasets used in the experiments.

Name Stage Size Description

S-DUTS [48] Train 10553 Relabel salient object detection dataset DUTS-TR with scribbles.

ECSSD [42] Test 1000 A dataset includes semantically meaningful and complex structures.

DUT-OMRON [43] Test 5168 A dataset with high quality and challenging images has one or more
salient objects with complex background scenes.

PASCAL-S [7] Test 850
A dataset selected from the PASCAL VOC 2010 segmentation, which
contains 20 object categories and complex scenes.

HKU-IS [16] Test 4447
Contain multiple salient objects with overlapping objects touching the
image boundary or with low color contrast.

DUTS-TE [34] Test 5019
It selected from the largest salient object detection benchmark dataset
DUTS, which contains complex scens in di↵erent scales.

(a)       (f)(c)(b) (d) (e) (g)

Fig. 7 Intermediate results at training time. (a) Input image.
(b) Per-pixel wise ground truth. (c) Scribble annotations. (d)
Results of applying first EFM. (e) Results of applying sec-
ond EFM. (f) Results of applying third EFM (pseudo ground
truth). (g) Ours.

the loss for saliency objects are normalized according
to the number of corresponding pixels contained in the
pseudo ground truth. Hence, SSD loss can be described
as follows.

Lssd = g(x, y) Lbce, (7)

where

Lbce = �
X

(x,y)

[p(x, y) log(q(x, y))

+ (1� p(x, y)) log(1� q(x, y))],

(8)

where p(x, y) and q(x, y) denote the pseudo ground345

truth masks and the predicted saliency maps, respec-346

tively.347

3.6 Objective Function348

Given an input image, we utilize the loss of each sub-
stage and the dominant loss to train our model. First,
the loss of sub-stage is defined as follows.

Lsub = Lpce + Llsc, (9)

where

Lpce =
X

i2S

�si log ŝi + (1� si) log(1� ŝi), (10)

Llsc =
X

i

X

j2Gi

F (i, j)D(i, j), (11)

Here, Eq. (10) is partial cross-entropy (PCE) loss, which
is widely used to weakly supervised learning, where s is
the scribble annotations, ŝ is the predicted values and S

is the labeled pixel set. However, due to PCE loss only
calculating binary cross-entropy loss between the scrib-
bles and the predicted map, it is not comprehensive for
saliency detection. In order to further use scribble an-
notations, local saliency coherence (LSC) loss Eq. (11)
is adopted in previous work [44], where F (i, j) is Gaus-
sian kernels and D(i, j) is L1 distance. Second, self-
supervised saliency detection will joint with PCE loss
and LSC loss to supervise in this paper. The dominant
loss can be described as follows.

Ldom = Lpce + Llsc + Lssd. (12)

Hence, the total loss in the whole network can be ex-
pressed as follows.

L = Ldom + �i

3X

i=1

L
i

sub
, (13)

where �i is the a coe�cient to balance the dominant 349

loss and the di↵erent sub-stage loss. Because di↵erent 350

sub-stage provides various extend of information, we set 351

�1 = 0.8, �2 = 0.6, �3 = 0.4 in this paper. 352

4 Experiments 353

4.1 Implementation details 354

The proposed approach was implemented on the Py- 355

torch platform using a RTX3090 GPU. The batch size 356
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is set as 16. The whole network is optimized by stochas-357

tic gradient descent (SGD), where the weight decay is358

set to 5e-4, the momentum is set to 0.9 and the initial359

learning rate 1e-5. We resize each image to 320 ⇥ 320360

and then feed into the network to obtain saliency map-361

s. Additionally, the characteristics of each dataset are362

summarized in Table 1.363

4.2 Evaluation metrics364

For the salient object detection task, six popular evalua-365

tion metrics are used to evaluate the e↵ectiveness of our366

CCFNet including precision-recall curve (PR curve), F-367

measure curve, F-measure score(F�), mean absolute er-368

ror (MAE), E-measure score (E�) and S-measure score369

(S↵).370

PR curve can be determined by generated pairs
of precision and recall values. Precision and recall are
computed as:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (14)

where TP , FP and FN denote true-positive, false-371

positive and false-negative, respectively.372

F-measure score(F�) is an overall performance
measurement, which is calculated by the weighted har-
monic mean of precision and recall:

F� =
(1 + �

2)⇥ Precision⇥Recall

�2 ⇥ Precision+Recall
, (15)

where Precision and Recall are given by thresholding373

the predicted saliency map, and �
2 is set to 0.3 in ac-374

cordance with [3]. Then the obtained pairs (threshold,375

F�) is employed to plot the F-measure curve.376

MAE reflects the average pixel-wise absolute dif-
ference between the saliency map S(x, y) and ground-
truth maps G(x, y):

MAE =
1

W ⇥H

WX

x=1

HX

y=1

|S(x, y)�G(x, y)|, (16)

where W and H represent width and height of the377

saliency maps respectively. This is an appropriate met-378

ric for evaluating the applicability of a saliency module379

in a task such as image segmentation.380

Enhanced-alignment measure E� [9] is applied
to evaluate both local and global similarity between the
predicted map and the ground-truth:

E� =
1

W ⇥H

WX

x=1

HX

y=1

F�(x, y), (17)

F� denotes the enhanced alignment matrix.381

Structure measure S↵ [8] is utilized as the struc-
ture similarity of the predicted non-binary saliency map
and the ground-truth, which is defined as follows:

S↵ = (1� ↵)Sr + ↵So, (18)

where Sr and So denote region-aware and object-aware 382

structural similarity respectively, and ↵ is typically set 383

to 0.5. 384

4.3 Comparison with the State-of-the-Art Methods 385

We compare our model with state-of-the-art nineteen 386

methods, including eleven fully supervised methods (A- 387

mulet [51], UCF [52], NLDF [24], RAS [3], PAGR [54], 388

BMPM [50], DSS [12], EGNet [55], CPD [40], MINet 389

[28] and VST [20]), two unsupervised methods (SVF 390

[47] and C2S [18]), six weakly supervised methods (WSS 391

[34], ASMO [15], MWS [45], WSSA [48], MFNet [29] 392

and SBBs [21]). For fair comparison, all the saliency 393

maps are provided by the authors. In addition, our re- 394

sults are diametrically produce by CCFNet without re- 395

lying on any post-processing. 396

Quantitative comparison The detailed F-measure, 397

MAE, E-measure and S-measure values are provided in 398

Table 2 and Table 3 on five common datasets, in which 399

our approach performs favorably against other state-of- 400

the-art unsupervised and weakly supervised approaches 401

by a large margin, and even superior to some fully su- 402

pervised methods, like Amulet, UCF and NLDF. It is 403

worth noting that we also achieve the best results for 404

saliency detection using challenging datasets, such as 405

DUT-OMRON and DUTS-TE. For fairness, in terms 406

of the average of each metric, we can conclude that 407

our proposed approach shows a preferred average F� 408

(0.809 vs. 0.779), MAE (0.061 vs. 0.069), E� (0.880 vs. 409

0.875) and S↵ (0.847 vs. 0.818) across five datasets than 410

SBBs, which is the latest competitive algorithm. We 411

have to admit that there are some gaps compared with 412

the fully supervised algorithm in terms of performance 413

even though it is reasonable and logical. Generally s- 414

peaking, our approach is superior to other counterparts 415

across all datasets using these evaluation metrics. Be- 416

sides, Figure 8 and Figure 9 show the PR curves and 417

F-measure curves with other weakly supervised state- 418

of-the-art methods on the five benchmark datasets, re- 419

spectively. It can be observed that our method achieves 420

a better performance than the other ones in most cas- 421

es. To further analyze the overall di↵erence between our 422

algorithm and other methods, we compare the quanti- 423

tative results including average F-measure, average E- 424

measure, average S-measure and average MAE on five 425

common datasets, which are calculated by the average 426
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Table 2 Comparison with other state-of-the-art approaches on ECSSD and DUT-OMRON datasets. ’F’ means fully super-
vised, ’W’ means weakly supervised and ’Un’ is for unsupervised. " & # denote larger and smaller is better, respectively.

Methods Year Sup.
ECSSD DUT-OMRON

1000 images 5168 images
F� " MAE # E� " S↵ " F� " MAE # E� " S↵ "

Amulet [51] ICCV 2017 F 0.868 0.059 0.901 0.894 0.647 0.098 0.779 0.781
UCF [52] ICCV 2017 F 0.844 0.069 0.892 0.883 0.621 0.120 0.765 0.760
NLDF [24] CVPR 2017 F 0.878 0.063 0.910 0.875 0.684 0.080 0.816 0.770
RAS [3] ECCV 2018 F 0.889 0.056 0.914 0.893 0.713 0.062 0.846 0.814
PAGR[54] CVPR 2018 F 0.894 0.061 0.914 0.889 0.711 0.071 0.842 0.775
BMPM [50] CVPR 2018 F 0.868 0.045 0.914 0.911 0.692 0.064 0.837 0.809
DSS [12] TPAMI 2019 F 0.904 0.052 0.912 0.882 0.740 0.063 0.842 0.790
EGNet [55] ICCV 2019 F 0.920 0.037 0.927 0.925 0.755 0.053 0.868 0.841
CPD [40] CVPR 2019 F 0.917 0.037 0.925 0.918 0.747 0.056 0.866 0.825
MINet [28] CVPR 2020 F 0.924 0.033 0.927 0.925 0.755 0.056 0.865 0.833
VST [20] ICCV 2021 F 0.920 0.033 0.918 0.932 0.756 0.058 0.861 0.850

SVF [47] ICCV 2017 Un 0.809 0.088 0.875 0.832 0.608 0.108 0.768 0.747
C2S [18] ECCV 2018 Un 0.853 0.059 0.906 0.882 0.664 0.079 0.817 0.780

WSS [34] CVPR 2017 W 0.823 0.104 0.869 0.811 0.603 0.109 0.768 0.725
ASMO [15] AAAI 2018 W 0.798 0.110 0.853 0.802 0.622 0.101 0.776 0.752
MWS [45] CVPR 2019 W 0.840 0.096 0.884 0.827 0.609 0.109 0.763 0.756
WSSA [48] CVPR 2020 W 0.870 0.059 0.901 0.865 0.703 0.068 0.840 0.785
MFNet [29] ICCV 2021 W 0.844 0.084 0.877 0.837 0.621 0.098 0.783 0.726
SBBs [21] TIP 2021 W 0.855 0.072 0.894 0.851 0.695 0.074 0.835 0.776
Ours – W 0.890 0.050 0.912 0.882 0.720 0.069 0.848 0.796

Table 3 Comparison with other state-of-the-art approaches on PASCAL-S, HKU-IS and DUTS-TE datasets. ’F’ means fully
supervised, ’W’ means weakly supervised and ’Un’ is for unsupervised. " & # denote larger and smaller is better, respectively.
”-” means the authors did not release the code, and they just provided the saliency maps, thus reporting the total number of
parameters of this method is not possible.

Methods Year Sup.
PASCAL-S HKU-IS DUTS-TE
850 images 4447 images 5019 images

F� " MAE # E� " S↵ " F� " MAE # E� " S↵ " F� " MAE # E� " S↵ "
Amulet [51] ICCV 2017 F 0.757 0.100 0.802 0.818 0.841 0.051 0.912 0.886 0.678 0.085 0.794 0.804
UCF [52] ICCV 2017 F 0.726 0.115 0.804 0.805 0.823 0.062 0.902 0.875 0.631 0.112 0.763 0.782
NLDF [24] CVPR 2017 F 0.769 0.098 0.839 0.805 0.874 0.048 0.929 0.887 - - - -
RAS [3] ECCV 2018 F 0.777 0.101 0.836 0.799 0.871 0.045 0.929 0.887 0.751 0.059 0.861 0.839
PAGR[54] CVPR 2018 F 0.798 0.089 0.853 0.822 0.886 0.048 0.939 0.887 0.784 0.056 0.880 0.838
BMPM [50] CVPR 2018 F 0.758 0.074 0.842 0.845 0.871 0.039 0.937 0.907 0.745 0.049 0.860 0.862
DSS [12] TPAMI 2019 F 0.801 0.093 0.847 0.798 0.902 0.040 0.934 0.878 - - - -
EGNet [55] ICCV 2019 F 0.817 0.074 0.854 0.852 0.902 0.031 0.949 0.918 0.815 0.039 0.891 0.887
CPD [40] CVPR 2019 F 0.820 0.071 0.855 0.848 0.891 0.034 0.944 0.905 0.805 0.043 0.886 0.869
MINet [28] CVPR 2020 F 0.829 0.064 0.857 0.856 0.909 0.029 0.953 0.919 0.828 0.037 0.898 0.884
VST [20] ICCV 2021 F 0.829 0.061 0.844 0.872 0.900 0.029 0.953 0.928 0.818 0.037 0.892 0.896

SVF [47] ICCV 2017 Un 0.695 0.131 0.789 0.758 - - - - - - - -
C2S [18] ECCV 2018 Un 0.754 0.087 0.838 0.826 0.839 0.051 0.919 0.873 0.710 0.066 0.841 0.817

WSS [34] CVPR 2017 W 0.715 0.139 0.791 0.744 0.821 0.079 0.896 0.822 0.654 0.100 0.795 0.748
ASMO [15] AAAI 2018 W 0.693 0.149 0.772 0.717 0.806 0.086 0.878 0.804 0.614 0.116 0.772 0.697
MWS [45] CVPR 2019 W 0.713 0.133 0.790 0.768 0.814 0.084 0.895 0.818 0.684 0.091 0.814 0.759
WSSA [48] CVPR 2020 W 0.774 0.092 0.837 0.797 0.860 0.047 0.927 0.865 0.742 0.062 0.857 0.804
MFNet [29] ICCV 2021 W 0.746 0.112 0.818 0.782 0.839 0.058 0.917 0.852 0.692 0.079 0.830 0.778
SBBs [21] TIP 2021 W - - - - 0.843 0.056 0.920 0.854 0.722 0.073 0.851 0.789
Ours – W 0.794 0.084 0.840 0.808 0.870 0.044 0.934 0.871 0.770 0.057 0.873 0.816

scores for each metric. From Fig. 10, we observe that427

our method achieves the best performance in all four428

average metrics.429

Qualitative comparison We also show some ex-430

amples of saliency maps from our proposed model and431

other state-of-the-art methods using some challenging432

cases in Figure 11. For example, we use instances of 433

large objects (1st and 2nd rows), multiple targets (3rd 434

and 6th rows), complex scenes (4th and 7th rows), s- 435

mall objects (5th row), cluttered backgrounds (8th row) 436

and low contrast (9th row). Specifically, the 1st shows 437

a woman in an image and almost all methods are un- 438
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Fig. 8 PR curves of the proposed approach with other state-of-the-art methods using five datasets. Best viewed on screen.
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Fig. 9 F-measure curves of the proposed approach with other state-of-the-art methods using five datasets. Best viewed on
screen.

able to detect accurate location on large objects except439

our method. In the 3rd row, most methods can locate440

the flowers while some details are lost. As we can see,441

our approach is able to accurately find the salient ob-442

ject with fewer false salient pixels detected. The 4th 443

row corresponds to a dog in a stadium. It is easy to 444

see our model segments the objects well, while other 445

models always detect the alphabet as salient objects. 446
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Fig. 10 (a)Comparison of quantitative results including average F-measure, average E-measure and average S-measure. Best
viewed on screen. (b)Comparison of quantitative results including average MAE.

Compared with the 1st and 2nd row, a tower present-447

ed in the 5th row is more di�cult to segment thanks448

to small objects and complex scenes. Nevertheless, our449

CCFNet still highlights it very well. Di↵erent from the450

last multiple examples, there are various characteristic-451

s of salient objects in the 6th row of Fig. 11, such as452

diverse colors and sizes. The proposed method can gen-453

erate more reliable saliency maps in spite of the existing454

little deficiency. Although our CCFNet erroneously seg-455

ments the bottom part, it is still much better than other456

methods. The 8th row shows the result of an objec-457

t in cluttered backgrounds. Benefiting from EFM, our458

model has more accurate edge details. Furthermore, the459

9th row demonstrates that our model has good perfor-460

mance with low contrast between the target and image461

background. It can be observed that our model is able462

to produce the complete structure of the cup whereas463

previous work can not. In conclusion, our proposed ap-464

proach performs better with respect to salient object465

segmentation and localization, generating results that466

are much closer to the ground truth in various challeng-467

ing scenarios.468

4.4 Ablation studies469

In this section, we perform a series of cases on ECSSD470

and DUTS-TE datasets to assess the e↵ectiveness of471

our proposed method. All the ablation studies follow472

the same implementation setup.473

Validity of di↵erent proposed module We con-474

duct various experiments to verify the e↵ectiveness of475

each component in CCFNet. In order to prove the valid-476

ity of the proposed modules for saliency detection, we477

compare our method with the other six schemes with478

di↵erent proposed modules. Table 4 shows the perfor-479

mance with seven schemes as well as their correspond-480

ing saliency detection results. As seen from this table, 481

on the one hand, the quantitative scores of 1st ⇠ 3rd 482

lines are lower than 4th ⇠ 6th lines, that is both two 483

modules added is superior to single module, meanwhile, 484

the quantitative scores of 4th ⇠ 6th lines are lower than 485

7th line (ours), that is to say, three modules work to- 486

gether to realize the significant results. Especially, we 487

observe that these results perform more obviously on 488

complex datasets, such as DUTS-TE. Furthermore, Fig. 489

12 shows the results of average F-measure, average E- 490

measure, average S-measure and average MAE on EC- 491

SSD and DUTS-TE datasets. It also can be seen that 492

the last scheme achieves the best performance, i.e. the 493

scheme adopts three modules simultaneously. 494

Validity of di↵erent loss functions There are 495

three types of key loss function within the CCFNet, i.e., 496

PCE loss, LSC loss and SSD loss. We design three ab- 497

lation experiments to evaluate the necessity of each loss 498

function, F-measure, MAE, E-measure and S-measure 499

scores are shown in Table 5. We find that LSC loss and 500

SSD loss can boost the performance of saliency map- 501

s based on only using PCE loss. Especially, compared 502

with the first line (w/o LSC & SSD loss), our CCFNet 503

would promote the final performance with about 17.7%, 504

45.1%, 9.7% and 2.9% in F-measure, MAE, E-measure 505

and S-measure scores on ECSSD datasets, respective- 506

ly. In addition, Fig. 13 illustrates some samples of the 507

di↵erent loss functions, which can be seen that the pro- 508

posed CCFNet is well applicable to single target (1st 509

and 2nd lines) or multiple targets (3rd line). 510

Validity of di↵erent parameters of loss func- 511

tion Here we analyze the Validity of di↵erent parame- 512

ters of the loss function in Table 6. Accordingly, �1 = 513

0, �2 = 0, �3 = 0 means that our network has no ex- 514

tra supervision except dominant loss function Ldom. It 515

can be seen that it has the lowest scores compared with 516
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Image       WSS       ASMO MWSOursGT WSSA MFNet SBBs

Fig. 11 Visual comparison between the proposed model and state-of-the-art methods.

other schemes. That means sub-stage loss is beneficial517

to the network. Similarly, �1 = 1, �2 = 1, �3 = 1 means518

that sub-stage loss has the same weight with the dom-519

inant loss function Ldom. This is not the best result520

for the scribble saliency detection network, which may521

be caused by the sub-stage bringing more negative in-522

formation. Just because there is more and more useful 523

information from the first sub-stage to the third sub- 524

stage, hence, we balance the weight coe�cients in a 525

progressive manner. It is proved that our approach is ef- 526

fective and reliable. Note that �1 = 0.8, �2 = 0, �3 = 0.4 527

means that there is no first sub-stage loss function, 528
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Fig. 12 (a)Comparison of quantitative results including average F-measure, average E-measure and average S-measure. Best
viewed on screen. (b)Comparison of quantitative results including average MAE.

Table 4 Ablation study for our proposed di↵erent modules.

ECSSD DUTS-TE
FCM EFM GCGO F� " MAE # E� " S↵ " F� " MAE # E� " S↵ "

1 X 0.869 0.054 0.905 0.874 0.737 0.062 0.854 0.807
2 X 0.874 0.054 0.907 0.874 0.749 0.060 0.864 0.810
3 X 0.874 0.052 0.907 0.877 0.747 0.061 0.859 0.811
4 X X 0.878 0.051 0.905 0.879 0.753 0.058 0.864 0.815
5 X X 0.880 0.053 0.904 0.876 0.754 0.060 0.864 0.812
6 X X 0.881 0.052 0.910 0.877 0.762 0.058 0.870 0.813
7 X X X 0.890 0.050 0.912 0.882 0.770 0.057 0.873 0.816

Table 5 Ablation study for di↵erent loss functions.

ECSSD DUTS-TE
PCE LSC SSD F� " MAE # E� " S↵ " F� " MAE # E� " S↵ "

1 X 0.756 0.091 0.831 0.799 0.575 0.105 0.725 0.711
2 X X 0.763 0.087 0.839 0.809 0.589 0.095 0.742 0.727
3 X X 0.875 0.053 0.900 0.875 0.751 0.052 0.857 0.812
4 X X X 0.890 0.050 0.912 0.882 0.770 0.057 0.873 0.816

Table 6 Ablation study for di↵erent parameters of loss function.

ECSSD DUTS-TE
F� " MAE # E� " S↵ " F� " MAE # E� " S↵ "

1 �1 = 0, �2 = 0, �3 = 0 0.866 0.055 0.896 0.872 0.732 0.064 0.852 0.804
2 �1 = 0, �2 = 0.6, �3 = 0.4 0.869 0.054 0.901 0.874 0.732 0.064 0.848 0.807
3 �1 = 0.8, �2 = 0, �3 = 0.4 0.878 0.051 0.911 0.878 0.758 0.057 0.873 0.815
4 �1 = 0.8, �2 = 0.6, �3 = 0 0.874 0.051 0.906 0.879 0.734 0.065 0.848 0.807
5 �1 = 1, �2 = 1, �3 = 1 0.875 0.052 0.900 0.876 0.747 0.061 0.856 0.811
6 �1 = 0.8, �2 = 0.6, �3 = 0.4 0.890 0.050 0.912 0.882 0.770 0.057 0.873 0.816

which can be seen that the result is poor on two dataset-529

s. The reason for this issue may be that the first sub-530

stage supervision has more semantics, which plays a531

decisive role in the subsequent prediction.532

5 Conclusion533

In this paper, we proposed a novel and e↵ective comple-534

mentary characteristics fusion network (CCFNet) for535

salient object detection with scribble annotations. First,536

a global context guiding operation and edge fusion mod-537

Image       w/o LSC & SSD w/o LSC w/o SSDOursGT

Fig. 13 Ablation study of di↵erent loss function.
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ule are introduced, which are used to obtain global se-538

mantics and learn salient edge information. It is proved539

that they can better understand global high level infor-540

mation and edge information. Next, to exploit complete541

salient regions with di↵erent level features, this paper542

proposes the feature correlation module for saliency de-543

tection. In order to better distinguish foreground and544

background information for a given image, self-supervised545

saliency detection loss is illustrated. Finally, to demon-546

strate the performance of our proposed method, we547

conduct experiment results on five well-known dataset-548

s. Extensive experimental results demonstrate that our549

approach outperforms state-of-the-art weakly supervised550

methods and ablation studies prove the e↵ectiveness of551

each component as well. Future work will focus on de-552

veloping a more lightweight weakly supervised model553

as well as investigating how to deploy SOD algorithms554

in mobile devices to strengthen practicality.555
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