

A multi-components approach to monitoring process structure and customer behaviour
concept drift

Yang, L., McClean, S. I., Donnelly, MP., Burke, K., & Khan, K. (2022). A multi-components approach to
monitoring process structure and customer behaviour concept drift. Expert Systems with Applications, 210, 1-14.
[118533]. https://doi.org/10.1016/j.eswa.2022.118533

Link to publication record in Ulster University Research Portal

Published in:
Expert Systems with Applications

Publication Status:
Published (in print/issue): 30/12/2022

DOI:
10.1016/j.eswa.2022.118533

Document Version
Author Accepted version

General rights
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright
owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been
made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in
the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Download date: 28/08/2023

https://doi.org/10.1016/j.eswa.2022.118533
https://pure.ulster.ac.uk/en/publications/ade69ee4-2dbd-42a9-992c-c1b21b258b2e
https://doi.org/10.1016/j.eswa.2022.118533

Graphical Abstract

A Multi-Components Approach to Monitoring Process Structure
and Customer Behaviour Concept Drift

Lingkai Yang, Sally McClean, Mark Donnelly, Kevin Burke, Kashaf Khan

Highlights

A Multi-Components Approach to Monitoring Process Structure
and Customer Behaviour Concept Drift

Lingkai Yang, Sally McClean, Mark Donnelly, Kevin Burke, Kashaf Khan

• A method for detecting sudden and gradual drifts in process event data.

• The method can detect structural and behavioural process drifts.

• A sliding window framework associated with the proposed drift detec-
tor.

• The method can detect, localize and rationalize process drifts.

A Multi-Components Approach to Monitoring Process

Structure and Customer Behaviour Concept Drift

Lingkai Yanga,∗, Sally McCleana, Mark Donnellya, Kevin Burkeb, Kashaf
Khanc

aSchool of Computing, Ulster University, Jordanstown, BT37 0QB, Northern
Ireland, United Kingdom

bMathematics Applications Consortium for Science and Industry, University of
Limerick, V94 T9PX, Limerick, Ireland

cBritish Telecom, Ipswich, IP5 3RE, United Kingdom

∗Corresponding author
Email addresses: yang-l9@ulster.ac.uk (Lingkai Yang),

si.mcclean@ulster.ac.uk (Sally McClean), mp.donnelly@ulster.ac.uk (Mark
Donnelly), Kevin.Burke@ul.ie (Kevin Burke), kashaf.khan@bt.com (Kashaf Khan)

Preprint submitted to Expert Systems with Applications June 24, 2022

Abstract

Concept drifts within business processes are viewed as variations in the busi-
ness circumstances, such as structural and behavioural changes in the control-
flow, which necessitate process refinement and model updating. Existing ap-
proaches, such as relation-based precedence rules, tuned to detect drifts in
the process structure are often not well suited to detecting changes in cus-
tomer behaviour. This paper proposes a concept drift detector employing
multi-components originating from Discrete-time Markov chains to detect,
localize and reason about concept drifts in both process structure and cus-
tomer behaviour of the control-flow. The approach was compared with three
commonly used methods using 52 artificial event logs representing various
types of drift (sudden and gradual, structural and behavioural). Experi-
mental results demonstrated desirable performance with average F1 scores
of 0.871 and 0.893 under structural and behavioural drifts, respectively. The
approach was also employed in a real-life hospital billing dataset. The main
contribution of this paper is a concept drift detector that is able to detect and
explain root causes of control-flow changes whether such variations occurred
suddenly or gradually.

Keywords: Business process, Concept drift, Behavioural drift,
Discrete-time Markov chains, Sliding window.

1. Introduction

A process instance, within the context of a business process, refers to a
series of process tasks executed in order to accomplish a predetermined ob-
jective (Bose et al., 2013). Business environments may evolve continuously
or under some scenarios, suddenly due to variations in, for example, poli-
cies, customer behaviours, supply chains, data or available resources. This
presents ongoing challenges for organizations as they need to quickly respond
and adapt (Maaradji et al., 2017). Within the data mining community, such
changes are referred to as concept drifts (Gama et al., 2014) and have been
classified into four main categories: sudden, gradual, recurring and incre-
mental (Gama et al., 2014; Maisenbacher & Weidlich, 2017). In general, a
concept drift is sudden if the business environment changes instantly without
alteration (Gama et al., 2014), while for gradual drift, the current business

2

process is replaced with a new process model, but both processes coexist
for a period of time with the current process discontinuing gradually (Bose
et al., 2013). The recurring concept relates to scenarios where previously
seen concepts reoccur after some time (Maisenbacher & Weidlich, 2017) and
in this paper, we consider it as a special case of sudden changes. Incremental
drift refers to a sequence of changes in the environment (Gama et al., 2014)
that can be viewed as a series of gradual drifts.

These drifts may impact upon control-flows; structural or behavioural
changes in a process model (Bose et al., 2013). By structural changes, we
mean variations in the process model, such as the start or end of the process,
or the sequencing order of executions. For example, a temperature check
procedure is introduced to a supermarket to keep safe during the COVID-19
epidemic (Velavan & Meyer, 2020). By behavioural changes, we say that
the structure of a process remains the same, but the patterns or pathways of
customers traversing the process are significantly different (Martjushev et al.,
2015). For example, customers may begin bringing their own bags instead
of buying a plastic bag when they go shopping or, due to a sudden factor,
for example, the COVID-19, customers become more likely to obtain fresh
products via delivery rather than travel to the store. Excluding control-flow,
concept drifts can also occur from a data or performance perspective. The
former refers to changes in the production and consumption of data (Bose
et al., 2013) while the latter focuses on the validation of the execution of
activities, such as the waiting time in-between activities (Rojas et al., 2016).
Detecting such changes can provide insight into the evolution of a business
environment, encouraging process refinement and model updating.

Martjushev et al. (2015) identified three main objectives when dealing
with business process drifts: change point detection (whether concept drift-
s happened?), change localization (where are the regions of changes?) and
change process discovery (why the changes occurred?). Concept drift detec-
tion approaches can be broadly classified into online and offline depending on
whether or not the occurrence of changes needs to be discovered in real-time
(Martjushev et al., 2015). Maaradji et al. (2017) generated a benchmark of
18 types of control-flow structural sudden changes including loops, parallel
and alternative branches by altering the structure of a loan application pro-
cess. The original process model is denoted as ‘base’, as illustrated in Fig. 1
(a) and one of the altered models referred to as ‘cf’, is illustrated in Fig. 1
(b). The three activities in blue boxes refer to a loop structure. Process in-
stances start from ‘Check form’ and terminate in one of the green activities.

3

Suppose the base model was replaced by the altered model at a particular
time point, but such a change is unknown to us. Therefore, the question
we consider is if we can detect and locate this change and also, explain the
reasons (i.e., the variations in the red boxes between Fig. 1 a and b) based
on a collection of process instances?

(a) base model

(b) altered model (‘cf’)

Figure 1: The base model and one of its alternative versions

Stochastic business processes can be modelled using Discrete-time Markov
Chains (DTMCs). In this paper, we use seven components of DTMCs to
build an offline concept drift detector, referred to as DTMC-CDD (DTM-
C Components-based Concept Drift Detector), focused on detecting both
structural and behavioural changes in control-flow. The seven components
comprise the state space, initial and transition probabilities, communication,

4

recurrent and periodic classes, and absorbing states. A sliding window-based
framework is applied alongside DTMC-CDD to localize and rationalize iden-
tified change points.

In summary, the contributions of this paper are as follows. 1) The pro-
posed DTMC-CDD method, which combines seven components originating
in DTMCs as a concept drift detector for process mining. As an offline ap-
proach, it is available for dealing with sudden and gradual concept drift.
Also, the approach is capable of detecting structural changes in control-flow
such as loop structure, start and end of the process, as well as behavioural
changes. 2) The applied sliding window framework associated with the pro-
posed DTMC-CDD approach to partition process instance stream into con-
secutive populations for change point detection and localization. 3) The 34
created logs by modifying the loan application (Maaradji et al., 2017), in-
cluding 18 logs referring to gradual changes in the control-flow structure and
8 logs each representing behavioural drifts occurring suddenly or gradually.
Those datasets have been uploaded to Github1.

The rest of the paper is organized as follows. Section 2 and 3 present
related work and the background knowledge of business processes and DTM-
Cs. We introduce the proposed DTMC-CDD method and the sliding window
framework in Section 4. The findings from a series of experiments on arti-
ficial and real-life event logs are presented in Section 5 and 6, respectively.
Section 7 discusses the strengths and weaknesses of the proposed approach.
Finally, conclusions and the scope for future work are provided in Section 8.

2. Related Work

Process mining (PM), identified as a bridge between data mining and
business process analysis, includes various techniques to monitor business
process executions, discover business bottlenecks and detect concept drift
(Bose et al., 2013). In this section, we compare our proposed DTMC-
CDD methodology to state-of-the-art process drift detection approaches (as
demonstrated in Table 1) from four perspectives: regarded perspectives (i.e.,
changes in process structure, behaviour, data or performance), the applica-
tion scenarios (i.e., online or offline), the patterns of change (i.e., sudden or
gradual) and the topics of study (i.e., process drift detection, localization or
rationalization).

1https://github.com/LingkaiYang/business-concept-drift

5

T
ab

le
1:

M
et

h
o
d

co
m

p
ar

is
o
n

in
re

g
a
rd

ed
p

er
sp

ec
ti

ve
s,

a
p

p
li
ca

ti
o
n

sc
en

a
ri

o
s,

p
a
tt

er
n

s
o
f

ch
a
n

g
e

a
n

d
to

p
ic

s

R
ef

er
en

ce
s

R
eg

ar
d
ed

P
er

sp
ec

ti
ve

s
S
ce

n
ar

io
s

P
at

te
rn

s
of

C
h
an

ge
T

op
ic

s
S
tr

B
eh

D
at

P
er

O
n

O
ff

S
u
d

G
ra

D
et

L
o
c

R
at

B
os

e
&

va
n

d
er

A
al

st
,

20
09

X
X

X
X

B
os

e
et

al
.,

20
13

X
X

X
X

X
X

H
om

p
es

et
al

.,
20

15
X

X
X

X
X

X
X

M
ar

tj
u
sh

ev
et

al
.,

20
15

X
X

X
X

X
X

X
S
ee

li
ge

r
et

al
.,

20
17

X
X

X
X

X
M

ai
se

n
b
ac

h
er

&
W

ei
d
li
ch

,
20

17
X

X
X

X
X

X
O

st
ov

ar
et

al
.,

20
17

X
X

X
X

X
Z

h
en

g
et

al
.,

20
17

X
X

X
X

X
M

aa
ra

d
ji

et
al

.,
20

17
X

X
X

X
X

X
Y

es
h
ch

en
ko

et
al

.,
20

19
X

X
X

X
X

X
T

av
ar

es
et

al
.,

20
19

X
X

X
X

X
X

X
C

er
av

ol
o

et
al

.,
20

20
X

X
X

X
X

X
X

O
st

ov
ar

et
al

.,
20

20
X

X
X

X
X

X
A

d
am

s
et

al
.,

20
21

X
X

X
X

X
X

D
T

M
C

-C
D

D
(t

h
is

p
ap

er
)

X
X

X
X

X
X

X
X

S
tr

=
S

tr
u

ct
u

re
,

B
eh

=
B

eh
av

io
u

r,
D

at
=

D
at

a,
P

er
=

P
er

fo
rm

an
ce

O
n

=
O

n
li

n
e,

O
ff

=
O

ffl
in

e
S

u
d

=
S

u
d

d
en

,
G

ra
=

G
ra

d
u

al
D

el
=

D
et

ec
ti

on
,

L
o
c=

L
o
ca

li
za

ti
on

,
R

at
=

R
at

io
n

al
iz

at
io

n

6

In general, the majority of methods concentrate on detecting process
structural drifts, such as the insertion or deletion of a process, while other
perspectives are not fully studied. Hompes et al. (2015), Maaradji et al.
(2017) and Tavares et al. (2019) discussed process behavioural changes, but
they mainly concentrate on variations in the trace-level, i.e., changes in the
proportions of different activity sequences. Moreover, only the method pro-
posed by Hompes et al. (2015) analyzes the root causes of behavioural drift.
By using DTMC transition probabilities, our proposed method can detect
behavioural drift at an event-level to discover which specific process or sub-
processes lead to the changes. As a result, the method can investigate deeper
the root causes of the drift. In addition, Martjushev et al.’s (2015) and our
method are the only two techniques to detect, localize and rationalize concept
drift, whether it occurs suddenly or gradually.

Offline learning approaches collect all process instances for model build-
ing, which is beneficial for robust data characterizing and understanding.
Sliding windows are commonly applied in various concept drift detection
approaches to generate a set of populations (Bose et al., 2013; Martjushev
et al., 2015) where changes are examined between consecutive pairs. Bose
et al. (2013) proposed four features based on the follows/precedes relation-
ship (i.e., for any pair of activities ‘a’ and ‘b’, activity ‘a’ always, sometimes
or never follows activity ‘b’). Thereafter, Hotelling T 2, KS and MW test-
s were used to expose changes. In Seeliger et al. (2017), process instances
were transformed to graph metrics, such as the number of edges and nodes,
and a G-test was used as the statistical test method. Clustering method-
s such as Agglomerative Hierarchical Clustering (Bose & Van Der Aalst,
2009), Markov Clustering (Hompes et al., 2015) and Density-based Spatial
Clustering of Applications with Noise (DBSCAN) (Zheng et al., 2017) are
also commonly applied to detect process drift. Yeshchenko et al. (2019) in-
troduced a visual technique, called Visual Drift Detection (VDD), to handle
the issues of drift categorization, drilling-down, and quantification. Adams
et al. (2021) addressed the importance of understanding the root causes of
process drift, especially for decision making.

Online learning approaches, on the other hand, ingest one observation
data at a time, with the capability to update continuously and identify drift
in real-time. Ostovar et al. (2017) proposed an online technique for the early
detection of business process changes. Thereafter, they presented a noise-
tolerant automated method, which is capable to expose concept drift in both
online and offline scenarios. In addition to detecting concept drift in the

7

control-flow of a business process, Maisenbacher & Weidlich (2017) present-
ed an online approach to investigate whether the detected changes actually
influence the prediction of properties of process instances. Maaradji et al.
(2017) reorganized process instances as RUNs, characterizing the pathways
of customers and then applied the Chi-square test to uncover variations.
Tavares et al. (2019) proposed an approach to simultaneously handle multi-
ple process mining tasks, such as process discovery, conformance checking,
and concept drift detection. Ceravolo et al. (2020) discussed the state of
the art in online process mining, highlighting the evaluation goals and even-
t logs for concept drift detection. Ostovar et al. (2020) proposed a robust
and automated method that works both online and offline, with the goal of
characterizing process drifts in streams of business process events.

A Markov process is a stochastic process that is memoryless to historical
data, thus the future of the process is dependent only upon its present value
(Meyn & Tweedie, 2012). Regarding drift detection, Roveri (2019) proposed
three strategies by using transition probabilities to investigate changes, de-
pending on whether or not prior knowledge is required. Alippi et al. (2012)
applied hidden Markov models (HMMs) to capture the distribution of two-
time series, respectively where a significant difference evaluated by using
the log-likelihood, refers to concept drift. Borges & Levene (2008) applied
a variable-length Markov chain (MC) to detect concept drifts in a context
of web usage mining where a concept drift is detected if the performance
in two trained MC models (depending on the whole history data and cur-
rently recorded data, respectively) is significantly different. In our previous
work, DTMCs and hitting probabilities are applied to detect business pro-
cess anomalies where changes in the anomalous patterns can be indicative of
concept drift (Yang et al., 2020).

3. Preliminaries

This section introduces the formal preliminaries used throughout the pa-
per. Section 3.1 describes the event log. Sections 3.2 and 3.3 detail the
Markov components used in this paper from perspectives of probability dis-
tribution (initial and transition probabilities) and state classification (com-
munication, recurrent, periodic and absorbing states).

8

3.1. Business process event log

Definition 3.1. (Event log) An event log L is a set of recorded process
instances that correspond to process executions (Yeshchenko et al., 2019).
we present the set of executions of a process as a finite non-empty alphabet
A = {a, b, c, d, · · · }. An event is a specific process execution, commonly with
completion timestamp, resource and other attributes. A process instance x
is a finite sequence of events, sorted by their timestamps. For the sake of
simplicity, we consider x as a sequence of executions, for example, x = abca.

3.2. DTMC and probability distribution

Definition 3.2. (DTMC) A stochastic process (X0, X1, X2, ..., Xn, n ≥ 0)
is a DTMC with a state space (S = {s1, s2, ..., sk}), an initial distribution
(π = {π1, π2, ..., πk}) and a transition probability matrix P = (pij, i, j ∈ S)
if it holds the Markov property,

P (Xn+1 = j|X0, ..., Xn = i) = P (Xn+1 = j|Xn = i). (1)

That is, the conditional probability distribution of future states only de-
pends on the current state. Although in some scenarios this assumption is
not realistic, it is generally accepted as an approximation in the context of
business processes . Proofs for the following definitions and theorems can be
found in (Serfozo, 2009; Sartea et al., 2019).

Definition 3.3. (State space) The state space is a countable set of unique
states, denoted as S = {s1, s2, · · · , sk}. Therefore, changes in S usually
relate to operations, such as inserting or deleting a process execution.

Definition 3.4. (Initial probability) The initial probability of state si, de-
noted as πsi , refers to the probability that a DTMC begins from si, and is
estimated, using maximum likelihood estimation, as:

π̂si =
Nsi

N
(2)

where Nsi is the number of sequences with si as their first state and N is
the total number of sequences. Thus, initial probabilities can expose changes
at the beginning of process instances.

9

Definition 3.5. (Transition probability) The transition probability psisj de-
scribes the probability that a DTMC moves from state si to sj in a single
step which is given as:

p̂sisj =
Nsisj∑
v∈S Nsisv

. (3)

Nsisj is the number of pairs (si, sj) in the event log.
∑

v∈S Nsisv is
the number of transitions that start with si and end in any one of the
states belonging to the state space S. The transition probabilities can
be listed in a k × k transition probability matrix, denoted as P where
P (i, j) = psisj , i = 1, ..., k, j = 1, ..., k. Variations in the transition matrix is
indicative of possible concept drift in customer behaviour.

Definition 3.6. (n-step transition probability) The n-step transition prob-
ability psisj(n) is the probability of making a transition from state si to sj
over n steps, i.e., psisj(n) = P (Xr+n = sj|Xr = si).

Theorem 3.1. (Chapman-Kolmogorov equations)

psisj(m+ n) =
∑
r

psisr(m)psrsj(n). (4)

Let Pn = {psisj(n)} be the n step transition matrix, and P1 = P . Ac-
cording to Theorem 3.1, Pm+n = PmPn, and so Pn = P n, the n-th power of
P .

3.3. Classification of DTMC states

Definition 3.7. (Reachability) State sj is said to be reachable from si (si →
sj) if starting from si, it is possible to reach sj for some transition steps n,
i.e., psisj(n) > 0. This means si → sj if

∑∞
r=0 psisj(r) > 0, indicating that

we need to compute the n-step transition probability for every value of r up
to infinity. In practice, only those values of r between 0 and k − 1 is of our
interest as a path of k − 1 transitions involves all the states in the process.
Thus, si → sj if,

k−1∑
r=0

psisj(r) > 0. (5)

Definition 3.8. (Communication class) si and sj are in the same commu-
nication class if si → sj and sj → si. Thus, in the same communication

10

class, every state is reachable from every other state and in the business pro-
cess context, refers to states with a loop structure. To partition states into
communication classes, we first establish a k × k matrix Q,

Q(si, sj) =

{
1 if si → sj and sj → si,
0 otherwise,

(6)

Those states that have the same rows in Q belong to the same communi-
cation class. Algorithm 1 provides pseudocode to determine such communi-
cation classes.

Algorithm 1 Determination of communication classes

Input: State space S and transition matrix P .
Output: Communication classes (C).

1: Check if si → sj by equation (5) for all si, sj ∈ S.
2: Construct a k × k matrix Q by equation (6).
3: States that have the same rows in Q belong to the same communication

class.

Definition 3.9. (Closed communication class) A communication class is
closed if for all states si ∈ C, it holds

∑
sj∈C psisj = 1.

Definition 3.10. (Recurrent class) We say a state is recurrent if whenever
the stochastic process leaves the state, the system will always return back in
the future. Therefore, for a recurrent state si, we have, P (Xr+n = si|Xr =
si) = 1 for some n ≥ 1. A class is said to be recurrent if all the states in
that class are recurrent. This component also indicates a loop structure, but
stronger than the communication class because once customers entered the
loop area, they can never escape.

Theorem 3.2. A finite communication class is recurrent if and only if it is
closed.

Algorithm 2 Determination of recurrent classes

Input: Communication classes C and transition matrix P .
Output: Recurrent classes (RC).

1: for all Cj ∈ C:
2: if class Cj is closed (using Definition 3.9):
3: Cj is a recurrent class (by Theorem 3.2).

11

Algorithm 2 serves the pseudocode to determine recurrent classes. The
communication and recurrent classes can also be determined by using reach-
ability analysis (Xie & Beerel, 1998). Furthermore, there are some tools
available in MATLAB2 and R (Spedicato, 2017).

Definition 3.11. (Periodic class) We define the period d(si) of a state si as
the greatest common divisor (gcd) of all n (n > 0) that follow psisi(n) > 0.
State si is periodic if d(si) > 1. Consider a periodic state si with d(si) = 3,
we can only observe it in steps 3, 6, 9 ... when the chain leaves si. A class
is said to be periodic if all its states are periodic. Therefore, the periodicity
component is even stronger than the recurrent property as the DTMC always
comes back to the same state in some fixed number of time steps.

Theorem 3.3. For a communication class, either all states are periodic or
none are.

In practice, for every state si, we can construct a set (denoted as Di)
storing all the number of steps the chain traversed back to si. Use sequence
‘abcda’ as an example, it takes 4 steps to return ‘a’ and therefore, we append
4 to Da. If gcd(Di) = 1, state si is aperiodic, otherwise it is periodic.

Algorithm 3 Determination of periodic classes

Input: State space S and Communication classes (C).
Output: Periodic classes (PC).

1: for all si ∈ S:
2: Construct set Di.
3: si is periodic if gcd(Di) > 1.
4: for all Cj ∈ C:
5: if all si ∈ Cj are periodic:
6: Cj is a periodic class (by Theorem 3.3).

Definition 3.12. (Absorbing states) An absorbing state is a fixed state that,
once reached, the chain will never leave (Norris, 1998). Within the context
of business processes, absorption relates to terminating process executions.

2https://uk.mathworks.com/help/econ/dtmc.classify.html

12

4. Proposed Methodology

In this section, we introduce the DTMC-CDD approach and the sliding
window framework. Section 4.1 describes the DTMC-CDD approach, its
procedures to detect whether there is a concept drift between two event logs.
Thereafter, Section 4.2 discusses its application in a process instance stream
to detect, localize and rationalize changes using a sliding window framework.

4.1. DTMC-CDD

The problem we encounter is the following: given two event logs refer-
ring to process instances within two time windows. Our goal is to inspect
whether the process structure or customer behaviour of a process control-flow
is significantly different. The solution we propose is to characterize the two
logs respectively using seven components originating from DTMCs and then
detect differences in such components. Specifically, any changes in the state
space (inserting or deleting process executions), communication, recurrent
and periodic classes (loop structures), and absorbing states (terminating s-
tates) are considered as concept drift. Initial and transition probabilities are
mainly used to detect behavioural changes. Algorithm 4 details the compo-
nents extraction process with an event log as the input.

Algorithm 4 Components extraction

Input: An event log L.
Output: S, π, P , C, RC, PC, AS.

1: Extract the state space, S = {s1, s2, ..., sk}.
2: for all si ∈ S:
3: Calculate the initial probability πsi by using Eq. (2).
4: for all sj ∈ S:
5: Calculate the transition probability psisj by Eq. (3).
6: end for
7: end for
8: Calculate communication classes (C) by Algorithm 1.
9: Calculate recurrent classes (RC) by using Algorithm 2.

10: Calculate periodic classes (PC) by using Algorithm 3.
11: Extract absorption states (AC).

Once we extracted the seven components within two event logs (L1 and
L2), the following process inspects the occurrence of concept drift. To start

13

with, we investigate variations from the process structure perspective (lines
1-6, Algorithm 5). Subsequently, the multinomial test (Read & Cressie,
2012), which is implemented by the XNomial R package3 in this paper, is
used to detect structural and behavioural changes in initial and transition
probabilities. We first use the multinomial test to measure the difference
between the initial probabilities (lines 7-11). We consider the occurrence of
a concept drift if the p-value is smaller than a predefined significance level
α (line 7) and then we rationalize if it is a structural or behavioural change.
Specifically, it should be considered as a structural change if there exists at
least one state si ∈ S1 ∩ S2 that has the initial probability increases from
zero (inserting a start position) or decreases to zero (deleting a start position)
(lines 8-9). Otherwise, we argue that the start positions maintain the same
but there is a behavioural drift indicating changes in the number of process
instances that begin the journal from such initial states.

Thereafter, we apply the multinomial test in two stages for transition
probabilities (lines 12-21). The first stage is to check if there is a drift (lines
12-13) and then the second stage to locate which specific state transition leads
to the change and whether it is a structural or behavioural change (lines 14-
21). Given that there is a difference in the transitions from si (line 15), if
there exists a state sj ∈ S1∩S2 that has the transition probability increases
from zero (inserting a connection, lines 16-17) or decreases to zero (deleting
a connection) (lines 18-19), we say it is a structural drift. Otherwise, it is a
behavioural drift (lines 20-21). A conclusion is given that there is no concept
drift if no significant differences are detected in all the components. Notice
that the multinomial test requires two comparing sets having the same size,
therefore well suited when S1 equals S2. Otherwise, it is implemented over
the states that appear in both S1 and S2.

3https://cran.r-project.org/web/packages/XNomial/vignettes/XNomial.html

14

Algorithm 5 Concept drift detection

Input: S1, C1, RC1, PC1, AS1, π1, P1 and S2, C2, RC2, PC2, AS2, π2,
P2. The significance level α.

1: if S1 6= S2:
2: Structural changes such as inserting or deleting.
3: if C1 6= C2 or RC1 6= RC2 or PC1 6= PC2:
4: Structural changes in loop structures.
5: if AS1 6= AS2:
6: Structural changes in terminating positions.
7: if Multinomial test(π1, π2) < α:
8: if there is at least one si ∈ S1∩S2, that have (π1si 6= 0 and π2si = 0)

or (π1si = 0 and π2si 6= 0):
9: Structural changes in the beginning position of si.

10: otherwise:
11: Behavioural changes in beginning positions.
12: if Multinomial test(P1, P2) < α:
13: Changes in state transitions.
14: for si ∈ S1 ∩ S2:
15: if multinomial test(P1si , P2si) < α:
16: if p1si,sj = 0 and p2si,sj 6= 0:
17: Structural changes (inserting a connection).
18: if p1si,sj 6= 0 and p2si,sj = 0:
19: Structural changes (removing a connection).
20: if: p1si,sj 6= 0 and p2si,sj 6= 0:
21: Behavioural changes in transitions from si.

4.2. The sliding window approach

In practice, process instances are usually organized as a data stream be-
cause customers enter the business system continuously. In this section, we
apply a sliding window approach to partition the process instance stream
into a set of populations to detect changes using DTMC-CDD in terms of
every consecutive two populations. Those detected change points are then
clustered into groups to explore exact locations and also to investigate the
reasons for the occurrence.

4.2.1. Change point detection

Sliding window-based techniques can be broadly classified into two cat-
egories: fixed-size and adaptive-size, depending on whether the population

15

sizes are required to be fixed. In this paper, a fixed-size sliding window is
used, as illustrated in Fig. 2 where P1 and P2 refer to successive popula-
tions of size w and xi, i = 1, 2, ..., refers to the recorded process instances.
There are two reasons why we use a fixed-size window. First, the positions
of detected changes are not required to be very accurate during the detection
phase, instead, the precise positions are investigated in the next two stages
(change points clustering and localization). Thus, the impact of window size
upon the performance of drift detection is decreasing and a fixed window is
well suited. Second, it is easier to specify the potential concept drift areas in
the following change localization stage.

Figure 2: Change point detection

Another particular concern is the selection of a sliding window with or
without overlap. By overlapping windows, we mean a part of data belonging
to both the populations, i.e., the data at the end of P1 is also the beginning of
P2. In general, overlapping windows are more sensitive to the occurrence of
concept drifts but require more computation resources (Gama et al., 2014). In
this paper, we use a non-overlapping window to increase variations between
the two populations, which is beneficial for detecting gradual drift (Bose
et al., 2013; Maaradji et al., 2017).

4.2.2. Change point clustering

Without loss of generality, around an actual change point, a set of change
points can be detected alongside the sliding of the window (as seen in Fig.
3) leading to the issue of pinpointing the exact location of such changes.

16

Figure 3: Change point clustering

Assume a perfect concept drift detector with 100% accuracy. Once the
actual change point is located between the two populations (P1 and P2), a
change point can be recorded. As demonstrated in Fig. 3, xl and xm are
two actual change points, but five change points (y1, y2, y3, y4 and y5) have
been detected. To address this, a clustering method, DBSCAN (Schubert
et al., 2017), was applied to cluster discovered change points into groups.
DBSCAN has two main parameters: the maximum distance between two
points for one to be regarded as in the neighbourhood of the other (eps) and
the minimum number of points required in a neighbourhood to generate a
dense region (minPts). We employ the same strategy as (Zheng et al., 2017)
to ensure that no candidate change point is dropped by setting minPts = 1.
Given window size w, a perfect drift detector and an actual sudden change
point, for example, xm in Fig. 3. With the sliding of the two windows, a
change point can be detected after the second window covers xm (i.e., y4) and
before the first window leaves xm (i.e., y5). That is, change points between
y4 and y5 are detected due to the same actual change point and should be
considered in the same neighbourhood of DBSCAN. Therefore, eps is set to
2w. For gradual drift, we consider changes with the distance less than 2w to
be inside the same gradual change period.

4.2.3. Change point localization

Once the detected change points have been clustered into groups, the
exact change point positions are investigated in every cluster. This can be
seen in the above-mentioned example where three detected change points
y1, y2, y3 are clustered in one group, as presented in Fig. 4. Given detected
change points in one cluster, Algorithm 6 describes the procedures to explore
change positions. The first step is to find the minimum and maximum index
of change point (line 1) to determine the concept drift area, i.e., from xlower

17

to xupper, denoted as [xL, xU] (line 2). Thereafter, the process drift region is
split into three subpopulations of the same length (line 3) where the DTMC-
CDD approach is applied in the left (P1’ and P2’) and right (P2’ and P3’)
subdomains, respectively (line 4). The region splitting process is continued to
locate change points in a smaller area until the number of process instances
in the area is smaller than a predefined value β (line 5-8). As discussed
above, changes in a range of 2w can be generated due to the same drift, in
this paper, we set β to 10% of 2w, i.e., 0.2w. Here xleft and xright refer to
the start and end of P2’.

Figure 4: Change point localization

Algorithm 6 Change point localization

Input: Detected change points Y = {y1, y2, ..., yn}, population size w and
terminating parameter β.

1: Get ymin = min(Y) and ymax = max(Y).
2: Get the concept drift area,

xL = ymin-w and xU = ymax+w.
3: Split process instances under [xL, xU] into 3 halves, P ′1, P

′
2, and P ′3 as

illustrated in Fig. 4.
4: Apply DTMC-CDD on the left (P ′1 and P ′2) and right (P ′2 and P ′3) sub-

population, respectively.
5: if concept drifts occurred between P ′1 and P ′2:
6: Update xU = xright, return xleft as the exact change

position when xU -xL ≤ β, otherwise, goto Step 3.
7: if concept drifts occurred between P ′2 and P ′3:
8: Update xL = xleft, return xright when xU -xL ≤ β,

otherwise, goto Step 3.

For sudden drift, change localization aims to investigate the exact point

18

of the occurrence. However, in a scenario of gradual drift, the previous
business process is replaced with a new process model gradually. Therefore,
the goal is to discover the start and end point of the variation, which is a
challenging task as changes are usually not significant enough during such
periods (Martjushev et al., 2015).

4.2.4. Change point rationalization

Once the exact change points are discovered, the DTMC-CDD approach is
applied repeatedly for every change point to investigate the reasons leading to
the drift. More specifically, to uncover if a process drift happened because of
changes in process structure (the insertion or deletion of process executions,
changes in the beginning or terminating states and loop structures) or in
customer behaviour (changes in behavioural patterns).

5. Evaluation on artificial event logs

In this section, we first describe evaluation metrics used in this paper
within the context of sudden and gradual drifts. Thereafter, a discussion is
given for experiments setup, especially the specification of the window size.
Following that, we evaluate the performance of the DTMC-CDD method
under 52 artificial logs from a loan application. Specifically, the 18 event
logs for sudden drifts are from (Maaradji et al., 2017), then we created an-
other 18 logs referring to gradual changes. Furthermore, based on the base
model (presented in Fig. 1 a), we generated 8 event logs each representing
behavioural drift that occurred suddenly or gradually. Finally, the proposed
method is compared with three commonly used approaches: relation type
count (RTC) proposed by Bose et al. (2013), relation entropy (RE) proposed
by Bose et al. (2013) and partial order runs (RUN) proposed by Maaradji
et al. (2017).

5.1. Evaluation metrics

Precision, recall and F1-score are frequently used performance measures
in classification problems (Tharwat, 2021). In some scenarios, precision is
more important than recall and vice versa. For example, in a cancer detec-
tion problem, recall is more important because the wrong classification (false
negatives, i.e., wrongly considering a cancer patient as non-cancer) is unac-
ceptable. On the other hand, precision is more important for scenarios where
we are only interested in false positives. In a concept drift detection context,

19

it is insufficient to detect both false positives (i.e., considering non-drifts as
changes) and false negatives (i.e., considering real changes as non-drifts). As
a result, the F1-score, which is the harmonic mean of precision and recall, is
used as the performance measure.

In order to use the F1-score to evaluate the accuracy of the detected
change points within the context of streaming data, we employ an approach
proposed by Martjushev et al. (2015). Here, a lag period (l) around the
true drift points is established whereby a change point is considered a true
positive (TP) if it locates a change point within the lagged region of a real
change point (as seen in Fig. 5). The green and yellow circles refer to a real
change point and a detected change point, respectively.

Figure 5: Modified F1-score for sudden drifts

Specifically, the true positive (TP), false positive (FP) and false negative
(FN) are adjusted as, TP: a real change point at x and there is a detected
drift point within x ± l. FP: a detected change point at x, but there is no
real drift within x ± l. FN: a real drift occurred at x, but no change points
were detected within x ± l. By using TP, FP and FN, the precision, recall
and F1-score can be calculated as,

precision =
TP

TP + FP
. (7)

recall =
TP

TP + FN
. (8)

F1-score = 2 ∗ precision ∗ recall
precision+ recall

. (9)

The F1-score in this format is suitable for sudden drifts. Considering
gradual drifts, however, the real changes are located in a continuous period
rather than a specific point. Therefore, a detected change point is considered
as a TP if it locates in any one of the real change regions, as seen in Fig. 6

20

where the start and end of the gradual drift are x1 and x2 respectively. In
other words, the green bar refers to the drift area and the yellow circle is the
detected change point.

Figure 6: Modified F1-score for gradual drifts

5.2. The specification of window size and stride

The specification of window size is critical and challenging in any sliding
window-based methods (Maaradji et al., 2017) since a small population size
usually leads to false positives, i.e., detecting concept drifts that do not exist
(Martjushev et al., 2015), while a large one might reduce the variability
of process instances, resulting in the missing of change points (Maaradji
et al., 2017). In the context of supervised learning, the window size can be
optimized according to the performance of the concept drift detector (Gama
et al., 2014). There is, however, a general issue for unsupervised learning
(Žliobaitė et al., 2016; Gama et al., 2014). To address the window size, we
implement DTMC-CDD, RTC, RE and RUN under different w with the size
ranging from 30 to 100 in increments of 10 under all the 52 event logs. Their
best performance with the highest F1-score under such window sizes are then
compared.

The two sliding windows, in many scenarios, are moving one step every
time to detect changes for every process instance (Bose et al., 2013; Maaradji
et al., 2017; Martjushev et al., 2015; Seeliger et al., 2017). However, it is
computationally time-consuming and lots of redundant change points might
be detected. To accelerate the drift detection process and reduce the number
of candidate change points, in this paper, the stride (i.e., the number of steps
the window slides every time) is set as 50% of the window size as a trade-off
between the time consuming and sensitiveness to changes.

5.3. Experiments on sudden drifts

5.3.1. Scenario 1. Sudden drifts in process structure

As mentioned in Maaradji et al. (2017), 18 alternative models, compared
to a base model (demonstrated in Fig. 1 a) of a loan assessing application
were generated for simulating sudden drifts. To construct a process instance

21

stream involving a set of change points, five logs of 250 instances from the
base and one of the altered models were generated, respectively and thereafter
they were combined as a data stream (Maaradji et al., 2017). The stream
generation process was continued until all the altered models were used and
finally, 18 data streams were created. An example is shown in Fig. 7 using
the control-flow of (a) and (b), as presented in Fig. 1.

The blue and red boxes refer to the base and the altered model, respec-
tively leading to 9 real changes at locations 250, 500, 750, 1000, 1250, 1500,
1750, 2000, and 2250. By applying the DTMC-CDD approach, the detected
changes are located at positions 225, 480, 750, 990, 1230, 1500, 1740, 1980
and 2235. As an example, given the lag level of F1-score as 10, the number of
true positives (TP) is 4, indicating 4 of 9 detected change point locates within
10 steps of an exact drift point, leading to the F1-score of 0.45. Furthermore,
increasing the lag region to 20, the F1-score goes up to 0.89. Besides, the
p-values of the multinomial test using transition probabilities are plotted in
Fig. 8, indicating nine change points with a p-value below 0.05. The F1-
scores of the DTMC-CDD method under the 18 types of concept drift are
shown in Fig. 9.

Figure 7: Log generation for sudden drifts in process structure

22

Figure 8: The multinomial test over transition probabilities (sudden drift, control-flow
‘cf’)

Figure 9: F1-scores of sudden drifts in process structure

According to Fig. 9, the F1-score is above 0.7 for most of the event logs,
excluding ‘pl’ (0.526) under lag region 20. Compared with the base and the
‘pl’ model, two process executions: ‘Check credit history’ and ‘Assess loan
risk’ change to be sequential from parallel, however, there are no significant
changes in their related transition probabilities, leading to the ineffectiveness
of the process drift detection.

5.3.2. Scenario 2. Sudden drifts in customer behaviour

To construct a process stream involving sudden changes in customer be-
haviour, we modified some transition probabilities in the base model (Fig. 1,
a). In the original base model, the transition probability from ‘Check appli-
cation form completeness (CAC)’ to ‘Return application back to applicant

23

(RAA)’ and ‘Check credit history (CCH)’ are 0.097 and 0.903, respectively,
indicating that nearly 10% customers did not submit the application form
correctly and customers property was always assessed ahead in the credit
history. In order to generate sudden changes in customer behaviour, we cre-
ated eight logs by increasing the transition probability from ‘CAC’ to ‘RAA’
gradually from 0.2 to 0.9 with an increment of 0.1. It can be considered as
a scenario where an applicant is required to be assessed more strictly and
also, the application is harder to be approved. Furthermore, the transition
probability to reject and cancel the application was increased to 0.7 and 0.8
from 0.5 and 0.5, respectively.

Thereafter, process instances from the original base model and the newly
generated logs were combined to construct the process stream. As seen in Fig.
10, the blue bars refer to process instances from the original base model, while
our simulated process instances are represented by red boxes. Different from
the strategy in Fig. 7, all process instances follow the same process structure
(Fig. 1 a), but with customer executions or preferences changed. Evaluated
by the multinomial test, the F1-scores are demonstrated in Figure 11. The
numbers 1-8 on the horizontal axis correspond to the transition probabilities
from ‘CAC’ to ‘RAA’ in our created logs which vary from 0.2 to 0.9. The
F1-score is unsatisfactory with a value of 0.45 when the transition probability
is 0.2. On the other hand, the F1-score is over 0.8 under the remaining seven
scenarios.

Figure 10: Log generation for sudden drifts in customer behaviour

24

Figure 11: F1-scores of sudden drifts in customer behaviour

5.4. Experiments on gradual drifts

5.4.1. Scenario 1. Gradual drifts in process structure

Within the context of gradual drift in the process structure, the number
of process instances in the current process model decreased gradually while
the other new model takes over. Fig. 12 demonstrates a process instance
stream (involving 2000 cases) under gradual changes. Specifically, the blue
and red boxes refer to the base and altered model, respectively, the same as
in sudden drift. During the period of gradual changes (the green and orange
boxes), instances from both models coexist.

Figure 12: Log generation for gradual drifts in process structure

Bose et al. (2013) consider gradual concept drift as a linear variation.
In other words, the fading of one process model and the taking over of the
new model happen linearly. In this paper, we applied the same strategy to
generate process instance streams involving gradual changes. As illustrated
in Fig. 13, the x-axis refers to the 100 process instances in the green and
orange boxes in Fig. 12 and the y-axis relates to the probability density
function determining where a specific process instance is sampled (i.e., from

25

model A or B). We take the first green bar as an example, referring to
instances from 200 to 300 where process model A is gradually replaced by
B. The dashed blue and solid red line represent the probability of sampling
an instance from model A and B, respectively. Therefore, process instances
before the crossover point (0-50) are more likely to be sampled from A, and
vice versa for instances after the crossover point. The experimental setup
for the orange bars is represented in Fig. 13 (b). Consequently, 18 types of
gradual drifts were generated.

Figure 13: Probability of sampling during the periods of gradual drift

The performance of the DTMC-CDD approach under such 18 gradual
drifts was evaluated by using F1-score, as seen in Fig. 14. The performance
was satisfactory under the majority of event logs with the F1-score over 0.8.

Figure 14: F1-scores of gradual drifts in process structure

5.4.2. Scenario 2. Gradual changes in customer behaviour

Process instances from the original base model and the modified base
model referring to changes in customer behaviour (as mentioned in Section

26

5.3.2) were used to construct the process instance stream involving gradual
changes resulting in the F1-score of 0.918 on average.

5.5. Method comparison

In this section, we compared our method with three commonly used ap-
proaches: relation type count (RTC) (Bose et al., 2013), relation entropy
(RE) (Bose et al., 2013) and partial order runs (RUN) (Maaradji et al.,
2017) under the above-mentioned 52 event logs.

5.5.1. The follows/precedes relation

RTC and RE are based on the follows/precedes relation, i.e., for pro-
cess execution si and sj, if si always, sometimes or never follows sj (Bose
et al., 2013). Recalling the base model of the loan application, mentioned in
Fig. 1 (a). For example, execution ‘Appraise property (AP)’ always follows
‘Check application form completeness’, ‘Receive updated application’ and
’Return application back to applicant’, meanwhile never follows the other
states. Therefore, totally there are 3 states that ‘AP’ always follows be-
hind, and 12 states that ‘AP’ never follows. Thus, we have RTC(AP) =
〈3, 0, 12〉. RE is the entropy of the RTC metric, which is calculated by
RE = −pA × log2(pA)− pS × log2(pS)− pN × log2(pN) where pA, pS and pN
represent the probability that a specific state always, sometimes and never
follows the others. therefore, RE(AP) = 0.722.

RTC and RE are well suited for structural changes of control-flow but
insensitive to concept drifts in customer behaviour. Referring to the exam-
ple in Section 5.3.2, the transition probability from ‘Check application form
completeness’ to ’Return application back to applicant’ is increased from
0.097 to up to 0.9, indicating a concept drift in customer behaviour. How-
ever, the process structure maintains unchanged leading to the result that
the RTC and RE feature are the same under the two processes. Consequent-
ly, RTC and RE fail to detect the changes. For the proposed DTMC-CDD
method, concept drifts in customer behaviour can be detected by the changes
in transition probabilities.

RE features, in some scenarios, have the same value but actually refer to
totally different business models. Consider a scenario where the RTC metric
changed to 〈2, 9, 3〉 from 〈9, 3, 2〉, indicating a concept drift, while the RE
value is the same leading to the failure of the detection. Consider another
alternative version (‘cb’), demonstrated in Fig. 15 where a direct link is
added comparing with the base model. However, evaluated by RTC and RE,

27

there is no difference at all as the follows relation remains the same leading
to the failure of change points detection.

Figure 15: Control-flow ‘cb’ of the loan application process

5.5.2. The RUN relation

Maaradji et al. (2017) proposed a method, namely RUN to detect pro-
cess concept drift. It is defined as a feature vector, representing the number
of process instances in different customer pathways or journeys. Customers
following the same pathways excluding the concurrency structure (paralleled
executions) are considered in the same RUN. Consider a set of process in-
stances following three unique pathways: ‘abcd’ (10 customers), ‘acbd’ (5
customers) and ‘aedf’ (8 customers) where execution ‘b’ and ‘c’ are concur-
rency executions. Therefore, customers under ‘abcd’ and ‘acbd’ are consid-
ered in the same RUN ‘a(bc)d’ with 15 customers leading to a feature vector
as 〈15, 8〉.

Due to the considering of pathways, the feature of RUN can work well for
detecting concept drifts in customer behaviour but may fail for behavioural
changes with parallel executions. For example, the number of customers
under ‘abcd’ and ‘acbd’ changes to 1 and 14 from 10 and 5, indicating more
customers prefer to execute ‘c’ before ‘b’. However, the feature vector still is
〈15, 8〉. Another issue is the impact of loop structures, leading to uncountable
unique pathways. In DTMC-CDD, communication, recurrent and periodic
classes are used to capture loop structures and therefore, might perform more
robustly.

28

5.5.3. Method comparison under the F1-score

The performance of DTMC-CDD, RTC, RE and RUN was compared un-
der the above-mentioned 52 logs involving sudden and gradual drifts in both
process structure and customer behaviour of control-flow. The lag level was
specified as 20. Furthermore, statistical test methods in line with those used
in the original publications for RTC, RE and RUN were applied. Specifically,
the Hotelling T 2 hypothesis test was applied for RTC features (Bose et al.,
2013) while for RE and RUN, the Kolmogorov-Smirnov test (KS test) (Bose
et al., 2013; Sheskin, 2003) and the Chi-square test were used (Maaradji
et al., 2017; Nuzzo, 2014), respectively. For the proposed DTMC-CDD ap-
proach, the multinomial test was applied to evaluate the significance of initial
and transition probabilities. The significance level is set as 0.05 for all the
approaches.

Table 2: The F1-scores of structural changes

Sudden Drifts Gradual Drifts
RTC RE RUN DTMC RTC RE RUN DTMC

cb 0.235 0.133 1.0 0.824 0.182 0.5 0.769 1.0
cd 1.0 0.889 0.889 0.706 0.923 0.857 0.25 1.0
cf 0.2 0.167 0.778 0.889 0.4 0.308 0.727 0.833
cm 0.353 0.375 0.947 1.0 0.2 0.308 1.0 1.0
cp 1.0 0.737 1.0 0.889 0.364 0.833 0.9230.727
fr 0.25 0.4 0.947 1.0 0.182 0.462 0.9230.833
IOR 1.0 0.588 0.889 1.0 0.308 0.375 1.0 1.0
IRO 1.0 0.889 0.353 0.8 0.4 0.667 0.727 1.0
lp 0 0.143 0.556 0.824 0.2 0.5 0.4 0.5
OIR 1.0 0.889 1.0 0.824 0.444 0.429 0.8330.727
ORI 1.0 0.824 0.778 1.0 0 0.462 1.0 0.667
pl 0 0.167 0 0.526 0.2 0.364 0.6 0.545
pm 0.588 0.889 0.889 1.0 0.2 0.706 1.0 1.0
re 0.462 0.667 0.737 0.875 0.222 0.667 0.857 1.0
RIO 0 0.778 1.0 0.824 0.444 0.5 0.923 1.0
ROI 0.889 0.842 1.0 1.0 0 0.625 0.9230.727
rp 1.0 0.625 1.0 0.824 0.571 0.471 0.923 1.0
sw 0.5 0.889 1.0 1.0 0.333 1.0 1.0 1.0
avg 0.582 0.605 0.82 0.878 0.31 0.557 0.821 0.864

29

Table 3: The F1-scores of behavioural changes

Sudden Drifts Gradual Drifts
RTC RE RUN DTMC RTC RE RUN DTMC

1 0.154 0.182 0.4710.444 0.2 0.364 0.364 0.923
2 0 0.222 0.824 1.0 0 0.182 0.545 0.833
3 0.154 0.133 0.667 0.889 0 0.182 0.6 0.833
4 0 0.211 0.778 0.889 0.222 0.364 0.545 0.923
5 0 0.118 0.667 0.889 0.25 0.25 0.833 1.0
6 0 0 0.667 1.0 0 0 0.6 0.833
7 0 0.111 1.0 0.824 0.25 0.25 0.833 1.0
8 0 0.125 0.706 1.0 0 0 0.909 1.0
avg 0.038 0.138 0.722 0.867 0.115 0.199 0.654 0.918

Table 2 illustrates the simulation results where the first column refers to
the 18 types of structural changes. Every row states the F1-score of the four
compared methods under sudden and gradual drifts. The averaged F1-score
of each approach is depicted in the last row. In general, the RUN and DTMC-
CDD method perform much better than RTC and RE and the DTMC-CDD
approach outperforms RUN in the averaged F1-score. Comparing RTC and
RE, RE outperforms RTC in almost all event logs. One of the possible
reasons is that RE involves fewer features and therefore, is more likely to
be considered as significant by using statistical tests. A similar result is
given on the detection of behavioural changes, as demonstrated in Table 3.
Notice that the performance of RTC and RE decreases dramatically with an
F1-score of zero under the majority of event streams.

The experiments were carried out on Windows10 64-bit operating sys-
tem, 16GB memory, Intel(R) Core(TM) i5-8250U CPU. There is, in general,
no significant difference in the time consuming (seconds) of RTC (31.4),
RE (31.7) and RUN (36.3). While it requires much more time for our pro-
posed DTMC-CDD method (56.3) as it involves multi-components required
to be calculated and multi-statistic tests for understanding the reasons for
the changes. Specifically, it requires similar computational resources as oth-
er approaches if using transition probabilities as the only feature. In other
words, the root cause for the additional time spent is on the calculation of
communication, recurrent and periodic classes.

30

6. Evaluation on a real-life data set

In this section, we validate the proposed DTMC-CDD method in a real-
life business process event log referring to a hospital billing (HB) process to
detect, localize and rationalize concept drifts.

6.1. Data collection

The event log refers to a billing process for medical services in a hospital
in the Netherlands. For a specific patient, when a particular period of time
has passed or the treatment is finished, a billing package containing a number
of medical services (such as medical diagnostics, hospitalisation, treatment
and surgeries) is billed together (Mannhardt, 2018).

The data used in this section was collected between December 2012 and
January 2016, involving 18 unique process executions, 451359 events and
100000 cases (Mannhardt et al., 2017). Because changes in the laws and
regulations of medical services every year, there is a large number of special
cases and mistakes when selecting the correct billing package and declaration
code. Consequently, the billing package can be rejected, canceled or reopened
in some cases. In addition, these changes lead to a non-stationary billing
environment, addressing the opportunity for process drift analysis.

6.2. Case selection

The HB event log comprises 11 main activities, covering 99% of the ob-
served process instances (98515), as presented in Fig. 16.

Figure 16: The diagram of the hospital billing event log

31

Process instances involving the other 7 activities were considered as out-
liers and excluded from the data stream. In general, all patients start their
billing process from state ‘New’ and then the billing process moves to state
‘FIN’ directly or after changing the diagnosis. Thereafter, the code requires
to be inspected and then, the process is terminated in ‘Billed’ or ‘Deleted’.
Table 4 describes the meaning of these process activities.

Table 4: Main activities in the HB event log (Mannhardt, 2018)

Activity Description

New The creation of a new billing package.
FIN The billing package is completed and can no longer be changed.
Release The billing package is released for delivery to the insurance company.
CodeOK The obtaining of a correct declaration code.
Billed The billing package has been billed, with an invoice that is sent out.
Change
Diagnosis The change of the diagnosis.
Delete The deletion of the billing package.

Reopen
The reopening of the billing package, with the goal of introducing
additional medical services or removing existing services.

CodeNOK The obtaining of a declaration code with an error message.
Storno The cancellation of a billing package.
Reject The rejection of the invoice that is sent to the insurance company.

6.3. Experimental design

Since there is no ground truth for concept drift points provided in the
HB event log, evaluation metrics such as F1-score cannot be used, leading
to difficulties in the specification of the window size and stride. To address
this, a set of simulations were executed based on a sample of the whole event
log (the first half-year, i.e., process instances beginning from 16th, December
2012 to 1st, July 2013, involving 18173 instances) under different window
sizes (500-2500) and strides (200-1000). From this sample, the best model
was determined with a corresponding window size of 1100 and a stride of
400. The resulting model was then applied to the whole event log.

As presented in Fig. 17, the blue solid line relates to the p-values of the
multinomial test under a transition matrix with the significance level 0.05
(red solid line). The green and black (only in subfigure a) points refer to

32

changes in the communication class and recurrent state, respectively. There
are no changes detected in the state space, periodic class, absorbing states
and initial probabilities. Note that the x-axis represents the entering order of
patients, but they were reduced by 1000 times. More specifically, the index
from 0 to 18 of the x-axis actually means index from 0 to 18000.

Figure 17: DTMC-CDD under window size from 500 to 2500 with fixed stride 400

According to Fig. 17, there are three concept drift areas around index
5100, 6300 and 8700 because the transition probabilities are lower than the
significance level of 0.05. Taking index 5100 as an example, the transition
probability from ‘New’ to ‘Change Diagnosis’ decreased from 0.559 to 0.368,
meanwhile the probability of staying at ‘New’ increased to 0.306 from 0.014,
indicating changes in customer behaviour. One of the possible reasons is that
the quality of the hospital service declined, resulting in a delay in the billing
process. Alternatively, patient behaviour in 6300 is the opposite of that
at 5100 where the transition probability from ‘New’ to ‘Change Diagnosis’
increased to 0.538 from 0.361 and the probability of staying decreased to
0.052 from 0.3, possibly indicating the recovery of the billing environment.
The occurrence of changes in 8700 is because of the transitions of execution
‘New’, which is similar to change point 6300.

With the increase of the window size, the concept drift areas become
larger, indicating a decrease in sensitivity (as presented in Fig. 17 i and
j). On the other hand, under small window sizes (Fig. 17 a, b and c),
many false positives (i.e., the green points) were detected. Such green points

33

referring to changes in the communication class, but actually they are not
real concept drifts. According to further analysis, all of the green points
are related to the execution of ‘Change Diagnosis’. Taking index 900 as
an example, the transition probability from ‘Reopen’ to ‘Change Diagnosis’
decreased to 0 from 0.02 leading to the fact that it cannot communicate with
other states, indicating a concept drift in control-flow. However, the control-
flow of the process model remains unchanged and such false detections result
from infrequent transitions.

To reduce the number of false positives and maintain the sensitivity to
changes, window sizes from 500-900 and 2300-2500 are not considered. Fur-
thermore, to avoid overfitting (i.e., the model fits the training data perfectly
leading to the issues in the generalization), window sizes 1700 and 1900 are
not considered as almost all false positives are filtered. Therefore, we noted
that window sizes 1100, 1300 and 1500 are reasonable and 1100 was selected
in the following simulations. For stride, as presented in Fig. 18, under 1000,
the concept drifts around 4500 and 6500 can be detected correctly, but only
at one point. Actually, according to the data, concept drift near such areas
should be considered the gradual type. Therefore, the stride of 800 and 1000
are not satisfactory. The p-values under stride 200 are fluctuating a lot and
so, it is not a good option. Overall, we consider strides 400 and 600 to be
satisfactory and, in this paper, we applied 400 for the following simulations.

Figure 18: DTMC-CDD under stride from 200 to 1000 with fixed window size 1100

6.4. Analysis

In this section, we use a sliding window of size 1100 and stride 400 to
detect, localize and rationalize concept drift of the whole HB event log.

6.4.1. Concept drift detection

As demonstrated in Fig. 19, the blue line represents the p-values of the
multinomial test, indicating changes in transition probabilities. The hori-

34

zontal axis relates to process instances in chronological order. By comparing
transition probabilities, six sudden drifts are detected. These drift points are
labelled as A-F, located at the index of 4700, 5900, 8700, 16300, 60700 and
70300. In addition, there are 4 (red circles in Fig. 19), 50 (green circles), 3
(black circles) and 1 (orange circles) change points that are detected by com-
paring the state space, communication class, recurrent class and absorbing
states, respectively. There are no changes in periodic class and initial prob-
abilities. In summary, 64 change points are detected in the drift detection
stage.

Figure 19: Drift detection in the HB event log

6.4.2. Concept drift localization

In the localization stage, detected change points are clustered into groups
to investigate their exact locations, as illustrated in Fig. 20. For change
points due to variations in transition probabilities, their exact locations are
4100, 6500, 8800, 16000, 60000 and 70000, nearly the same as the results from
the detection stage. However, several change points detected by the state
space, communication and recurrent class, are merged or filtered, leading to
a decrease in the number of changes (i.e., 2, 23, 1 and 1).

35

Figure 20: Drift localization in the HB event log

6.4.3. Concept drift rationalization

According to further analysis, all of the green points (changes in com-
munication classes) are false positives due to infrequent transitions between
‘Reopen’ and ‘Change Diagnosis’. Taking index 14733 as an example, the
transition probability from ‘Reopen’ to ‘Change Diagnosis’ decreased to 0
from 0.02 leading to the fact that it cannot communicate with other states,
indicating a concept drift in the (loop) structure of control-flow. Howev-
er, the process model remains unchanged and such false detections result
from infrequent transitions. On the other hand, for change point 93066, the
changes occurred in the state space where no applicants were rejected in the
population before 93066, indicating changes in the structure of the billing
process. The occurrence of drift at point 97100 is due to the unexpected
absorbing states. Specifically, some patients terminated their billing process
at execution ‘Deleted’ instead of ‘Billed’.

Regarding change point A, the transition probability from ‘New’ to ‘Change
Diagnosis’ decreased from 0.559 to 0.368, meanwhile the probability of stay-
ing at ‘New’ increased to 0.306 from 0.014, indicting changes in customer
behaviour. One of the possible reasons is that the quality of the hospital
service declined, resulting in the delay of the billing process. Alternatively,
patient behaviour in point B is the opposite of that at A where the transition
probability from ‘New’ to ‘Change Diagnosis’ increased to 0.538 from 0.361
and the probability of staying decreased to 0.052 from 0.3, possibly indicating
the recovery of the billing environment. The occurrence of changes in point
C is because of the transitions of execution ‘New’, which is similar to change
point A. As for instance D, even though the p-value is around 0.7, much big-
ger than the significance level 0.05, it still should be considered as a concept

36

drift because it is significantly smaller than non-drift points. Particularly,
the probability for a patient staying at ‘New’ was declined to zero, indicating
an improvement in the billing process. The transition probability from ‘Code
Nok’ to other states is significantly different before and after point E. More
specifically, the probability from ‘Code Nok’ to ‘Billed’ decreased from 0.489
to 0.205, while from ‘Code Nok’ to ‘Code Ok’, it increased to 0.716 from
0.133. Concept drift in point F is due to the transitions from ‘Storno’. The
transition probability from ‘Storno’ to ‘Billed’ increased to 0.875 from 0.184,
while from ‘Storno’ to ‘Reject’, it declined from 0.816 to 0.125, representing
a sharp decrease in the number of successful billings, impacting negatively
on the hospital billing environment.

6.5. Lessons learned

So far, we have addressed the collected data, selected cases, designed
experiments and experimental results. We then discuss several findings and
the lessons we learned. To start with, the window size and stride have a
considerable impact on the DTMC-CDD method. Specifically, large values
can diminish the difference between populations, resulting in drifts being
undetected. A small window and stride size, on the other hand, may reveal
redundant change points, causing difficulties in focusing on main drifts. As a
result, it is an acceptable strategy to optimize/tune the two parameters based
on a sample of the whole data, especially under an unsupervised learning
scenario.

Second, the transition probability, as one of the seven components in the
DTMC-CDD method, plays an important role in detecting behavioural drifts.
In addition, it can also indicate structural changes, such as the removal of
a connection between two activities, in which case the transition probability
will be zero. Third, the communication, recurrent and periodic classes can
discover loop structures with different characteristics. In some scenarios,
however, the research focus is on detecting drifts in loop structures only. In
such a case, using merely the communication class is sufficient and efficient.

7. Discussion

By evaluating the proposed DTMC-CDD approach on artificial and real-
world datasets, we highlight the advantages and disadvantages of the pro-
posed approach.

37

The first advantage is that the method provides a single model for de-
tecting, localizing and rationalizing sudden and gradual, as well as structural
and behavioural concept drifts. By introducing the initial and transition
probability from DTMCs, it can handle behavioural drifts at an event-level,
i.e., addressing changes in the proportion of a specific event pair. Howev-
er, the majority of methods in the literature concentrate on changes in the
case-level, i.e., the proportion of different traces/pathways. As a result, the
DTMC-CDD method can deeply investigate the root causes of changes. The
ability for handling gradual drifts is due to the use of a non-overlapping slid-
ing window that can increase differences in populations to highlight gradual
changes.

Second, the approach has no hyper-parameters. As a result, it requires no
prior knowledge and is easy to implement in various applications. In general,
it is time consuming and challenging for hyper-parameter tuning/optimization,
especially in unsupervised learning scenarios because the performance is d-
ifficult to validate compared to supervised methods. In our sliding window
framework, on the other hand, there are two main hyper-parameters: the
window and stride size, but they almost exist in any sliding window meth-
ods. We recommend determining them on a regular basis, such as weekly or
monthly. Otherwise, they can be fine-tuned manually using a sub-event log
and then applied to the rest of the log.

According to experiments on the HB event log, DTMC-CDD can detect
behavioural drifts well but it also discovers numerous false positives in the
process structure, such as changes in the state space. We say they are false
positives because they are detected as drifts but in fact, the process maintains
the same. These false positives are commonly caused by infrequent process
transitions. A straightforward solution is using a frequency threshold to
ignore the impact of infrequent cases, but it also introduces a new hyper-
parameter, which is not what we expected.

In addition, the change localization process is time-consuming because it
iteratively explores variations. However, in some scenarios, it is not necessary
to find a more precise change position. In such a case, we recommend to
simplify the method by skipping the change localization process. As a result,
the method detects changes, removes redundant change points (using the
clustering technique) and identifies root causes of changes.

38

8. Conclusion

This paper presented DTMC-CDD, a concept drift detector employing
seven components of DTMC to detect, localize and rationalize concept drifts
within business processes. The method offers several benefits. It is indepen-
dent of prior knowledge about the instance labels (i.e., unsupervised). It can
identify precise drift positions and rationalize their occurrence. The method
was demonstrated to work well under both sudden and gradual drifts, and for
changes in both process structure (insertions, deletions, substitutions, loops,
terminating states, etc.) and customer behaviour (expectation, preference,
etc.) of control-flow. The simulation results demonstrate that the proposed
DTMC-CDD method is likely well suited to various business process scenar-
ios.

In its present form, the proposed method can discover changes in a stream
of process instances (i.e., offline learning), but lacks mechanisms for dealing
with streams of events (i.e., online learning). Therefore, a direction for future
work is to extend the approach into an online learning framework. A possible
solution is to reorganize this method in an incremental learning form, for ex-
ample, updating transition probabilities based on new data batches instead
of recalculating them. With the goal of detecting, localizing and rationalizing
drifts in real-time, we may need to simplify our method, for example, using
communication class only to characterize process loop structures. Detecting
process drift in other process attributes such as time/duration and resources
is also of our interest. A possible solution to detect time duration-related
concept drift is to compare the data distribution of two populations, for ex-
ample, using a Kolmogorov-Smirnov test. Resource changes can be modelled
and monitored by applying our DTMC-CDD model as the data is categor-
ical, the same as process activities. Another direction for future research is
to enhance the method within scenarios when a label is provided for a pro-
cess instance (i.e., supervised learning applications). A possible solution is
to consider the labels as visible variables and the activities as hidden states
to build a hidden Markov model. In this way, we can detect concept drifts
in the joint distribution of process instances and their targets.

Acknowledgment

This research is supported by BTIIC (the BT Ireland Innovation Centre),
funded by BT and Invest Northern Ireland.

39

References

Adams, J. N., Zelst, S. J. v., Quack, L., Hausmann, K., Van Der Aalst,
W. M., & Rose, T. (2021). A framework for explainable concept drift de-
tection in process mining. In International Conference on Business Process
Management (pp. 400–416). Springer. doi:https://doi.org/10.1007/
978-3-030-85469-0_25.

Alippi, C., Ntalampiras, S., & Roveri, M. (2012). An hmm-based change
detection method for intelligent embedded sensors. In The 2012 Interna-
tional Joint Conference on Neural Networks (IJCNN) (pp. 1–7). IEEE.
doi:https://doi.org/10.1109/ijcnn.2012.6252610.

Borges, J., & Levene, M. (2008). Detecting concept drift in web usage mining.
In Proceeding of the Workshop on Web Mining and Web Usage Analysis
(WEBKDD) (pp. 98–110).

Bose, R. J. C., & Van Der Aalst, W. M. (2009). Trace clustering based
on conserved patterns: Towards achieving better process models. In In-
ternational Conference on Business Process Management (pp. 170–181).
Springer. doi:https://doi.org/10.1007/978-3-642-12186-9_16.

Bose, R. J. C., Van Der Aalst, W. M., Žliobaitė, I., & Pechenizkiy, M.
(2013). Dealing with concept drifts in process mining. IEEE transactions
on neural networks and learning systems , 25 (1), 154–171. doi:https://
doi.org/10.1109/tnnls.2013.2278313.

Ceravolo, P., Tavares, G. M., Junior, S. B., & Damiani, E. (2020). Evalu-
ation goals for online process mining: a concept drift perspective. IEEE
Transactions on Services Computing , (pp. 1–1). doi:https://doi.org/
10.1109/TSC.2020.3004532.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014).
A survey on concept drift adaptation. ACM computing surveys (CSUR),
46 (4), 1–37. doi:https://doi.org/10.1145/2523813.

Hompes, B., Buijs, J. C., Van Der Aalst, W. M., Dixit, P. M., & Buurman, H.
(2015). Detecting change in processes using comparative trace clustering.
In 5th International Symposium on Data-driven Process Discovery and
Analysis (pp. 95–108). Springer.

40

Maaradji, A., Dumas, M., La Rosa, M., & Ostovar, A. (2017). Detect-
ing sudden and gradual drifts in business processes from execution traces.
IEEE Transactions on Knowledge and Data Engineering , 29 (10), 2140–
2154. doi:https://doi.org/10.1109/tkde.2017.2720601.

Maisenbacher, M., & Weidlich, M. (2017). Handling concept drift in pre-
dictive process monitoring. In 2017 IEEE International Conference on
Services Computing (SCC) (pp. 1–8). IEEE. doi:https://doi.org/10.
1109/scc.2017.10.

Mannhardt, F. (2018). Multi-perspective Process Mining . Technische Uni-
versiteit Eindhoven.

Mannhardt, F., de Leoni, M., Reijers, H. A., & Van Der Aalst, W. M.
(2017). Data-driven process discovery-revealing conditional infrequen-
t behavior from event logs. In International Conference on Advanced
Information Systems Engineering (pp. 545–560). Springer. doi:https:
//doi.org/10.1007/978-3-319-59536-8_34.

Martjushev, J., Bose, R. J. C., & Van Der Aalst, W. M. (2015). Change
point detection and dealing with gradual and multi-order dynamics in
process mining. In International Conference on Business Informatic-
s Research (pp. 161–178). Springer. doi:https://doi.org/10.1007/
978-3-319-21915-8_11.

Meyn, S. P., & Tweedie, R. L. (2012). Markov chains and stochastic stability .
Springer Science & Business Media.

Norris, J. R. (1998). Markov chains . Cambridge university press.

Nuzzo, R. (2014). Statistical errors. Nature, 506 , 150–152. doi:https://
doi.org/10.1038/506150a.

Ostovar, A., Leemans, S. J., & Rosa, M. L. (2020). Robust drift charac-
terization from event streams of business processes. ACM Transaction-
s on Knowledge Discovery from Data (TKDD), 14 (3), 1–57. doi:https:
//doi.org/10.1145/3375398.

Ostovar, A., Maaradji, A., La Rosa, M., & ter Hofstede, A. H. (2017). Char-
acterizing drift from event streams of business processes. In International

41

Conference on Advanced Information Systems Engineering (pp. 210–228).
Springer. doi:https://doi.org/10.1007/978-3-319-59536-8_14.

Read, T. R., & Cressie, N. A. (2012). Goodness-of-fit statistics for discrete
multivariate data. Springer Science & Business Media.

Rojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process
mining in healthcare: A literature review. Journal of biomedical informat-
ics , 61 , 224–236. doi:https://doi.org/10.1016/j.jbi.2016.04.007.

Roveri, M. (2019). Learning discrete-time markov chains under concept drift.
IEEE transactions on neural networks and learning systems , 30 (9), 2570–
2582. doi:https://doi.org/10.1109/tnnls.2018.2886956.

Sartea, R., Farinelli, A., & Murari, M. (2019). Agent behavioral analysis
based on absorbing markov chains. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems (pp. 647–655).

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). Dbscan
revisited, revisited: why and how you should (still) use dbscan. ACM
Transactions on Database Systems (TODS), 42 (3), 1–21. doi:https://
doi.org/10.1145/3068335.

Seeliger, A., Nolle, T., & Mühlhäuser, M. (2017). Detecting concept drift in
processes using graph metrics on process graphs. In Proceedings of the 9th
Conference on Subject-Oriented Business Process Management (pp. 1–10).
doi:https://doi.org/10.1145/3040565.3040566.

Serfozo, R. (2009). Basics of applied stochastic processes . Springer Science
& Business Media.

Sheskin, D. J. (2003). Handbook of parametric and nonparametric statistical
procedures . Chapman and Hall/CRC.

Spedicato, G. A. (2017). Discrete time markov chains with r. The R Journal ,
9 (2), 84–104.

Tavares, G. M., Ceravolo, P., Da Costa, V. G. T., Damiani, E., & Junior,
S. B. (2019). Overlapping analytic stages in online process mining. In
2019 IEEE International Conference on Services Computing (SCC) (pp.
167–175). IEEE. doi:https://doi.org/10.1109/scc.2019.00037.

42

Tharwat, A. (2021). Classification assessment methods. Applied Computing
and Informatics , 17 (1), 168–192. doi:https://doi.org/10.1016/j.aci.
2018.08.003.

Velavan, T. P., & Meyer, C. G. (2020). The covid-19 epidemic. Tropical
medicine & international health, 25 (3), 278–280. doi:https://doi.org/
10.1111/tmi.13383.

Xie, A., & Beerel, P. A. (1998). Efficient state classification of finite-state
markov chains. IEEE transactions on computer-aided design of integrated
circuits and systems , 17 (12), 1334–1339. doi:https://doi.org/10.1145/
277044.277202.

Yang, L., McClean, S., Donnelly, M., Khan, K., & Burke, K. (2020).
Analysing business process anomalies using discrete-time markov chain-
s. In IEEE 6th International Conference on Data Science and
Systems (pp. 1258–1265). IEEE. doi:https://doi.org/10.1109/
hpcc-smartcity-dss50907.2020.00163.

Yeshchenko, A., Di Ciccio, C., Mendling, J., & Polyvyanyy, A. (2019).
Comprehensive process drift detection with visual analytics. In Inter-
national Conference on Conceptual Modeling (pp. 119–135). Springer.
doi:https://doi.org/10.1007/978-3-030-33223-5_11.

Zheng, C., Wen, L., & Wang, J. (2017). Detecting process concept drifts
from event logs. In OTM Confederated International Conferences” On the
Move to Meaningful Internet Systems” (pp. 524–542). Springer. doi:https:
//doi.org/10.1007/978-3-319-69462-7_33.

Žliobaitė, I., Pechenizkiy, M., & Gama, J. (2016). An overview of con-
cept drift applications. In Big data analysis: new algorithms for a
new society (pp. 91–114). Springer. doi:https://doi.org/10.1007/
978-3-319-26989-4_4.

43

