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Abstract

Conservative chaos systems have been investigated owing to their special advantages. Taking
symmetry as a starting point, this study proposes a class of five-dimensional(5D) conservative
hyperchaotic systems by constructing a generalized Hamiltonian conservative system. The pro-
posed systems can have different types of coordinate-transformation and time-reversal symmetries.
Also, the constructed systems are conservative in both volume and energy. The constructed sys-
tems are analyzed, and their conservative and chaotic properties are verified by relevant analysis
methods, including the equilibrium points, phase diagram, Lyapunov exponent diagram, bifurcation
diagram, and two-parameter Lyapunov exponent diagram. An interesting phenomenon, namely, that
the proposed systems have multistable features when the initial values are changed, is observed.
Furthermore, a detailed multistable characteristic analysis of two systems is performed, and it is
found that the two systems have different numbers of coexisting orbits under the same energy.
And, this type of system can also exhibit the coexistence of infinite orbits of different energies.
Finally, the National Institute of Standards and Technology tests confirmed that the proposed sys-
tems can produce sequences with strong pseudo-randomness, and the simulation circuit is built in
Multisim software to verify the simulation results of some dynamic characteristics of the system.

Keywords: Hamiltonian conservative hyperchaotic system, time-reversal symmetry, equal-energy coexisting
orbit, extreme multistability
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1 Introduction

Recently, many chaos systems have been reported
[1–4], studied [5–7], and applied [8–10]. In the
process of studying chaotic systems, an increas-
ing number of complex dynamic properties have
been introduced, such as hidden attractor, mul-
tistability, extreme multistability, and transient
chaos [11–13]. These complex dynamics have been
extensively used in many aspects [14–18].

Multistability is one of the many properties of
a chaotic system [19–22], which signifies the co-
existence of different orbits or attractors. When a
chaotic system has infinitely many different orbits
or attractors co-existing, it indicates that the
chaotic system has extreme multistability [23–27].
Multistability or extreme multistability implies
that a chaotic system has different states, which
could toggle in the case of a changing system
parameters. This feature makes a chaotic system
highly flexible in practical applications.

Generally, chaos systems have two types: dis-
sipative chaos systems and conservative chaos
systems according to whether their energy is con-
served [28]. There are two ways to judge whether
a system is a conservative system; one is to judge
the zero-sum feature of Lyapunov exponents [29],
and another is to judge the size of its divergence
by Liouville’s theorem [30]. In recent studies, some
multistability chaos systems have been reported.
As for the research on dissipative chaotic systems,
Bao et al. [31] reported a 5D hyperchaos system,
which has multiple equilibria, multistability, and
coordinate transformation symmetry. Yu et al. [32]
introduced a 5D hyperchaos system with multiple
equilibria. This system has multistable character-
istics and coordinate transformation symmetry.
The chaos system constructed by Wan et al. [33]
has multiple attractors; however, this system has
no symmetry. Yang et al. [34] constructed a 5D
autonomous hyperchaotic system. This system has
15 coordinate transformation symmetries. As for
the research on conservative chaotic systems, Wu
et al. [35] designed a 5D smooth autonomous
hyperchaos system, which has the coordinate
transformation symmetry and time-reversal sym-
metry. However, the Hamiltonian energy of this
system is conserved, while the volume is not con-
served, and it does not exhibit the multistable
property. Dong et al. [36] introduced a way to
construct a 5D conservative hyperchaotic system.

The constructed hyperchaotic system has multi-
stable characteristics, and both the Hamiltonian
energy and the volume are conserved; still, this
system does not have symmetry. In [28], a 5D
conservative hyperchaotic system with multistable
characteristics, which has the coordinate transfor-
mation symmetry, was introduced. Hu et al. [37]
reported a conservative chaos system with energy
conservation. This system has coexisting orbits of
equal energy, but it is conservative only in energy.
In addition, this system has no symmetry.

In the existing literature, dissipative hyper-
chaotic systems have been extensively studied,
and some of these hyperchaotic systems have
extreme multistability and symmetry. However,
research on conservative hyperchaotic systems
is still insufficient. Recently, a few conservative
hyperchaotic systems with multistable properties
have been proposed. Still, there have been rela-
tively fewer studies on conservative hyperchaotic
symmetries and temporal antisymmetries.

To address the abovementioned shortcoming,
this study takes symmetry as a starting point and
constructs a class of symmetric 5D Hamiltonian
conservative hyperchaotic systems (HCCSs) based
on the existing method [36–38]. Through the anal-
ysis of the constructed conservative hyperchaotic
system, it has been found that the proposed class
of systems has the following characteristics: (1)
its volume and energy are conservative; (2) the
sum of Lyapunov exponents (LE1–LE5) of the
constructed systems is zero, and two of them
(LE1, LE2) are greater than zero, which meets the
requirements of a 5D conservative hyperchaotic
system; (3) the constructed systems have differ-
ent coordinate transformation symmetries, and
some of them have time-reversal symmetry; (4)
the constructed systems all have multistable char-
acteristics; (5) in the constructed systems, Type
2 [5D Hamiltonian conservative hyperchaotic sys-
tems with invariant system equations after the
coordinate transformation of two system vari-
ables (HCCSs-2)] and Type 3 [5D Hamiltonian
conservative hyperchaotic systems with invariant
system equations after the coordinate transforma-
tion of three system variables (HCCSs-3)] have
finite equal-energy orbits coexistence, and these
orbits have symmetry. Meanwhile, there is also
infinite different-energy orbits coexistence.

The remaining of this article is structured
as follows. Section. 2 introduces an idea for
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constructing a symmetry 5D conservative hyper-
chaotic system, in which features are discussed
and proved. In section. 3, the symmetry and
the multistable characteristic of system HCCSs-
2.3 (one of Type 2) are analyzed. In section. 4,
the equilibrium points and types, and the mul-
tistable characteristic of system HCCSs-3.1 (one
of Type 3) are analyzed. In section. 5, NIST
test are performed on systems HCCSs-2.3 and
system HCCSs-3.1. In section. 6, the simulation
circuit is constructed for system HCCSs-2.3 in
Multisim software. Finally, Section. 7 draws some
conclusions.

2 Proposed conservative
hyperchaotic system

2.1 Propaedeutics

Arnold [39] proposed the famous Kolmogorov sys-
tem. The generation mechanism of chaos can be
studied by the Kolmogorov system [40]. The Kol-
mogorov system[41] can be expressed by equation
(1).

ẋ = J(x)OH(x)− ∧x + f, (1)

where x refers to the state variable vector, H(x) :
Rn → R denotes the Hamiltonian energy; J(x) is
a skew-symmetric matrix, and it satifies J(x) =
J(−x); J(x)OH(x), ∧x, and f represents the con-
servative, dissipation, and external-force terms,
respectively.

When ∧x and f in (1) do not exist, the Hamil-
tonian energy of system (1) is conserved. At this
time, system (1) is called a generalized Hamilto-
nian conservative system [42]. The system formula
is (2).

ẋ = J(x)OH(x). (2)

2.2 Construction process

According to (2), first, the Hamiltonian func-
tion [43] of a class of 5D conservative systems is
assumed by equation (3).

H(y1, y2, y3, y4, y5) =
1

2
(y21+y22+y23+y24+y25). (3)

The gradient of the Hamiltonian energy is
formula (4).

OH(x) = [y1, y2, y3, y4, y5]T . (4)

On the basis of [36, 38], the obliquely symm-

metric matrix J(x) can be expressed by

J(x) =


0 y1 G1 G2 G3

−y1 0 y3 G4 G5

−G1 −y3 0 y3 G6

−G2 −G4 −y3 0 y5
−G3 −G5 −G6 −y5 0

 , (5)

where the elements’ values on the sub-diagonal
of the oblique symmetric matrix denote system
variables; G1 = g1(y2, y4, y5), G2 = g2(y2, y3, y5),
G3 = g3(y2, y3, y4), G4 = g4(y1, y3, y5), G5 =
g5(y1, y3, y4), and G6 = g6(y1, y2, y4) are six
three-variable functions, which are given by

g(m, s, p) =(ajm
j + aj−1m

j−1 + · · ·+ a1m+ d1)

+ (bhs
h + bh−1s

h−1 + · · ·+ b1s+ d2)

+ (ckp
k + ck−1p

k−1 + · · ·+ c1p+ d3)

,

(6)

where aj , bh, ck, d1, d2, d3 are constants,and
j, h, k ∈ Z+.

According to equation (2), (4) and (5) can
be combined.Then, a 5D generalized Hamiltonian
conservative system (7) can be obtained.

ẏ1 =y1y2 + g1(y2, y4, y5) · y3
+ g2(y2, y3, y5) · y4 + g3(y2, y3, y4) · y5,

ẏ2 =− y21 + y23 + g4(y1, y3, y5) · y4
+ g5(y1, y3, y4) · y5,

ẏ3 =− g1(y2, y4, y5) · y1 − y2y3
+ y3y4 + g6(y1, y2, y4) · y5,

ẏ4 =− g2(y2, y3, y5) · y1
− g4(y1, y3, y5) · y2 − y23 + y25 ,

ẏ5 =− g3(y2, y3, y4) · y1 − g5(y1, y3, y4) · y2
− g6(y1, y2, y4) · y3 − y4y5.

(7)

Through analysis, it is found that the system
(7) has four features:

(1) The volume of system (7) is conservative.
This can be judged by Equation (8). Equation (8)
represents the divergence of the system (7).

OV =

5∑
i=1

∂ẏi
∂yi

= 0. (8)

From Liouville’s theorem [30], because OV =
0. So it can be concluded that system (7) is
volume-conservative.
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(2) The Hamiltonian energy of system (7) is
conservative. Equation (9) is the energy function
derivative[44] of system (7).

Ḣ = ∇H(x)
T · ẋ

=


y1
y2
y3
y4
y5


T

·



ẏ1 =y1y2 + g1(y2, y4, y5) · y3
+ g2(y2, y3, y5) · y4 + g3(y2, y3, y4) · y5,

ẏ2 =− y21 + y
2
3 + g4(y1, y3, y5) · y4

+ g5(y1, y3, y4) · y5,
ẏ3 =− g1(y2, y4, y5) · y1 − y2y3

+ y3y4 + g6(y1, y2, y4) · y5,
ẏ4 =− g2(y2, y3, y5) · y1

− g4(y1, y3, y5) · y2 − y23 + y
2
5 ,

ẏ5 =− g3(y2, y3, y4) · y1 − g5(y1, y3, y4) · y2
− g6(y1, y2, y4) · y3 − y4y5.


= 0.

(9)

Since the derivative of the energy function of
system (7) is zero, it can be concluded that system
(7) is Hamiltonian energy conservative.

(3) The main diagonal elements of the Jaco-
bian matrix of system (7) are not all zeros, but
their sum is zero. The simplified expression of its
Jacobian matrix is given by

J(x) =


y2

0
−y2 + y4

0
−y4

 . (10)

(4) Taking the symmetry of a system as the
starting point, appropriate three-variable func-
tions are selected. Then, a 5D Hamiltonian conser-
vative hyperchaotic system with different symme-
tries can be obtained. There are four construction
steps:

Step 1: System (7) is obtained by constructing
J(x) and OH.

Step 2: Through the analysis of system (7), it
can be concluded that system (7) does not have
symmetry about the y2 or y4 coordinate trans-
formation. However, system (7) can have other
coordinate transformation symmetries and time-
reversal symmetries. Based on the above analysis,
appropriate three-variable functions are selected
to construct system (7) with different coordinate
transformation symmetries. The selected func-
tions are all in the form of (6). However, to
keep the hyperchaotic system simple, the follow-
ing restriction is made: j, h, k ∈ Z+ ∪ j, h, k 6 1.

Step 3: Set the system variables and initial

values of system (7) so that system (7) gener-
ates hyperchaotic orbits. If there are no suitable
parameters to generate a hyperchaotic system, the
three-variable functions must be re-selected.

It should be noted that different choices for the
number and type of functions can lead to HCCSs
with different symmetries. In the following, three
types of 5D conservative hyperchaotic systems are
listed.

(a) Type 1: 5D HCCSs with invariant system
equations after the coordinate transformation of a
single system variable (HCCSs-1);

(b) Type 2: 5D HCCSs with invariant system
equations after the coordinate transformation of
two system variables (HCCSs-2);

(c) Type 3: 5D HCCSs with invariant system
equations after the coordinate transformation of
three system variables (HCCSs-3).

The above classification must be explained
here. Type 2 often may have some of the symme-
try of Type 1. Similarly, Type 3 may also have
some of the symmetry of Type 1 and Type 2. To
examine the rationality of the above way, nine 5D
HCCSs with different symmetries are constructed
by selecting appropriate variable functions; there
are other subclasses of these systems. Table. 1, 2,
and 3 list the 5D conservative hyperchaotic sys-
tems with different coordinate transformation
symmetries.

The numerical simulation shows that the sys-
tems listed in Table. 1, 2, and 3 all have mul-
tistable characteristics, and the sum of LE1−5
are zero, and two of them (LE1, LE2) are
greater than zero, which is in line with the
characteristics of the 5D conservative hyper-
chaos. Furthermore, it has also been found that
other systems exhibit other time-reversal symme-
tries, except for system HCCSs-3.3. Among the
proposed systems, systems HCCSs-1.1, HCCSs-
1.2, HCCSs-1.3, HCCSs-2.3, and HCCSs-3.2 have
two time-reversal symmetries; system HCCSs-
3.1 has three types of time-reversal symme-
tries; systems HCCSs-2.1 and HCCSs-2.2 have
four time-reversal symmetries. In particular,
systems HCCSs-1.2 and HCCSs-2.3 have full
time-reversal symmetry [(y1, y2, y3, y4, y5, t) →
(−y1,−y2,−y3,−y4,−y5,−t)]. Systems HCCSs-
2.3 and HCCSs-3.1 have obvious symmetry prop-
erties in the same type of hyperchaotic system.
Therefore, in Section. 3 and Section. 4, the syste-
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Table 1 Type 1: HCCSs-1.

System Three-variable function System of equations Parameters LE1−5 Symmetry

HCCSs-1.1
g3(y2, y3, y4) = a,
g6(y1, y2, y4) = by4.


ẏ1 = y1y2,
ẏ2 = −y21 + y23 + ay5,
ẏ3 = −y2y3 + y3y4 + by4y5,
ẏ4 = −y23 + y25 ,
ẏ5 = −y4y5 − ay2 − by3y4.

a = 5
b = 2

2.11
0.04
0
−0.04
−2.11

R : (y1, y2, y3, y4, y5)
→ (−y1, y2, y3, y4, y5)
R : (y1, y2, y3, y4, y5, t)
→ (y1,−y2, y3,−y4, y5,−t)
R : (y1, y2, y3, y4, y5, t)
→ (−y1,−y2, y3,−y4, y5,−t)

HCCSs-1.2
g1(y1, y3, y4) = by4,
g2(y2, y3, y5) = ay2.


ẏ1 = y1y2 + ay2y4,
ẏ2 = −y21 + y23 + by4y5,
ẏ3 = −y2y3 + y3y4,
ẏ4 = −y23 + y25 − ay1y2,
ẏ5 = −y4y5 − by2y4.

a = 5
b = 5

1.19
0.03
0
−0.03
−1.19

R : (y1, y2, y3, y4, y5)
→ (y1, y2,−y3, y4, y5)
R : (y1, y2, y3, y4, y5, t)
→ (−y1,−y2, y3,−y4,−y5,−t)
R : (y1, y2, y3, y4, y5, t)
→ (−y1,−y2,−y3,−y4,−y5,−t)

HCCSs-1.3
g1(y2, y3, y4) = by4,
g2(y2, y3, y5) = a.


ẏ1 = y1y2 + ay4 + by3y4,
ẏ2 = −y21 + y23 ,
ẏ3 = −y2y3 + y3y4 − by1y4,
ẏ4 = −y23 + y25 − ay1,
ẏ5 = −y4y5.

a = 10
b = 2.2

1.64
0.05
0
−0.05
−1.64

R : (y1, y2, y3, y4, y5)
→ (y1, y2, y3, y4,−y5)
R : (y1, y2, y3, y4, y5, t)
→ (y1,−y2, y3,−y4, y5,−t)
R : (y1, y2, y3, y4, y5, t)
→ (y1,−y2, y3,−y4,−y5,−t)

Note: In Table 1, the initial value of HCCSs-1.1, HCCSs-1.2, and HCCSs-1.3 are all (6, 6, 6, 6, 6).

Table 2 Type 2: HCCSs-2.

System Three-variable function System of equations Parameters LE1−5 Symmetry

HCCSs-2.1 g2(y2, y3, y5) = a.


ẏ1 = y1y2 + ay4,
ẏ2 = −y21 + y23 ,
ẏ3 = −y2y3 + y3y4,
ẏ4 = −y23 + y25 − ay1,
ẏ5 = −y4y5.

a = 10

0.43
0.02
0
−0.02
−0.43

R : (y1, y2, y3, y4, y5)
→ (y1, y2,−y3, y4, y5)
R : (y1, y2, y3, y4, y5)
→ (y1, y2, y3, y4,−y5)
R : (y1, y2, y3, y4, y5)
→ (y1, y2,−y3, y4,−y5)
R : (y1, y2, y3, y4, y5, t)
→ (y1,−y2, y3,−y4, y5,−t)
R : (y1, y2, y3, y4, y5, t)
→ (y1,−y2,−y3,−y4, y5,−t)
R : (y1, y2, y3, y4, y5, t)
→ (y1,−y2, y3,−y4,−y5,−t)
R : (y1, y2, y3, y4, y5, t)
→ (y1,−y2,−y3,−y4,−y5,−t)

HCCSs-2.2 g5(y1, y3, y4) = a.


ẏ1 = y1y2,
ẏ2 = −y21 + y23 + ay5,
ẏ3 = −y2y3 + y3y4,
ẏ4 = −y23 + y25 ,
ẏ5 = −y4y5 − ay2.

a = 7

0.63
0.02
0
−0.02
−0.63

R : (y1, y2, y3, y4, y5)
→ (−y1, y2, y3, y4, y5)
R : (y1, y2, y3, y4, y5)
→ (y1, y2,−y3, y4, y5)
R : (y1, y2, y3, y4, y5)
→ (−y1, y2,−y3, y4, y5)
R : (y1, y2, y3, y4, y5, t)
→ (y1,−y2, y3,−y4, y5,−t)
R : (y1, y2, y3, y4, y5, t)
→ (y1,−y2,−y3,−y4, y5,−t)
R : (y1, y2, y3, y4, y5, t)
→ (−y1,−y2, y3,−y4, y5,−t)
R : (y1, y2, y3, y4, y5, t)
→ (−y1,−y2,−y3,−y4, y5,−t)

HCCSs-2.3
g1(y2, y3, y4) = ay5,
g6(y1, y2, y4) = by1.


ẏ1 = y1y2 + ay3y5,
ẏ2 = −y21 + y23 ,
ẏ3 = −y2y3 + y3y4 + (b− a)y1y5,
ẏ4 = −y23 + y25 ,
ẏ5 = −y4y5 − by1y3.

a = 2
b = 2

0.45
0.01
0
−0.01
−0.45

R : (y1, y2, y3, y4, y5)
→ (−y1, y2,−y3, y4, y5)
R : (y1, y2, y3, y4, y5)
→ (y1, y2,−y3, y4,−y5)
R : (y1, y2, y3, y4, y5)
→ (−y1, y2, y3, y4,−y5)
R : (y1, y2, y3, y4, y5, t)
→ (y1,−y2,−y3,−y4, y5,−t)
R : (y1, y2, y3, y4, y5, t)
→ (−y1,−y2,−y3,−y4,−y5,−t)

Note: In Table 2, the initial value of HCCSs-2.1, HCCSs-2.2, and HCCSs-2.3 are (2, 2, 10, 2, 2), (2, 2, 10, 2, 2), (−6, 6, 6,−6, 6).
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Table 3 Type 3: HCCSs-3.

System Three-variable function System of equations Parameters LE1−5 Symmetry

HCCSs-3.1 g3(y2, y3, y4) = a.


ẏ1 = y1y2 + ay5,
ẏ2 = −y21 + y23 ,
ẏ3 = −y2y3 + y3y4,
ẏ4 = −y23 + y25 ,
ẏ5 = −y4y5 − ay1.

a = 5

0.36
0.01
0
−0.01
−0.36

R : (y1, y2, y3, y4, y5)
→ (y1, y2,−y3, y4, y5)
R : (y1, y2, y3, y4, y5)
→ (−y1, y2, y3, y4,−y5)
R : (y1, y2, y3, y4, y5)
→ (−y1, y2,−y3, y4,−y5)
R : (y1, y2, y3, y4, y5, t)
→ (y1,−y2, y3,−y4,−y5,−t)
R : (y1, y2, y3, y4, y5, t)
→ (−y1,−y2,−y3,−y4, y5,−t)
R : (y1, y2, y3, y4, y5, t)
→ (y1,−y2,−y3,−y4,−y5,−t)

HCCSs-3.2
g3(y2, y3, y4) = a,
g6(y1, y2, y3) = b.


ẏ1 = y1y2 + ay3,
ẏ2 = −y21 + y23 ,
ẏ3 = −y2y3 + y3y4 − ay1 + by5,
ẏ4 = −y23 + y25 ,
ẏ5 = −y4y5 − by3.

a = 10
b = 10

0.43
0.01
0
−0.01
−0.43

R : (y1, y2, y3, y4, y5)
→ (−y1, y2,−y3, y4,−y5)
R : (y1, y2, y3, y4, y5, t)
→ (y1,−y2,−y3,−y4, y5,−t)
R : (y1, y2, y3, y4, y5, t)
→ (−y1,−y2, y3,−y4,−y5,−t)

HCCSs-3.3
g3(y2, y3, y4) = a,
g4(y1, y3, y5) = c,
g6(y1, y2, y3) = b.


ẏ1 = y1y2 + ay3,
ẏ2 = −y21 + y23 + cy4,
ẏ3 = −y2y3 + y3y4 − ay1 + by5,
ẏ4 = −y23 + y25 − cy2,
ẏ5 = −y4y5 − by3.

a = 10
b = 13
c = 10

1.18
0.02
0
−0.02
−1.18

R : (y1, y2, y3, y4, y5)
→ (−y1, y2,−y3, y4,−y5)

Note: In Table 3, the initial value of HCCSs-3.1, HCCSs-3.2, and HCCSs-3.3 are (6,−6, 6, 6, 6), (−6, 6,−6, 6, 6), (6, 6, 6, 6, 6).

ms HCCSs-2.3 and HCCSs-3.1 were analyzed as
examples.

3 Dynamics analysis of
HCCSs-2.3

In this section, system HCCSs-2.3 is analyzed
as a representative of Type 2 systems, namely,
HCCSs-2 systems. The system equations of system
HCCSs-2.3 are given by

ẏ1 = y1y2 + ay3y5,
ẏ2 = −y21 + y23 ,
ẏ3 = −y2y3 + y3y4 + (b− a)y1y5,
ẏ4 = −y23 + y25 ,
ẏ5 = −y4y5 − by1y3.

(11)

The parameters of system HCCSs-2.3 are
selected using (a, b) = (2, 2), and their initial val-
ues are (y10, y20, y30, y40, y50) = (−6, 6, 6,−6, 6).
Then, the computed results of (LE1–LE5) are:
0.45, 0.01, 0, −0.01, −0.45, and the sum of
LE1–LE5 is zero. In addition, the Lyapunov
dimension is got by equation (12).

D = 4 +
LE1 + LE2 + LE3 + LE4

|LE5|

= 4 +
0.45 + 0.01 + 0− 0.01

|−0.45|
= 5.

(12)

It can be seen that the Kaplan-Yorke dimen-
sion of HCCSs-2.3 is equal to the system dimen-
sion. This also confirms the conservatism of the
system from another aspect. Next, we investi-
gate the dynamics of the system using different
methods.

3.1 Coordinate-transformation and
time-reversal symmetry

When the sign of one or more state variables of
the system changes, and the changed system is
equivalent to the original system, it means that
the system has coordinate transformation symme-
try. Time-reversal symmetry[7, 45] indicates that
under the time transformation t → −t, the sign
of one or multiple state variables of the system
changes, but the transformed system is equivalent
to the original system. A special transformation
in time-reversal symmetry is full time-reversal
symmetry, which means that under the time trans-
formation t → −t, the signs of all state variables
change, but the transformed system is equivalent
to the original system. Time-reversal symmetry
has been common in conservative systems but less
common in dissipative systems [46]. Time-reversal
symmetry is crucial in analyzing many physical
models [47, 48].
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System HCCSs-2.3 has the three follow-
ing coordinate transformation symmetries: R :
(y1, y2, y3, y4, y5) → (−y1, y2,−y3, y4, y5), R :
(y1, y2, y3, y4, y5) → (y1, y2,−y3, y4,−y5), R :
(y1, y2, y3, y4, y5) → (−y1, y2, y3, y4,−y5). Also, it
has partial and full time-reversal symmetry.

First, the coordinate transformation
symmetry of R : (y1, y2, y3, y4, y5, t) →
(y1,−y2,−y3,−y4, y5,−t) is used to obtain the
following expressions:

−dy1
dt = y1(−y2) + a(−y3)y5,
−dy2
−dt = −y21 + (−y3)2,
−dy3
−dt = −y2y3 + y3y4 + (b− a)y1y5,
−dy4
−dt = −(−y3)2 + y25 ,
−dy5
dt = −y5(−y4)− by1(−y3).

(13)

Then, the coordinate transformation symme-
try of R : (y1, y2, y3, y4, y5, t) → (−y1,−y2,−y3,−
y4,−y5,−t) is used to obtain the following expres-
sions:

−dx
−dt = y1y2 + ay3y4,
−dy
−dt = −y21 + y23 ,
−dz
−dt = −y2y3 + y3y4 + (b− a)y1y5,
−dw
−dt = −y23 + y25 ,
−du
−dt = −y4y5 − by1y3.

(14)

The systems (11), (13), and (14) are the same,
indicating that the system HCCSs-2.3 has par-
tial time-reversal symmetry and full time-reversal
symmetry. Among the 5D conservative hyper-
chaotic systems proposed to date [28, 35, 36], there
has been no system with both partial time-reversal
symmetry and full time-reversal symmetry. This
property is the first to be found in a 5D conserva-
tive hyperchaotic system.

3.2 Equilibrium points

In this subsection, the equilibrium point of the
system HCCSs-2.3 is analyzed.

Firstly, let each expression in the equation (11)
be equal to zero, equation(15) can be obtained:

y1y2 + ay3y5 = 0,
−y21 + y23 = 0,
−y2y3 + y3y4 + (b− a)y1y5 = 0,
−y23 + y25 = 0,
−y4y5 − by1y3 = 0.

(15)

It is easy to obtain the equilibrium point
of the system HCCSs-2.3 as ( |l|,−a|l|,|l|,−b|l|,|l|),

where l ∈ R.
Then, its Jacobian matrix is calculated by the

system equation (11). The Jacobian matrix of
system HCCSs-3.1 is given by

J2(x) =


y2 y1 ay5 0 ay3
−2y1 0 2y3 0 0

(b− a)y5 −y3 −y2 + y4 y3 (b− a)y1
0 0 −2y3 0 2y5
−by3 0 −by1 −y5 −y4

 .
(16)

Next, bringing the equilibrium points (|l|,−a|l|
,|l|,−b|l|,|l|) into the formula (16), the character-
istic polynomial (17) can be obtained.

f(λ) =λ[λ4 + 24y31λ
2 + 44y41 ]. (17)

The above calculation process needs to be
explained here. Since the equilibrium point con-
tains absolute values, this equilibrium point has
many forms (8 types in total), that is, the system
has eight plane equilibrium points. Through cal-
culation, it is found that these equilibrium points
have the same characteristic polynomial (17).

Let the characteristic polynomial (17) be zero;
then, the characteristic values (0, η,−η, jϕ,−jϕ),
(0, jϕ1,−jϕ1, jϕ2,−jϕ2), (0, η + jϕ1, η − jϕ1,−η
+ jϕ2,−η − jϕ2) can be obtained, where (η, ϕ >
0). Then, according to the calculated eigenval-
ues, it can be determined that the corresponding
equilibrium point types are saddle point, center
point, and saddle point. This is consistent with the
characteristics of conservative chaotic systems.

3.3 Effect of parameter a on system
HCCSs-2.3 performance

The nature of a chaos system is correlated with
the adjustable parameter. In this subsection, we
mainly discuss the influence on system HCCSs-
2.3 performance when adjustable parameter a
changes.

Set the initial value and adjustable parameter
be (−6, 6, 6, −6, 6) and a ∈ [0, 500], respec-
tively. The Lyapunov exponent diagram of system
HCCSs-2.3 can be obtained, as shown in Fig. 1a.
To more clearly reflect the nature of the system,
a bifurcation diagram of the same range was also
made, as shown in Fig. 1b. As can be observed,
they reflect the same dynamic behavior.

By observing Fig. 1, it can be found that the
system HCCSs-2.3 has been in a hyperchaotic
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(a) (b)

Fig. 1 System HCCSs-2.3. a The Lyapunov exponent diagram when a changes; b the corresponding bifurcation diagram.

(a) (b) (c)

(d) (e)

Fig. 2 The bifurcation diagrams of the system HCCSs-2.3 for different initial parametres. a y10 ∈ [−10, 10]; b y20 ∈
[−10, 10]; c y30 ∈ [−10, 10]; d y40 ∈ [−10, 10]; e y50 ∈ [−10, 10].

state in the range of a ∈ [0, 500]. This shows that
the system can remain chaotic in a wide range of
parameters without generating other states (peri-
odic or quasi-periodic). Under such parameters,
the system is more stable.

3.4 Bifurcation diagram of
HCCSs-2.3

Set parameters to (a, b) = (2, 2), then change
the initial values of the system parameters y10,

y20, y30, y40, and y50. Make the initial value
the following values, (y10, 6, 6,−6, 6) , (−6, y20,
6, −6, 6), (−6, 6, y30, −6, 6), (−6, 6, 6, y40,
6), (−6, 6, 6,−6, y50), and y10 ∈ [−10, 10], y20 ∈
[−10, 10], y30 ∈ [−10, 10], y40 ∈ [−10, 10], y50 ∈
[−10, 10]. The bifurcation diagrams of HCCSs-
2.3 for different initial value ranges are made, as
shown in Fig. 2.

According to the differences between the bifur-
cation diagrams in Fig. 2, it can be found that
different initial values lead to different chaotic or
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(a) (b) (c)

(d) (e)

Fig. 3 Two-parameter Lyapunov exponent spectrum. a LE1; b LE2; c LE3; d LE4 ; e LE5

quasi-periodic orbits. This phenomenon indicates
that chaotic (hyperchaotic) orbits coexist with
quasi-periodic (periodic) orbits in system HCCSs-
2.3.

3.5 Two-parameter Lyapunov
exponent spectrum

A useful instrument for analyzing the multista-
bility property of chaotic systems is the two-
parameter Lyapunov exponent spectrum, which is
also known as the dynamic evolution graph[28].
In a dynamic evolution graph, different colors
represent the Lyapunov exponent values of dif-
ferent sizes, which are used to illustrate system
characteristics graphically.

For system HCCSs-2.3, the system parameters
for (a, b) = (2, 2) are determined. Its initial val-
ues are (y10, 6, 6, y40, 6), where y10 ∈ [−6, 6],
y40 ∈ [−6, 6]. Therefore, five Lyapunov exponents
in the above two intervals, denoted LE1–LE5,
are obtained. The dynamic evolution diagram can
clearly demonstrate the coexistence of different
orbits.

The Lyapunov exponent of system HCCSs-2.3
is symmetric about the zero axis, as shown in

Fig. 3. Different orbits can coexist under differ-
ent initial values. This indicates that this system
switches between different initial hyperchaotic
(chaotic) and quasi-periodic (periodic) values, i.e.,
it has a multistable nature. In region A, the system
HCCSs-2.3 is chaotic or hyperchaotic, since LE1 is
greater than zero and LE2 is greater than or equal
to zero. Furthermore, all Lyapunov exponents of
system HCCSs-2.3 in region B are approximately
zero, which indicates that system HCCSs-2.3 is
quasi-periodic or periodic. The multistable state
of system HCCSs-2.3 is discussed in Section. 3.6.

3.6 Multistability analysis

Multistability is a subject of importance in study-
ing chaos[44]. In conservative chaos systems,
because they have no attractors, the multistabil-
ity characteristic that they possess is often called
the coexistence of multiple orbits.

3.6.1 Equal-energy orbit coexistence

According to the results in Fig. 3, system HCCSs-
2.3 is multistable. On this basis, by changing the
sign of initial value of (−6, 6, 6, −6, 6) of system
HCCSs-2.3, the Hamiltonian energy of the system
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(a)                                       (b) 

(c)                                       (d) 

(e)                                       (f) 

(g)                                       (h) 

Fig. 4 The phase trajectory diagrams of system HCCSs-2.3 on the y1−y5 plane for different initial values. a, b Coexisting
quasi-periodic orbits of equal energy and symmetry; c Poincaré section corresponding to a; d Poincaré section corresponding
to b; e, f coexisting chaotic orbits of equal energy and symmetry; g Poincaré section corresponding to e; h Poincaré section
corresponding to f.
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Fig. 5 Lyapunov exponent spectrum with respect to y10,
where y10 ∈ [−10, 10]

remains unchanged, that is, the Hamiltonian
energy has a constant value of 90, as given by

H(y10, y20, y30, y40, y50) =
1

2
(y

2
10 + y

2
20 + y

2
30 + y

2
40 + y

2
50)

= 90.

(18)

Set the initial conditions of system HCCSs-
2.3 to (6, 6, 6, 6, 6), (−6, 6, −6, 6, 6), (−6, 6, 6,
6, 6), (6, −6, 6, −6, 6), (−6, −6, 6, 6, 6), (6, −6,
6, 6, 6), (6, 6, 6, −6, 6), (−6, 6, 6, −6, 6) in turn.
In this way, quasi-periodic and chaotic orbits with
the same energy can coexist. In this case, there are
eight quasi-periodic and chaotic orbits with the
same energy coexisting in system HCCSs-2.3, and
these orbits have symmetry. The phase trajectory
diagrams in the y1−y5 plane of system HCCSs-2.3
with eight coexisting quasi-periodic and chaotic
orbits with the same energy, corresponding to cer-
tain initial values and its Poincaré sections are
shown in Fig. 4. It should be noted that Fig. 4a
and b correspond to the quasi-periodic orbits;
Fig. 4c and d are the Poincaré sections of a and b,
respectively; Fig. 4e and f correspond to chaotic
orbits; Fig. 4g and 3h correspond to the Poincaré
sections of e and f. The results in Fig. 4 show
that system HCCSs-2.3 can produce orbits with
the same Hamiltonian energy at the same time,
i.e., there is a multistable state with the same
Hamiltonian energy characteristic. In Fig. 4e and
f, the chaotic orbits have the symmetry property
in their phase trajectory diagrams and Poincaré
cross-sections, but their Lyapunov exponents are
not the same. This special phenomenon has also
been reported in [46]. However, this system is a
conservative chaotic system, not a conservative
hyperchaotic system.

3.6.2 Different-energy orbit
coexistence

By studying the coexistence of orbits of the same
energy in the system HCCSs-2.3, it has been found
that the system has coexisting orbits with different
Hamiltonian energies under different initial values.

Let the system parameters be (a, b) = (2, 2).
Change the system initial value y10 such that
(y10, 6, 6, −6, 6), where y10 ∈ [−10, 10]. Fig. 5
is the Lyapunov exponent spectrum of system
HCCSs-2.3. Fig. 2d is the bifurcation diagram
under the same range. The Lyapunov exponent
of system HCCSs-2.3 is symmetrical about the
zero axis in the whole interval, which indicates the
conservation of the system.

Set y10 in system HCCSs-2.3 to −9.88, −8.28,
−6.53, −5.25, −0.53, 4.26, 7.71, 9.42, 9.9 in
turn while keeping the other system parameters
unchanged. The obtained phase trajectory dia-
grams in the y1−y5 plane are shown in Fig. 6. The
system HCCSs-2.3 has the features of coexistence
of quasi-periodic, chaos(hyperchaos) orbits.

4 Dynamics analysis of
system HCCSs-3.1

In this section, system HCCSs-3.1, which is a
Type 3 system, is analyzed. The analysis mainly
includes the equilibrium points and multistable
characteristic analysis.

The system equations of system HCCSs-3.1 are
given by 

ẏ1 = y1y2 + ay5,
ẏ2 = −y21 + y23 ,
ẏ3 = −y2y3 + y3y4,
ẏ4 = −y23 + y25 ,
ẏ5 = −y4y5 − ay1.

(19)

4.1 Equilibrium points

Let each expression in the equation (19) be
equal to zero, the following expressions can be
obtained: 

y1y2 + ay5 = 0,
−y21 + y23 = 0,
−y2y3 + y3y4 = 0,
−y23 + y25 = 0,
−y4y5 − ay1 = 0.

(20)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Phase trajectories of the y1 − y5 plane of system HCCSs-2.3 at different initial values of y10. a y10 = −9.88; b
y10 = −8.28; c y10 = −6.53; d y10 = −5.52; e y10 = −0.53; f y10 = 4.26; g y10 = 7.71; h y10 = 9.42; i y10 = 9.9.

(a) (b)

Fig. 7 System HCCSs-3.1. a The Lyapunov exponent diagram when a changes; b the corresponding bifurcation diagram.
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By calculation, the equilibrium points of the
system can be obtained as (0,0,0,0,0), (0,q2,0,0,0),
(0,0,0,q4,0), (0,q2,0,q4,0), (±q1,∓a, |q1|,∓a,±q1),
where q1, q2, q4 ∈ R. System HCCSs-3.1 has
three line equilibrium points and two surface equi-
librium points. The Jacobian matrix of system
HCCSs-3.1 is given by

J2(x) =


y2 y1 0 0 a
−2y1 0 2y3 0 0

0 −y3 −y2 + y4 y3 0
0 0 −2y3 0 2y5
−a 0 0 −y5 −y4

 . (21)

By importing the equilibrium points
(0,0,0,0,0), (0,q2,0,0,0), (0,0,0,q4,0), (0,q2,0,q4,0),
(±q1,∓a, |q1|,∓a,±q1) into the Jacobian matrix
(21), the corresponding characteristic polynomial
can be obtained as follows:

f1(λ) = λ3(λ2 + 25), (22)

f2(λ) = λ2(λ3 + (25− y22)λ+ 25y2), (23)

f3(λ) = λ2(λ3 + (25− y24)λ− 25y4), (24)

f4(λ) =λ2[λ3 + (25 + y2y4 − y22 − y42)λ

− (y4 − y2)(y2y4 − 25)],
(25)

f5(λ) = λ(λ4 + 8y21λ
2 + 12y41). (26)

Let the characteristic polynomials (22), (23),

(24), (25), and (26) be zero; then, the corre-
sponding eigenvalues can be obtained. Then, the
equilibrium point type of the system is judged
according to the literature[28, 44, 49], as shown in
Table. 4.

In Table. 4, the equilibrium point types of
HCCSs-3.1 are only the center point and saddle
point. This is consistent with the related theory
in the existing literature expressing that a system
with a center point or a saddle point can produce
a conservative chaotic orbit [50, 51].

4.2 Effect of parameter a on system
HCCSs-3.1 performance

The nature of a chaos system is correlated with
the system parameters, including the adjustable
parameter and initial value. Next, we mainly
discuss the influence on system HCCSs-3.1 perfor-
mance when adjustable parameter a changes.

Let the initial value and adjustable parameter
be (6, −6, 6, 6, 6) and a ∈ [0, 6], respectively;
set the step size to 0.01. The Lyapunov exponent
diagram of system HCCSs-3.1 can be obtained,
as shown in Fig. 7a. To more clearly reflect the
nature of the system, a bifurcation diagram of the
same range was also made, as shown in Fig. 7b.
As can be observed, they reflect the same dynamic
behavior.

Table 4 The equilibrium points of System HCCSs-3.1 and their types.

System Equilibrium points Eigenvalues (ε, µ > 0) Equilibrium points type

HCCSs-3.1 (0,0,0,0,0) (0, 0, 0, jµ,−jµ) Center
(0,q2,0,0,0) (0, 0, 0, ε,−ε)

(0, 0, 0, jµ,−jµ)
(0, 0,−ε1, ε2 + jµ1, ε2 − jµ1)
(0, 0, ε1,−ε2 + jµ1,−ε2 − jµ1)

Saddle
Center
Saddle
Saddle

(0,0,0,q4,0) (0, 0, 0, ε,−ε)
(0, 0, 0, jµ,−jµ)
(0, 0,−ε1, ε2 + jµ1, ε2 − jµ1)
(0, 0, ε1,−ε2 + jµ1,−ε2 − jµ1)

Saddle
Center
Saddle
Saddle

(0,q2,0,q4,0) (0, 0, 0, ε,−ε)
(0, 0, 0, jµ,−jµ)
(0, 0,−ε1, ε2 + jµ1, ε2 − jµ1)
(0, 0, ε1,−ε2 + jµ1,−ε2 − jµ1)

Saddle
Center
Saddle
Saddle

(±q1,∓a, |q1|,∓a,±q1) (0, ε3,−ε3, jµ2,−jµ2)
(0, jµ3,−jµ3, jµ4,−jµ4)
(0, ε3 + jµ3, ε3 − jµ3,−ε3 + jµ4,−ε3 − jµ4)

Saddle
Center
Saddle
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(a) (b) (c)

(d) (e) (f)

Fig. 8 The phase trajectories of the system on the y1 − y2 plane. a a=0.1; b a=2.15; c a=2.43; d a=2.50; e a=3.09; f
a=3.15.

(a) (b) (c)

(d) (e)

Fig. 9 The bifurcation diagram of system HCCSs-3.1 when the initial value changes. a y10 ∈ [−10, 10]; b y20 ∈ [−10, 10];
c y30 ∈ [−10, 10]; d y40 ∈ [−10, 10]; e y50 ∈ [−10, 10].



Article Title 15

(a) (b) (c)

(d) (e)

Fig. 10 Two-parameter Lyapunov exponent spectrum. a LE1; b LE2; c LE3; d LE4 ; e LE5

When a changes, the system state is change-
able. At a ∈ (0, 1.99] ∪ [2.02, 2.32] ∪ [2.43, 2.44] ∪
[2.49, 2.51] ∪ [3.07, 3.1] ∪ [3.15, 3.16], the five Lya-
punov exponents of system HCCSs-3.1 are approx-
imately zero, which indicates that HCCSs-3.1 is
periodic or quasi-periodic. In other regions, system
HCCSs-3.1 is chaotic or hyperchaotic. In Fig. 8,
the phase trajectories on the y1− y2 plane for dif-
ferent values of a are made, which can more clearly
demonstrate the rich dynamic behavior of HCCSs-
3.1. Several different quasi-periodic orbits can be
observed in Fig. 8. Of course, in addition to the
orbits displayed in Fig. 8, there are other different
quasi-periodic and chaotic(hyperchaotic) orbits.

4.3 Bifurcation diagram of system
HCCSs-3.1 for different initial
system values

Set the system parameters to a = 5, and the ini-
tial values are changed using the following value
sets: (y10, −6, 6, 6, 6) , (6, y20, 6, 6, 6), (6, −6, y30,
6, 6), (6, 6, 6, y40, 6), and (6, −6, 6, 6, y50), where
y10 ∈ [−10, 10], y20 ∈ [−10, 10], y30 ∈ [−10, 10],
y40 ∈ [−10, 10], and y50 ∈ [−10, 10]. Then, the
bifurcation diagrams of system HCCSs-3.1 are
drawn in Matlab, as shown in Fig. 9a–e.

The changes in Fig. 9 show that system
HCCSs-3.1 has many different orbits. That is
to say, different initial values lead to different
chaotic or quasi-periodic orbits. This phenomenon
indicates that chaotic (hyperchaotic) orbits coex-
ist with quasi-periodic (periodic) orbits in the
constructed HCCSs-3.1 system.

4.4 Two-parameter Lyapunov
exponent spectrum

Next, for system HCCSs-3.1, parameter a and ini-
tial values are set to a = 5 and (y10, y20, 6, 6, 6),
respectively, where y10 ∈ [−6, 6], y20 ∈ [−6, 6].

The trend graphs of the five Lyapunov expo-
nents denoted as LE1–LE5 for the set parameters’
values are shown in Fig. 10. The dynamic evolu-
tion diagrams obviously show the system state and
coexistence of different dynamics.

In Fig. 10, the two-parameter Lyapunov expo-
nent diagram analysis shows that the Lyapunov
exponent of system HCCSs-3.1 is symmetric about
the zero axis, and different orbits can coexist at
different initial values. In regions A and D, the
system HCCSs3.1 is chaotic or hyperchaotic, since
LE1 is greater than zero and LE2 is positive or
equal to zero. The system HCCSs-3.1 is periodic
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11 Phase trajectories of equal-energy coexisting orbits in the system HCCSs-3.1. a Coexisting equal-energy quasi-
periodic and periodic orbits; b-e Coexisting equal-energy and symmetric hyperchaotic orbits; f-i Coexisting equal-energy
and symmetric hyperchaotic orbits.
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Fig. 12 Lyapunov exponent spectrum with respect to y20,
where y20 ∈ [−10, 10]

or quasi-periodic in regions B and C, because
all Lyapunov exponents of system HCCSs-3.1 are
approximately zero. In fact, the two-parameter
Lyapunov exponent graph of the system has

a good agreement with the bifurcation graph.
For instance, the system state changing pro-
cess when y20 = −6 and y10 changes between
−6 and 6 is shown in Fig. 10a. Under such
conditions, the system experienced the follow-
ing state-changing process: chaos (hyperchaotic)
→ period (quasi-period) → chaos (hyperchaotic)
→ period (quasi-period) → chaos (hyperchaotic),
which corresponds to Fig. 9a. This confirms the
multistable property of system HCCSs-3.1 from
another aspect. The multistability analysis of sys-
tem HCCSs-3.1 is presented in Section. 4.5.

4.5 Multistability analysis

As mentioned in Section. 3.6, the multistable
property of system HCCSs-3.1 is analyzed.



Article Title 17

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13 Phase trajectories of the y1 − y5 plane produced by the system HCCSs-2.3 at different initial values of y20. a
y20 = −6.83; b y20 = −5.53; c y20 = −2.74; d y20 = −0.65; e y20 = −0.17; f y20 = 2.13; g y20 = 6.04; h y20 = 7.25; i
y20 = 9.83.

4.5.1 Equal-energy orbit coexistence

Set the system parameter of system HCCSs-3.1
to a = 5 and change the sign of initial value (6,
−6, 6, 6, 6) of system HCCSs-3.1. This is done to
ensure that the Hamiltonian energy of the system
is kept unchanged at 90, as given by (18). The ini-
tial conditions of system HCCSs-3.1 are in turn set
as follows: (6, 6, 6, 6, 6), (−6, −6, 6, −6, 6), (−6,
6, 6, 6, 6), (6, 6, 6, 6, −6), (6, −6, 6, −6, 6), (−6,
−6, −6, −6, −6), (6, 6, 6, −6, 6), (6, −6, 6, 6, 6),
(6, −6, 6, 6, −6), (−6, −6, 6, 6, 6), (−6, −6, 6, 6,
−6), (−6, 6, 6, −6, 6), (6, 6, 6, −6, 6), (−6, 6, 6,
−6, −6), and (6, 6, 6, −6, −6). In this way, peri-
odic, quasi-periodic, and hyperchaotic orbits with
the same energy can coexist in system HCCSs-3.1.

There are 13 orbits with the same energy coex-
isting in system HCCSs-3.1, and these orbits have

symmetry. The phase trajectory diagram of sys-
tem HCCSs-3.1 corresponding to the initial value
is shown in Fig. 11. The coexistence of two peri-
odic orbits and four quasi-periodic orbits can be
observed in Fig. 11a; Fig. 11b–e show four hyper-
chaotic orbits with symmetry; Fig. 11f-i show
another four hyperchaotic orbits with symmetry.
This shows that system HCCSs-3.1 can produce
orbital coexistence with the same Hamiltonian
energy. In other words, there is a multistable
property of the same Hamiltonian energy.

4.5.2 Different-energy orbit
coexistence

Like system HCCSs-2.3, system HCCSs-3.1 also
has orbit coexistence of different Hamiltonian
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energies, which indicates that this system has rich
dynamic properties.

Let the system parameter be a = 5. Change
the initial value y20 of the system, using (6, y20,
6, 6, 6), where y20 ∈ [−10, 10]. Fig. 12 is the Lya-
punov exponent spectrum of system HCCSs-3.1.
Fig. 9b is the bifurcation diagram under the same
range.

Set the initial value y20 of system HCCSs-
3.1 to −6.83, −5.53, −2.74, −0.65, −0.17, 2.13,
6.04, 7.25, 9.83 in turn while keeping the other
system parameters unchanged. Fig. 13a–i are the
phase trajectories on the y1 − y5 plane. Specif-
ically, Fig. 13a and b show hyperchaotic orbits;
Fig. 13c–f, h, and i show the quasi-periodic orbits;
and Fig. 13g shows a periodic orbit. It should
be noted that the Hamiltonian energies of these
orbits are different, and in addition to these orbits,
system HCCSs-3.1 has infinitely many orbits.

5 NIST test

The National Institute of Standards and Technol-
ogy (NIST) test[52] is an efficient tool for detect-
ing random sequences, which can detect whether a
data meets the requirements of a pseudo-random
sequence. The NIST test has 15 test items. Each
item generated a P − value during the test. By

judging the P − value of each item, it was deter-
mined whether the sequence met the requirements
or not. To meet the requirements, three necessary
conditions must be met:

(1) Generally, on the basis of a significance
level of α = 0.01, the P − value of each test item
must be larger than or equal to α; (2) The corre-
sponding pass ratio should be within a range that
can be calculated by p̂±3

√
p̂(1− p̂)/n, where p̂ =

1−α. To test the accuracy of the results, the length
of test data was selected to be 100 million bits, and
data were divided into 100 groups; so, n = 100.
Based on the given formula, the ratio of passing
the test was calculated as [0.9601, 1.0298]. (3) The
P−valueT must be greater tha 0.0001. P−valueT
can be calculated by P − valueT = igamc( 9

2 ,
χ2

2 ),

where χ2 =
10∑
i=1

(Fi−(n/10))2
n/10 , Fi is the 10 corre-

sponding to each P−values subinterval value, and
F1 + F2 + · · ·+ F10 = n = 100.

In the test, the parameters of system HCCSs-
2.3 were set using (a, b) = (2, 2), and the initial
values were set to (−6, 6, 6,−6, 6). The system
HCCSs-3.1 had a = 5 and the initial values of
(6,−6, 6, 6, 6). The test results are displayed in
Table. 5. As presented in Table. 5, all P − value,
P − valueT , and Proportion could satisfy the
above-mentioned conditions. In addition, a his-
togram was used to examine the distribution of

Table 5 The NIST test results of systems HCCSs-2.3 and HCCSs-3.1

P − value P − valueT Proportion

No. Statistical Test HCCSs-2.3 HCCSs-3.1 HCCSs-2.3 HCCSs-3.1 HCCSs-2.3 HCCSs-3.1

1 Frequency 0.162606 0.534146 0.2271 0.6577 0.98 1.00

2 Block Frequency 0.867692 0.437274 0.9121 0.5627 0.98 1.00

3 Cumulative Sums 0.946308 0.739918 0.9598 0.8264 1.00 1.00

4 Runs 0.534146 0.678686 0.6577 0.7805 0.99 0.99

5 Longest Run 0.474986 0.181557 0.6010 0.2537 0.98 1.00

6 Rank 0.798139 0.637119 0.8671 0.7473 1.00 1.00

7 FFT 0.455937 0.455937 0.5819 0.5819 0.99 0.99

8 Non-Overlapping Template 0.987896 0.991468 0.9862 0.9889 1.00 1.00

9 Overlapping Template 0.366918 0.075719 0.4866 0.0998 1.00 0.98

10 Universal 0.455937 0.153763 0.5819 0.2145 0.98 0.98

11 Approximate Entropy 0.191687 0.935716 0.2677 0.9535 0.99 0.99

12 Random Excursions 0.637119 0.964295 0.9776 0.9916 1.00 0.98

13 Random Excursions Variant 0.867692 0.931952 0.9941 0.9867 1.00 1.00

14 Serial 0.834308 0.137282 0.8909 0.1908 1.00 0.98

15 Linear Complexity 0.035174 0.971699 0.0403 0.9753 0.99 1.00
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(a) (b)

Fig. 14 The non-overlapping template P − value histogram. a HCCSs-2.3; b HCCSs-3.1.

P − values and observe serial uniformity. The
non-overlapping items were analyzed as an exam-
ple. The P-value distribution of non-overlapping
templates was uniform, as shown in Fig. 14.

Thus, random sequences generated by systems
HCCSs-2.3 and HCCSs-3.1 met the testing stan-
dards. Therefore, these systems could be used as
pseudo-random generators.

6 Multisim circuit simulation

The simulation results obtained before this section
are all based on Matlab numerical iteration, and
circuit simulation is also a method to verify
chaos[37, 53]. So in this section, the multistable
properties of the proposed conservative system
and the accuracy of numerical iteration will be
further verified by designing a Multisim circuit.

It can be seen from Fig. 4 that the coexistence
period and chaotic orbit of the system HCCSs-2.3
with equal energy are more recognizable, so the
Multisim circuit simulation of the system HCCSs-
2.3 is chosen.

Based on the system equation (11) of the sys-
tem HCCSs-2.3, easy-to-implement components
are selected to build the Multisim circuit of the
system HCCSs-2.3. When the parameters of sys-
tem HCCSs-2.3 take (a, b) = (2, 2), the designed
Multisim circuit is shown in Fig. 15.

Fig. 16a-d is the circuit simulation diagram of
the system HCCSs-2.3, which corresponds to the
blue trace (6, 6, 6, 6, 6) in Fig. 4a, the orange trace
(6, −6, 6, −6, 6) in Fig. 4b, the green trace (6, 6,
6, −6, 6) in Fig. 4c, and cyan trace (6,6,6,−6,6).

It can be seen that the results of the Mul-
tisim circuit simulation are roughly the same as
the results of the Matlab numerical simulation.
This further verifies the dynamic properties of the
proposed system.

7 Conclusion

Based on the existing structural characteristics
and construction methods of generalized Hamil-
tonian systems, a class of 5D conservative hyper-
chaotic systems with different coordinate symme-
tries was proposed. The proposed systems can
have many types of time-reversal symmetries, up
to four of them. Moreover, some systems have full
time-reversal symmetry [(y1, y2, y3, y4, y5, t) →
(−y1,−y2,−y3,−y4,−y5,−t)]. The analyses of
divergence, phase diagram, equilibrium point,
Lyapunov exponent diagram, and bifurcation dia-
gram have verified that the proposed system is an
integer-order 5D conservative hyperchaotic system
with zero divergences and zero-sum of Lyapunov
exponents. This shows that the energy and vol-
ume of the proposed systems remain unchanged.
In addition, the multistable phenomenon of the
proposed systems is analyzed using the two-
parameter Lyapunov exponent diagram and bifur-
cation diagram, and the analysis consequences
manifest that the proposed systems have mul-
tistable features. The results demonstrate that
systems of Types 2 and 3 can have finite coexist-
ing orbits of equal energy and infinite different-
energy orbits coexistence, which is verified by
phase diagrams. NIST tests demonstrated that
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Fig. 15 Multisim circuit diagram of system HCCSs-2.3.

the proposed systems produce data with good
pseudo-randomness and high complexity. Finally,
the designed Multisim circuit further verifies the
dynamic properties of the proposed systems.

The systems proposed in this paper possess dif-
ferent complex dynamic properties, such as time-
reversal symmetry, wide parameter range(system
HCCSs-2.3), multistability, etc. The research on
time-reversal symmetry plays an important role in
solving some physical problems, such as quantum

mechanics. The chaotic system under the wide
parameter range is more stable, the effect is bet-
ter and the stability is stronger in the application.
The multistability characteristics of the system
can make the system show different states, and
output different types of periodic and chaotic sig-
nals. This will make the system more complex and
flexible, making it suitable for different applica-
tion environments. And, when the system has wide
parameters and multistability characteristics, its



Article Title 21

H=90

(6,6,6,-6,6)

H=90

(6,6,6,6,6) (6,-6,6,-6,6)

H=90

(-6,-6,6,6,6)

H=90

(a) (b)

(c) (d)

Fig. 16 The circuit simulation diagram of the system HCCSs-2.3 for different initial parametres. a (6, 6, 6, 6, 6); b (6, −6,
6, −6, 6); c (−6, −6, 6, 6, 6); d (6, 6, 6, −6, 6).

application will be more extensive. Second, the
NIST test results proved the pseudo-randomness
of the system from the other side, which fur-
ther shows that the system can be used in image
encryption, video encryption, and other encryp-
tion fields. The simulation result of the Multisim
circuit verifies the dynamic characteristic of the
system, and the concrete realization of its model
in the future will have important value for the
practical application of the system in the future.

The proposed study on multistability, related
to the dynamics of multiple chaotic orbits, also
constitutes a potential approach to extend the
existing study of spatio-temporal brain dynamics
related to brain energy, decision making pro-
cesses in the brain, brain quantum processes, and
consciousness [54–57]. In addition, the proposed
systems have many other properties to be explored
except for the multistable property and symmetry,
which could be part of future work.
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