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General Comment on Graphical abstracts 

The following section provides in an illustrative way the main findings of the current 

PhD thesis. More precisely, an overall illustration, which presents the literature 

review gaps as well as the contribution of this thesis per chapter, is presented. In the 

next pages, graphical abstracts, providing the main points of Introduction, State-of -

the-art, Methodology, Application, Results and Conclusions section for each chapter, 

can be found.
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Optimizing inputs' use efficiency in agriculture: Operational, energy 

and environmental dimensions 

 

Due to the increased need for providing to future generations equal access to natural and 

energy resources, the current Ph.D. thesis seeks to address new methodological approaches 

that contribute to a fairer sustainability assessment, under the scope of benchmarking and 

efficiency measurement in agriculture. 

Chapter 1: Introduction 

Chapter 2: Systematic literature review of 120 papers under PRISMA guidelines led to the 

following Literature Review Gaps (LRGs) 

LRG1: Lack of social 

aspect 

LRG3: Need for more 

complex methodologies. 
LRG2: Data availability 

Chapter 3 

DEA+TOPSIS 

methodology to 

incorporate 

demographic 

characteristics in the 

benchmarking process 

Chapter 4 

Cooperation with 

Barilla Firm; Farm 

data from 563 farms 

through GD.NET, a 

Decision Support 

System for durum 

wheat farmers in Italy 

and Greece 

Chapter 5 

Implementation of 

Window DEA 

methodology by using 

EUROSTAT data to 

highlight the influence of 

window width in the 

analysis process. 

Contribution 

This thesis has provided the appropriate methodological tools so as to fulfil the literature 

review gaps presented in Chapter 2. However, agricultural research field has to deal with a 

great amount of variability and uncertainty, a point which can be fulfilled by collecting 

detailed datasets of agricultural activities and by implementing more complex 

methodologies than the traditional ones. 

Chapter 6: Overall Conclusions 
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Graphical abstract: Chapter 2 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

A systematic literature review of Data Envelopment Analysis implementation in agriculture under the prism of 
sustainability 

Increasing number of DEA applications in 

agriculture has raised awareness about the 

different approaches and methodologies 

used. This section reviewed 120 papers so as 

to provide final remarks on the future goals 

that needs to be achieved in the agricultural 

operational research field as well as to 

underline the contribution of these papers to 

the three aspects of sustainability. 

Categories 

1. General information 

2. DEA Implementation 

3. DEA Extensions 

4. Data Type 

5. Data collection and processing 

6. Sustainability Dimensions 
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Records identified through database screening 

(n=268):

• Web of Science (n=160) 

• Scopus (n=56) 

Duplicate records removed (n=36)

Screened 

records 

(n=180)

Excluded records (n=34):

Out of scope (n=24)

Non-English (n =10)

Excluded full-texts (n=26):

Not available full-text (n=10)

Minor contribution (n=16)

Full-texts 

assessed 

(n=146)

Studies included in this 

systematic review

(n=120)

Terms: DEA + sustainability + agriculture

Selected years: 2016-2022

Most of the papers are implementing basic DEA 

models while there is an urgent need for more 

complex methodologies which handle 

uncertainty and deal with panel data. 

• There is a lack of a system both in national 

and international level that monitors 

agricultural expenses per farm. 

• Lack of geospatial information is a 

limitation for acquiring more accurate final 

efficiency scores. 

• Lack of the inclusion of the social 

dimension in the benchmarking process. 

• Term «agriculture» should be used in 

keywords section. 

Introduction 

State-of-the-art 

Methodology Results 

Conclusions 

Papers were reviewed in 6 main categories 

and 23 sub-categories in total in an attempt 

to clarify the way that DEA is implemented 

in the agricultural field. 

PRISMA guidelines 
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Data collection

Survey design

Questionnaire 
distribution

Data validation

Data processing

TOPSIS

DEA

Outcome

Final Results

Graphical abstract: Chapter 3 

Assessing efficiency of cotton farms considering qualitative factors under DEA TOPSIS model 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

State-of-the-art 

Methodology 

TOPSIS and DEA methodologies are combined to 

embody categorical variables in the overall 

benchmarking process. 

TOPSIS model was used to create a vector of 

benchmarking for societal characteristics that can be 

embodied in DEA data frame. 

Application 

Conclusions 

DEA-TOPSIS combination 

can be used to easily rank 

DMUs that contain both 

scale and ordinal variables, 

providing an additional 

handful tool for policy 

makers while contributing to 

quantification of SDGs 

achievement.   

Introduction 

Although the pillars of economy and environment are 

well represented when DEA is applied in agriculture, 

societal dimension is still the least presented 

Data from 107 cotton farmers were collected through 

personal interviews with the use of a 3-part 

questionnaire. 

Results 

Almost 65% of the examined 

farmers had an overall 

efficiency score greater than 

0.9. 

Ameliorations should be 

implemented on: 

• Limitation of irrigation and 

labor expenses 

• Differences between small, 

medium and large-scale 

producers 

• Proper use of PPNPs 

*Plant Protection and Nutrition Products 

* 
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Graphical abstract: Chapter 4 

 

 

 

 

 

 

 

 

 

    

   

 

• Carbon Footprint  

• Water Footprint  

• Ecological Footprint 

Are there any efficiency differences between durum wheat farmers operating under a common 

Agriculture Decision Support System? A comparative study between Italy and Greece. 

Introduction 

This study assesses inputs' use efficiency of durum wheat 

farmers that are subscribed in GD.NET application, an 

Agricultural Decision Support System (ADSS) designed 

by Barilla and HORTA for this cultivation, in order to 

highlight differences between Italian and Greek farmers. 

State-of-the-art 

 

Methodology 

Data collection: GD.NET database 

• Seeds 

• Fertilizers 

• Diesel Consumption 

• Plant Protection Products 

• Labour 

• Yield 
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Results 

Results indicate that there are differences on the 

implementation stage of GD.NET suggestions as well as a 

great potential for reduction of undesirable outputs. 

Potential Reductions of undesirable factors 

Italian farmers are focusing to 

inputs’ minimization. Greek 

farmers implement a looser 

production protocol. 

Factors affecting the 

benchmarking process: 

Discussion 

Increased need for appropriate 

land use especially at the 

current period of Russia-

Ukraine war to ensure food 

security. 

Conclusions 

328 Farms 235 Farms 

Comparing farmers of different countries operating 

under the suggestions of same ADSS. 

 

Production Year 2020-2021 

• Limited timeframe 

• Durum wheat physiology 

• Climate change 

• Spatial characteristics 

• Institutional structure 
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Ranking EU Agricultural Sectors Under the Prism of Alternative Widths on Window DEA 

Introduction 

Country Year Eff. score 

x1 [2006, 2014] 
 

   

x26 [2006, 2014] 
 

   

 

Country Year Eff. score 

x1 [2014, 2022] 
 

   

x26 [2014, 2022] 
 

   

 

Country Year Eff. score 

x1 [2005, 2013] 
 

   

x26 [2005, 2013] 
 

   

 

State-of-the-art 

Despite the fact that window 

width selection on Window 

DEA was arbitrary, in Section 5 

influence of window width is 

assessed. Moreover, it is 

highlighted that when 

performing Window DEA 

analysis, there is an 

assumption of zero 

technological change. 

Number of years 

included in the 

window width 

Actual dataset Projected data Source: Eurostat 

DEA model: 

VRS model 

Input-oriented 

Country Year Inputs Outputs 

x1 

x1 

x26 

x26 

Country Year Inputs Outputs 

x1 [2005, 2013] 

[2005, 2013] x26 

Window 1 

Reference Period: [2005, 2013] 

DEA 

Window 2 

Reference Period: [2006, 2014] 

x1 [2006, 2014] 

[2006, 2014] 

x26 

DEA 

Country Year Inputs Outputs Country Year Inputs Outputs 

x1 [2014, 2022] 

[2014, 2022] x26 

Window 10 

Reference Period: [2014, 2022] 

DEA 

Conclusions 

• Ideal window width estimation has been 

calculated. 

• Differences between alternative window widths 

have been highlighted. 

• Estimation of ideal window width showed that 

significant technological change is evident every 

7 years, which matches with CAP’s 

programming period each time. 

• Importance of continuous monitoring, to assure 

sustainable accurate measurements.  

Results 

Graphical abstract: Chapter 5 

Methodology 

Influence of window width selection was tested 

on final results of the benchmarking process. 
Window DEA is used for 

assessing the efficiency of EU 

agricultural sectors. Moreover 

3-year-projections are 

estimated, as well as the 

influence of window width 

selection in final results is also 

presented. 
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Highlights 

 

Chapter 2 

• PRISMA guidelines were used to evaluate 120 papers regarding DEA and 

sustainability between 2016-2022. 

• Social dimension is often absent from the overall “sustainability” assessment. 

• Data availability seems to be an issue for acquiring data on farm level. 

• Increased need for more complex methodologies than the conventional DEA 

approaches is evident. 

• «Agriculture» term should be used more systematically in abstract and 

keywords. 

 

Chapter 3 

• Inclusion of demographic characteristics in the benchmarking process. 

• Field survey of 107 cotton farmers for cultivation year 2019-2020. 

• Emphasis was given on the incorporation of ordinal values in the 

benchmarking process. 

 

Chapter 4 

• Assessment of applied practices under the same Agricultural DSS. 

• Quantification of differences between Italian and Greek farmers. 

• Considerable potential for minimizing undesirable outputs. 

• Hints for appropriate land use management to ensure food security. 

 

Chapter 5 

• Assessment of EU agricultural sectors for time period: 2005-2019. 

• Estimations for 3-year projections. 

• Highlight the influence of window width selection when performing WDEA. 

• Technological change is evident in a 7-year-timeframe, which coincides with 

the time period of CAP’s reforms. 
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Περίληψη 

Η παρούσα πτυχιακή διατριβή έχει ως στόχο να συνεισφέρει σε νέες μεθοδολογικές 

προσεγγίσεις που αφορούν την αριστοποίηση χρήσης εισροών υπό το πρίσμα της 

βιώσιμης ανάπτυξης (οικονομία, κοινωνία, περιβάλλον) στον κλάδο της γεωργίας. 

Για το λόγο αυτό, παρατίθεται μια σύντομη εισαγωγή που καθορίζει τη συλλογιστική 

πορεία με βάση την οποία η συγκριτική αξιολόγηση αγροτικών συστημάτων είναι 

επιβεβλημένη, λαμβάνοντας υπόψιν τις οδηγίες που έχουν δοθεί σε παγκόσμιο 

επίπεδο από τον Οργανισμό των Ηνωμένων Εθνών, ενώ υπάρχει και μια ειδικότερη 

περιγραφή για τη μέθοδο της Data Envelopment Analysis (DEA), που είναι και η 

βασική μεθοδολογία που διερευνάται στην παρούσα διατριβή. 

Στο Κεφάλαιο 2 καταγράφονται τα ερευνητικά ερωτήματα που προέκυψαν από την 

ανάλυση 120 άρθρων στον τομέα της αριστοποίησης χρήσης εισροών στον κλάδο 

της γεωργίας. Πιο συγκεκριμένα, υπάρχει αναγκαιότητα για: 1) την εισαγωγή 

κοινωνικών παραγόντων στη συνολική διαδικασία αξιολόγησης ώστε να 

λαμβάνονται αποφάσεις που να καλύπτουν και τους 3 πυλώνες της βιώσιμης 

ανάπτυξης, 2) τη δημιουργία βάσεων δεδομένων αγρού που να παρουσιάζουν υψηλό 

βαθμό ακρίβειας 3) τη χρήση πιο σύνθετων μεθοδολογικών προσεγγίσεων, όπως 

αυτές εφαρμόζονται σε άλλους κλάδους της επιχειρησιακής έρευνας. 

Στο Κεφάλαιο 3, πραγματοποιείται ένας συνδυασμός της DEA με την 

πολυκριτηριακή μέθοδο λήψης αποφάσεων TOPSIS, προκειμένου να εξαχθούν 

αποτελέσματα που εμπεριέχουν και την κοινωνική διάσταση, εστιάζοντας στο πρώτο 

βιβλιογραφικό κενό. Η έρευνα που πραγματοποιήθηκε αφορούσε 107 παραγωγούς 

βάμβακος στη Θεσσαλία και τη Μακεδονία. Τα τελικά αποτελέσματα δείχνουν ότι 

υπάρχει ένα καλά εγκαθιδρυμένο πρωτόκολλο παραγωγής ενώ είναι ελάχιστοι οι 

παραγωγοί που παρουσιάζουν χαμηλό βαθμό αποδοτικότητας. Αναφορικά με το 

συνδυασμό DEA και TOPSIS φαίνεται να είναι ιδιαίτερα χρήσιμος, όχι μόνο για την 

ενσωμάτωση κοινωνικών χαρακτηριστικών, αλλά και για περιπτώσεις που είναι 

δύσκολο να υπάρχουν ακριβείς μετρήσεις αγρού. 

Το Κεφάλαιο 4 αναφέρεται σε μια μελέτη περίπτωσης όπου μελετάται η 

αποδοτικότητα χρήσης εισροών για παραγωγούς σε Ελλάδα και Ιταλία μέσα από το 

δίκτυο του GD.NET, ενός συστήματος λήψεων αποφάσεων για την καλλιέργεια 

σκληρού σίτου, το οποίο έχει προκύψει από τη συνεργασία της HORTA με την 
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Barilla. Στη συγκεκριμένη περίπτωση, αναδείχθηκε η διαφορά που προκύπτει από 

την εφαρμογή των καλλιεργητικών συμβουλών που παρέχει το GD.NET. Πιο 

συγκεκριμένα, αποδείχθηκε ότι οι Ιταλοί αγρότες έχουν μια ξεκάθαρη τάση για 

μείωση των εισροών, ενώ στην Ελληνική επικράτεια η εφαρμογή του πρωτοκόλλου 

δεν παρουσιάζει την ίδια συνεκτικότητα. Παρόλα αυτά, το κεφάλαιο αυτό προωθεί 

τον τρόπο λειτουργίας μιας σύγχρονης γεωργίας με τη συλλογή και επεξεργασία 

δεδομένων αγρού, μέσω συστημάτων υποβοήθησης λήψης αποφάσεων, που έχουν 

ως στόχο την αύξηση της αποδοτικότητας και τη μείωση των περιβαλλοντικών 

επιπτώσεων. 

Στο Κεφάλαιο 5 παρουσιάζεται η εφαρμογή της DEA με τη χρήση δεδομένων 

χρονοσειράς από τους αγροτικού τομείς της Ευρωπαϊκής Ένωσης. Το μεθοδολογικό 

ενδιαφέρον της συγκεκριμένης έρευνας αποσκοπεί στην επίδραση της επιλογής του 

κατάλληλου παραθύρου (Window), το οποίο αντιστοιχεί με το χρονικό διάστημα με 

βάση το οποίο η μεταβολή της επίδρασης της τεχνολογίας θεωρείται μη σημαντική. 

Στην περίπτωση αυτή το ιδανικό χρονικό παράθυρο που προέκυψε ισοδυναμούσε 

με 7 έτη, που αντιστοιχούν με το χρονικό διάστημα εφαρμογής των 

προγραμματικών περιόδων εφαρμογής της ΚΑΠ. 

 

Στο τελευταίο κεφάλαιο πραγματοποιείται μια σύνοψη των κεφαλαίων που έχουν 

προηγηθεί καθώς και οι προκλήσεις που συνοδεύουν την εφαρμογή της DEA από 

την πλευρά των επιχειρήσεων αλλά και τον ακαδημαϊκό κλάδο, προκειμένου να 

επιτευχθεί η μεγαλύτερη δυνατή συμβολή προς τις γενικές κατευθύνσεις του ΟΗΕ 

για επίτευξη της βιώσιμης ανάπτυξης έως το 2050. 

 

Λέξεις-Κλειδιά: αριστοποίηση, αποδοτικότητα, Περιβάλλουσα Ανάλυση 

Δεδομένων, TOPSIS, Window DEA, Αγροτικό σύστημα λήψης αποφάσεων, σκληρό 

σιτάρι, βαμβάκι, γεωπονία 
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Abstract 

The current PhD thesis aims to contribute to new methodological approaches 

concerning the optimization of inputs use efficiency, under the prism of sustainable 

development (economy, society, and environment) in the agricultural sector. 

For this reason, a brief introduction is provided, outlining the rationale on which the 

benchmarking of agricultural systems is imperative, based on the guidelines given at 

the global level by the United Nations (UN), while there is also a more specific 

description of Data Envelopment Analysis (DEA), which is also the methodology 

assessed in this thesis. 

Chapter 2 outlines the research questions that emerged from the analysis of 120 

articles in the field of optimization in the agricultural sector. More specifically, there 

is a need: 1) to introduce social factors into the overall assessment process, so that 

decisions can be made that cover all 3 pillars of sustainable development, 2) to create 

farm specific databases that show a high degree of accuracy 3) to use more complex 

methodological approaches, such as those applied in other sectors of operational 

research. 

In Chapter 3, a combination of DEA with the multi-criteria decision-making method 

TOPSIS is applied, to derive results that also include the social dimension, focusing 

on the first literature gap. The research carried out concerned 107 cotton producers in 

Thessaly and Central Macedonia regions. Final results show that there is a well-

established production protocol, while there are few producers that perform under a 

low degree of efficiency. Regarding the combination of DEA and TOPSIS, it seems 

to be particularly useful not only for the integration of social characteristics, but also 

for cases where it is difficult to have accurate field data. 

Chapter 4 refers to a case study where the inputs’ use efficiency of producers in 

Greece and Italy is studied through the network of GD.NET, a decision-making 

system for the cultivation of durum wheat, which has derived from the collaboration 

of HORTA and Barilla. In this case, differences resulting from the application of the 

Agricultural Decision Support System (ADSS) provided by GD.NET on a local and 

national level, were highlighted. More specifically, it seems that Italian farmers have 

a clear tendency to reduce their inputs, while Greek durum wheat producers do not 

apply the production protocol under the same consistency. Nevertheless, this chapter 
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promotes the way of how modern agriculture should be applied, collecting and 

processing field data with the use of ADSS, aiming at increasing efficiency and 

mitigating negative environmental externalities. 

Chapter 5 presents the application of DEA using time series data of the agricultural 

sectors of the European Union members. The methodological interest of this research 

is focusing on the impact of appropriate window width selection, which corresponds 

to the time interval based on which the impact of technology change is considered as 

insignificant. In this case, the ideal window width appeared to be of 7 years, which 

corresponds to programming periods of the Common Agricultural Policy (CAP). 

In the last chapter, a summary of all chapters is being presented, as well as the 

challenges that accompany the application of DEA on a business and academic 

perspective, to comply with the general directions of the UN, to achieve sustainable 

development until the year 2050. 

Keywords: optimization, efficiency, Data Envelopment Analysis, DEA, TOPSIS, 

Window DEA, Agricultural Decision Support System (ADSS), durum wheat, cotton, 

agriculture 
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Chapter 1  

1.1. General Introduction 

Common Agricultural Policy (CAP) was officially born on 14 January 1962, 

proposing various regulations for the productivity increase of the agricultural sector. 

Up to now, a gradual transition of a purely economic approach to a holistic one that 

considers economic, environmental, and social aspects of the agricultural sector is 

apparent. United Nations' Sustainable Development Goals (SDGs) (2015) , 

Biodiversity Plan, Farm to Fork Strategy and Green Deal's were highly influential 

towards the formation of a European agricultural framework capable of achieving 

increased competitiveness, environmental protection and development of rural 

societies. Promotion of the “sustainability” term is of a high importance issue for the 

achievement of the above objectives. This determines that the successful performance 

of a farmer or of a country is not based only on meeting pure economic goals, but 

environmental protection, as well as the level of well-being of farmers and citizens of 

rural areas, are equally important targets to be met.  

Image 1.1 : Sustainable Development Goals, Source: United Nations, 2015 

The newly introduced CAP 2023-2027 started to be implemented from 1st 

January 2023. It incorporates the SDGs’ principles, setting 10 Objectives that 

contribute to sustainability in the agricultural field (European Commission, 2022b). 

As shown in Image 1.22, the first three objectives are referring to the economic 

dimension, the following three ones to environmental protection, while the last three 
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ones are referring to the societies of rural areas representing the social dimension. It 

should be noted that knowledge and innovation was added as an extra objective to 

highlight the importance of research and development in European agriculture. 

 

Image 1.2: The 10 CAP Objectives, Source: (European Commission, 2022b) 

  

More precisely, the economic dimension is expressed as labour productivity 

and opportunity cost (Objective 1), management of conventional production factors 

(land, labour, and capital) towards sustainable production of agricultural products 

(Objective  2) and strengthening of farmers’ position in the supply chain regarding 

their negotiating power (Objective  3). Following, the environmental dimension is 

considered as the actions for climate change mitigation (Objective 4), soil health 

(Objective 5) and biodiversity increase in farmland landscapes (Objective 6). The 

social dimension is consisted of objectives that support the income and living 

standards of young farmers (Objective 7), promote favourable treatment of isolated 

areas (Objective 8) and reduction of antibiotics use (Objective 9). It is evident that 

the future of the European agriculture is considered as a multi-objective mission, 

where close monitoring and continuous evaluation of the resources used are needed 

to ensure the success of it. 
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Budget allocation can elucidate the intentions of the European Commission 

regarding the development of the agricultural sector for the upcoming years. For 

instance, climate change relevant activities will be further funded compared with 

previous CAP periods (40% of total CAP budget). EU provides motives for farmers 

to be part of groups that are enabled to organic farming, low carbon farming, Precision 

Agriculture (PA) through eco-schemes. Knowledge and innovation goal will utilize 

10 billion euros for Horizon projects dedicated to food supply chain, bioeconomic 

models and development of rural areas. It is also anticipated that the dissemination of 

research results will be done via agricultural advisors, who will then transfer this 

knowledge on an operational level in EU farming, strengthening by this way 

agricultural value chains and improve farms’ competitiveness globally. It is 

prominent that the EU has already settled milestones that should be checked annually, 

with further reforms to be implemented if needed. 

Figure 1.1 presents overall CAP expenses by support type for the period 1980-

2021 (European Commission, 2021a). More specifically, from 1991 to 2012, there is 

an elimination of expenses for export subsidies, with market support subsidies 

following to a large extent the same path. For the 1992 -2007 time period, coupled 

payments are radically reduced. Decoupled payments deployed for the first time in 

2005, being until nowadays the dominants means for supporting directly agricultural 

income, without jeopardizing market distortions. Moreover, it is evident that greening 

payments cover almost one third of total budget of decoupled payments, while the 

budget for rural development and climate change management have increased as well. 

A gradual transition towards a European agriculture of increased competitiveness 

with high environmental standards and increased support to research and innovation 

field is depicted (Figure 1.1). Current CAP’s objectives are contributing towards this 

direction further promoting the above-mentioned aspects. 
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Figure 1.1: CAP Expenditures, Source: (European Commission, 2021a) 

 Figure 1.2 presents the €291 billion budget allocation for Pillar 1 of CAP 2023-

2027, referring to the direct support of farmers’ income. Additionally, €95.5 billion 

will be spent for the support of rural areas (Pillar 2). Next generation EU injection 

concerns budget allocation for farmers’ relief due to COVID-19 pandemic. 

Figure 1.2: CAP Allocation 2021-2027, Source: (European Commission, 2022a),  

Author’s elaboration 

European agriculture is focusing on an integrated approach for maintaining 

environmental protection and social cohesion in rural areas, where agricultural 

activities are dominant. From an economic perspective, building consensus between 
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producers and policy makers is more than a necessity, accepting the fact that 

successful farming is not defined only by economic terms but also by fulfilling a 

group of criteria related to environmental and social indicators (Latruffe et al., 2016). 

Furthermore, the concern about environmental protection has undoubtedly increased, 

compared to previous decades (Hoffmann et al., 2022), especially with the increase 

of the impact of climate change, as well as  the importance of the social dimension in 

agriculture (Janker et al., 2019; Nowack et al., 2022).  

Terms such as increasing competitiveness, productivity and efficiency are top 

priorities on the CAP agenda. Increasing the efficiency of a system is considered as 

necessary precondition to minimize the use of additional resources, which can be used 

in other production processes, thus leading to higher levels of productivity. From an 

economic point of view, which corresponds with the first three CAP’s objectives, 

enhancement of inputs’ use efficiency is crucial to achieve competitive prices, high 

quality standards and increased levels of environmental protection for the final 

products. Apart from capital, land is another significant production factor which 

simultaneously serves many purposes like providing space for cultivation, suppling 

nutrients to the plants and enhancing biodiversity. However, its value is most evident 

when its functionality is absent, in cases of places which face challenges of soil 

erosion, desertification or high concentrations of heavy metals. That is the reason why 

the EU Commission has set it as a separate objective to highlight its importance and 

its role in local economies. Agricultural labor is another aspect that is thoroughly 

considered by the CAP’s objectives, both from the Objective 1 which supports 

farmers income but also generation renewal (Objective 7) which enhances the 

implementation of innovative technologies from young farmers and contributes to a 

better understanding of the supply chain requirements. Collaboration under an 

agricultural cooperative scheme can further increase farmers efficiency, since lower 

prices of agricultural agrochemicals or more favorable repayment conditions that 

ensure them better liquidity can be achieved. At the same time, farmers’ bargaining 

power regarding the price and terms of sale of their final products also increases. In 

this way, the reduction of production costs, as well as the emergence of opportunities 

for better commercial agreements, are leading to agricultural systems of higher 

efficiency that reward the parts of the supply chain that hold the greatest risk volumes 

(Objective 3). 
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Regarding the environmental aspect, climate change mitigation (Objective 4) 

is considered significant from the EU Commission’s side to mitigate its 

consequences, due to the high vulnerability of the sector to this phenomenon 

compared to other economic sectors. Apart from the income loss for farmers, food 

security issues are rising in case of extreme weather events. Additionally, an 

integrated approach for minimum agrochemical use is promoted to produce safe 

agricultural products for human consumption, which cause the least possible impact 

on living organisms and environment (Objective 4). Creation of resistant varieties to 

extreme exogenous conditions would act as a resilience factor, in terms of final 

production of agricultural products. Even if their productivity was lower, they could 

probably ensure sufficient quantities of final products, so as not to create disruptions 

in the supply chain. Despite productivity loss, the overall efficiency of the system 

could remain at the same levels, in cases where the farmers were using less inputs for 

these cultivars. Several actions like implication of precision agriculture (lower 

fertilizer applications and machinery carbon footprint), minimization of enteric 

fermentation and manure management are leading to an overall decreased amount of 

Greenhouse Gases emissions, which is another great concern of modern agriculture. 

Minimization of the environmental impact of agricultural activities is usually 

accompanied by savings in resources such as agrochemicals and energy, which brings 

positive changes in the economic sector as well. 

Policy framework refinements, concerning the social aspect of the agricultural 

sector, are focusing on providing guidelines for smoothing the tendency of the arable 

land concentration in the hands of few people (Objective 7). Moreover, additional 

support is provided to young farmers to face high rents, increased cultivation costs 

and initial purchase costs of agricultural machinery/equipment. An effort to minimize 

the gender and age gap is evident in promoting similar values to those of the SDGs 

in rural societies. This will further support the revival of rural areas which correspond 

for 44% of total EU area, but they concentrate only 19% of the EU Population 

(Objective 8). Considering only the economic perspective, the above-mentioned 

approaches are not as efficient as possible, due to the fact that the involvement of 

several limiting factors such as multi-division of agricultural land or support of 

younger generation. However, it is of paramount importance for European 

Commission to provide appropriate guidelines for creating an agriculture that will 

Institutional Repository - Library & Information Centre - University of Thessaly
30/08/2023 04:06:03 EEST - 137.108.70.14



 

30 

 

meet sustainability goals. For this reason, it is considered necessary to optimize each 

dimension (economic, environmental, societal) separately to achieve maximum 

overall efficiency. It should be noted that all dimensions are interrelated and that the 

overall success of one is closely related to the success of the other. For instance, the 

rural population cannot be renewed without simultaneously providing economic 

incentives for the return of young people in rural areas. Also, reducing the carbon, 

water and environmental footprint is not possible without the use of new technologies 

produced by research organizations funded by the taxes of European citizens. 

Furthermore, another aspect that is under presented through the CAP objectives 

is the spatial dimension. Kleinhanß et al., (2007) states that efficiency can be assessed 

from different spatial perspectives (farm-level, local, national, European) and under 

different dimensions (economical, environmental, social), highlighting the difficulty 

of subsidy sharing. Improving efficiency in agriculture on an international level is a 

challenge of growing importance, difficult though to be met. The arrival of agriculture 

4.0 (Zhai et al., 2020) will contribute to collecting the necessary data for a more 

realistic, continuous and up-to-date assessment of the sector, justifying in a more 

credible way the allocation of funds supporting agricultural incomes and investments.  

Multiple frameworks which contribute on the sustainability dimensions 

assessment have been grouped and analysed from Lacoste et al. (2017).  Both 

qualitative and quantitative methods are used to provide further insights on this topic. 

Participatory approaches can be used to highlight the concerns of local communities, 

as well as to transfer knowledge that is difficult to be acquired elsewhere (Vaidya & 

Mayer, 2014). This type of analysis is ideal for an initial exploratory phase, providing 

the appropriate initiatives to a research team to further clarify the challenges of local 

communities. Thus, knowledge and information of local communities, regarding 

sustainability issues, can influence the final outcomes of this method.  

Life Cycle Assessment (LCA) is the most well-known approach, which 

measures the environmental impact of the production process. Besides the fact that 

this methodology can quantify carbon, water and environmental footprint, as well as 

other environmental impacts depending on the given system each time, it does not 

present high flexibility in the incorporation of agricultural practices like organic 

farming or implication of agroecological practices (Meier et al., 2015; van der Werf 
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et al., 2020). This is due to the fact this methodology focuses on an output-oriented 

approach and such variables are not taken into consideration. 

Creating Key Performance Indicators (KPIs) can quantify the results derived 

from the above type of research. For instance, Agovino et al. (2019) have included 

16 variables to assess sustainability following Wroclaw Taxonomic method, creating 

Index of Sustainable Agriculture (ISA). They have concluded in three different 

groups of high, medium and low sustainability levels for European countries. Similar 

approach was followed by A. K. Singh et al. (2019) by creating an environmental 

index for Asian countries for the 1990-2012 time-period. Although this study has 

included only environmental indicators, it has also embodied policy 

recommendations, adding another aspect in the environmental assessment. 

At the same time as the publication of the 17 SDGs, the United Nations also 

issued a protocol for sustainability assessment in the agricultural sector (FAO, 2015). 

More precisely, Sustainability Assessment of Food and Agriculture (SAFA) can be 

described as a constructed protocol which aims to provide scores (1-5) on the end of 

its process for the environmental, economic, societal, and political aspects of an 

entity. Although this type of analysis can highlight weaknesses in an agricultural 

supply chain, it does not involve any comparison among different similar units, and 

the final outcome can be considered as subjective. 
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Figure 1.3: Sustainability Assessment of Food and Agriculture (SAFA) results illustration, 

Source: (FAO, 2015),  

 

 

However, the aforementioned methodologies are not able to quantify to a large 

extent, the changes that should be implemented in order to achieve sustainability in 

the long term. It is therefore of considerable necessity the application and 

development of assessment and benchmarking statistical tools and models, to 

measure agricultural performance and efficiency, taking into consideration the group 

of criteria being introduced by CAP policy makers and consumers’ priorities and 

concerns for greener and safer primary sectors. 
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1.2. Efficiency Measurement Techniques 

 

 

Figure 1.4: Efficiency assessment methodologies, Author’s elaboration 

 

Figure 1.4 visualizes the entire spectrum of efficiency assessment 

methodologies. Parametric models are used to evaluate efficiency, by computing 

noise and error performance. Stochastic Frontier Analysis (SFA), which was 

introduced by Aigner et al. (1977) and then developed by later researchers is the most 

renowned techniques when it comes to parametric models. The method attributes the 

error: 1) to the general noise of the data 2) to the technical efficiency term. Compared 

to DEA, SFA as a parametric model does not provide only final values but error 

intervals are included as well. 

As mentioned by  Theodoridis & Psychoudakis (2008) the above two 

efficiency analysis methods, namely DEA and SFA, are the ones that are used most 

often but the research goal should always be to create a database for the substantial 

improvement of the agri -food sector. It is also worth noting that in the early 2000s 

most articles referring to SFA analysis were mainly implemented for economic 

efficiency at the farm level (Ören & Alemdar, 2006), while in recent years there has 

been a swift of articles referring to sustainability and environmental aspects of 

agricultural activity (Deng & Gibson, 2018; Ho et al., 2018) 

Data Envelopment Analysis (DEA) is the mostly used methodology when it 

comes to efficiency assessment, as well as the estimation of target values that should 
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be accomplished after the benchmarking process. Figure 1.5 presents the wide 

applicability of DEA on multiple fields such as engineering, computer science, 

business management and accounting etc. as well as environmental science.  

 

Figure 1.5: DEA publications from 1884-2022, Source: Scopus database, 

 Author’s elaboration 
 

More precisely DEA applicability in the agricultural field is also proved 

through the increasing number of annual publications (Figure 1.6). However, as it can 

be seen in Chapter 2, there is a need to implement more complex DEA methodologies 

to obtain results of greater explanatory power. 
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Figure 1.6: DEA publications from 1990-2022, Source: Scopus database, Author’s 

elaboration 

1.3. DEA interpretation  

Focusing on the objectives of this thesis, a short introduction about the basic 

structure of DEA should be analysed. DEA is a non-parametric technique, which uses 

linear programming principles to estimate measures of technical efficiency of 

different units. Given the fact that every production process has the need of n inputs 

(I) to produce k outputs (O), there are two approaches of improving the efficiency of 

a given system. The first one includes the inputs minimisation, maintaining the same 

number of outputs (input oriented), while the second one maintains the used inputs in 

same levels, increasing the output (output oriented). In general, an input-oriented 

approach is selected for most DEA applications in agriculture, for minimising 

production costs and the environmental impact of every agricultural activity. 

Moreover, final yield cannot be reassured, being this another reason for focusing on 

inputs’ use minimisation. In the following figures both approaches are being 

presented. (Figure 1.7, Figure 1.8). 
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Figure 1.7: Input oriented DEA Example, Author’s elaboration 

 

Figure 1.8: Output oriented DEA Example, Author’s elaboration 

 

Explaining DEA methodology in further details, it should be mentioned that 

there are two main models. The first one is Constant Returns to Scale (CRS) which 
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assumes that the increase of one unit of input is increasing the output at the same way. 

Additionally, Variable Returns to Scale assumes that the relationship between Inputs 

and Outputs is not constant, but it can be either increasing or decreasing. Every unit 

which makes decisions about Inputs use and achieved Outputs is called Decision 

Making Unit (DMU). When performing DEA in agriculture, every farm is a different 

DMU. The most efficient DMUs are receiving a score of 1, formulating the efficient 

frontier. On the contrary, the least efficient DMUs score from 0.99-0. Technical 

inefficiencies formulate the operational changes that a DMU should implement, in 

order to be efficient. Scale inefficiency can be easily explained from the Figure 1.9. 

DMU (C) can produce 4 outputs by using 2 inputs. In comparison with all DMUs 

involved, it is the most efficient one, apart from its comparison with DMUs (E,L,K). 

DMU (C) should mitigate its slacks too and achieve the same productivity levels as 

DMU E to be fully efficient.  

 

Figure 1.9: Graphical explanation of input-oriented DEA Example, Author’s elaboration 

 

From a mathematical perspective, the above-mentioned problem can be used 

both for input-oriented CRS and VRS DEA models by using the following formulas: 

 

 

 

Scale

inefficiency

Technical 

inefficiency

                      

Slack
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Constant Return to Scale (CRS) 

𝑧 = min 𝜃 − 𝜀(∑ 𝑠𝑖
−

𝑚

𝑖=1

+ ∑ 𝑠𝑟
+

𝑠

𝑟=1

) 

 

(1) 

𝑠. 𝑡. ∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− =

𝑛

𝑗=1

𝜃𝑥𝑖𝜊 𝑖 = 1, … , 𝑚 

 

(2) 

∑ 𝜆𝑗𝑦𝑟𝑗 − 𝑠𝑟
+ =

𝑛

𝑗=1

𝑦𝑟𝜊 𝑟 = 1, … , 𝑠 

 

(3) 

𝜆𝑗 , 𝑠𝑖
−, 𝑠𝑟

+ ≥ 0 Ɐ𝑖, 𝑟, 𝑗. 

 
(4) 

 

Variable Return to Scale (VRS) Add: 

∑ 𝜆𝑗 =

𝑛

𝑗−1

1 

 

(5) 

Where: n DMUj (j= 1,…,n) use xij as inputs (e.g. seeds, fertilizers etc) 

producing yrj as outputs (e.g. durum wheat yield), λj is a non-negative constant 

while 𝑠𝑖
−and 𝑠𝑟

+ are the input and output slacks accordingly. The absence of the non-

Archimedean value (𝜀) would lead to the infeasibility of identifying the most efficient 

DMUs (Toloo, 2014). In order to characterize a DMU as efficient, both z should be 

equal to 1 and slacks should be equal to zero. As a final step, Scale Efficiency (SE) 

can be computed by 

𝑆𝐸𝑖 =
𝐶𝑅𝑆𝑖

𝑉𝑅𝑆𝑖
 

 

(6) 

Where 𝐶𝑅𝑆𝑖 and 𝑉𝑅𝑆𝑖 are the efficient scores obtained for each DMU with the 

use of the aforementioned models (eq. (1)-(5)). 
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1.4. Overall contribution 

Following the Introduction section rationale, it is evident that the new CAP 

2023-2027 will further support the environmental and social aspect of agricultural 

activity, shaping a smooth transition towards sustainable agriculture. The use of 

optimization measurement techniques can be valuable for evaluating the current 

status of each region or country, as well as designing future steps by following EU 

guidelines. Under this scope, the development of methodological approaches that can 

assess the performance of decision-making units in different application levels, is 

considered as a necessity for the EU. By this means, the provision of clear instructions 

to the EU members as well as the ability to modify the CAP strategy, based on real 

time results, can be feasible. It should be underlined that the efficiency assessment 

should not only include economic parameters, but environmental and social 

dimensions can be taken into consideration.  

Although there is a constantly increasing effort from the agricultural operational 

research society’s side (Figure 1.6) on implementing DEA for increasing the 

efficiency of different agricultural systems, development of new techniques that will 

further support EU directives are considered necessary. For this reason, the current 

thesis is aiming to provide new methodological approaches to the following research 

questions: 

• What are the main methodological gaps when implementing DEA in the 

agricultural sector considering sustainability? 

• Is the current infrastructure enough to support decision making on a 

national and local level? 

 • Which are the methodologies that can be combined with DEA, so as to 

provide sufficient indicators for CAP 2023-2027 performance? 

• What was the long-term effect of the CAP implementation regarding the 

inputs’ use efficiency of the EU members? 

 

The contribution of the current thesis lies on the highlighting of the 

methodological deficiencies, considering the agricultural sector’s special needs and 

challenges, as well as to provide solutions for a holistic efficiency assessment, 

including all sustainability dimensions in a multi-year panel. 

Institutional Repository - Library & Information Centre - University of Thessaly
30/08/2023 04:06:03 EEST - 137.108.70.14



 

40 

 

1.5. Structure of thesis 

In this thesis, critical literature review and new methodological approaches on 

the use of DEA in the agricultural field are presented. More precisely: 

Chapter 2 presents an integrated literature review of DEA application in 

agriculture. While there is an increase of published papers in Energy and 

Environmental fields using DEA, Chapter 2 seeks to address the special requirements 

of this methodology when applied in the agricultural sector. More specifically, 120 

papers were included in this review, and they were tested in the following groups i) 

General information, ii) DEA implementation, iii) DEA extensions, iv) Data type, v) 

Data collection and processing, and vi) Sustainability dimensions. Results indicate 

that there is a great need for weights used when performing DEA in the agricultural 

sector, to acquire results with greater explanatory power. Moreover, systematic data 

collection of multiple factors could lead to the implementation of complex 

methodologies, providing feasible solutions to involved stakeholders. Lastly, the 

social aspect is the least represented dimension out of the three aspects of 

sustainability (economy, environment, society), indicating the need for the integration 

of social factors in such analyses, especially when DEA is used to create a policy 

framework in a specific area. 

 

Chapter 3 incorporates social factors in the benchmarking process, as an 

attempt to provide means for fulfilling the 1st LRG presented in Chapter 2. In this 

chapter, input use efficiency of cotton growers was assessed with a view to minimize 

exploitation of natural resources and promote incorporation of qualitative attributes 

in DEA. Cotton cultivation has been selected due to its diachronic significance for 

the Greek territory. More specifically, Greece is producing 80% of the European 

cotton, which corresponds in a cultivation land of around 320 thousand hectares per 

year. It should be also stated that cotton cultivation is followed by a unique subsidy 

phenomenon since Greece’s accession to the European Economic Community (EEC). 

Chapter 2 Contribution: Highlight the Literature Review Gaps (LRG):  

a) Under represented social dimension (1st LRG ) 

b) Data availability (2nd LRG) 

c) Need for more complex methodologies (3rd LRG) 
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Cotton farmers are receiving coupled payments for their agricultural activity, which 

is related to the total cultivated area limits, established by the European Union (250 

thousand hectares for Greece), and under the precondition that minimum quality 

standards of the final product are met.  

Considering that the EU focuses on a holistic approach about the economic, 

environmental and social aspect of agricultural activity, Greek cotton cultivation is 

considered appropriate due to the fact that it fulfills all the three aspects of 

sustainability. In a more explicit way, cotton is an arable crop of increased needs of 

fertilizers and irrigation. This combination increases the risk of nitrate pollution in 

the cultivation regions. By optimizing the amount of fertilizers used, farmers need to 

invest less on their resources, environmental benefits due to reduction of nitrate 

contamination also arise, as well as there is an increase of local communities’ living 

standards. As the first LRG of the systematic literature review highlighted, there was 

a lack of representation of the social aspect. Education and experience were added as 

the main variables to represent the social aspect of cotton cultivation and this selection 

is further explained in Chapter 3. However, the European Union has defined more 

accurately the framework of the social dimension of the agricultural sector, since the 

beginning of this thesis, providing additional data that could be embodied in the 

optimization process in future research. For instance, the European Union seems to 

focus on supporting young farmers and more specifically on their initial investment 

costs, rent coverage as well as the ease of capital acquisition. The above variables, 

from the one hand ensure sufficient quantities of cotton production, while on the other 

hand the foundations for the revival of rural areas are laid. The above statements 

prove the dynamics presented in the agricultural economics research field and the 

necessity for creation of appropriate methodologies that can provide handful results 

to agricultural experts and policy makers. Nevertheless, even today the available data 

regarding social variables through Eurostat are referring to the national level 

(NUTS1) of EU agricultural sector and not the local one (NUTS2 or NUTS3), 

underlying the difficulty of collecting this specific data.  

Consequently, a three-part questionnaire was created, containing 1) 

demographics 2) used inputs (land, seeds, agrochemicals, energy, irrigation, and 

labour) and 3) extracted outputs (production, revenue). TOPSIS model was used7, to 

transform categorical variables of demographics (education and experience), as an 
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input to the following DEA for benchmarking the input use efficiency. Out of 107 

examined cotton farms 42 (39.3%) of them are operating efficiently, while the 

average obtained score is 0.915, meaning that there is a well-established production 

protocol which is followed by the majority of cotton farmers. Apart from providing 

quantitative targets for cotton farmers, this chapter seeks to address DEA-TOPSIS 

combination, as a useful tool for efficiency assessment, contributing to a holistic 

sustainability evaluation.   

 

Chapter 4 assesses inputs use efficiency of durum wheat farmers that are 

subscribed in Grano Duro Net (GD.NET) application, an appropriate Agricultural 

Decision Support System (ADSS) designed by Barilla and HORTA for this 

cultivation, aiming to highlight differences on the implementation of the suggested 

production protocol between 4 agricultural firms (2 Italian and 2 Greek) (N= 563 

farmers, IT: 328, GR: 235). 

Durum wheat has been strategically selected and subsidised from the EC as one 

of the cultivars that can achieve sustainability within the EU area, among rice, wheat, 

dried fodder and nuts. By this means the dependency of durum wheat imports 

decreases, assuring adequate amounts of locally produced raw material for pasta 

production, which is an essential commodity for everyday life. On top of that, Barilla 

company already applies a strategy for inputs minimization through the establishment 

of GD.NET and its implementation from producers’ side. This proves that Barilla 

aims to produce competitive products, ensuring environmental protection through the 

integrated management of durum wheat cultivation, while influencing local 

communities for achieving sustainability. From farmers perspective, the operation of 

GD.NET system leads to more accurate and precise applications, minimizing the risk 

of a final product that does not meet economic and environmental criteria. Moreover, 

it contributes to the production of a homogenized product for the entire company. 

Chapter 3 Contribution: Covering 1st LRG by inclusion of demographic 

characteristics in DEA 

Additionally: 

a) Combination of DEA with TOPSIS  

b) Inclusion of any ordinal values in the benchmarking process 
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Another point that should be highlighted is that this survey assesses the interaction 

between the farmers and the ADSS, focusing on the implementation stage. In other 

words, this study examines the degree of implementation of the proposed actions by 

producers that cultivate durum wheat for Barilla. The novelty of the above-mentioned 

assessment lies on the fact that there are no other surveys having access to such 

dataset of farmers that operate under similar guidelines on a local and national level, 

as well as farmers’ acceptance to the ADSS consultancy services. 

For this purpose, the GD.NET database was analysed to check for significant 

statistical differences of the input variables (seeds, fertilizers, plant protection 

products and diesel) and the final output (yield) among the 4 firms. Incorporating the 

sustainability strategy of Barilla enterprise in the analysis process, two input-oriented 

DEA models were developed: i) DEA: using only the aforementioned inputs and 

output, and ii) EcoDEA: an extension of the first model by incorporating additional 

factors as undesirable outputs (Water Footprint, Carbon Footprint, Ecological 

Footprint). Results indicate that there are efficiency differences between farms both 

on regional and national level. Even though there are several factors (e.g., 

agricultural, environmental, institutional) affecting the benchmarking process, it is 

evident that in the Italian sample there is a tendency for input minimization, while in 

the Greek firms apply the production protocol in a loosen way. Moreover, proper 

visualization of undesirable factors distribution before and after optimization was also 

plotted. This chapter presents and quantifies the differences derived from the 

implementation of a common and dynamic ADSS on a comparative basis (operational 

and spatial), providing new insights for improving the effectiveness of such or similar 

tools.  

 

Chapter 4 Contribution: Covering 2nd LRG by analysing farm-level data from 

563 durum wheat farms in international level (Italy, Greece) that operate 

under the same ADSS and policy framework 

Additionally: 

a) Inclusion of environmental indicators as undesirable factors 

b) Visualization of target efficiency scores for undesirable factors 
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Chapter 5 aims to cover another point highlighted in the conclusions section of 

Chapter 2, which concerns the lack of more complex methodological approaches. For 

this purpose, Window Data Envelopment Analysis (WDEA) was selected as a 

benchmarking technique, to assess input use efficiency of agricultural sectors of EU 

countries for the 2005–2019 period. Moreover, three-year projections (until 2022) 

were calculated to acquire future efficiency scores. Window DEA has been selected 

as the appropriate methodology to assess the long-term influence of a common policy 

in the EU region. Particularly, assessing differences in a national level considering 

environmental factors, can highlight the points that should be further ameliorated 

resulting in a European agricultural sector of greater performance with fewer 

inequalities.  

Emphasis was given on the selection of alternative window widths, examining 

their influence on calculating efficiency scores for both projected and actual dataset. 

From a methodological point of view, this paper aims to highlight the assumption of 

zero technological change within WDEA frames and present their differences. At the 

same time, results indicate that Estonia (1.000), the Netherlands (0.999) and Slovenia 

(0.999) are the most efficient countries in terms of input use efficiency, while Finland, 

UK, and Hungary (0.670, 0.755 and 0.771) score the least. Countries of central 

Europe (Hungary, Czech Rep., Croatia, Slovakia, and Austria) should redesign their 

agricultural strategies, to achieve the nine objectives of the CAP (2021–2027). Lastly, 

it should be underlined that the methodology for acquiring ideal window width is 

presented and, in this case, the ideal window width with the initial dataset was equal 

to 7, meaning that in our study we assume that there is a significant change in the 

implemented technology every 7 years, which matches with the application 

timeframe of CAP.  

 

Chapter 5 Contribution: Covering 3rd LRG by highlighting the influence of 

window width selection when performing Window DEA. Technological 

level changes significantly every 7 years, which coincides with the 

implementation of the programming period of each CAP. 

Additionally: 

a) Three-year projections. 

b) Estimation of ideal window width. 

c) Applying multiple window widths to assess their influence on final 

results. 
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Chapter 2  

A systematic literature review of Data Envelopment Analysis 

implementation in agriculture under the prism of sustainability 

2.1. Introduction 

Food security, overpopulation, and conservation of natural resources are the 

biggest challenges for today’s agriculture (Calicioglu et al., 2019). In addition, the 

global trend towards adopting Sustainable Development Goals (SDGs) (United 

Nations, 2015) has not left the agricultural sector unaffected, as the same principles 

will have to be integrated into this sector for sustainable agriculture (European 

Commission, 2015). 

Although the search for «sustainability» term shows a slight increase from 2014 

to 2021 for general Google users, there is a rapid increase in searching for the term in 

the academic community of 160% for the same period, verifying the effort of 

researchers to find solutions or methodologies to achieve the globally accepted 

sustainable development goals (Google Trends, 2021). Taking into consideration the 

need to provide food for an ever-growing population with an inexhaustible number 

of available resources, leads humanity to the establishment of new systems or the 

invention of new technologies which can produce the same amount of output using 

the least possible energy and resources. In other words, for ensuring sustainability in 

agriculture, the efficiency of existing systems needs to be increased. On operational 

terms, this means that either production levels should remain at the same levels, with 

the need for inputs to be decreased, or output should be increased, given the inputs 

used. With this goal reassurances can be provided that future generations will have 

equal opportunities to access energy and natural resources. 

Following the above line of reasoning, efficiency analyses can contribute to 

quantifying losses and highlight weak points on production processes in the 

agricultural sector, to minimize the exploitation of natural resources while producing 

adequate amounts of feed and food. Efficiency measurement can be achieved by using 

either parametric (e.g. Stochastic Frontier Approach -SFA (Aigner et al., 1977)) or 

non-parametric approaches such as DEA (Charnes et al., 1978). SFA is capable of 

distinguishing noise from inefficiency, however, DEA includes noise in its final 
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results (Lampe & Hilgers, 2015). Moreover, SFA is not so sensitive to outliers as 

DEA, due to the fact that SFA is based on regression models, while DEA 

computations are based on linear programming principles. Removal of outliers is a 

crucial stage for data preparation when performing DEA, which may end up in a false 

interpretation of the results if neglected (Sarkis, 2007). On the other hand, DEA is 

mostly used in the agricultural sector, due to the fact that it can handle multiple inputs 

and outputs, in contrast with conventional SFA models which can handle single input 

or output and multiple inputs or outputs, respectively. DEA also does not need any 

prior assumption about inputs and outputs relationship, compared with SFA, a 

decision that may lead to uncertain results (Watto & Mugera, 2019). 

In order to assess the way that efficiency measurement is applied in the 

agricultural sector, VOSViewer software (Waltman & van Ecken, 2010) was used. 

More precisely, Figure 2.1 presents efficiency and agriculture results from the most 

cited papers of Scopus (first 2,000) and Web of Science (WoS) (first 1,000) databases. 

Three distinct clusters were formed. The first one (red) is referring to 

operational/technological aspect of agricultural activity, the second (blue) is 

concerning the environmental impact of either greenhouse gases or agro-chemicals, 

while the third one (green) is concerning waste water management. DEA and Life 

Cycle Assessment (LCA) are the only two represented methodologies out of the 

whole sample. Considering the advantages and disadvantages presented in the 

previous paragraph as well as the results of Figure 1, DEA is selected to be further 

analyzed in this literature review. 
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Figure 2.1: Κeywords’ relationship for agriculture & efficiency terms 

 

Focusing on DEA implementation, there are two ways of increasing the overall 

efficiency of Decision Making Units (DMUs) of the examining system each time, 

either by reducing the involved inputs (input-oriented) or by increasing the final 

outputs (output-oriented). Moreover, Constant-Returns-to Scale (CRS) and Variable-

Returns-to Scale (VRS) are the most used DEA models, permitting researchers to 

calculate scale efficiencies as well.  

Apart from the conventional DEA models, slack-based models (SBM) can 

compute further reductions or surpluses, after the initial optimization process. More 

precisely, slacks are described as technical efficiency remainings, meaning that after 

the first stage of efficiency computations, further decreases for some variables can be 

implemented not horizontally, but on a DMU basis. Application of different weights 

between inputs and outputs is feasible by using assurance region models (Thompson 

et al., 1996), leading to a fairer benchmarking. 

Additionally, newer approaches such as super efficiency models are excluding 

the examining DMU each time from the reference set, acting as a sensitivity analysis 
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for DEA models (Seiford & Zhu, 1999; Thrall1996). Another model is Network DEA, 

which can perform efficiency evaluation in different stages of a production process, 

rather than considering only the initial inputs and final outputs. For instance, 

production and distribution are two main processes until the products will reach to 

final stores. By using Network DEA it is possible to optimize the procedure in each 

stage, without considering the whole system as a black box (Färe et al., 2007; 

Sarkhosh-Sara et al., 2020). Bootstrap DEA can create replicate datasets in order to 

check the standard error of their final outcomes (Bogetoft & Otto, 2011), a 

meaningful technique for agriculture which deals with high variability of the involved 

factors or small samples (Tetteh Anang et al., 2020). Fuzzy DEA model is another 

approach where the integrated values are not constant, but they are varying within a 

range, quantifying the risk of the final decisions. Hatami-Marbini et al. (2011) in their 

literature review paper are presenting different approaches on how imprecise data can 

be handled under fuzzy concept, while Houshyar et al. (2012) have performed a Fuzzy 

DEA model so as to assess the sustainability performance of corn farmers. Lastly, 

Window DEA can be used for measuring efficiency through the use of time-series 

data. For instance, Pishgar-Komleh et al. (2021) assessed the eco-efficiency of the 

agricultural sector of European countries for 2008-2017 time period by using the 

Window DEA method. It should be stated that all the afore-mentioned approaches 

can handle undesirable outputs (e.g. greenhouse gas emissions) when estimating 

efficiency scores (Halkos & Petrou, 2019), a significant characteristic for considering 

negative externalities to the environment or human health in the optimization process. 

Taking all the above mentioned into consideration, this study seeks to address the 

ways that DEA methodologies are implemented under the prism of sustainability in 

the agricultural sector. 

This study proceeds as follows. The first section provides an overview of similar 

literature reviews in the energy and agricultural sector, clarifying the contribution of 

this paper through the research questions. Furthermore, it presents the overall process 

of paper collection and screening. The next section presents general information of 

the included papers; DEA model implementation; DEA extensions; Data types used 

in DEA model; Data collection and processing and sustainability dimensions 

represented through DEA implementation. There is also provision for further insights 
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into the acquired results, proposing possible combinations with already existing 

papers, while in the last part of it proposals for future surveys are being made. 

2.2 State of the art 

The literature review of Zhou et al. (2018) is a crucial reference point, 

regarding DEA implementation under the sustainability term, indicating the 

chronological connection of published papers and the key points of DEA evolution 

from 1996-2016, reviewing 320 publications in total. The main conclusions of this 

study can be summarized as followed 1) Integration of undesirable or bad output in 

DEA, 2) Interaction of all three aspects of sustainability and the lack of social factor 

inclusion, 3) Implementation strategies from enterprises and policymakers’ side. 

Another literature review of Mardani et al. (2018), having reviewed 145 articles on 

the environmental and energy field, concludes that there is a need for further 

assessment of methodological aspects relative to DEA. Big data, uncertainty, and 

heterogeneity of the involved DMUs are the main areas that DEA methodology 

should be further expanded to deal with the complex environment of the energy sector 

(T. Xu et al., 2020). Tsaples and Papathanasiou (2021) underline also the need for 

social inclusion, when performing DEA for sustainability. Moreover, on the same 

survey, it is highlighted that there is a misconception between eco-efficiency and 

sustainability term, while some authors use more dimensions, apart from economic, 

environmental, and social, like innovativeness or technology adoption. 

The above-mentioned surveys have assessed DEA implementation in Energy 

and Environmental sectors in total. Considering the idiosyncrasies of the agricultural 

sector, due to the interaction of multiple factors such as biotic and abiotic 

environment, cultivation protocols, and applied agricultural practices, including the 

incorporation of sustainability principles, a literature review of 120 papers was 

conducted, considering the year after SDGs’ release as a reference point for further 

promoting sustainability principles in the agricultural operational research society. 

Although Streimikis and Saraji (2021) have recently published a literature review for 

DEA in agriculture, focusing on the research gaps and main conclusions of each 

survey of undesirable outputs, the present review aims to contribute on the following 

questions:  

1) What are the methodological gaps and the future research proposals?  
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2) How are the data collected and analyzed?  

3) What are the methodologies combined or compared with DEA results? 

4) Which of the three pillars of sustainability are covered through published papers 

or conference proceedings for application of DEA in agriculture?  

2.3  Material and Methods 

To achieve the aim of this paper, a systematic literature review has been 

performed through the Scopus and Web of Science (WoS) database, using PRISMA 

guidelines (Page et al., 2021). More precisely, for this survey terms of «efficiency», 

«agriculture» and «sustainability» were used. Title, summary, or keywords were the 

main areas in which the above terms should be present to be included in this research. 

Due to a large number of acquired results (n=6,960- Scopus and n=7,237-WoS) and 

the fact that this paper focuses on DEA implementation, the «efficiency» term was 

replaced with «DEA» term, leading to 75 results from Scopus and 203 from WoS. 

Given the fact that this literature review assesses the ways in which DEA is applied 

in agriculture, under the prism of sustainability, this term was highly promoted after 

the SDGs’ release in 2015 (United Nations, 2015). Having this as a reference point 

the period 2016-2022 was selected to be further analysed, leading to a number of 180 

unique articles or conference proceedings (Figure 2). Significant academic efforts 

prior to the selected years have been made in this field (Gerdessen & Pascucci, 2013; 

Reig-Martínez et al., 2011; Zahm et al., 2008), thus this review seeks to capture the 

contribution of agricultural operational research to sustainability aspects after the year 

2016, where there was a rapid increase of publications as  Figure 2.2 presents. 
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 Figure 2.2: Literature review methodology under PRISMA guidelines 

 

References were exported on September 9th, 2022. Further screening was 

performed for removing duplicates and clarifying the content of the included papers. 

Out of 180 unique records, 34 of them were removed from the first stage, due to the 

fact that 24 paper were not relevant to this literature review (mainly because they 

were referring in their abstract to the term «agriculture» as a part of an example or as 

a future implementation) and 10 of them were non-English papers. On the eligibility 

phase, 26 papers were excluded, 10 of them due to unavailability of full text and 16 

of them due to minor contribution on the topic, meaning that in most cases agricultural 

sector was compared with other sectors mostly in national level but without 

deepening on agriculture. Based on the above-mentioned process, 120 papers were 

included in this systematic literature review. Out of the entire set of examined for this 
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review, 116 were journal articles, accounting for 97% of the total, while the remaining 

3% were conference papers. 

Moreover, a detailed table of criteria, prior to the detailed review of each 

paper, was constructed based on the authors’ experience in the field. As shown in 

Table 2.1, 23 variables were evaluated in each paper. More specifically, the selection 

of the variables was made to capture the overall picture of the DEA applicability in 

agriculture under the prism of sustainability, but also to highlight the points that need 

further amelioration, or better integration of new methodologies from other scientific 

fields. 

Table 2.1: Examined data through the literature review process 

Category No. Element Description 

1. General 

information 

1.  Author(s) (-) 

2.  Year Year of publication 

3.  Level 
Application-level: International, 

National, Prefecture, Local 

4.  Document Type 
Journal article, Conference paper, 

Proceedings, etc 

5.  Source Type Journal name 

6.  Inputs Type of variables used as inputs 

7.  Outputs Type of variables used as outputs 

8.  Application system Description of application system 

2. DEA 

Implementation 

9.  Approach Input-oriented, Output-oriented 

10.  DEA Model 
Used DEA Models (VRS, CRS, 

SBM, Window etc.) 

11.  Undesirable Output 
Use and Type of undesirable 

output 

12.  Homogeneity/Weights 
If all DMUs have been treated as 

homogenous 

3. DEA Extensions 

13.  Combination 
Use and Type of any combined 

methodology with DEA 

14.  Comparison 
Use and Type of any methodology 

used to compare DEA results 

4. Data Type 

15.  Qualitative data Use of qualitative data 

16.  Timeseries 
Use of data for a longer period than 

one year 

17.  Geographic information 

system (GIS) Incorporation 

Incorporation of GIS information 

in DEA model 

Institutional Repository - Library & Information Centre - University of Thessaly
30/08/2023 04:06:03 EEST - 137.108.70.14



 

53 

 

5. Data collection 

and processing 

18.  Source of Dataset 
Personal interviews, Pubic or 

Private Datasets, 

19.  Total Sample Number of DMUs 

20.  Sample equation 
Followed methodology for 

defining sample size 

21.  Software 
Which software has been used for 

DEA implementation 

6. Sustainability 

Dimensions 

22.  Sustainability Dimensions 

(in the DEA process) 

Which of the 3 aspects of 

sustainability are assessed in the 

DEA model 

23.  Sustainability Dimensions 

(in the total paper) 

Which of the 3 aspects of 

sustainability are assessed 

in the whole paper’s contribution 

The above-mentioned data provide further insights on the given dataset of 

references, leading to the fulfilment of the goals set in the State-of-the-Art section. 

2.4  Results  

All categories of variables listed in Table 2.1are presented in the same order in this 

section.  

2.4.1 General information 

Regarding publication year, Figure 2.3 presents that there is a noteworthy 

increase from 2016 to 2022. Apart from year 2020, which was the first year of 

COVID-19 pandemic, there is an additional amount of publications each year leading 

to an almost quadrupling of annual publications between 2016 and 2022, signifying 

there is a great deal of academic interest in this topic. 
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Figure 2.3: Year of publication 

Table 2.2 contains the number of reviewed papers by source type, referring to 

65 out of 120 papers (54%). Sustainability, Journal of Cleaner Production, Science 

of the Total Environment and Agriculture were the sources out of which the most 

papers were extracted for this review.  

Table 2.2. Number of included papers by source type 

No. Source Type 
Number of  

included papers 

1.  Sustainability 29  

2.  Journal of Cleaner Production 9 

3.  Science of the Total Environment 4 

4.  Agriculture 4 

5.  Energies 3 

6.  Agricultural systems 3 

7.  Land Use Policy 3 

8.  Environmental Science and Pollution Research 2 

9.  Energy 2 

10.  Information Processing in Agriculture 2 

11.  Applied Energy 2 

12.  Energy for Sustainable Development 2 
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Due to the fact that DEA considers all the involved DMUs as homogenous, it 

was important to focus more on the geographical aspect of these applications. It is 

assumed that increased locality of application fits better to the characteristics of the 

model, mitigating the influence of different external factors. Figure 2.4 presents that 

the greatest part of papers (51%) is performed on a local, or regional level. Local level 

refers to surveys held inside the boundaries of a prefecture, prefecture label refers to 

the implementation of the survey between neighbouring prefectures, national label 

refers to the inclusion of the majority of prefecture inside a country and lastly, 

international label refers to the comparison of agricultural sectors between different 

countries. It should be noted that in this figure 118 papers are included, because the 

remaining two are review papers. 

 

 

Figure 2.4: Geographical unit of application 

 

Regarding the application system, Figure 2.5 presents that a great part of the 

examined papers are referring to the agricultural sector in general, 38% implements 

optimization models for arable crops and a small part is referring to livestock, 

greenhouse products, fruits, timber and vegetables. 
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Prefecture (19) 
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Figure 2.5: Application system 

 

Table A1 of the Appendix section provides an overall view of included papers in 

this review. More particularly, author, year, application level, type of inputs and 

outputs as well as the specification of the application are presented.  

2.4.2 DEA implemantation 

Regarding the selected approach, 76% used an input-oriented approach, 20% 

used an output-oriented approach, 2% compared the approaches of both results, and 

2% did not specify the approach used.  

Examining the use of DEA models in agriculture, it is evident that most of the 

obtained results were acquired using typical DEA models like CCR (CRS) and BCC 

(VRS). Particularly, as shown in Figure 2.6, almost half of the examined papers (46%) 

are using both CRS, VRS and Scale efficiency, 23% used only VRS model (27 

papers) and 9% used only CRS model (11 papers. Although the selection of the CRS 

or VRS approach is problem specific, in agricultural sector VRS assumption is 

preferred, due to the fact that the increase of inputs does not mean necessarily that 

this will lead to a proportional increase of outputs. In other words, doubling inputs 

(e.g. fertilizer) does not ensure double production in the end of the cultivation year. 

CRS scores are mainly extracted for scale efficiency calculations.  

Additionally, Slack-based model (SBM) was used from 9 papers. As mentioned 

in the Introduction section, SBM models are used to provide accurate estimations of 

Agricultural sector

(47) 40%

Arable crops (45) 38%

Livestock (13) 11% Greenhouse (4) 3%

Horticulture (4) 3%

Agroforestry (3) 3%
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target values of each variable enabled in the DEA model. Debbarma et al. (2021b) 

used SBM model to elucidate Iranian farmers’ efficiency under the consideration of 

GHG emissions as undesirable output, while same model was used from Tian et al. 

(2016) for open-field grape production.  Bootstrap DEA was used in 5 cases with a 

view to minimize the stochastic errors by producing replicate datasets. For instance, 

Nodin et al. (2022) have created 3,000 replicate datasets of rice producers to assure 

the reliability of acquired results. Super efficiency was performed by 3 papers or 2% 

of total sample. Cecchini et al. (2021) used this approach for minimizing the influence 

of extreme values to their final results when implementing an efficiency assessment 

on Italian sheep farms. 

 Network DEA was also implemented from 5 papers in order to reveal causes of 

inefficiency in different sub-systems of an overall process. Saputri et al. (2019) 

performed this methodology to assess the efficiency between the three distinct stages 

of agri-food supply chain (agricultural production, processing, transportation) for 

Indonesian rice producers. Kord et al. (2022) presented agricultural activity as two 

different stages (environmental and economic) and by using shared inputs between 

the two stages they performed a sustainability assessment for Iranian regions. Lu et 

al. (2022) have created a three stage Network model for assessing agricultural food 

production systems of EU countries under circular economy principles, meaning that 

the final output was acting as a carry over the next period. 

Fuzzy DEA and Window DEA were the least presented methodologies of this 

sample referring to only 3% cumulatively. Mu et al. (2018) have assessed 55 dairy 

farms setting a range of -20 to +20 of their given values, so as to incorporate the 

uncertainty in their Fuzzy DEA model. Window DEA was used from Masuda (2019) 

to minimize the effects of global warming and eutrophication in rice production for 

2005-2011 time period. Lastly, it should be mentioned that the followed methodology 

was not specified in 2 papers and the review papers (2) are excluded from this review 

process. 

 Regarding the comparison of the acquired results, only two surveys have 

proceeded to this step. W Kamal & Ilmas (2017) have compared their DEA results 

with SFA, concluding that SFA technical efficiency results were higher than the ones 

of DEA, attributing this to bias correction of the SFA model. Khanjarpanah et al. 
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(2017) implemented 2 types of cross-efficiency DEA models (aggressive and 

benevolent) to assess switchgrass cultivation in Iran and they proposed a third one 

additional model which contributes to a fairer optimization process. 

 

Figure 2.6: Results of DEA Models used 

 

Undesirable outputs impact assessment is another significant factor towards the 

achievement of sustainable development in agriculture, mainly by focusing on 

reducing their impacts on the environment, or trying to create a circular path. For 

these reasons, 25% (30 papers) used undesirable outputs in total. Most of them were 

using either Greenhouse Gas Emissions (GHG) as a total or applying CO2 emissions 

only and this may be due to easy data accessibility. Lamkowsky et al. (2021) has also 

used N surplus indicator as undesirable output in Dutch dairy farms, a variable which 

has not been detected in crop production systems at all (e.g N leaching). Additionally, 

Tang et al. (2022) included farm-specific undesirable variables such as soil erosion 

rate and grey water footprint in their DEA model, a characteristic that was absent 

from the other surveys. It should be noted that Grassauer et al. (2021) and 
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Rybaczewska-Błazejowska & Gierulski (2018)  included LCA results as inputs in 

their DEA models to minimize the environmental effects of agricultural productivity. 

As stated in the general information section, there is an assumption of 

homogenous examined units when performing DEA. Especially in the agricultural 

sector, which has a great variability both of abiotic (temperature, humidity, 

precipitation, type of soil etc.) and biotic environment (cultivar, variety, pests etc.) as 

well as the interaction between them, use of different weights is essential for setting 

an equal starting point for all DMUs involved. None of the included references has 

implemented any methodology that would make a fairer evaluation, a crucial point 

when considering equality on the agricultural sector. Such issue is partially delivered 

from Molinos-Senante et al. (2016) where an attempt of highlighting efficiency 

differences between farmers, with immediate access to water or not is being made, 

underlying the need for policy framework modifications. In this line of reasoning, 

other agronomic factors such as access to land with high levels of organic matter, or 

vulnerability from specific pests should be considered in the evaluation process. 

2.4.3 DEA Extensions 

DEA has not been combined with any other model or methodology for 30% of 

the examined references, proving that most researchers are implementing additional 

steps after the calculation efficiency scores. From the remaining 82 papers, regression 

models was the most frequent option such Tobit (10), Truncated (4), Ordinary Least 

Squares (OLS) (4) and other not specified linear regression models (6). Tobit model 

was used for checking which socio-economic variables are affecting the extracted 

efficiency scores (Hassen et al., 2017; W Kamal & Ilmas, 2017). As mentioned from 

(Chang et al., 2022) the use of OLS model can be biased due to the potential inclusion 

of zero values extracted from the DEA implementation process. Martinsson & 

Hansson (2021) have used OLS to assess the effect of subsidies in the performance 

of dairy farms and their overall productivity. Frangu et al. (2018) incorporated in their 

linear regression model aspects like farmers training on crop nutrition or type of 

power source used (e.g electricity, fuel) fulfilling also other dimensions than the 

typical social characteristics (e.g age, education, income, years of experience)  

Apart from the regression models Malmquist index was used in 10 cases in order 

to check efficiency differences between years. Pan et al. (2021) used Malmquist index 
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to assess differences of total factor productivity between the years 2015-2018, 

proving that there was a significant increase in productivity of various Chinese 

regions. Ren et al. (2017) applied the same index to depict the water use efficiency 

per year, in order to propose regional changes to policymakers. Another least 

explored index used in combination with the DEA is Theil index, which was used for 

exploring economic inequalities between different Chinese regions regarding their 

eco-efficiency (Pang et al., 2016). 

LCA is another commonly combined analysis with the DEA for assessing the 

environmental impacts of agricultural activities. In the examined sample, 14 papers 

(11%) implemented the afore-mentioned methodology. When LCA is applied there 

are two approaches of either implementing DEA in the initial stage and then target 

values are used (Grados et al., 2017), or LCA is performed first and its results are 

proceeding to further analysis with the DEA (Rybaczewska-Błazejowska & 

Gierulski, 2018). For instance, Mohammadi et al. (2022) have assessed the impacts 

of agricultural activity to air, water and soil, clarifying the differences between 

current and target values for Iranian wheat farms. 

Principal component Analysis (PCA) and Factor Analysis (FA) were used from 

a small number of papers (4). After the collection of economic, social and 

environmental data, Sánchez-Zamora & Gallardo-Cobos (2019) have applied PCA 

for grouping Spanish regions with common characteristics to measure and compare 

their resilience scores, extracted from DEA. Ramos de Oliveira et al. (2022) 

implemented PCA in order to elucidate the interactions among the sustainability 

factors, proving that social and environmental dimensions should not be neglected 

when transportation routes of agricultural products are being assessed for their 

efficiency levels. 

Kord et al. (2021) have incorporated a sensitivity analysis in their approach, to 

assess the allocation of human resources in a 2 stage Network DEA model. More 

precisely, this paper seeks to address the optimal value of human resources 

intervention in the plantation/maintenance of the cultivar (first stage) and harvesting 

(second stage). Abbas et al. (2022) used the aforementioned analysis, so as to indicate 

the change of crop output under the condition of different number of inputs each time. 
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Grey relational analysis was applied to check the influence of the included variables 

on the environmental performance of China’s families (Y. Yang et al., 2019).  

Lastly, special attention was paid to the incorporation of spatial characteristics in 

the reviewed papers. Tian et al. (2016) have implemented spatial analysis, after 

estimating the efficiency scores for Chinese grape farms. Spatial Durbin Model was 

implemented from the following researchers to identify technological spillovers 

through different regions (J. Li et al., 2021; Wu et al., 2022; P. Xu et al., 2022). 

Examining the spatial relationship of the acquired results is a necessity for 

agricultural operational research to reveal potential patterns that may have been 

neglected in the analysis process. 

2.4.4 Data Type 

A similar pattern of used inputs Pesticides, Diesel, Electricity, Fertilizers, 

Labour, Machinery, Seeds, and Yield as used output is revealed through this process. 

However, it is should be underlined that irrigation has been used only from 24 

surveys, raising awareness about data collection and data availability of such a 

valuable natural source.  As it was also mentioned in the data analysis section, farm 

data regarding agronomic characteristics are missing. This situation does not permit 

researchers to perform a fairer assessment, treating all the involved DMUs as 

homogenous.  

Apart from the quantitative variables, none of the papers used qualitative 

variables (e.g Likert scale) when performing DEA, a valuable characteristic for 

assessing agronomic characteristics which cannot be easily or precisely measured or 

quantified. Cook (2004) provides the appropriate methodology on how the 

incorporation of qualitative data can be implemented. Considering time-series data, 

34 out of 118 included references have analyzed data of more than one year. Authors 

selected to include this variable, in order to check the validity of acquired results that 

may present high variations, due to external factors. For instance, bad weather 

conditions can result in small yield for one region, perceiving it as inefficient 

compared with another one in the same year. Seasonal differences should be carefully 

considered when DEA is applied in agriculture. It should be also highlighted that only 

one survey has applied Window DEA to treat time-series data (Gatimbu et al., 2020), 

which is the most appropriate methodology for this type of data. Moreover, only none 
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of the studies has incorporated any information from GIS system, highlighting the 

need for acquiring up-to-date data in an easier and more precise way. In this way, 

farms or regions can be better characterized, setting on the optimisation process all 

their unique features that may influence the validity of acquired results. 

2.4.5 Data Collection and Processing 

Although there is a detailed record of all the included sources, in this review four 

larger groups were created. Data were collected through; public databases 

(EUROSTAT, FADN, FAOSTAT, China Statistical Yearbook, other sources) by 

49% (58 papers); personal interviews by 45% (53 papers); funded project 

collaboration by 3% (3 papers); private sector by 3% (2 papers) and not specified in 

one of them. It should be mentioned that Seo & Umeda (2021) used data from field 

experiments, an aspect which was absent from this literature review process and 

should be further promoted for acquiring accurate results. Total sample size has been 

added as a variable to check the rule of thumb for the ratio of DMUs involved 

compared to the number of examined variables. None of the examined papers 

appeared to be problematic on that.  

Focusing on data collection through personal interviews, a small part of them (12 

papers) had a reference on how they collected their samples. More precisely, 4 

referred to Random sampling technique formula (Raheli et al., 2017; Ramezani et al., 

2022; Sherzod et al., 2018; Sui et al., 2022); another 4 to Cochran technique (Ashraf 

et al., 2020; Esfahani et al., 2017; Molinos-Senante et al., 2016; Payandeh et al., 

2021); 2 to Yamane technique (Haq & Boz, 2019; Ul Haq et al., 2020); 1 to Stratified 

Sampling formula (Godoy-Durán et al., 2017) and one to snowball sampling method 

(Mwambo et al., 2021). 

To authors’ surprise, the greatest part of the papers (51%) did not specify which 

DEA software they used to acquire DEA results, which would be helpful for results 

reproducibility. DEA Solver, DEAP, and STATA were the most used as shown in 

Figure 2.7. Regarding the Rstudio software, Benchmarking library was used in 4 

papers while 62ver library in another 2. 
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Figure 2.7: DEA Software 

2.4.6 Sustainability dimension 

Lastly, all papers were grouped by the sustainability dimension that they 

represent. Although there is a large discussion about how we can define sustainability 

and which aspects should be included (Purvis et al., 2019), for the scope of this review 

sustainability is represented by the three aspects of economic development, 

environmental protection, and social inclusion. It should be mentioned that 

categorization was made based on two stages. The first stage was referring to the 

variables inserted immediately in the DEA model, while the second stage was 

examining the overall contribution to sustainability assessment. For instance, if a 

paper was using typical inputs and outputs (e.g. labour, fertilizers, land, energy and 

overall production), it was perceived as solely economic. When a paper has included 

in the above stated variables an undesirable output (e.g GHG emissions) or LCA 

results, it was classified in the economic and environmental category. There were also 

2 cases in which Human Development Index (HDI) (Babazadeh et al., 2018; 

Khanjarpanah et al., 2017) was used in the optimization process, meaning that at the 

DEA stage the social aspect was represented. As Figure 2.8 shows, at the DEA stage 

half of the papers are contributing only to the economic aspect, 35% concerns both 

economic and environmental aspect, while only in 11% of the examined papers are 

representing all sustainability dimensions. For instance, Tang et al. (2022) have 

incorporated land cost, HDI, annual precipitation and amount of water resources 

covering all three aspects of sustainability. Sánchez-Zamora & Gallardo-Cobos 
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(2020) have embodied 22 indicators covering economic, environmental, social, 

institutional and spatial development characteristics.  

 

Figure 2.8: Sustainability dimension(s) represented at the DEA stage 

Following the same rationale as at the first stage, the examined papers were 

categorised by the total combination of variables and methods that they implemented 

in their approaches of sustainability. Figure 2.9 shows that there is a shift only from 

the economic perspective of Figure 2.8 to a combined economic and environmental 

approach. In other words, in many cases where only economic pillar was represented 

in a DEA methodological approach, authors embodied methodologies such as LCA 

(Beltrán-Esteve et al., 2017; Gamboa et al., 2020) or functions for the calculation  of 

CO2 emissions (Ashraf et al., 2020; Basavalingaiah et al., 2020; Ilahi et al., 2019) or 

environmental cost benefit analysis (Mwambo et al., 2020). Economic and social 

aspect increased as well, due to the fact that DEA outcomes were used as dependent 

variables in regression models such as Tobit (Haq & Boz, 2019; Sherzod et al., 2018) 

or truncated regression (L. Liu & Sun, 2019; Martino et al., 2016), to identify 

significant relations of socioeconomic variables to them. It is really positive the fact 

that the number of DEA papers contributing to all sustainability pillars increased from 

13 to 24, representing almost 20% of the sample, thus the percentage remains low 

given the fact that examined papers have been retrieved through a structured search 

for sustainability in agriculture.  
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Figure 2.9: Overall contribution of examined papers to sustainability pillars 

As a final part of this review, obtained results were visualized to provide a clear 

image to the reader. As expected, “sustainability” term is closely related to DEA. 

LCA term is also present, meaning that authors either refer to the applicability of this 

method in their papers, or they implement it in combination with DEA, a result which 

was extracted from Subsection 4.3.  In the lower left corner of Figure 2.10, there is 

the label “human” which indicates that even if the number of documents including 

social features remains small, this term is under authors’ consideration. 
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2.5  Discussion 

The main objective of this study is to identify methodological gaps and propose 

future directions for the operational research field of agriculture, considering 

sustainability as a driving force. Additionally, the contribution of the reviewed papers 

to the fulfilment of the 3 aspects of sustainable development was evaluated. The 

significance of this literature review does not stem from its findings but from 

highlighting missing aspects or points that needs to be improved. 

Over the years there is a clear approach of constantly finding new methodologies 

to better integrate the concepts of reduced resource availability and environmental 

protection in DEA methodology. As Galanopoulos et al. (2006) stated, farmers can 

only control their inputs and they have less impact on the final output, due to a series 

of external factors. This is the reason why the input-oriented approach is selected, to 

minimize the risk of the invested capital from the farmer’s side as well as promote 

environmental protection through reduced use of agrochemicals. Although fertilizers 

skyrocketed the production potential on a global scale, high amounts of energy are 

needed for their production and distribution (Dimitrijević et al., 2020). This is another 

reason why the input-oriented approach is selected, leading to production systems 

with lower energy requirements. 

Results indicate that the greatest part of surveys was held out on a local level, 

thus DEA remains a handful tool for measuring the performance on a greater scale.  

However, none of the examined papers have assessed the infrastructure of agricultural 

domains for each country. For example, how the funds of EU agricultural sectors are 

distributed in subsections like crop production, livestock production and mixed 

systems, through hierarchical network models (Kremantzis et al., 2022) . It should be 

also underlined that the implementation of weights would lead to more reliable results 

(Mosbah et al., 2020; Thompson et al., 1994, 1995). This is a point of great 

importance for the agricultural field, where multiple external factors affect the 

interactions of the used inputs, also influencing the final output. For example, 

temperature affects nitrogen release rates depending on fertilizer type or soil type 

(Ransom et al., 2020), soil pH plays an important role in plant growth (Xiao et al., 

2017), salinity (Hessini et al., 2019), and a series of factors that affect the final output 

can be inserted in DEA model as weights. That is the reason why the incorporation 
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of GIS information in DEA methodology is essential, but there is a limited number 

of papers available online with this combination (Liang et al., 2019).  

Estimation of undesirable outputs is another point of interest for agricultural 

productivity. Literature review shows that most researchers use CO2 or GHG 

emissions to align their papers with the global effort for GHG emissions reduction. 

These outcomes are in accordance with Streimikis and Saraji’s (2021) review results. 

However, there is an increasing need for creating circular flows to eliminate the 

wasted energy, supporting this transition by an appropriate policy framework (Guo et 

al., 2021).  

Moreover, it should be stated that data availability remains an issue in the 

agricultural field. Almost half of the surveys used data acquired through personal 

interviews, proving that data collection is a time-demanding process that also 

involves an increased risk of imprecise data. On top of that, researchers have limited 

access only to basic information as shown in Table A1, mainly because additional 

data collection requires an establishment of greater infrastructure e.g. agro-related 

applications where farmers insert either manually or automatically their data, local 

agro-managers provide a first stage data screening and lastly, researchers provide 

further insights and results from visualization. Further assessment is needed regarding 

qualitative data, like the quality of sowing, quality of spraying or quality 

characteristics of the final product. TOPSIS Model, which can handle both scale and 

categorical data, can be easily combined with DEA methodology in the agricultural 

sector, embodying a wider range of involved variables in the benchmarking process 

(Kyrgiakos et al., 2021; Wang et al., 2021).  

Additionally, out of the 34 papers that used time-series data, 31 extracted them 

from public datasets, 1 from project collaboration, and another 1 from the private 

sector. By this statement a lack of constant monitoring by cultivar type and by specific 

region is highlighted, as the remaining papers performed an annual analysis, 

indicating the need for incorporating a greater part of variability, derived from 

multiple years analyses.  

The social dimension is the least represented aspect, when measuring efficiency 

in agriculture under the sustainability framework, a conclusion that derives both from 

the present review, but also has been highlighted in literature reviews of energy and 
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environmental fields (Tsaples & Papathanasiou, 2021; H. Zhou et al., 2018). 

Although most surveys include demographic characteristics (age, education, family 

labor, experience) to represent the social aspect of agriculture, social welfare, 

government support, social protection and access to non-financial support should be 

considered as well (Dania et al., 2022). It is not still clear both from the policy makers’ 

side as well as from the academic community which social aspects serve as the best 

performing KPIs, when assessing sustainability in the agricultural field. 

Moreover, even though the economic dimension is the most highlighted one in 

Figure 2.8, it should be considered that when estimating the potential reduction of the 

amount of fertilizer per land unit, it is apparent that this act enhances environmental 

protection. Though, the main outcome of this survey is that the social aspect is still 

underrepresented, as highlighted in Figure 2.9.  

The limitation of this research lies in the fact that the sources were extracted only 

by using a firm approach of paper selection, searching for DEA and sustainability and 

agriculture «terms» on their title, abstract, or keywords. Although authors are aware 

of the existence of a higher number of papers with DEA implementation in the 

agricultural sector with great potential, e.g application of DEA in agriculture at the 

EU level (Kočišová, 2015; Madau et al., 2017), local level (Işgın et al., 2020), 

comparisons of DEA results with SFA (Theodoridis & Psychoudakis, 2008) or newer 

approaches like 2-stage DEA (F. Ren et al., 2021), engagement of spatial 

characteristics (Z. Li et al., 2021), DEA with Artificial Neural Networks (ANNs) 

(Vlontzos & Pardalos, 2017) or Window DEA approaches (Kyrgiakos et al., 2021; 

Shahraki et al., 2019), thus they were excluded because they did not fulfil the 

previously stated limitation. Moreover, prominent journals like American Journal of 

Agricultural Economics or Journal of Agricultural Economics are missing from the 

two databases, a fact that should be seriously considered by researchers when using 

these search engines. 

Eco-efficiency was another serious consideration when designing this survey due 

to the fact that there is a considerable effort of several researchers under this term as 

well (Gómez-Limón et al., 2012; Kiani Mavi et al., 2019; Rebolledo-Leiva et al., 

2019). However, using this specific term the pillar of environmental protection would 

be overestimated and this may lead to non-objective results. Taking the above-
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mentioned limitations into consideration, authors agreed to proceed with this 

approach, assuming that the sample size is representative and can provide a simple 

and realistic overview to the reader. As a final remark, the «agriculture» term should 

be placed in title, abstract, or keywords section from the future authors, to easily 

distinguish their papers from closely related ones. 

2.6  Conclusions 

In this literature review, 120 papers were included referring to the use of DEA in 

the agricultural sector considering sustainability. Results indicate that there is a need 

for a more systematic data collection that will incorporate data of agricultural practices 

(both quantitative and categorized), weather data, as well as an effort of combining 

DEA methodology with information extracted from GIS databases. Also, it is a 

necessity to perform optimization methods on a multiple-year basis, to engage all the 

involved variability. Such applications will permit the implementation of more 

complex DEA models with greater adaptability in real-case scenarios. The integration 

of weights in DEA models can contribute to achieving the above goal, ensuring the 

same baseline before the benchmarking process. Additionally, it is necessary to 

integrate social factors, especially in cases where the aim of the research is to provide 

information to policymakers. Concluding, data availability and implementation of 

more complex methodologies are needed to acquire results with greater explanatory 

power, contributing to the achievement of sustainable development principles in the 

agricultural sector. 
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Chapter 3  

Assessing efficiency of cotton farms considering qualitative factors 

under DEA TOPSIS model 

3.1. Introduction 

Modern agriculture focuses on increased use efficiency of available resources, 

while producing the same amount of output with the least environmental externalities 

(Zulfiqar & Thapa, 2016). Cotton production is an input intensive cultivation, thus a 

series of different studies have contributed to the elimination of redundant resources 

through precision agriculture (Theodoridis, Hasanov and Abruev, 2014; 

Watcharaanantapong et al., 2014), and the assurance of qualitative and quantitative 

characteristics under genotypic and environmental variation (Shahzad et al., 2019). 

At the same time, environmental protection should be further promoted through non-

chemical alternatives of pesticides (Luo, Naranjo and Wu, 2014). Taking into 

consideration average production quantities of the last decade (2009-2020) from 

(FAOSTAT, 2021) data, China, India and USA are holding the first places. In terms 

of productivity, Australia, Turkey and Mexico have the highest yields of 44K hg/ha 

or more. The only European representative on the top 10 countries is Greece, with an 

average annual production of 800K Tones. Cotton production is strongly connected 

with Greek agriculture, while its cultivation has been motivated under a tailored made 

European subsidy scheme, immediately after the country’s accession to the EU 

(Vlontzos, 2007). Since then, several modifications of this scheme have taken place, 

with the most radical ones to be related with the implementation of the Agenda 2000. 

More specifically, since the year 2005 there is a partial decoupling of payments on a 

ratio of 65%-35% decoupling and coupling payments. Taking into account that 

limitation of natural resources will be further extended due to climate change with 

unpredicted results, (Ahmad et al., 2017; Chen et al., 2015) for cotton production, a 

rising interest of saving useful resources is apparent. 

In general, cotton (Gossypium hirsutum L.) is a highly demanding crop in 

terms of irrigation and energy use (Imran, Özçatalbaş and Bashir, 2020). According 

to Anapali et al. (Anapalli et al., 2016) irrigation is one of the crucial factors regarding 

cotton cultivation, resulting in large differences in final yields between rain fed and 
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irrigated cotton fields. Furthermore, practices followed by farmers can contribute to 

a higher water use efficiency. For instance, late planting of a month period can be a 

feasible solution, given the fact that irrigation systems ensure increased water use 

efficiency (Q. Luo et al., 2016). The aforementioned technique is confirmed for 

Australian cotton growers, while an increased overall cotton production is expected 

for the following decades, due to climate change, as their results indicate (Anwar et 

al., 2020).  

Moreover, energy demands of cotton production are mostly derived from the 

excess amount of fertilizers. Indeed, synthetic fertilizers are the greatest contributors 

of GHG emissions in cotton cultivation (46%), from seeding to port, underlying the 

importance of farmers being cautious with their use (Hedayati et al., 2019).  In their 

literature review Khan et al. (2017), present a series of suggestions (partially 

substitution of synthetic with biological fertilizers, slow release fertilizers, legume-

based crop rotation) for minimizing GHG emission of N-fertilizers, concluding that 

future surveys should focus on organic substances with low melting points and 

moderate water solubility. Additionally, in an effort of minimizing the fertilizers use, 

a long term survey of 29 consecutive years in Tennessee (X. V. Zhou et al., 2017) has 

proven that systems with no cover crops have the maximum profit for farmers’ side, 

while if the aforementioned practice is beneficial for environment and society, it 

should be subsidized by the government.  

However, apart from the aforementioned factors, the ongoing climate change 

is another important factor to be considered, especially for arable land farmers. 

Climate change will affect irrigation and increase the existence of extreme weather 

events (Voloudakis et al., 2015). For this reason, European Union through the new 

Common Agricultural Policy (CAP 2021-2027) enabled the support of farmers in 

case of extreme weather events (European Commission, 2018). Moreover, CAP 

2021-2027 promotes sustainable development, creating the 9 CAP objectives, giving 

equal importance to the economy, environment and local communities. It should be 

underlined that constant increase of sustainability awareness from every societal 

group (farmers and non-farmers) can pinpoint the future for a greener cotton 

production (Mohapatra & Saha, 2019). 
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For the above-mentioned reasons, this study has focused on the assessment of 

input use efficiency of Greek cotton production, especially irrigation and fertilizers, 

given the fact that the involved inputs will be less available in the future due to climate 

change. As it was above mentioned, cotton production in Greece is a cultivation of 

major economic importance because 16% of arable land is cultivated with cotton, 

resulting to a Gross Production Value of approximately 424M US$ (FAOSTAT, 

2021). Hence, it is of paramount importance to examine the input use efficiency of 

Greek cotton farms, in order to safeguard their resilience towards climate change. In 

order to achieve this goal, DEA has been used for measuring technical and scale 

efficiency of Greek Cotton Farms, while on the same time social characteristics have 

been taken into consideration with the use of TOPSIS model. Social characteristics 

have been included in the overall benchmarking through the TOPSIS model and have 

been considered as outputs in order to remain at same levels, since the suggested 

model is input-oriented. In other words, the goal of this study is to assess the 

efficiency levels of Greek cotton farmers, considering social factors.  

In the first section, applicability of DEA and TOPSIS model are presented, 

ensuring the validity of the used analysis. In the Methodology section, data collection, 

descriptive statistics of the sample and computations used for further data analysis 

are presented, providing useful insights about the conduction of this study. In the 

Results section, main findings of input use efficiency of the sample are presented. 

Discussion section highlights the best and worst performers, indicating the need for 

further assessment regarding irrigation. Last but not least, Conclusion section 

contains information about limitations of this study and future uses of the applied 

methodology.  

3.2. Background 

Although more than 60 years have passed since the conception of DEA, its 

undoubted usefulness is proven through its use in evaluating the efficiency of various 

production sectors of the economy (Charnes, Cooper and Rhodes, 1978; Cooper, 

Seiford and Zhu, 2011). Banks use DEA to a large extent as a useful tool for 

evaluating, monitoring and developing the performance of stocks and companies 

(Titko, Stankevičienė and Lāce, 2014). In addition, DEA has been used to identify 

specific sections inside industries that can be optimized, maximizing their overall 
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efficiency (Baran et al., 2016). It is crucial that suggested solutions regarding DEA 

methodology are immediately applicable, due to the fact that they have arisen through 

the assessment of similar units.  

While DEA has been used to evaluate the efficiency of a number of productive 

sectors of the economy, its use in agricultural economics field is relatively recent. As 

Scopus research reveals, there is an increased interest of “DEA agriculture” term, 

especially the last decade, probably due to its advantages of ranking DMUs of a given 

system, while proposing improvements for the ones of lower efficiency (Scopus, 

2021). For example, EU agricultural sectors have been assessed through DEA, 

delivering changes for ameliorating their performance on energy use and negative 

environmental impacts mitigation (Vlontzos, Niavis and Manos, 2014).  

Furthermore, DEA methodology has been also used to assess production 

protocols of greenhouses, determining efficiency scores among different cultivars. 

For example, the study of Bournaris et al. (2019) examined the efficiency score of 4 

cultivars, (eggplant, cucumber, pepper, tomato) to identify which one has the greatest 

input use efficiency in a greenhouse. The results highlighted that eggplant greenhouse 

cultivation was the most efficient out of four, while tomato was the least efficient. 

Alternatively, Atici and Podinovski (2015) have incorporated specialization 

parameters when estimating scale efficiency, proving that a combination of different 

crops can outperform monocultures in some cases. The above-mentioned surveys 

prove that DEA can assess different production systems and incorporate a significant 

amount of parameters. Among these parameters it can be easily integrated the use and 

provision of natural resources. For instance, Watto and Mugera (2014) used DEA in 

order to assess water use efficiency in cotton production areas of Pakistan, between 

farmers with immediate access to water (tube well owners) and water buyers. Results 

indicate significant differences on the overall production between the two groups of 

farmers of the same area, due to different levels of water efficiency. More specifically, 

the farmers with immediate access to water had higher water efficiency, due to the 

73ulfilment of cotton water needs at the right timing. Therefore, DEA results can be 

used in multiple dimensions, such as promoting the strategies of the most efficient 

farmers, supporting those with lowest input use efficiency scores or regional 

framework implementation, achieving greater land use management. 
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Additionally, many studies use DEA to optimize energy efficiency, so as to 

reduce operational cost and minimize environmental effects at the same time. More 

specifically, Nabavi-Pelesaraei and Amid (2014) used the Constant Return to Scale 

(CRS) model and the Variable Return to Scale (VRS) model in order to identify the 

optimal requirements for energy in eggplant production in Iran. The authors evaluated 

farmers based on their technical, pure technical and scale efficiency. Similarly, Powar 

et al. (2020) also used the CRS and VRS models to evaluate the efficiency in energy 

use and identify the optimal energy resources in sugarcane production, while also 

focusing on technical, pure technical and scale efficiency to categorize farmers as 

efficient or inefficient. Furthermore, undesirable outputs, like GHG can be identified 

and eliminated or diminished with the use of DEA, leading to a sustainable agriculture 

and achieving SDGs. For example, Khoshnevisan et al. (2013) have identified GHG 

surplus, after analyzing data of 260 French wheat farmers via personal interviews.  

Another methodology that can be combined with DEA, is the Technique for 

Order Preference by Similarity to Ideal Solution (TOPSIS) in order to employ 

qualitative data in the benchmarking process. TOPSIS has been developed by (Hwang 

and Yoon, 1981) based on the Euclidean distance between DMUs. DEA-TOPSIS 

combination has been used in order to find the optimal solution, given the fact that 

both numerical and categorical values are taken into account. For instance, Zeydan 

and Çolpan (2009) have used this methodology to assess the efficiency of different 

job shops, taking into account not only quantitative variables like number of 

personnel, operational unit cost, quality adequacy score and number of personnel, but 

also TOPSIS results as an outcome of multiple questions about the satisfaction level 

from these shops. In the agricultural area this technique has been merely used to 

evaluate the agricultural mechanization in 30 Chinese regions (Y. Yang, 2012).  

However, according to the literature review of H. Zhou et al. (2018) there is a 

rather limited number of studies combining DEA with socio-economic 

characteristics, proving that agricultural production should have a holistic approach, 

assessing all three pillars of sustainability. It should be mentioned that the above 

statement has been exported out of 212 papers in which 63 were referring to the use 

of DEA in agricultural sector. Additionally, previous surveys indicate the positive 

relationship between education, as a socio-economic characteristic, and minimized 
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agrochemical products, with increased productivity (Das & Sahoo, 2012; Shetty et 

al., 2010).  

Taking into consideration the above-mentioned studies, it is evident that 

optimization of agricultural systems has been widely assessed, thus there are several 

factors, such as social or agronomical characteristics, affecting inputs’ use efficiency 

that is unable be included properly in DEA methodology. The major concern is the 

fact that their precise quantification is very challenging. TOPSIS methodology can 

be used as an extra step, in order to convert both scale and ordinal data to a continuous 

variable that can be included in DEA afterwards. Considering that the upcoming CAP 

2021-2027 will focus on the main pillars of sustainable development (economy, 

environment, society), a proposed methodology is needed to benchmark the involved 

DMUs and clarify inefficiency differences of a given system, combining both 

quantitative and qualitative data.  

3.3. Methodology 

To assess the efficiency of all inputs and outputs used in cotton cultivation, a 

three-section- questionnaire has been created and distributed to Greek cotton 

growers. The first part was referring to demographic characteristics of the 

interviewee like (age, gender, education, class of income, experience). The second 

part was focusing on a detailed recording of all involved inputs (seeds, pesticides, 

fertilizers, irrigation, energy use and labour) for the cultivation year 2019-2020. The 

last part contained questions about the overall cotton production of each farm, and 

annual amount of money gained from subsidies. Image 3.1  indicates the places 

where interviews have taken place and Table 3.1 describes the number of farms per 

prefecture of the overall sample. 
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Image 3.1 : Locations of the interviews 

Table 3.1: Number of farms per prefecture 

Prefecture Number of cotton farms 

Larisa 76 

Trikala 2 

Katerini 25 

Thessaloniki 4 

Total 107 

 

Focusing on the objectives of this survey, DEA methodology has been 

applied, in order to benchmark inputs use efficiency of cotton growers, a cultivation 

of major importance not only for the development of local communities, but also for 

global agriculture, as the Introduction section has suggested. More precisely, an 

input-oriented approach has been selected, so as to minimize the environmental 

impact of the cultivar and the amount of money spent by farmers. For this reason, 

input oriented CRS and VRS DEA model have been selected in order to estimate the 

technical efficiency scores of different cotton farms: 

𝑧 = min 𝜃 − 𝜀(∑ 𝑠𝑖
−

𝑚

𝑖=1

+ ∑ 𝑠𝑟
+

𝑠

𝑟=1

) 

 

(1) 
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𝑠. 𝑡. ∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− =

𝑛

𝑗=1

𝜃𝑥𝑖𝜊 𝑖 = 1, … , 𝑚 

 

(2) 

∑ 𝜆𝑗𝑦𝑟𝑗 − 𝑠𝑟
+ =

𝑛

𝑗=1

𝑦𝑟𝜊 𝑟 = 1, … , 𝑠 

 

(3) 

𝜆𝑗 , 𝑠𝑖
−, 𝑠𝑟

+ ≥ 0 Ɐ𝑖, 𝑟, 𝑗. 

 
(4) 

Variable return to Scale (VRS) Add 

∑ 𝜆𝑗 =

𝑛

𝑗−1

1 

 

(5) 

Where: n DMUj= j= 1,…,n use xij as inputs (e.g. fertilizers, irrigation) producing yrj 

as outputs (e.g. cotton production), λj is a non-negative constant while 𝑠𝑖
−and 𝑠𝑟

+ are 

the input and output slacks accordingly. In order to characterize a DMU as efficient, 

both z should be equal to 1 and slacks should be equal to zero. The inclusion of non-

Archimedean value (𝜀) ensures the identification of the most efficient DMUs (Toloo, 

2014). As a final step, Scale Efficiency (SE) has been computed by 

𝑆𝐸𝑖 =
𝐶𝑅𝑆𝑖

𝑉𝑅𝑆𝑖
 

 

(6) 

Where 𝐶𝑅𝑆𝑖 and 𝑉𝑅𝑆𝑖 are the efficient scores obtained for each DMU with the use of 

the aforementioned models (eq. (1)-(5)). 

Furthermore, education and experience of cotton growers have been selected 

as key qualitative characteristics to be included in DEA model. Considering that both 

education level and experience has been collected as categorical values, TOPSIS 

model was used to transform them into meaningful results, so as to be embodied in 

the DEA model. In order to achieve this, the following calculations have been made. 

For implementing the TOPSIS model, a normalized matrix should be created, using 

eq (7), where ι represents the number of alternatives (or in this case the number of 

farmers), j is the number of the involved criteria. 
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Step 1: 𝑥𝑖𝑗̅̅̅̅ =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑛

𝑗=1

 (7) 

Equal weights have been given to each variable and then Euclidean distance from 

ideal best and worst is computed. 

Step 2: 𝑠𝑖
+ =  [∑ (𝑣𝑖𝑗 − 𝑣𝑗

+)
2𝑚

𝑗=1 ]
0.5

,   𝑠𝑖
− =  [∑ (𝑣𝑖𝑗 − 𝑣𝑗

−)
2𝑚

𝑗=1 ]
0.5

 (8) 

where: 𝑣𝑗
+, 𝑣𝑗

− represent the best and worst alternative from the ideal solution. 

Step 3: 𝑃𝑖 =  
𝑠𝑖

+

𝑠𝑖
++𝑠𝑖

− (9) 

where 𝑃𝑖 is the final score achieved for each unit. 

Due to the fact that the agricultural sector has incorporated a series of 

technological innovation, thus it is crucial to have the appropriate knowledge so as to 

operate a farm as efficient as possible (Marinoudi et al., 2019). Moreover, well 

educated people are more willing to adopt precision farming techniques and 

technology, achieving higher input use efficiency scores (Paustian & Theuvsen, 

2017). On the other hand, gaining experience year by year is another important factor, 

for ameliorating farmers’ performance as a result of a consecutive trial and error 

process (Gul et al., 2009). In this study highly educated people with experience have 

been selected as the optimal ones.  

 Figure 3.1 displays the methodology followed in this paper, as a 3-stage 

approach. Results have been obtained using base and Benchmarking library of R 

studio. 
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 Figure 3.1: Analysis flowchart  

3.3.1. Descriptive statistics 

An overall sample of 128 questionnaires has been collected but only 107 of 

them have been further processed after validity check of information given. 

Analyzing the demographic characteristics of the sample, it can be noted that the 

average age is 48.5 years old (Figure 3.2) and the greatest part of the respondents 

were males (86%). Most of the respondents were high school graduates (55%), while 

only 17% of them had a university degree and the rest 28% were farmers of lower 

education. 

 

Figure 3.2: Age stratification of cotton growers of the sample 

Figure 3.3 illustrates the harvested area of the interviewees. It is evident that 

cultivated land per farm is really small, compared to the 495Ha average farm size of 
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Australian cotton growers (Cotton Australia, 2016), but similar surveys in the 

Mediterranean region present same size characteristics (Gul et al., 2009; Işgın et al., 

2020). Furthermore, 69% of the farmers were producing less than 30K Euros as gross 

annual income, including subsidies. 

 

Figure 3.3: Area harvested of cotton growers of the sample 

 

 On Figure 3.4 and Figure 3.5 educational level and experience of farmers are 

presented accordingly. More precisely, it can be observed that the majority of cotton 

farmers of the sample (55%) have completed compulsory education and they started 

their professional career as cotton farmer, with 40% of them to have an experience of 

more than 15 years.  
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Figure 3.4: Educational level of cotton growers of the sample 

 

 

Figure 3.5: Experience of cotton growers of the sample 
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Table 3.2: Descriptive statistics of the sample 

Variables Mean± D Min Max 

Area (ha) 18.6±15.2 2.8 70.0 

Seeds (€) 2,298±1,968 300 9,660 

Fungicides (€) 53±136 40 1,000 

Herbicides (€) 1,675±1.738 50 8,900 

Insecticides (€) 2,155±2,081 50 8,400 

Fertilizers (€) 3,560±2,707 400 12,000 

Diesel (€) 4,775±4,061 485 24,288 

Electricity (€) 3,245±3,304 130 14,225 

Irrigation (m3) 73,749±61,502 9,000 290,000 

Labour (€) 1,408±1,617 10 6,400 

Output (kg) 82,626±70,516 12,000 322,000 

Revenue + subsidies (€) 50,720±45,441 6,450 209,340 

 

It has to be clarified that variables of Table 3.2 were grouped and used for 

further analysis with the DEA model, while education and experience have been taken 

into consideration using TOPSIS model, following the calculations (7)-(9). The 

exported vector of TOPSIS model was considered as an output for the DEA model, 

to maintain social characteristics at the same levels, while optimising inputs’ use 

efficiency. The above-mentioned grouping refers to expenses for fungicides, 

herbicides, insecticides, fertilizers that have been summed up in a new variable of 

Plant Protection and Nutrition Products (PPNPs) and diesel, electricity have been also 

summed, creating the Energy variable. 

 

Figure 3.6: Inputs and Outputs of DEA model 
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3.4. DEA & TOPSIS results 

Taking advantage of TOPSIS model to convert categorical variables into scale 

ones, education and experience have been included in DEA methodology, being extra 

criteria for the efficiency assessment. By this combination it is feasible to extract 

results under a series of multiple criteria, conceptualizing efficiency on a wider range. 

Final DEA results of input CRS and VRS model are presented in Table 3.3 and Table 

3.4. Moreover, Scale Efficiency (SE) has been also computed for defining whether or 

not cotton farmers should adjust their inputs regarding to their size, with a view to 

have higher profit. 

Table 3.3: Descriptive statistics of CRS, VRS and Scale Efficiency (SE) results 

 

Table 3.4: Input oriented CRS, VRS and Scale Efficiency results by efficiency range 

Efficiency range CRS VRS SE 

 N of DMUs, (%) N of DMUs, (%) N of DMUs 

0.5-0.59 2, (1.9) 2, (1.9) - 

0.6-0.69 6, (5.6) 2, (1.9) - 

0.7-0.79 16, (15.0) 12, (11.2) 1 

0.8-0.89 22, (20.6) 21 (19.6) 7 

0.9-0.99 32, (29.9) 28 (26.2) 70 

1 29, (27.1) 42 (39.3) 29 

 

Results indicate that there is not a large variability in the obtained efficiency 

scores. Average VRS score is equal to 0.915, meaning that there is a well-established 

production protocol followed by most farmers. Thus, there is a potential of almost 

10% or more for the majority of cotton farms included in this sample. Also, it is 

apparent that 16% of selected cotton farms demonstrate low efficiency scores, 

meaning that their cultivation protocols should be re-examined, or their owners 

should seek for other income alternatives. It is very prominent that 39.3% of the total 

sample achieves maximum efficiency scores, confirming that there is the appropriate 

knowledge and equipment for efficient cotton production.  

 Min 1st Quartile Median Mean 3rd Quartile Max 

CRS 0.513 0.812 0.926 0.888 1.000 1.000 

VRS 0.529 0.844 0.975 0.915 1.000 1.000 

SE 0.793 0.957 0.995 0.970 1.000 1.000 
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3.5. Discussion 

In general, this survey assesses input use efficiency in the main cotton 

cultivation areas of Greece. Structural characteristics of best performers are not clear, 

regarding their farm size, because as it has been already mentioned, both the largest 

and the smallest farms are able to operate in the most efficient ways. Worst 

performers have medium size farms, overusing both irrigation and labour variables. 

It should be noted that only variable costs were considered in this study due to data 

availability reasons, which is another factor that may influence the final results. 

Assessing inefficiency causes of the given sample, there are three major findings that 

can be extracted. The first one, signifies the urgency of both farmers and policy 

makers to find new ways of limiting the excess amount of water used for irrigation 

(Manos et al., 2007). Despite the fact that in this survey the type of mechanical 

equipment used in the production process has not been recorded, there is a great 

variability on the irrigation slacks that probably derives from various irrigation 

system being used. This fact should really concern local communities, because water 

availability becomes more and more limited, with simultaneous losses in water 

quality. Through personal interviews, farmers which use pumping system for 

irrigation confirm that year by year the whole process becomes more energy 

demanding, due to the fall of underground water level. 

Another interesting fact is that there is some evidence of a U-shape regarding 

VRS scores and farm size (Figure 3.7). More precisely, it seems that the small and 

large scale farmers achieve maximum efficiency scores, while on the other hand 

medium scale farmers tend to have lower efficiency scores. A logical explanation of 

this phenomenon is that the small scale farmers need to save enough from their 

expenditures so as to survive, and large scale farmers need to be as effective as 

possible, otherwise they will have huge loses. However, medium scale farmer gain 

enough for ensuring a good life quality and they may be less interested on their 

everyday actions. The same result has been also presented from (Işgın et al., 2020), 

conducting a survey on the neighbouring Turkey, thus more data are needed in order 

to validate the above mentioned statement in Greece. 
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Figure 3.7: Efficiency scores per Cotton farm regarding their cultivated area. 

The last finding validates the limited excess use of PPNPs, an issue of major 

importance on these areas, because farmers were used to spend more than needed 

especially in crops that were not intended for human consumption (Pantzios, Rozakis 

and Tzouvelekas, 2002). As results indicate, the majority of cotton farms perform at 

optimal size, meaning that there is no need for increasing or decreasing their sizes in 

order to achieve higher productivity. Furthermore, qualitative characteristics 

inclusion in DEA model provides the opportunity to consider demographic 

characteristics of the sample on the overall assessment. Previous surveys have proved 

that both education and experience can affect input use efficiency (Hashmi et al., 

2016; Işgın et al., 2020). For this reason, highly educated cotton farmers with high 

levels of experience have been chosen as an ideal solution for TOPSIS model. The 

inclusion of TOPSIS results in DEA model provides the opportunity of giving an 

extra promotion to farmers that fulfil the above-mentioned criteria. In this way they 

can be easily distinguished from farmers with less experience, meaning that are less 

susceptible of following less efficient practices or practices that have failed in the 

past, and also less educated farmers may have a lower understanding of all factors 
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involved in the agricultural production. This approach can contribute on the same 

holistic direction as Manos et al. (2011). 

3.6. Conclusions 

Results indicate that there is not large variability in the obtained efficiency 

scores, meaning that there a well-established production protocol. Almost 70% of 

cotton growers are operating efficiently. Even though cotton cultivation has a limited 

amount of profit per land unit, lower efficiency scores indicate further economic 

losses for cotton farmers. Additionally, exploitation of natural resources due to 

overuse should be minimized, promoting environmental protection and biodiversity. 

To a further extent, this approach should be followed to identify if lower efficiency 

scores were occurring in a specific region, or the production protocol of individual 

farmers in this region should be redesigned by experts. Constrains of this survey are 

referring to the difficulty of gaining access to data sources, due to the fact that 

personal interviews was a time-demanding process. Additionally, a time extension of 

the research period is required, so as to eliminate the influence of random factors 

affecting the final production, such as environmental conditions. Taking into 

consideration the lack of surveys combining both qualitative and quantitative 

characteristics in terms of efficiency assessment, it can be stated that TOPSIS-DEA 

mixture can substantially contribute to a greater overview of the agricultural sector. 

It is also important to mention that this approach enables the analysis of a series of 

additional factors affecting both operational and environmental performance, such as 

toxicity of agrochemicals, scarcity of water resources and labour intensity. The 

proposed approach can be implemented in cases where multiple factors affect 

agricultural production and it is very challenging to record them precisely, e.g. quality 

of plowing. 

Future surveys should focus either on incorporating additional social 

characteristics, such as familiarity with new technologies or willingness on 

participating in cooperatives or national schemes, or focus on agronomical 

characteristics, as the ones mentioned before. Moreover, the proposed methodology 

can be implemented for incorporating regional features and benchmarking regions 

that can be more or less appropriate for a specific cultivation. On the other hand, it 

can lead to a number of criteria for evaluating the “sustainability” term, by 
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quantifying the impact of social, economic and environmental factors. This is the 

main feature that can be utilized by policy makers’ side to benchmark farmers’ hard 

and soft skills, deciding at the same time the strategy that will follow, either by 

supporting the weak ones or by ameliorating the best performers.  

DEA – TOPSIS model has an added value due to its easiness of results 

interpretation and practical implementation of them. Although some of the cotton 

farms are fully efficient, the greatest part of the sample needs to adopt minor or major 

changes on their production protocol. The proposed analysis can contribute to the 

sustainability assessment, especially in the era of increasing interest for SDGs, in 

cases where precise measurements of a value is not easy to be met. Considering the 

above statement, this methodology could be a useful tool to rank the various DMUs 

but also to indicate practices of best performers and apply changes accordingly in the 

given production system. Tailored made strategies for policy makers and stakeholders 

involved is a key element for accomplishing SDGs and achieving sustainability. 

Institutional Repository - Library & Information Centre - University of Thessaly
30/08/2023 04:06:03 EEST - 137.108.70.14



 

88 

 

Chapter 4  

Are there any efficiency differences in a common Agriculture 

Decision Support System? A comparative analysis between Greek 

and Italian durum wheat farms. 

4.1. Introduction 

The modern agricultural sector faces important and urgent challenges such as 

food security, climate change, and increased prices in all inputs (mainly in electricity, 

diesel, and fertilizers) (Fellmann et al., 2018). The COVID-19 pandemic intensified 

the effects of the above-mentioned issues, while as Sridhar et al. (2022) stated, the 

adoption of new technologies, which contribute to the collection, processing and 

transmission of information both in farm and off-farm operations, is the on-going 

revolution after the mechanization of the agricultural sector. This leads to food 

systems of increased resilience. Moreover, there is a global demand for enhanced 

environmental protection, agricultural products with high quality standards, as well 

as action plans for preserving improved welfare for rural communities. Considering 

that agriculture is dependent on a series of exogenous factors (type of cultivation, 

pests, temperature, precipitation, soil type etc.), there is a need for collecting and 

analysing all available information to make decisions leading to risk mitigation. This 

has led to the escalation of Agricultural Decision Support Systems (ADSSs), a trend 

that confirms the necessity of their existence. ADSSs are applications that provide 

cultivating directives, based on given data related to specific agricultural practices 

(application of agrochemicals, irrigation, fertilization, and timing of each one) and 

climatic data like temperature, wind speed or moisture level (Jakku and Thorburn, 

2010). 

Mir et al. (2015) provide an extended classification of ADSSs based on their 

contribution for solving farm-related issues, such as nutrient balance, pest 

management, irrigation, and crop planning. Precise identification of target values of 

each of the above-mentioned aspects, leads to the minimization of exploited resources 

(both economic and environmental), resulting in agricultural systems of higher 

efficiency (Saiz-Rubio and Rovira-Más, 2020). In particular, ADSSs specialized in 

wheat and durum wheat cultivation are dealing with managing fungi infections (Rossi 
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et al., 2015) irrigation (Chemak et al., 2020) or fertilization (Pooniya et al., 2015). 

Rossi et al. (2010) proposed an integrated durum wheat ADSS which includes 

weather, soil, planting and harvesting parameters. However, the economic and 

environmental dimension was merely explored.  

The objective of this study is to clarify efficiency differences between Greek 

and Italian farmers that operate under a common ADSS specialized in durum wheat 

cultivation, considering both economic and environmental factors. The suggestions 

of an ADSS are not immediately applicable and it is under the farmer’s discretion 

whether they will be implemented or not. For this reason, it was considered 

appropriate to assess the stages in which this relationship between technology and the 

human factor is formed in the Literature review (Section 2), also embodying an 

overview of efficiency assessment methodologies. State-of-art (Section 3) clarifies 

the contribution of this empirical research, compared to similar surveys. The 

Methodology part (Section 4) presents the Data Envelopment Analysis (DEA) and its 

applications in this case study, regarding the economic and environmental 

performance of Italian and Greek durum wheat farmers. In the Results section 

(Section 5), descriptive statistics of the involved variables and obtained efficiency 

scores for the two countries are also analysed. Discussion and study limitations 

section (Section 6) assesses the peculiarities of DEA implementation in the 

agricultural sector. Lastly, in the Conclusions section (Section 7) final remarks 

regarding the use of ADSS in the agricultural sector are being made. 

4.2. Literature review 

4.2.1. Farmers relationship with ADSS 

Focusing on ADSSs and their relationship with end-users, there are four 

concrete stages that can be assessed to clarify the factors affecting ADSS 

and farmers’ cooperation status as Figure 4.1 presents: (a) creation, (b) use, 

(c) evaluation of the acquired results, and (d) redesign. Referring to the first 

stage of ADSSs, many of them are designed for fulfilling one specific goal 

like water-saving from irrigation (Navarro-Hellín et al., 2016; Viani et al., 

2017), optimum fertilization (Villalobos et al., 2020), and chemical 

elements’ runoff (Drohan et al., 2019). 
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Figure 4.1: The four stages of ADSSs and famers interaction. 

Due to the increasing number of ADSSs, different methodologies were 

developed on selecting the most appropriate one, based on farmers’ needs, providing 

answers on a) Which ADSS should be used, and b) Why it should be adopted by 

farmers. Duan et al. (2021) proposed a multiple criteria system, under a sustainability 

context, meaning that a) economic b) environmental and c) social dimensions were 

assessed, taking under consideration the d) technology and e) structural 

characteristics of the farm. Applying the previously stated methodology, ADSSs 

which promote sustainable development and provide clear and feasible goals for the 

farmers, can be easily distinguished, indicating a step-by-step process for reaching 

sustainability goals in agricultural production.  

Furthermore, the second stage of use, the interaction of both sides (ADSSs 

and farmers) should be assessed. From the ADSS aspect, ease of use, friendliness to 

the end-user, cost, and trust in the achieving results are critical factors for ADSS to 

be adopted, but as Rose et al. (2016) state, the adoption rate is still very low. After 

reviewing 13 ADSSs, Zhai et al. (2020) concluded that a simplified version of the 

interface is essential for increased understanding of the results from the farmers’ side, 

while an interdisciplinary approach (data analysts – agro-managers – farmers) is 

needed for a concrete ADSSs’ outcome evaluation. The aforementioned results are 

validated by Rossi et al. (2019), highlighting two factors: a) user-friendliness in 

ADSSs and b) the necessity of synergies-making for sharing knowledge and 

experience.  

On the farmers’ perspective, many factors have been identified, influencing 

them for adopting an ADSS. Management of uncertainty and risk are significant 
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motives for adoption. There is evidence that farmers are risk-averse, meaning that 

they choose options with less risk, even though their potential income is lower (Iyer 

et al., 2020). The same review states that there is an increasing trend for surveys that 

assess risk measurement in the last decade, especially nowadays that the occurrence 

of unexpected extreme weather events is more frequent due to climate change. 

Moreover, decisions are being affected from the space and time as Viergutz and 

Schulze-Ehlers (2018) indicate. It should also be stated that the cost of using these 

systems, particularly the return-on-investment proportion, is a restricting factor 

(Yigezu et al., 2018).  

The evaluation of the acquired results is necessary for the acceptance or not 

of the proposals of the ADSS by a larger group of people. For instance, Chen et al. 

(2020) evaluated an ADSS for cotton irrigation, proving that its use increased the 

final yield by 32%. Moreover, due to the increased number of ADSSs, researchers 

often implement more than one at a time to evaluate their results (Bonfante et al., 

2019). This stage is of particular importance, especially for systems where Artificial 

Intelligence is used, for further model training and greater results assurance (Vivek 

and Jesma, 2019; Partel et al., 2019). 

Last step concerns the implementation of major or minor redesign, both for 

the ADSS and farmers. Participatory approaches are requested to demonstrate the 

weak spots of such systems and help on increasing the utility of ADSS (Cerf et al., 

2012). The educational level of farmers increases their productivity and their 

understanding about the current needs of the food supply chain, but field schools 

could help on further familiarize with ADSS (Paltasingh and Goyari, 2018). In other 

words, a coordinated effort is needed from both sides (ADSS and farmers) to achieve 

higher levels of cooperation.  

4.2.2. Efficiency assesment 

Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis are the most 

well-established techniques when it comes to efficiency measurement in the 

agricultural sector (Lampe and Hilgers, 2015). For instance, Ilahi et al. (2019) have 

assessed wheat production in the Chinese regions, considering greenhouse gas 

emissions as undesirable outputs, proving that the average inefficiency gap for the 

examined farmers is around 30%. Similar results were obtained from Janusz 
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Gołaszewski et al. (2014) when exploring energy efficiency differences between 6 

European countries (Germany, Netherlands, Finland, Poland, Greece and Portugal) 

on wheat cultivation, by implementing DEA methodology. Moreover, DEA has been 

used for the eco-efficiency assessment of wheat production in the Italian regions, 

signifying regional changes between 2004 and 2017 (Coluccia et al., 2020), 

emphasizing to the environmental impacts of agricultural activity. DEA can be 

combined with Malmquist index in order to highlight annual efficiency changes in a 

given time period (Forleo et al., 2021).  

Significant effort was also made by the implementation of similar techniques such 

as Material Flow Analysis, to evaluate the economic and environmental dimension of 

durum wheat production in Italy (Bux et al., 2022). The total factor productivity can 

also be assessed by using Färe-Primont productivity index (Reziti and Zangelidis, 

2019). For instance, Xiu-Shuang and Kang (2021) have used the above-mentioned 

index to clarify efficiency differences in Chinese wheat production. Although results 

indicate that there is a slight increase (~10%) regarding the total factor productivity, 

farmers’ profitability was decreased by 25%, raising awareness about the food 

security issues and the future of rural areas. 

4.3. State of the art  

Combining the aforementioned surveys regarding the relationship of farmers 

with ADSS and efficiency assessment, it appears that a small number of surveys have 

been carried out on evaluating the acquired results after the implementation of the 

ADSSs suggestions. For instance, vite.net which is a holistic ADSS for viticulture 

was set into action on multiple vineyards in Italy, testing not only the suggestion of 

the system, but also researchers monitored the implementation level of suggested 

actions and level of overall satisfaction of the end-user (Rossi et al., 2014). In 

comparison to the latter paper, which focuses on the interaction between farmers and 

ADSS, our article additionally assesses the economic and environmental performance 

of farmers supported by the same ADSS. More precisely, data collected through 

granoduro.net (GD.NET), which is a holistic ADSS specialized in durum wheat 

production co-designed by Barilla and HORTA in 2009, were used for the 

performance evaluation of the farmers (HORTA, 2012). GD.NET integrates and 

processes data from different sources to produce simple and effective alarms for 
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durum wheat farmers. Collected data are referring to four different firms, two Italian 

and two Greek ones for the cultivation period 2020-2021. It should be underlined that 

all firms are operating under the suggestions of the above-mentioned ADSS, creating 

a common environment for all the involved farmers. 

Taking into account the current status of ADSS adoption and the increased 

need to ensure an adequate amount of food, due to the ongoing Russian-Ukrainian 

war, a specific type of wheat was selected for this study. Durum wheat is raw material 

for pasta making due to its high protein concentration, thus only a few areas around 

the globe satisfy its climatic needs. Italy and Greece are neighboring countries that 

both 93veral durum wheat needs, operating under the same ADSS. Minimizing the 

influence of external factors and ensuring that farmers are provided with suggestions 

from the same system, this study focuses on the evaluation stage of GD.NET aiming 

to explain: 

a) if GD.NET suggestions were leading to greater input use efficiency and  

b) if the suggestions of GD.NET are being followed by farmers. 

4.4. Methodology 

4.4.1. Data Envelopment Analysis (DEA) 

Focusing on the objectives of this study, DEA has been applied, to assess 

inputs use efficiency of durum wheat producers. DEA is a well-established non-

parametric benchmarking technique, which takes advantage of linear programming 

principles to estimate measures of technical efficiency of different units (Charnes et 

al., 1978) . The optimization method can be either input-oriented, minimizing the 

used inputs or output-oriented, maximizing the produced outputs (Moutinho et al., 

2018; Bournaris et al., 2019). Input-oriented approach was selected, for minimizing 

the environmental impact of durum wheat cultivation and the amount of money spent 

by farmers (Skevas et al., 2014). Moreover, the amount of final yield is not secured 

every year, and this is another reason why the risk should be mitigated by using the 

least inputs needed (Galanopoulos et al., 2006). It should be noted that the same 

dataset can be treated by applying both approaches. 

Explaining DEA methodology in further details, it should be mentioned that 

there are two main models. The first one is the Constant Returns to Scale (CRS), 
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which assumes that the increase of one unit of input is increasing the output at the 

same way. Additionally, Variable Returns to Scale (VRS) assumes that the 

relationship between Inputs and Outputs is not constant but it can be either increasing 

or decreasing. Every unit, which makes decisions about inputs use and achieved 

outputs, is called Decision Making Unit (DMU). Each durum wheat farm is 

considered as a DMU that decides for the used amount of inputs. The most efficient 

DMUs are receiving a score of 1, formulating the efficient frontier. On the contrary, 

the least efficient DMUs score from 0.99 to 0.  

From a mathematical perspective, the above-mentioned problem can be used 

both for input-oriented CRS and VRS DEA model by using the following formulas: 

Constant Return to Scale (CRS) 

min 𝜃 − 𝜀(∑ 𝑠𝑖
−

𝑚

𝑖=1

+ ∑ 𝑠𝑟
+

𝑠

𝑟=1

) (1) 

𝑠. 𝑡. ∑ 𝜆𝑗𝑥𝑖𝑗 + 𝑠𝑖
− =

𝑛

𝑗=1

𝜃𝑥𝑖𝜊        𝑖 = 1, … , 𝑚 (2) 

∑ 𝜆𝑗𝑦𝑟𝑗 − 𝑠𝑟
+ =

𝑛

𝑗=1

𝑦𝑟𝜊       𝑟 = 1, … , 𝑠 (3) 

𝜆𝑗 , 𝑠𝑖
−, 𝑠𝑟

+ ≥ 0 Ɐ𝑖, 𝑟, 𝑗. (4) 

𝑗= 1,…–n - firms index 

𝑖= 1,...–m - inputs index 

r= 1,...–s - outputs index 

𝜀= non-Archimedian value 

 

 

Variable Return to Scale (VRS) Add: 

∑ 𝜆𝑗 =

𝑛

𝑗=1

1 (5) 

Where: n DMUj (j= 1,…,n) use xij as inputs (e.g. seeds, fertilizers etc) 

producing yrj as outputs (e.g. durum wheat yield), λj is a non-negative constant 
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while 𝑠𝑖
−and 𝑠𝑟

+ are the input and output slacks accordingly. To characterize a DMU 

as fully efficient, both conditions should be met: the efficiency score 𝜃 should be 

equal to 1 and slacks should be equal to zero. The absence of the non-Archimedean 

value (𝜀) would lead to the infeasibility of identifying the most efficient DMUs 

(Toloo, 2014). As a final step, Scale Efficiency (SE) has been computed by equation 

(6)  

4.4.2. Models’ specification 

Taking into consideration the above-mentioned methodological part, GD.NET 

dataset, was used to assess input use efficiency of durum wheat farmers, referring to 

the cultivation year of 2020-2021. Due to data availability reasons only variable costs 

have been included in this study. Two models were created for measuring technical 

efficiency of all DMUs involved. The first one (EconDEA) enables only the variable 

costs of durum wheat cultivation (Seeds, Fertilizers, Plant Protection Products, 

Diesel, Labour and Yield), while the EcoDEA model, incorporates both economic 

and environmental factors. More accurately, Carbon Footprint, Water Footprint and 

Ecological Footprint, were assessed under the common name of CWEFs. CWEFs 

were treated as undesirable factors in the EcoDEA model, after the linear monotone 

decreasing transformation as proposed by Seiford and Zhu (2002). It should be 

mentioned that CWEFs values were provided immediately by GD.NET. Table 4.1 

provides an overall summary of the involved variables per model. The analysis 

process was conducted in the RStudio using rcompanion (for Median 

differences95vereaR (Benchmarking) and ggplot2 (Visualisation) libraries 

(Mangiafico, 2016; Wickham, 2016; Coll-Serrano et al., 2022). 

Table 4.1: Inputs and Outputs used per DEA function 

EconDEA EcoDEA 

Inputs Seeds Seeds 

  Fertilizers Fertilizers 

  Plant Protection Products Plant Protection Products 

  Diesel Diesel 

 Labour Labour 

Outputs Yield Yield 

  Carbon Footprint  

   Water Footprint  

   Ecological Footprint  
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This study is separated into two distinct parts. The first one provides descriptive 

statistics of all variables involved, conducting Mood’s Median test, in order to assess 

differences between the involved variables. It should be noted that both descriptive 

statistics and the DEA section part are referring to the functional unit of final 

production of Durum Wheat per Hectare (ha) under 13% moisture level. Moving 

forward to the next part, the acquired results of EconDEA and EcoDEA are presented. 

Both models have been applied at a national level, as the involved DMUs are subject 

to different external factors, which are likely to influence the final efficiency scores. 

Both CRS and VRS results were calculated for the two models to compute Scale 

Efficiency.  

4.5. Results 

4.5.1. Descriptive statistics 

As presented in the Methodology section, the first part of the results was 

referring to descriptive statistics of all variables involved in the analysis, highlighting 

differences between their medians. In total, 563 durum wheat farms have been 

assessed, 328 (58%) for the Italian sample and 235 (42%) for the Greek sample. Since 

the data presented are highly confidential, the names of participating firms in the 

analysis were changed to I1 229 (41%), I2 99 (18%) and G1 202 (36%), G2 33 (6%) 

for the Italian and Greek firms respectively. Table 4.2 presents descriptive statistics 

of inputs and output per firm. 

Table 4.2: Descriptive statistics of GD.NET dataset per country and per firm 

  Greece N=235 Italy N=328 

Characteristic 
Overall,  

N = 5631 

G1,  

N = 2021 

G2,  

N = 331 

I1,  

N = 2291 

I2,  

N = 991 

Seeds  

(kg/t of final product) 

41.50,  

(19.70), 

 [32.50-55.90] 

56.65,  

(18.38),  

[45.42-67.97] 

44.50,  

(3.77),  

[42.80-46.90] 

31.40, 

 (16.18),  

[27.20-36.40] 

43.30, 

 (15.95),  

[38.35-51.55] 

Fertilizers  

(kg/t of final product) 

78.90,  

(36.37),  

[59.90-101.40] 

94.00,  

(35.96),  

[67.12-118.83] 

87.80, 

 (7.24), 

 [86.20-92.70] 

64.40,  

(31.37),  

[53.10-78.00] 

89.70, 

 (39.78), 

 [73.95-108.75] 

Plant Protection 

Products  

(kg/t of final product) 

0.39, 

 (0.39),  

[0.17-0.65] 

0.18, 

 (0.15),  

[0.11-0.33] 

0.10,  

(0.02),  

[0.09-0.10] 

0.51, 

 (0.39),  

[0.38-0.74] 

0.77, 

 (0.37), 

 [0.57-0.97] 
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  Greece N=235 Italy N=328 

Characteristic 
Overall,  

N = 5631 

G1,  

N = 2021 

G2,  

N = 331 

I1,  

N = 2291 

I2,  

N = 991 

Diesel 

(L/t of final product) 

 

23.00,  

(10.73),  

[20.00-29.00] 

31.00,  

(9.73), 

 [25.00-37.75] 

23.00,  

(4.53), 

 [21.00-25.00] 

21.00,  

(10.85), 

 [19.00-24.00] 

19.00,  

(5.91),  

[17.00-21.00] 

Labour 

(€/t of final product) 

18.00,  

(8.83),  

[14.08-23.00] 

22.16,  

(8.20), 

 [17.70-28.06] 

17.97,  

(2.83), 

[15.39-19.83] 

14.26,  

(8.56), 

[12.26-16.93] 

20.18,  

(8.26), 

[16.33-24.90] 

Yield 

(t/ha) 

5.24,  

(1.83),  

[3.92-6.96] 

3.84,  

(1.13),  

[3.16-4.71] 

5.11,  

(0.29),  

[4.66-5.14] 

7.07,  

(1.52),  

[6.20-7.89] 

5.25,  

(1.32),  

[4.31-5.73] 

Carbon Footprint  

(CO2eq/t of final 

product)  

0.39,  

(0.15),  

[0.33-0.48] 

0.43,  

(0.13),  

[0.37-0.52] 

0.39,  

(0.16),  

[0.35-0.67] 

0.34,  

(0.14),  

[0.29-0.39] 

0.44,  

(0.16),  

[0.39-0.51] 

Water Footprint  
(m3/t of final product) 

1,394 

 (457.52),  

[1,201-1,950] 

2,099, 

 (307.10), 

 [1,827-2,271] 

1,539, 

(204.76),  

[1,517-1,882] 

1,169,  

(94.62),  

[1,110-1,229] 

1,356, 

 (219.58), 

 [1,318-1,563] 

Ecological Footprint 

(Global ha/t of final 

product) 

0.53, 

 (0.24),  

[0.40-0.70] 

0.72,  

(0.22),  

[0.58-0.86] 

0.56,  

(0.03),  

[0.54-0.58] 

0.39,  

(0.19),  

[0.35-0.45] 

0.53, 

 (0.20), 

 [0.49-0.63] 

Area 

(ha) 

5.00,  

(13.25), 

 [3.00-10.00] 

4.59,  

(8.88),  

[2.86-7.50] 

2.30,  

(4.03),  

[1.00-5.00] 

5.00,  

(6.15),  

[3.00-8.00] 

13.00,  

(23.90),  

[7.00-25.50] 

1Median, (SD), IQR[25%-75%] 

 

An extended version of Table 4.2 (Table A2.1) containing additional 

information about minimum, maximum, and mean values can be found in the 

Appendix section as well as a boxplot for each of the involved variables in the DEA 

process (Figures A4.1-A4.9). Embodied letters in the boxplot figures signify median 

differences as indicated from Mood’s median test.   

4.5.2. DEA Results 

Considering the increased number of factors affecting durum wheat 

production, like weather conditions, seed quality, agrochemical active ingredients, 

soil type etc, and input use efficiency was tested on a national level, so as to provide 

a clear description of best and worst practices. For both countries, an overall 

illustration of inputs to outputs in monetary values is presented, followed by 

efficiency scores for EconDEA and EcoDEA models in national and firm level. 

Moreover, target values of CWEFs were compared with the initial values to indicate 

potential reductions after the optimization process, according to the acquired data 
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from best performers. Given the fact that VRS model has greater adaptability to the 

dataset under consideration, incorporating in a better way the existing variability, it 

was selected as the main model for results visualization. However, CRS efficiency 

scores were also calculated to estimate the Scale Efficiency. In the following section, 

there is a detailed description for both countries and firms. 

4.5.2.1. Italy 

Figure 4.2 presents the results of EconDEA in a bar plot, revealing that the greatest 

part of farmers (63.1%) acquired efficiency scores between 0.7-0.9, meaning that they 

should reduce their inputs by 10-30% accordingly. Additionally, considering only the 

economic dimension, scale efficiency scores indicate that farmers should adjust their 

farms size, in order to operate at an optimum scale. However, EcoDEA model results 

for scale efficiency suggest that the majority of the farmers (71%) are operating at an 

optimum farm size when environmental factors are enabled. Moreover, a positive 

image is depicted for VRS efficiency scores as well, where farmers are achieving 

higher efficiency scores. In other words, the inclusion of environmental indicators in 

the empirical model are ameliorating farmers’ performance, providing an integrated 

approach regarding the agricultural activities of Italian durum wheat farmers. 

 

Figure 4.2: VRS and Scale Efficiency scores for the Italian sample (EconDEA & EcoDEA) 
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Figure 4.3 illustrates I1 and I2 differences in a density plot. It is apparent that 

I1 utilizes in a more efficient way used inputs, since it dominates over I2 at efficiency 

scores higher than 0.85. It should be noted that there is an ongoing assumption that 

external factors (climate, weather conditions, etc.) affect the production process in 

the same way for every farm participating in this assessment. Moreover, in Table 4.3, 

median scores for I1 and I2 are presented, corresponding to 0.86 and 0.77 

respectively. It is very promising that I2 farms achieved an efficiency score of 1.00, 

considering that this score arose after its comparison with farms of I1, meaning that 

in both samples there are efficient producers (efficiency score=1).  

 

Figure 4.3: VRS Efficiency scores distribution for Italian firms (EcoDEA) 

Table 4.3: Descriptive statistics of VRS efficiency scores per Italian firm  

  I1, N = 229 I2, N = 99 

EcoDEA 

VRS efficiency 

scores 

Min. 

Median 

Mean 

Max. 

(SD) 

IQR [25%-75%] 

0.58, 

0.86,  

0.85, 

1.00, 

(0.11),  

[0.76-0.94] 

0.62, 

0.77,  

0.79, 

1.00, 

(0.10),  

[0.73-0.83] 
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From another perspective, I2 has a greater need for inputs without achieving 

the same output as I1. Figure 4.4 presents the used inputs to output in monetary values 

through a scatterplot. The majority of I2 farms need more Inputs to achieve the same 

or smaller outcome in most cases. However, it is apparent that there is a tendency for 

inputs minimization in the Italian sample. 

 

 

Figure 4.4: Monetary values of inputs used to final output for the Italian firms. 

Furthermore, optimization of CWEFs proved that there is a great potential for 

minimizing the environmental impact of durum wheat production. More precisely, 

Figure 4.5 presents the distributional characteristics of CWEFs as initial values on the 

left side of each graph and the distribution of target values after the optimization 

process in the right side. As shown in the following boxplot, Carbon and Ecological 

footprints can be decreased by 38% and 23% respectively, while water footprint has 

a little potential of 4.6% reduction, based on median values. 
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Figure 4.5: Reduction potential of CWEFs after the optimization process 

 for the Italian farms 

4.5.2.2. Greece 

Figure 4.6 illustrates the distribution of VRS and scale efficiency results for 

Greek Firms in a bar plot. Although the distribution of the acquired efficiency scores 

appears with similarity to Figure 4.2, it should be stated that efficiency scores are 

calculated based on the best performer of each region. Most of the farmers (57%) 

have acquired an efficiency score between 0.7-0.9, however greater scale inefficiency 

is presented in the lower bound of the distribution, where 35% of the examined farms 

have obtained scores lower than 0.6. The inclusion of the CWEFs has again a positive 

impact in the overall assessment for both pure technical and scale efficiency.  
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Figure 4.6: VRS and Scale Efficiency scores for the Greek sample (EconDEA & EcoDEA) 

 Figure 4.7 presents the acquired VRS efficiency scores through a density 

graph. It is evident that G2 has a greater performance than G1, since it is presented 

with higher proportions for efficiency scores greater than 0.9. Table 4.4 displays the 

descriptive statistics of the acquired efficiency scores per firm. Although their median 

values are differing by 0.1, this result is of limited credibility due to the smaller 

sample of Greek firms (N=33).  
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Figure 4.7: VRS Efficiency scores distribution for Greek firms (EcoDEA) 

Table 4.4: Descriptive statistics of VRS efficiency scores per Greek firm. 

Characteristic  G1, N = 2021 G2, N = 331 

EcoDEA 

VRS  efficiency 

scores 

Min. 

Median 

Mean 

Max. 

(SD) 

IQR [25%-75%] 

0.54, 

0.79,  

0.81, 

1.00, 

(0.11),  

[0.72-0.89] 

0.74, 

0.90,  

0.92, 

1.00, 

(0.08),  

[0.87-1.00] 

 

Following the same rationale of the Italian sample, Figure 4.8 illustrates the 

acquired output per farm given its variable costs in a scatter plot. Compared to Figure 

4.4, a more disperse distribution of the Greek DMUs is revealed, which is of particular 

interest in terms of management practices. In other words, in the Italian sample there 

is a clear strategy for inputs minimization, however in the Greek territory there is no 

tendency neither for inputs minimization nor for outputs maximization. 
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Figure 4.8: Monetary values of inputs used to final output for Greek firms. 

Results of EcoDEA model for the Greek model reveal that both water and 

ecological footprints can be reduced by 17% and 30% respectively, while carbon 

footprint can be decreased by 9.7% as seen in Figure 4.9. Compared with the Italian 

farms, Greek farms present a smaller potential for reduction on carbon footprint (IT: 

-38 %), but they should decrease in higher rates their ecological and water footprint 

(IT: -23 % & -4.5% respectively). 
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Figure 4.9: Reduction potential of CWEFs after the optimization process for the Greek farms  

4.6. Discussion  

By evaluating the acquired results, several remarks were arisen. Firstly, it is 

positive that both countries have representative farms at a proportion of around 10% 

for the EconDEA model, confirming that there are several examples of efficient 

producers in each sample. Moreover, it is prominent that the inclusion of CWEFs did 

not decrease the overall number of farms that have previously achieved high 

efficiency scores through the EconDEA model. On the contrary, the number of the 

efficient farms has increased both for the Italian and Greek sample when 

implementing the EcoDEA model (Figure 4.2, Figure 4.6). Through the previous 

stated remarks, it is evident that the adoption of the overall GD.NET management 

system, in a holistic approach, verifies the better performance of farmers on an 

operational level, despite the anticipation that it would be more difficult for producers 

to be both economically and environmentally efficient. Another remark is that scale 

efficiency has improved, a result that validates the prior point of guidelines that 

promotes both economic and environmental aspect of durum wheat cultivation. 

Regarding the acquired scores per firm, G2 acquires the highest median value of 0.9; 
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however the sample of this firm was small (N=33). According to authors’ experience 

in the Greek primary sector, the acquired efficiency results are higher than expected, 

and this may lay to the fact that these farms were part of agricultural cooperatives. 

Moreover, a more stretched distribution was anticipated. However, considering the 

fact that each sample is evaluated through each best performer, this was not feasible.  

Considering solely CWEFs, a greater potential for decreasing Water and 

Ecological footprint was revealed for the Greek firms. Proportional reduction of 

Carbon footprint seems to be greater for the Italian firms. Apart from the proportional 

differences, Greek firms have considerably higher Water footprint than the Italian 

ones, an outcome which should be further explored for minimizing the exploitation 

of natural resources.  

Figure 4.4 and Figure 4.8 provide strong evidence that there are external 

factors affecting the performance of durum wheat farmers in the Greek sample, 

compared to the Italian ones, where there is a clear tendency for inputs minimization. 

Greek firms have a more scattered distribution. In this section, sustainability, 

agricultural, institutional and data collection issues are discussed, to further clarify 

the arisen differences between the two countries. 

Enabling sustainability principles on the farm level is a necessity for achieving 

SDGs, providing clear instructions to agro-managers and farmers. Although 

economic and environmental dimensions are embodied in the analysis process, 

demographic characteristics of farmers are missing. For instance inefficiency causes 

could have been arisen due to lower educational level of Greek farmers or their 

unwillingness to participate in agricultural training programs, which are significant 

factors according to Li’s et al. (2021) recent results . However, it should be stated that 

new technologies adoption also enhances the social dimension, contributing to 

sustainability achievement in rural areas (Weber et al., 2022). 

Assessing the agricultural dimension of the DEA benchmarking, it is crucial 

to acquire more insights, by using specific data for each farm. It seems that the tillage 

method and application timing of fertilizers are significant for durum wheat output 

(Devkota and Yigezu, 2020). Consequently, detailed monitoring of each individual 

agricultural activity is a necessity. Moreover, additional information is needed to 
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assess the impact of previous crops in the final outputs of durum wheat, ameliorating 

both the economic and environmental performance (Alletto et al., 2022). 

The selection of durum wheat cultivars is another factor that should be 

explored, since focusing only on efficiency improvement leads to a narrow approach 

of cultivars, which may not be the essential ones under extreme weather conditions 

(such as extended drought or heat) (Dettori et al., 2022). It should be also stated that 

effects of climate change should be measured in the long run (Olakojo and Onanuga, 

2020), meaning that appropriate data should be collected towards this direction. 

Resilience, or otherwise the ability of agricultural systems to be adopted in new 

situations, can be evaluated quantitatively and qualitatively in a local region 

(Meuwissen et al., 2019) on an annual basis by a composite indicator and thus lead to 

a tailored made national and worldwide policy making (Anderies et al., 2013). 

Additionally, different cultivation practices can be assessed with the implementation 

of DEA to achieve the production of a given quality with the least use of inputs 

(Giannoulis et al., 2014). 

Furthermore, acquiring a multiple-year dataset would contribute to a clearer 

benchmarking process for the farmers, also indicating efficiency changes year by year 

(Pan et al., 2021). Malmquist productivity index calculates the annual productivity 

changes of efficiency of each DMU, contributing to further clarification of external 

factors’ influence (Forleo et al., 2021). The inclusion of similar factors would further 

clarify reasons of inefficiency between Greek and Italian firms. 

An additional stIp in the analysis process would be the incorporation of spatial 

characteristics of each farm which were absent in our case. Only few surveys have 

embodied spatial information (Gao and Li, 2014; Tang et al., 2022), as a part of the 

benchmarking process, assessing efficiency on a larger scale (regional level) and not 

on farm level. Depicting efficiency scores on the map, in conjunction with their 

interactions with other factors, such as those mentioned above (temperature, 

humidity, and rainfall) can reveal more information about best farming practices and 

the environmental impact of farmers' actions. It is also possible to create thematic 

maps where the spatial boundaries that allow the cultivation of the specific crop in an 

efficient way are perceived, and therefore lead to the reduction of natural resources 

waste. Additionally, DEA results validity could have been increased by comparing 
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them with acquired results of other similar methodologies, as the ones mentioned in 

the introduction section, such as SFA (Theodoridis & Psychoudakis, 2008) or Färe-

Primont productivity index (Reziti, 2020). 

It should be underlined that all firms participating in this analysis are of high 

entrepreneurial standards, meaning that farmers are part of a cooperative or they are 

acting under certain guidelines apart from those ones provided from GD.net. Far’ers' 

participation in collective schemes seems to increase their efficiency (Ahado et al., 

2021; Lin et al., 2022). Additionally, Veflen et al. (2019) highlight the importance of 

management and clear guidelines provision for increasing efficiency, especially in 

heterogenous collaborative networks, which can be a strong influence in this case. On 

the other hand, as it was stated in the Introduction section, trust is a significant aspect 

between the ADSS and the farmer, a statement whIch is also supported from Jakku 

et al. (2019). Although both Italian and Greek farmers are expressing skepticism 

towards the benefits of new technology adoption, there is no clear evidence for 

differences in the implementation stage (Pignatti et al., 2015). Lacoste and Powles 

(2016) state that building an ADSS is a continuous process of receiving farmers’ 

feedback and ameliorating the easiness of use to achieve the maximum degree of 

implementation rate. 

4.7. Conclusons 

 In this paper, GD.NET dataset for the cultivation year 2020-2021 was 

analyzed to assess the economic and environmental performance of subscribed 

farmers in this ADSS. Following Barilla’s strategy for sustainability principles 

adoption at farm level, the factors that affect the relationship between farmers and the 

ADSS in all four stages (creation – use – evalua–ion - redesign) and the actual results 

of the implementation process were examined. Results indicate that there is a 

tendency in the Italian sample for inputs minimization, while on the Greek sample it 

seems that the production protocol is not well defined for the examined year. 

However, it should be stated that environmental and institutional factors can 

contribute to this, as described in the Discussion section. To the best of our 

knowledge, no other survey has paid attention to assessing the inputs’ use efficiency 

results of farmers that cultivate under a common ADSS, presenting differences in the 

implementation stage of the ADSS suggestions. As it was proved, in the Results 
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section, GD.NET provides an integrated approach of durum wheat cultivation (both 

economically and environmentally). However, differences arisen during the 

implementation stage, where Italian farmers are aiming to inputs minimization, while 

for the Greek ones there is not a clear strategy. 

This phenomenon should be further evaluated on the following years for 

clarifying the reasons that have affected the Greek sample, or if it was an unexpected 

event in the Greek durum wheat cultivation timeline. That is the reason why in this 

survey the importance of close data monitoring in multiple layers (expenses, 

application time, environmental and spatial data) is highlighted, a remark that is a 

general requirement in the agricultural economics research field (Capalbo et al., 2017; 

Coble et al., 2018). 

Results of this paper should be also considered under the scope of the Ukrainian 

war and post COVID-19 era (Glauben et al., 2022). Their domino effect in the 

European and global agri-food sector can disrupt food security and cause famine, 

especially in regions with low purchasing power. That is the reason why, both on the 

entrepreneurial and national level, saving resources should be a priority, not only to 

reduce production costs and environmental impact from the farmers’ side, but also to 

reduce the potential loss of agricultural production, due to misuse of cultivated land 

or resources. 
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Chapter 5  

Ranking EU Agricultural Sectors Under the Prism of Alternative 

Widths on Window DEA 

Existence and evolution of humanity is strongly linked within the development 

of agriculture. It was no later than the end of World War II when the EU decided to 

support the primary sectors of member states by establishing the first mutually agreed 

policy tool, the Common Agricultural Policy (CAP). Price support and export refund 

systems had a significant negative impact on global agricultural trade, suppressing at 

the same time natural resources and the environment in rural areas (Bellmann & 

Hepburn, 2017). CAP strategic goals have been customized periodically since then, 

so as to meet global food security and safety standards, promoting at the same time 

fairer trade, and increased competitiveness. European Commission (EC) has set nine 

key objectives through the CAP (2021–2027) period, which can be grouped in three 

basic categories: 1) economy 2) environmental protection and 3) rural communities 

support, in order to promote sustainable development and achieve SDGs until 2030 

(European Commission, 2020).  

The assessment of policy interventions, on both operational and environmental 

level, is very crucial. The policy framework developed under the Agenda 2000 reform 

is more market oriented, introducing schemes such as decoupled payments, requiring 

robust approaches for evaluating their suitability, applicability, and effectiveness 

(Petit, 2011). This study introduces such an assessment tool, taking into consideration 

both the diversified structural characteristics of EU member states primary sectors 

and the influence of the market on them. DEA is used for assessing efficiency of 

multiple DMUs in various sectors. DEA can be a useful tool, indicating the inputs or 

outputs that are not used efficiently, leading to the point solutions for the optimization 

of a given system. The wide applicability of DEA is based on the fact that efficiency 

scores are calculated, based on the existing DMUs, without the need for predefined 

optimum values. For this reason, DEA has been used for the improvement of various 

sectors such as banking systems (Ouenniche & Carrales, 2018), healthcare systems 

(Kohl et al., 2019), tourism (Niavis & Tsiotas, 2019), logistics (Martí et al., 2017) 

and agriculture both in crop and livestock production (Siafakas et al., 2019; P. Singh 

et al., 2019; A. Theodoridis et al., 2012).  
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5.1. Literature Review 

On the line of SDGs, EU agriculture should succeed on assuring food security 

and environmental protection, while on the same time on securing fair income for 

farmers.  

5.1.1.  Land 

In the case of agricultural sector efficiency assessment, DEA methodology has 

been used in order to evaluate total factor productivity (TFP) (Le et al., 2019), 

revealing the need for improvement between countries with similar structural profiles. 

Under the scope of energy usage and natural environment protection, X. Zhou et al 

(2019) have assessed changes of environmental efficiency between years 2006–2015, 

revealing geographical patterns that should be further supported from governments, 

connecting efficiency scores with regional characteristics. Feasible solutions for crop 

management can be provided through DEA results, has led to improved management 

of available agricultural land as a whole, in the most efficient way, combining crops’ 

productive needs with regional structural characteristics (Atici & Podinovski, 2015). 

On the same approach, Toma et al. (2015) have classified 36 countries according to 

their geographical characteristics, clustering them in three distinct groups (plain, hill, 

mountainous), using as inputs the three production factors (land, labour and level of 

mechanization) and production value as the output. Efficient land use can be achieved 

by examining Greenhouse Gas (GHG) emissions of different crop types, leading to 

agriculture with lower emissions. As suggested, DEA can provide meaningful results 

about crop selection in greenhouse farming, optimizing the use of all inputs involved 

(Searchinger et al., 2018). 

5.1.2. Energy 

As FAO suggests, agriculture consumes 30% of total energy spent, while the 

greatest share of this energy is referring to in-farm procedures (FAO, 2016). On a 

global scale, constant population growth and increased food demand had led to 

intensification of production. Despite the urge for covering the previous mentioned 

needs, agricultural land has remained in similar levels from 1961 to 2014, resulting 

in higher energy inputs, agrochemicals, and fertilizers, per land unit. It should be 

mentioned that Pellegrini & Fernández (2018) confirm the existence of Jevons 

paradox in agriculture, claiming that technology evolution was not accompanied by 
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input minimization, due to the extended use of these innovations for achieving higher 

yields. 

Energy consumption affects famers’ income, having frequently a negative impact 

on natural resources. That is the reason why conventional agriculture systems are 

gradually transforming to sustainable ones, using minimum energy resources and 

producing a fair output as yield (Moradi et al., 2018). Literature review of Smith et 

al., 2015) indicates higher energy efficiency scores for organic agriculture, but mainly 

in the crop production domain, while conventional livestock farms achieve higher 

efficiency scores than the organic ones. According to FADN database, Guth & 

Smędzik-Ambroży (2020) analyzed EU agricultural sectors, concluding that 

countries with the highest amounts of labour, land and capital achieve the higher 

efficiency scores, underlying the need for restricting measures in order to promote 

environmental and societal development. Efficiency differences can also arise due to 

different economic size of farms as well (Rezitis et al., 2010). DEA results can 

contribute to sustainable intensification ameliorating in-farm operations (energy 

consumption, integrated pest management, greener logistics) and policies promoting 

environmental protection on a national and EU level (Gadanakis et al., 2015).  

Another advantage of DEA methodology, apart from calculating efficiency 

scores of all DMUs of a given system and ranking them from the most to the least 

efficient ones, is the slacks calculation. Slacks are used to quantify the changes that 

should occur in each variable, in order for a DMU to be efficient. Their interpretation 

is meaningful both for stakeholders and policy makers, in order to take final decisions, 

while from analyst’s perspective, it can be signified which slacks have major or minor 

importance. Assessment of French diary sector according to their energy use, has 

resulted in a positive relation between subsidies and energy use slacks, meaning that 

larger farms have higher amounts of exploited energy, than the smaller ones 

proportionally (Ghali et al., 2016). This is an applicable example of slacks 

contribution in energy use minimization on the farm level, but also indicates potential 

policy reformation for French livestock sector. Significance of slacks has been also 

highlighted in the Greek livestock sector from Vlontzos & Theodoridis (2013). 

Adjustment of slacks has resulted in improved efficiency scores, providing optimal 

solutions for both developed and developing countries, regarding their energy 

consumption and CO2 emissions (X. Lin et al., 2020). Slack-Based-Model (SBM) 

implementation from Apergis et al. (2015) raises concern about the decreasing energy 
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efficiency of OECD countries, proving the feasibility of methodology in real case 

problem solving.  

5.1.3.  GHG Emissions 

DEA methodology has also been used to assess the energy efficiency of national 

agricultural sectors, in relation to GHG emissions as an undesirable output. According 

to the Window DEA methodology of Pishgar-Komleh et al. (2019) , Spain, Greece, 

Italy and Malta achieved the highest efficiency scores, presenting outcomes both 

using or neglecting CO2eq as an output. Similar results have been obtained using 

DEA for 2005 and 2010 for agricultural sectors of European countries with the use of 

Gross Value Added (GVA) from agriculture to GHG (GVA/GHG) as an eco-

efficiency index (Victor et al., 2018). High improvement potential of up to 56% has 

been identified, applying DEA for the reduction of CO2 emissions in Chinese 

provinces (Fei & Lin, 2017). The authors underline the need for incentives from 

government’s side to farmers, for higher rates of technology acceptance that will 

reduce GHG emissions, and align Chinese agricultural undesirable output with global 

standards. Moreover, DEA results have revealed 70% space for improvement in 

energy saving for the Spanish supply chain of agricultural products (Laso et al., 

2018). Focusing on agricultural inputs and especially fertilizers, slight improvements 

have been observed in Latvian agricultural sector, providing at the same time the 

appropriate methodology for continuous monitoring (Gancone et al., 2017). On a 

farm level, DEA can also be applicable, while an overall reduction in carbon footprint 

could be achieved with the implementation of proposed actions, leading to a cleaner 

production protocol (Rebolledo-Leiva et al., 2017). Despite the constant need for 

minimizing GHG emissions in global scale, data availability remains an issue (Amani 

& Schiefer, 2011). 

Literature review of Mardani et al. (2018), reveals the extensive applicability of 

DEA methodology for optimization of energy consumption and environmental 

protection under operational terms. DEA results can provide meaningful insights for 

efficiency assessment of multi-sectorial industries, while providing feasible solutions 

for energy optimization, accentuating the importance for green technology 

alternatives (Sueyoshi & Goto, 2019b). Another remark from the previous survey, is 

the calculation of efficiency scores depending on the given objective every time, 

proposing methodology for managerial or environmental-based results. New 
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approaches provide the appropriate tools for mathematical expression of limiting 

factors that cannot be controlled both for inputs or outputs (e.g., reduced efficiency 

of solar panels due to environmental conditions), depicting reality more sufficiently 

(Sueyoshi & Goto, 2019a). Combining the above-mentioned surveys, Mo & Wang 

(2019) have estimated environmental sustainability of road transport for OECD 

countries, an approach that can be applied in the agricultural logistics, or in the whole 

agricultural supply chain as a whole. At the same direction it should be also noticed 

that sustainability assessment has been assessed from a sample of 206 livestock 

farmers in 7 different countries, concluding to different strategies for each country to 

increase their efficiency (Paraskevopoulou et al., 2020)  

Focusing on agriculture, the number of publications per year combination of 

DEA + Life Cycle assessment (LCA) have been increased during the 2003–2018 time 

period, due to the increased interest for cleaner production systems and eco-friendly 

products (Suzigan et al., 2020). Farm specialization is very crucial, in order to achieve 

improved management status and efficient resources handling. Examining all inputs 

involved in winter wheat production in Poland, researchers realized excessive use of 

fertilizers, seeds and fuel, providing to local farmers additional information for inputs 

minimization (Pishgar-Komleh et al., 2020). Another survey highlights the resource 

saving on energy and water, by decreasing cotton seed on optimum levels (Ullah et 

al., 2016). It should be underlined that no statistical differences have been pointed out 

between large and small scale farms, regarding eco-efficiency.  

Introduction of uncertainty to DEA approach for measuring eco-efficiency can 

alter the final outcome, thus it is essential to be taken into consideration especially in 

systems that are affected from various factors (Ewertowska et al., 2017). Statistical 

significance can be assessed for multiple DMUs over frames of a certain period of 

time, checking results validity (Lorenzo-Toja et al., 2018). Defining weights in DEA 

model is another approach of assuring results implementation in real case scenarios, 

especially when dealing with small samples (Theodoridis et al., 2020). Even though 

there are several studies examining environmental and economic aspects of 

agricultural production, only few of them are connecting their results with society, 

due to lack of the appropriate data or methodology (H. Zhou et al., 2018).  
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5.1.4.  Labour 

Labour, expressed as Annual Working Units (AWU), is one of the three main 

production factors in agriculture (Centre for European Policy Studies, 2013). 

Differences in labour productivity have been observed among EU countries, 

something which expected to be, because of differences of the structural 

characteristics of their holdings and value chains (Giannakis & Bruggeman, 2018). 

Additionally, soil erosion, local economic prosperity and population density seem to 

be the most crucial factors affecting labor productivity. Results are correlated with 

educational level of farmers, highlighting the need for training, which will lead to a 

better communication between producers and agricultural consultants. It should be 

mentioned though, that the EU is in a transitional period of full digitalization. 

Automation and robotics will totally reform agriculture globally, creating 

opportunities and negative externalities for labour (Marinoudi et al., 2019). 

5.1.5.  Policy 

Policy assessment can rely on DEA results. (Rybaczewska-Błazejowska & 

Gierulski, 2018) have concluded to two large groups (efficient (10) and inefficient 

(18)) of EU-28 countries according to their eco-efficiency status, examining both for 

environmental and operational performance. Greatest factor that limits eco-

friendliness in EU agriculture is the excessive use of fuels and fertilizers, contributing 

to larger releases of GHG emissions. A controversial issue that has emerged with 

overpopulation is the land use for food or fuel. DEA methodology can be used to 

assess the crops with high input-efficiencies in certain regions and provide the 

appropriate answers, given the fact that there is a clear managerial strategy (Forleo et 

al., 2018). It should be mentioned that planning of agricultural production can be 

achieved through the use of ADSS (Bournaris & Papathanasiou, 2012). Depending 

on the approach needed in the policy creation procedure, Vázquez-Rowe and 

Iribarren have proposed a five stage Boolean tree of DEA + LCA approach, so as to 

facilitate the above-mentioned procedure (Ng et al., 2019). Risk management can also 

be minimized by the usage of DEA. Proposed methodo115verall115lyzes all different 

risks as inputs, while all innovations are considered to be outputs (Arabshahi & 

Fazlollahtabar, 2017). It should be underlined, that in the paper of Petsakos et al. 

(2009) there is evidence about the fact that 2 producers with same amount of available 
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resources may end up with different decisions due to different approaches of risk 

handling. 

DEA has been used in combination with Artificial Neural Networks (ANNs), 

giving meaningful results for national agricultural sectors’ performance (Vlontzos & 

Pardalos, 2017). The greatest advantage of the previous application is the creation of 

emissions forecast, a handful tool for policy makers and stakeholders involved, for 

making valid decisions in advance and achieve zero emissions goals by 2030. Another 

survey assesses the applicability of DEA + ANNs of ranking “green suppliers” 

providing future perspectives (Shabanpour et al., 2017). Overall, forecasts provide 

the opportunity to quantify future situations with high accuracy, facilitating the 

creation of multiple scenarios for easier risk management. Sueyoshi & Goto (2020) 

have proposed a methodology on handling imprecise data when performing DEA for 

computing projected efficiency scores, calculating upper and lower hyperplanes for 

values replacement when needed. In this survey, an alternative methodology of future 

projections regarding benchmarking and efficiency scores is introduced, combining 

DEA with time series forecast, focusing on assessing input use efficiency of the EU 

agricultural sector, providing valid future results. 

5.2. State of the Art 

Mardani et al. (2018) mentioned in their extended literature review about 

different types of DEA models that only 5 out of 163 papers referred to the 

implications of the Window DEA model, proving the need for further deepening on 

the specific methodology. This approach provides the ability for efficiency 

assessment of multiple years and DMUs, being the reason it should be further 

assessed. Evolution of technology has permitted the construction and manipulation 

of large datasets, while future projections with high accuracy can be obtained, 

enhancing the applicability of Window DEA. Estimating efficiency scores for the 

period of 2012–2018 for Iranian ports, Zarbi et al. (2019) chose arbitrary window 

width equal to 4. Changing window width would not lead to radical changes, because 

of the relative short period of time analyzed. Another study that has implemented 

Window DEA methodology for energy efficiency in the Spanish electricity sector, 

used an arbitrary window width of five years for an overall 9-year-period (2006–

2015) (Sánchez-Ortiz et al., 2020). A similar approach with this paper has been 

followed for the assessment of dairy farming system in Iran, exploring differences 
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between different window widths when using Window DEA (Sefeedpari et al., 2020). 

Differences indicate a decreasing average score for all DMUs involved, due to the 

enlargement of window width. Thus, it should be underlined that the ideal window 

length has not been estimated, so that the ranking differences can become apparent 

between the ideal and other window widths. Window DEA regarding energy use and 

social characteristics has been perform for Chinese provinces, revealing efficiency 

gaps between them (A. Zhang et al., 2018). In that survey, a 2-year-window length 

has been selected for the energy use assessment for the years 2005–2014. Taking into 

consideration all the above-mentioned papers, and given the fact that window DEA 

is not widely explored, assessment of window width influence has been made in an 

extended period (with actual and projected dataset), so as to indicate the resulting 

differences. 

5.2.1. Structure and Scope 

This survey consists of the following sections. The Introduction and Literature 

review highlight the contribution of DEA methodology regarding efficiency of 

production factors in agriculture and environmental performance, as well as its use in 

combination with other well stated methodologies such as LCA and ANNs. The State 

of the Art section signifies the impact of this study, in comparison with other similar 

articles. The Methodology section presents briefly the DEA Analysis and focuses on 

Window DEA Analysis methodology and selection of appropriate window width. 

Moreover, the Data section provides a detailed description about data source, type of 

variables and overall data handling. In the Results section, descriptive statistics of the 

sample provide a clear image to the reader for all inputs and outputs involved. 

Moreover, estimations of ideal window width and final rankings for actual (2005–

2019) and projected (2005–2022) data set are presented, emphasizing on differences 

between different window widths. The Discussion section addresses the main 

findings in an applicable way for EU-members, compares findings with related 

surveys, and connects findings with specific SDGs. Main findings, referring to the 

methodological approach and possible implementation of actual results, are included 

in the Conclusion section. Last but not least, this section includes limitations of this 

study and potential future contribution in the field.  

The scope of this study is to introduce a methodological approach for assessing 

the efficiency of the primary sectors of EU member states after the implementation, 
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on an operational level, of the AGENDA 2000 CAP. This is quite important due to 

the radical characteristics of this reform, which is the reduction of intervention on the 

decision making process of agricultural holdings, and the increase of market forces’ 

influence on the value chains of agricultural products. The chosen methodological 

approach allows us to present a prognosis of efficiency performance of member 

states, following similar approaches of other economic sectors, where institutional 

intervention is either minimized or absent. The examination of the reliability of 

alternative widths of Window DEA model, improves the suitability of this model for 

this assessment. The contribution of this paper to academic literature is to highlight 

differences in final rankings between ideal and arbitrary chosen window widths, due 

to the existence of zero technological change assumption within window when 

performing Window DEA, as it is described in the Methodology section. 

5.3. Methodology  

5.3.1. DEA Analysis 

DEA focuses on measuring productivity of the same and comparable values or 

groups that can be defined as DMUs. The first attempt to evaluate the efficiency of 

DMUs was made by Farrell (1957). Based on his work,  (Charnes et al., 1978) 

introduced a newer evaluation method for different DMUs with multiple inputs and 

outputs. More specifically, DEA is a non-parametric method, which uses linear 

programming techniques to evaluate the effectiveness of DMUs. Efficiency is defined 

as the ratio of inputs to outputs. Efficiency has been calculated according to the 

following formula (J. Zhu, 2014): 

𝜑∗ = min φ   

𝑠. 𝑡 ∑ 𝑥𝑖𝑗𝜆𝑗 ≤

𝑛

𝑗=1

𝑥𝑖𝜊 i= 1,2,…m 
 

∑ 𝑦𝑟𝑗𝜆𝑗 ≥

𝑛

𝑗=1

𝜑𝑦𝑟𝜊 r= 1,2,…m (1) 

𝜆𝑗 ≥ 0 j=1,2,…n  

 

where φ* represents the relative technical efficiency of xij and λj the weights in order 

to define the set of DMUs where φ*=1 and calculate the efficiency scores for the rest 

DMUs afterwards (φ*<1). It should be noted that DEA can increase efficiency of 
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DMUs either by minimizing inputs (input-oriented) or maximizing outputs (output-

oriented) given the same amount of all factors involved. Input-oriented DEA is 

preferable in most cases in agriculture, due to the fact that limited exploitation of 

natural resources and reduced cash flows for inputs from farmers’ side are preferred 

(Suzigan et al., 2020). That is the reason input-oriented approach has been selected 

for this analysis. 

Furthermore, as seen in the literature review, undesirable factors can be handled 

with DEA. You and Yan present four ways of treating undesirable factors: 1) 

complete ignorance, 2) consider undesirable outputs as inputs, 3) non-linear 

monotonic decreasing approach, 4) linear monotonic decreasing approach (You & 

Yan, 2011). For the purpose of this survey option 3 has been selected in order to 

handle the amounts of emitted emissions by transposing the CO2 amount. The same 

methodology was proposed by Scheel (2001) when dealing with both desirable and 

undesirable factors in DEA model. Data normalization can also be used to deal with 

undesirable factors, thus it should be noted that some of the available information is 

lost in the process of data manipulation, as well as results interpretation, to people 

who are not familiar with the above methodology (Jahanshahloo et al., 2005). 

 

5.3.2. Window DEA Analysis 

Although the aforementioned approach of DEA can be used in order to assess the 

efficiency of different DMUs in a given period of time, thus a new approach was 

needed for time series due to the fact that every unit is considered to be independent 

even if it is the same DMU in another period of time. For this purpose, a window DEA 

has been proposed, based on the principles of moving average (Charnes et al., 1984). 

Applying Window DEA, a reference period should be defined and then data are 

grouped in distinct groups (windows). This framework permits the comparison of 

different DMUs within the given window and an overall average score can be retrieved 

in the end of this procedure as the mean of all years involved. It should be clarified that 

efficiency scores for a given period and same DMU are different, due to the fact that it 

is compared with a different dataset. 

Window DEA implementation is summarized in Table 5.1. Subsets of initial 

dataset are constructed in accordance with the chosen window length. Average scores 
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per Year and per Country (ASYC) are obtained in order to calculate mean efficiency 

scores for every country in the predefined period of time.  

Table 5.1: Window DEA analysis. 

Country (x) t t+1 t+2 t+3 t+4 t+5 ⋯ t+k−5 t+k−4 t+k−3 t+k−2 t+k−1 t+k 

Window 1              

Window 2              

Window 3              

⋮    ⋮ ⋮ ⋮ ⋮       

Window n−2              

Window n−1              

Window n              

ASYC* (1) (2) (3) (4) (5) (6) (…) (n−2) (n−1) (n) (n+1) (n+2) (n+3) 

 Mean of ASYC of Each country 
*ASYC = Average Efficiency Score/Year/Country. 

5.3.3. Window Width 

The selection of the DEA window width is very crucial for the result extraction. 

As Asmild et al. (2004) stated, window width should be short enough so as to permit 

the comparison between different windows and contain enough elements for accurate 

efficiency measurement. Although width in many papers selection is arbitrary, it is 

essential to use the appropriate methodology (Hao et al., 2013; S. Lin et al., 2018). 

For this purpose, the ideal window width has been calculated, performing DEA model 

for each year (i) for the reference period (1-T) and by window (jc. The construction 

of a new matrix (A) is following, calculating Equation (2), where Meani is the average 

value of year (i) for every j. 

𝑣𝑖𝑗 =
𝑀𝑖𝑗 − 𝑀𝑒𝑎𝑛𝑖

𝑀𝑒𝑎𝑛𝑖
∗ 100% (2) 

For every year in matrix A, Absminij = |min(vij)| are selected. The window width 

which acquires the greater number of Absminij is the appropriate one. Thus, it should 

be underlined that window DEA imposes an assumption of zero technological change 

within the window and this should be taken into consideration when performing 

Window DEA Analysis (Asmild et al., 2004). 

5.3.4.  Data 

For data selection, variables that compose production factors in agriculture 

(land, labour, and capital) were selected for efficiency estimation of EU countries 

(Table 5.2). Selected variables are Total Used Agriculture Area (UAA), Labour force 
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(L) and Fixed Capital Consumption (FCC) which express the previous mentioned 

aspects. Data for standard inputs such as Seeds and Planting Stock (SPS), Plant 

Protection Products (PPP), and N, P fertilization (NFert, PFert) were taken into 

consideration due to the high amounts of energy consumed for their production, 

especially for fertilizers. Moreover, Energy (EN) has also been included as a separate 

variable due to the need for emphasizing in energy consumption minimization, 

following the EU guidelines for the benchmarking process. As outputs, monetary 

values of Total agriculture output (TO) and CO2eq emissions (EM) have been taken 

into consideration. All data have been acquired through EUROSΤΑΤ database and 

more precisely: [aact_eaa07], [nrg_bal_s], [aei_fm_usefert], [env_air_gge], 

[apro_cpshr] (EUROSTAT, 2023). 

Table 5.2: Data selection Inputs and Outputs for reference period 2005–2019. 

Reference period: 2005–2019 

Variable Measurement Units 

Inputs 

Total Used Agriculture Area (UAA) 1000 Hectare (ha) 

Labour (L) 1000 Annual Working Units (AWU) 

Fixed Capital Consumption (FCC) Million Euro (€) 

Energy (EN) Thousand Tonnes of oil equivalent (TOE) 

Seeds and Planting Stock (SPS) Million Euro (€) 

Plant Protection Products (PPP) Million Euro (€) 

Consumption of N-Fertilizers (NFert) Tonnes 

Consumption of P Fertilizers (PFert) Tonnes 

Outputs 

Crop output (TO) Production value at basic price, Million Euro (€) 

Emissions (EM) Th. Tonnes of Greenhouse gases (CO2eq) 

Data source: Eurostat, 2020. 

The data set selected refers to the time period after the implementation of 

AGENDA 2000 in operational terms. Cyprus, Malta, and Luxembourg were excluded 

due to their relatively small agricultural sector size, when compared with the other 

EU countries. On the other hand, data from the Norwegian agricultural sector was 

added, due to the strong trade relationship of the country with the EU and the fact that 

its agricultural sector presents similar characteristics with the rest of the Scandinavian 

countries. Considering that all available data were referring to 2005 until 2019, 3-

year data projection has been made with a view to provide an up to date information, 

extending the reference period until 2022. It should be underlined that EUROSTAT 

had already made estimations for 2020 for some of the above-mentioned data. To 

avoid the confusion of projection data methodologies, 2019 has been set as the ending 
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year of the dataset and forecasts have been equally generated. Data projections have 

been obtained using Double Exponential Smoothing for Time Series in Minitab 17 

Statistical Software. DEA and window DEA results have been acquired using 

Benchmarking library in R Studio. 

Providing a better understanding of all procedures involved, a panel of 26 EU 

countries, 10 different variables and a time period of 18 consecutive years has been 

constructed, using EUROSTAT’s data. Figure 5.1 demonstrates all steps followed 

until the extraction of final efficiency scores and rankings per country. Further 

explaining the above-mentioned methodology and taking as an example the whole 

panel (actual and projected data), a subset of initial dataset has been constructed for 

each reference period of window width (9). The next step includes DEA 

implementation for each subset, so as to acquire efficiency scores for every window. 

As mentioned in the Methodology section, different efficiency scores are obtained for 

the same country and year among windows. For instance, efficiency scores for 

Austria 2015 differ in Window 1 and Window 2, due to the fact that it is compared 

with a new dataset. Following steps include the construction of a new data frame, in 

which all efficiency scores per window frame are collected and average scores per 

year and per country are calculated. Computation of mean efficiency scores is the last 

step, providing at the same time the corresponding rankings for every country after 

sorting the data. 
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Figure 5.1: Step by step representation of the applied methodology. 

A summarized viewpoint of Window DEA analysis is presented in  

Table 5.3. Diamond-shaped data structures are built, so as to provide average 

scores per year for every country. Mean of ASYC is the final score for each country 

but it should be stated that assessment of final rankings is more valuable than changes 

in the actual values of efficiency scores. 
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Table 5.3: Window DEA analysis representation for actual and projected dataset. 

Window DEA Analysis 

 Actual Data Projections 

Country(x) 
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2
0
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2
0
2
1
 

2
0
2
2
 

Window1                   

Window2                   

Window3                   

Window4                   

Window5                   

Window6                   

Window7                   

Window8                   

Window9                   

Window10                   

ASYC * (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) 

 Mean of ASYC = Final Score of each Country (x)  

*ASYC = Average Efficiency Score/Year/Country. 

5.4. Results 

5.4.1. Descriptive Statistics 

Descriptive statistics of both inputs and outputs were examined before 

proceeding to the main analysis (Table A.5.1 -Appendix section). According to the 

UAA for the period 2005–2019, the greatest negative differences have been identified 

for Austria, Italy, and Poland (-18.7%, -10.6%, -9.7%) while the agricultural area 

increased in the following countries: Latvia, Croatia, and Greece (13.0%, 24.2%, and 

26.6%). A slight decrease of 3.2% of UAA was calculated for all countries 

involve124verallverall drop of 29.0% for Labour input is being depicted, with Ireland 

being the only country presenting an 8% increase. On the other hand, the great 

decreases are highlighted for Estonia (-50.1%), Slovakia (-55.0%), and Bulgaria (-

69.6%). It should be underlined that even if Labour has been decreased, annual wage 

per AWU increased by approximately 20% (base year = 2010) (European 

Commission, 2019). 

Capital consumption from national agricultural sectors increased by 8.8%, 

meaning that the EU agricultural sector is becoming more challenging, demanding 

higher financial resources from all stakeholders involved. European Commission 
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report signifies that intermediate costs will keep increasing until 2030, leading to a 

more capital intensive agricultural domain (European Commission, 2017). The 

energy sector presents great differences among countries analyzed. Greece, Bulgaria 

and Ireland are the three countries achieved highest rates of energy minimization, 

thus Latvia, Romania, and Germany presented increases of more than 60%. 

Considering Plant Protection Products, a total increase of 17.0% is being depicted, 

despite the EU’s intense effort for agricultural chemicals reduction. The Netherlands 

has achieved an overall reduction of (-20.4%) and (-77.4%) in NFert, PFert fertilizers 

respectively, which is the best performance from all countries involved. Crop output 

has increased by 10.2% for the period 2005–2019, with Latvia, Estonia, and Lithuania 

presenting the highest rates of improvement, while Italy, Germany and Finland have 

reduced rates (-12.6%, -10.4%, -4.7%). Analysis of eqCO2 indicates that there is only 

a slight decrease of -1.6% for the last 15 years, a not so overwhelming result, given 

the fact of technological progress and global pressures for zero emissions.  

Figure 5.2 and Figure 5.3 illustrate the above-mentioned results, which have 

been obtained during the initial stages of the analysis and provide a general picture of 

agricultural sectors of EU countries. In Figure 2, the Netherlands is an exceptional 

remark with very high needs in EN and SPS, but very low needs in L and UAA, 

achieving the fifth highest agricultural output. This can be easily explained, based on 

the great number of greenhouses which can be described as intense input production 

method, especially in energy demands for heating. Another remark that should be 

highlighted, is referring to the cases of Estonia and Slovenia. Both of them have the 

least inputs and least outputs of all EU agricultural sectors but they present great 

differences in terms of inputs use efficiency as it will be presented in the Window 

DEA results section. It should be underlined that the two countries have significant 

differences in their climate conditions, which has an immediate effect on the overall 

production. 
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Figure 5.2: Descriptive statistics of Average Inputs and Outputs per country for reference 

period 2005–2019. 
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Figure 5.3:Average values of Inputs and Outputs for reference period 2005–2022. 

Total UAA and EN were plotted together so as to examine Pellegrini’s et al. 

statement about energy use in the EU agriculture (Pellegrini & Fernández, 2018) 

(Figure 5.4). Despite the fact that total UAA decreased by 3% from 2005 to 2019, EN 

seems to have a significant increase of 16.9% from 2015 to 2019. This can be partially 
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explained from the recovery of EU countries after a long period of economic 

recession in EU countries. Moreover, it should be mentioned that the share of 

renewable energies in agriculture has remained on the same levels for the last two 

decades, signifying the need for finding more sustainable solutions for agricultural 

energy consumption.  

 

Figure 5.4: Total Used Agricultural Area (UAA) and Energy consumption in agriculture 

(EN) for the period 2005–2019. 

In Figure 5.5, it is pointed out that there is not a great variance among examined 

countries, apart from Germany and Greece regarding Annual Energy consumption. 

Despite the fact that Germany has a large variance through the reference period of 

this study, other countries such as France, Portugal and the Netherlands appear with 

higher energy demands. That is the reason the two outliers identified in Germany 

were accepted, before proceeding to the main analysis. 
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Figure 5.5: Annual Energy Consumption (EN) per country for the period 2005–2019. 

5.4.2. Window DEA Results 

As already described, before proceeding to Window DEA, it is essential to 

identify the ideal window width for this data set. For this purpose, Window DEA was 

performed for all possible window widths and then results were grouped by year. 

Using Equation (2) results, Table 5.4 was constructed. The window width with the 

least difference from the average score for all possible window widths for a given 

year was selected. Window Width equals to 7 was selected as the ideal one, due to 

the fact that it contained the highest amount of absolute minimum difference.  
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Table 5.4: Εquation (2) results (absolute values) for all possible window lengths for 

the reference period 2005–2019. 

Possible Window Widths 

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

2005 4.9 4.4 3.8 2.7 1.7 1.3 0.3 0.4 0.7 1.6 2.1 2.8 3.0 4.0 4.5 

2006 7.0 5.2 3.8 2.4 1.6 0.8 0.0 0.4 1.1 1.9 2.5 2.8 3.3 4.0 4.7 

2007 8.4 6.0 4.5 2.9 1.7 0.8 0.0 0.7 1.4 2.2 2.7 3.3 3.9 4.7 5.6 

2008 5.5 4.3 3.7 3.0 2.1 1.3 0.5 0.4 1.1 1.8 2.4 3.0 3.4 3.9 4.5 

2009 2.7 2.6 2.2 1.7 1.4 0.9 0.3 0.2 0.5 0.9 1.3 1.6 2.0 2.3 2.9 

2010 6.2 4.3 3.1 2.3 1.7 1.1 0.3 0.3 0.9 1.6 2.3 2.7 3.2 3.7 4.4 

2011 4.8 4.0 3.0 2.3 1.5 1.0 0.5 0.2 0.7 1.4 2.0 2.5 2.9 3.3 3.9 

2012 6.5 4.1 3.0 1.9 1.2 0.6 0.1 0.4 1.0 1.6 2.2 2.5 2.9 3.2 3.7 

2013 4.7 3.5 2.6 2.0 1.4 0.8 0.2 0.2 0.6 1.3 1.8 2.2 2.6 3.0 3.5 

2014 3.1 2.3 1.7 1.3 0.8 0.4 0.2 0.1 0.3 0.6 1.1 1.4 1.7 2.1 2.5 

2015 4.2 2.4 1.8 1.1 0.5 0.3 0.0 0.3 0.6 0.8 1.0 1.4 1.7 2.1 2.4 

2016 4.1 2.5 1.5 1.0 0.5 0.2 0.0 0.4 0.7 0.9 1.1 1.2 1.5 1.8 2.2 

2017 3.5 2.0 1.2 0.7 0.4 0.2 0.1 0.1 0.4 0.7 1.0 1.1 1.2 1.6 2.0 

2018 3.6 2.2 1.5 0.9 0.5 0.2 0.0 0.3 0.4 0.8 1.1 1.3 1.4 1.5 2.1 

2019 2.0 1.4 1.0 0.9 0.4 0.1 0.1 0.1 0.1 0.2 0.9 1.0 1.1 1.1 1.2 

Ν(ΜΙΝ) 0 0 0 0 0 0 10 5 0 0 0 0 0 0 0 

Setting window width equal to 7, Window DEA model was applied. The results 

of the analysis for 26 EU agricultural sectors are presented in Figure 5.6 and Table 

A5.2 (Appendix section). An assumption of zero technology evolution within frames 

is made when performing Window DEA. To check the interference of this assumption 

to the proposed results, a narrower window width has been selected. In this case, an 

arbitrary window length equals to 4 was chosen in order to identify differences 

between the widths. Rankings are presenting slightly different results, concluding that 

technology evolution had a positive impact for the following countries: Greece, 

Belgium, France, Spain, Portugal, Slovakia, and Ireland. All previous countries 

confronted serious issues with the financial crisis (2008–2014) and a narrower 

window frame can highlight their recovery through technological adaptation. 

Although differences in the climatic conditions which largely affect primary 

production, Estonia ranks first, in comparison with Slovenia which ranks third. The 

scores of these countries present three points of interest: 1) apart from their relative 

small size, in comparison with the other EU agricultural sectors, they achieve scores 

placing them in the top-3 countries, 2) despite their climatic differences Estonia 

scores higher than Slovenia 3) placement of the Netherlands in the second position 

assures results validity even in the presence of large scale differences.  
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Figure 5.6: Differences in ranking between Window Width equals to 7 (left) and 4 (right). 

5.4.3. Projected Efficiency Scores 

Data from 2005 to 2019 for all variables involved were projected to 2022, in 

order to acquire projected efficiencies. The above-mentioned procedure was 

followed, estimating the ideal window width and performing DEA Window model. 

Table 5.5 indicates that ideal window equals to 9. 
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Table 5.5: Equation (2) results (absolute values) for all possible window lengths for 

the reference period 2005–2022. 

Possible Window Widths 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

2005 5.9 5.4 4.8 3.7 2.8 2.3 1.3 0.6 0.3 0.7 1.1 1.8 2.0 3.0 3.6 4.0 4.9 6.1 

2006 8.0 6.3 4.8 3.4 2.6 1.8 1.0 0.5 0.1 0.9 1.5 1.9 2.4 3.1 3.6 4.2 5.0 5.9 

2007 9.6 7.2 5.7 4.1 2.8 1.9 1.1 0.4 0.3 1.1 1.6 2.2 2.8 3.5 4.1 4.9 5.7 6.6 

2008 6.6 5.4 4.8 4.1 3.1 2.4 1.5 0.7 0.0 0.7 1.4 1.9 2.5 3.2 3.9 4.4 5.0 5.6 

2009 3.4 3.3 2.9 2.5 2.1 1.6 1.0 0.5 0.2 0.2 0.6 1.0 1.4 2.0 2.4 2.8 3.2 3.7 

2010 7.2 5.3 4.1 3.3 2.7 2.0 1.3 0.7 0.1 0.6 1.2 1.8 2.4 3.1 3.6 4.1 4.6 5.3 

2011 5.7 4.7 3.9 3.1 2.4 1.8 1.3 0.7 0.1 0.4 1.0 1.7 2.1 2.7 3.2 3.7 4.1 4.8 

2012 7.4 4.8 3.9 2.7 2.0 1.4 1.0 0.5 0.1 0.7 1.3 1.8 2.2 2.7 3.1 3.5 3.9 4.5 

2013 5.6 4.4 3.8 2.9 2.2 1.6 1.1 0.6 0.1 0.6 1.2 1.6 2.0 2.5 2.9 3.3 3.8 4.5 

2014 4.1 3.2 2.6 2.3 1.8 1.3 0.9 0.4 0.0 0.3 0.7 1.0 1.4 1.8 2.1 2.6 3.0 3.7 

2015 5.1 3.3 2.7 2.0 1.6 1.1 0.6 0.1 0.2 0.4 0.7 1.0 1.4 1.8 2.1 2.4 2.9 3.5 

2016 5.0 3.4 2.4 1.8 1.3 1.0 0.5 0.0 0.4 0.6 0.8 0.9 1.3 1.7 2.0 2.2 2.5 3.0 

2017 4.4 2.9 2.0 1.5 1.0 0.6 0.5 0.2 0.1 0.3 0.6 0.7 0.9 1.4 1.7 2.0 2.4 3.0 

2018 4.5 3.1 2.2 1.6 1.1 0.7 0.3 0.2 0.2 0.5 0.8 1.0 1.1 1.3 1.7 2.0 2.3 2.9 

2019 3.0 2.3 1.7 1.2 0.8 0.6 0.3 0.0 0.1 0.1 0.5 0.7 0.8 1.0 1.1 1.4 1.9 2.5 

2020 3.2 2.1 1.3 1.0 0.7 0.4 0.0 0.2 0.4 0.2 0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.1 

2021 2.4 1.8 1.3 0.8 0.6 0.4 0.0 0.3 0.3 0.4 0.3 0.5 0.6 0.7 0.8 0.8 0.9 1.6 

2022 1.6 1.5 1.3 0.7 0.5 0.3 0.1 0.2 0.3 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.8 1.0 

Total MINs 0 0 0 0 0 0 3 4 11 0 0 0 0 0 0 0 0 0 

 Analysis was performed with window width 9 and another two sub groups of 

3 and 6 have been tested in order to minimize the effect of zero technological 

improvement (Figure 5.7 and Table A.5.3). The four highest ranking countries 

remained the same for all widths examined. The same situation is depicted for 

Finland, the UK, and Hungary, which achieved the lowest efficiency scores in all 

estimated widths. Α very interesting case in the following benchmarking is this of 

Italy, in which position is downgraded (5 -> 8) in window width 9 compared to 6 and 

upgraded from 8 -> 6 when window is being shorten to three years. Constant 

technological improvement seems to affect Norway’s performance, due to the fact 

that its rankings are higher and higher between nine and three-year frame. 
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Figure 5.7: Differences in ranking between Window Width equals to 9 (left), 6 (center) and 3 

(right) for projected data. 

For visualization purposes, Figure 5.8 and Figure 5.9 were created so as to 

depict the efficiency scores achieved for each country from DEA Window analysis 

ideal window widths 7 and 9 for periods 2005–2019 and 2005–2022, respectively. 

Lower efficiency scores can be observed on central EU countries (Austria, Czech 

Rep., Hungary, and Croatia) and Finland presents the lower performance. Only few 

changes occurred between projected and non-projected efficiency scores. Projected 

data reveal higher efficiency scores for Greece, France, Romania, Spain, Portugal, 

Bulgaria, and Hungary for the next three years. Italy, Denmark, Norway, Germany, 

and UK obtained lower efficiency scores, underlying the urge for changes in their 

agricultural sectors, regarding all inputs involved in agricultural production. The 

greatest difference in the ranking system is for the agricultural domain of Germany, 

which falls from place 11 for actual data to place 16 for the projected data.  
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Figure 5.8: Efficiency scores map, Window Width (7) (2005–2019). 

 

Figure 5.9: Efficiency scores map, Window Width (9) (2005–2022). 
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5.5. Discussion 

The main objective of this study was to assess input use efficiency for all EU 

countries involved after the implementation of the AGENDA 2000, assuring the 

validity of Window DEA methodology and clarifying the influence of window width 

in the results obtained. Major goal of Agenda 2000 was to set the base for increased 

efficiencies of small and medium enterprises (SMEs) in agriculture, leading to more 

competitive EU primary sectors (European Commission, 1997). According to the 

Agenda 2000, new technologies engagement was the key factor for improving 

performance of European agriculture. Following the upcoming evolution of the 

Agenda 2000 and CAP (2014–2020), in the new CAP programming period (2021–

2027) the main strategy is based on the same objectives, focusing even more on 

applying specific environmental indicators for assessing performance of agricultural 

holdings. This is the rationale for the Integrated Farm Management (IFM) approach, 

defining the equilibrium between economy, environment and society (Rose et al., 

2019). On operational terms, IFM proposes the minimum use of every input, reducing 

the overall cost and enhancing environmental protection. Taking into consideration 

the above-mentioned approach, the DEA model was used with an input orientation, 

aiming to assess in a quantified manner the efficiency distances among EU countries, 

while the use of Window DEA presented in a graphical manner the evolution of 

efficiencies for this specific time period. However, it should be clarified that through 

the assessment of alternative window lengths, technology influence has been revealed 

as an important factor for achieving efficient use of both energy and non-energy 

related inputs in agriculture. 

Ideal window width estimation has been calculated for creating a reference 

point where, according to methodology, technological change is apparent. Further 

limiting of window widths leads to the emergence of countries that have adopted new 

changes in a shorter period of time and these changes had an impact on the overall 

way they use their inputs. For this reason, even ideal window frame has been 

calculated for 7 and 9 years respectively, smaller window frames have been appointed 

also, pinpointing differences due to the aforementioned assumption.  

Window DEA has the unique feature of using the same DMU multiple times in 

the same window, being considered to be a different one. Benchmarking of 

agricultural sectors highlighted that Estonia, the Netherlands, Slovenia, Greece, and 
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Italy have the best performance, while Finland, UK and Hungary should reconsider 

their inputs’ usage. The results of this analysis have been compared with previous 

survey examining eco-efficiency in agricultural sectors of EU countries with as base 

year 2015 (Rybaczewska-Błazejowska & Gierulski, 2018). Similar results have been 

exported, despite the fact that previous stages of LCA have been performed. A point 

of particular interest is that Bulgaria and Romania were characterized as 

environmentally friendly, but presented decreased economic performance. In this 

study, where both environmental and economic factors consist this model, Romania 

and Bulgaria achieve moderate scores. Another great remark is the difference in ranks 

between agricultural sectors of common input and output characteristics (Estonia (1) 

and Slovenia (3)), despite the negative impact of climatic conditions for the first one. 

Validity of the results between agricultural sectors with moderate scale differences is 

proven, due to the fact that the Netherlands, which handles much greater amounts of 

inputs and outputs from Slovenia and Estonia, ranks second. 

Both the literature review (Apergis et al., 2015; Pellegrini & Fernández, 2018) 

and descriptive statistics revealing the need for further training and dissemination 

activities for farmers, regarding energy minimization. Despite the efforts of the EU 

to mitigate energy consumption in agriculture, it seems that only very few changes 

have occurred in recent decades. As Eurostat’s data reveal, there is a 5% increase in 

energy, while total used agricultural area has a slight decrease of 3%. Overall energy 

consumption should have been dropped, due to the increased energy efficiency of 

technological equipment and the need for minimizing agricultural expenditures and 

environmental impact. It should be also pointed out that share of renewable energy 

sources has not changed for the last two decades, while amounts of fertilizers have 

remained stable for the examined period. This fact should be severely considered by 

the policy makers’ side, linking payments with energy efficiency for farmers, leading 

to minimized production needs for fertilizer industry. Skjærseth (2016) states that 

European Commission should gain a higher level of control from member states, in 

order to achieve sustainable goals by 2050, leading to minimized energy exploitation 

and limited GHG emissions. 

Figure 4 indicates a geographical pattern, where neighboring countries of 

central Europe achieve lower scores than the others. The comparison of results 

obtained from past studies (Toma et al., 2015; H. Zhou et al., 2018), with the results 

of this one, lead to the need for further studies to clarify the reasons behind the 
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achievement of lower efficiency use of inputs involved in agricultural production. 

Factors such as climate conditions, support on a national level, by providing sufficient 

financial and administrational aid, and farm structure characteristics should be taken 

into consideration.  

Risk management, in case of extreme weather conditions and environmental 

protection, are highly considered in the CAP (2021–2027). Thus, there is lack of data 

regarding the quality and quantity of the equipment used on a national level for 

agricultural production, and R&D support. Emphasis should be given on the amounts 

of water used for irrigation. Although the existence of data referring to irrigated 

agricultural area and water exploitation index is confirmed, monitoring of quantities 

consumed remains insufficient on an EU level, taking also into consideration that 

agriculture is the greater water consumer (World Bank, 2020). All the above-

mentioned factors are crucial for effective benchmarking and targeted decision 

making for each EU country. 

It is very prominent that European Commission has just released a dedicated 

webpage to energy consumption indicating the enhanced importance for energy 

monitoring. It referred that the overall energy dependency of EU is around 60% 

(2018) (EUROSTAT, 2021), while 1 out of 3 crude oil barrels used to come from 

Russia. Moreover, energy efficiency results are displayed for every EU country, but 

the results are not linked to the agricultural domain. An addition of energy use 

efficiency per sector is proposed, both for providing information to the general public, 

but also for immediate comparisons among EU countries. 

SDGs and especially those referring to food security, sustainable production, 

and climate change mitigation (SDG2, 12, 13) have to be adopted from all EU 

countries. Climate change already has various effects on agricultural production 

(Nastis et al., 2012), creating new geographical pattern both for productive species 

and their pests. Assuring that every EU country can produce with high efficiency 

input use rates, resilience can be built up for all member states, especially under the 

existence of unpredictable phenomena such as prolonged drought, very low 

temperatures, or a potential increase in prices of imported inputs from non-EU 

countries.  
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5.6. Conclusions 

To conclude, an alternative method for prognosticate future efficiency scores is 

proposed. Window DEA has been performed multiple times, assessing differences 

between various window widths and reference periods. From an academic point of 

view, this study provides multiple nested comparisons between actual and projected 

data. Differences between optimal window width and arbitrary chosen window length 

have been highlighted. Due to the fact that DEA is a benchmarking technique, 

emphasis has been given on the final rank of each EU agricultural sector and not on 

the actual values of efficiency scores. It has been notified several times that 

researchers should be aware of the assumption of zero technological change within 

frames, when performing Window DEA; for this reason, window width should be 

resized accordingly. This need becomes more apparent when dealing with large time 

series, when window width selection can influence final rankings. A possible 

limitation of this survey, regarding future projections, is its actual dataset. For 

instance, EUROSTAT database had a panel of full data from 2005 until 2019. To 

assure projections’ validity, only a 3-year period time data have been forecasted. With 

a larger dataset, a projection of an elongated period would have been possible and 

maybe a larger variation in the rankings between actual and projected data would be 

apparent. 

Implication of the results signify differences between alternative window 

widths, meaning that external factors within frame had influence on input use 

efficiency of the examined countries. Moreover, projected data have been calculated, 

by identifying 2019 as the ending year of the dataset. Few changes occurred between 

projected and non-projected efficiency scores, underlying the need for the following 

countries: Czech Republic, Finland, Ireland, Hungary, and the UK should reconsider 

their production protocols and the usage of their production factors. Despite the fact 

that this survey has pointed out the above-mentioned countries as the least efficient, 

a following analysis is needed in order to highlight the inefficiencies of each variable 

leading to more applicable results. Thus, it should be stated that the major goal of this 

study was mostly to identify differences among several window widths, rather than 

focusing on DEA slacks. Results indicate the importance of continuous monitoring, 

so as to assure sustainable exploitation of the involved inputs, mainly regarding 

energy consumption. Figure 5.8 and Figure 5.9 pinpoint lower efficiency scores for 
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countries of central Europe Austria, Czech Republic, Hungary, and Croatia, meaning 

that they should be supported accordingly. It should not be neglected that the above-

mentioned countries will have to restrain climate change effects, partially replacing 

the production of Mediterranean countries such as Italy, Spain, and Greece. For this 

reason, emphasis should be given on the development of their agricultural sectors, 

maintaining low emission levels at the same time. Moreover, ranking differences for 

Germany, between actual and projected data, should act as a warning notification. 

Projected data are referring to an extra 3-year period time, which can be considered 

to be a short one for large changes in this agricultural sector. 

Future studies can focus on the infrastructures of EU agricultural sectors, 

defining the variables that mostly affect the extracted results. Furthermore, they 

should provide insights for every agricultural sector, in order to clarify the reasons 

which affect most efficiency shortage (e.g., lack of information, aged population, soil 

of decreased productivity, climatic conditions etc.). In addition, this study focuses on 

farm activities, while future studies can implement Window DEA methodology in 

whole supply chains. Energy use in packaging, storage and transportation will largely 

affect the extracted results, providing an overall inputs use efficiency from farm to 

fork. Additionally, technological evolution will bring more changes for arable land 

crops and greenhouse farming, gradually decreasing the need for human labour, but 

increasing the need for energy use. 

The energy use factor affected the extracted results both directly as an input, 

but also indirectly with the use of fertilizers and GHG emissions. Energy prices 

influence immediately the primary production by increasing the cost of all inputs 

involved. A combination of the results with Skjærseth’s (2016) statements 

(Discussion section) will enhance the argument of augmented control from national 

sectors, in order to deal with their challenges on a local level. Benefits for improved 

input use efficiencies can be provided, to motivate more individuals or groups 

towards this direction. Given the fact that energy dependency of EU is high 

(EUROSTAT, 2021), measures that assure energy security in the agricultural sector 

should be taken, in order to prevent future energy instability situations, such as the 

case of Russia–Ukraine gas disputes. Extensive on-farm use of sensors technology 

will permit the accurate data recording and monitoring, leading in optimized 

decisions for everyday tasks, and it will also provide insights for policy making both 

on a national and European level, in order to achieve greater energy use efficiency. 
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Moreover, Perpiña Castillo et al. (2016) survey states the remarkable dynamic for 

establishment of large scale photovoltaic systems in Southern European countries 

taking into consideration sunlight, population distance, land use, morphological 

characteristics and policy. It should be underlined that implementation of solar power 

generation could be a great alternative for covering EU countries energy needs, while 

preserving natural resources from exploitation.  

Cost parameter, regarding energy use, is very crucial due to the fact that it 

affects both in a direct (oil, electricity, gasoline), or in an indirect way inputs such as 

fertilizers, agro-chemicals, or transportation costs. As it is stated in the latest 

European Report about energy prices, share of energy costs in fertilizers’ industry is 

of 71% (European Commission, 2020). Furthermore, it can immediately influence 

supply and demand curves, leading to either increased or decreased consumption. 

However, pricing strategies applied by agrochemical industries are not usually based 

on production costs, but in a close relation with the upcoming benefits derived from 

their use. Therefore, we assume that energy cost is still an important parameter for 

the overall production cost in every European country, being at the same time a top 

priority target for the significant reduction of it for both operational and 

environmental purposes. 

Furthermore, agricultural inputs have to be limited, preventing degradation of 

natural resources and mitigating environmental consequences. To conclude, all the 

above-mentioned parameters should be taken into consideration from EU countries 

for the CAP (2021–2027), to adjust their national strategies and achieve SDGs. 
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Chapter 6  

6.1. Summary 

In this thesis, methodological approaches for ameliorating the performance of 

DEA in the agricultural field are presented. More precisely: 

Chapter 2 indicates that DEA is the most frequently applied methodology when 

it comes to efficiency estimation. However, in agriculture usually complex 

methodologies are not being met, as this is the case for other economic sectors. 

Having in mind the new operational status of primary sectors and their increased 

association to risks related to the markets and the continuously negative impact of 

climate change, require the development and application of more integrated 

assessment tools, incorporating parameters such as environment, societal structure, 

and marketing. Robust DEA models are able of quantifying this risk, providing 

accurate measurements of uncertainty level to the data analyst. Window DEA is 

another approach that should be further implemented in agriculture, in order to assess 

inputs’ use efficiency in a timeline. The combination of the above-mentioned 

approaches of robust and window DEA models can lead to high impact optimization 

models such as the recently published approach of Peykani et al. (2022), thus 

agriculture domain does not provide enough open access data that can be used for this 

purpose. Moreover, it is highlighted that the term “agriculture” is often neglected, 

leading to decreased access to relative research findings, when the major searching 

tool for allocating relative papers is enabled, focusing on information being published 

with the use of more general keywords in operational research. Inserting “agriculture” 

term either on abstract or keywords contributes to the creation of a clearly defined 

sector of operational research directly related with agricultural activity.  

Another point is the lack of the incorporation of GIS information in the 

benchmarking process, underestimating the spatial dimension of agriculture. The new 

satellite technology, in collaboration with PA technology, can overcome the usual 

difficulties of obtaining data on a small scale, which until recently was the main 

obstacle for applying such modelling. Incorporation of external factors in the analysis 

process can be achieved of either embodying environmental factors directly to DEA 

model, or checking for dependencies of efficiency scores with such factors after the 
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benchmarking process. Application of complex datasets for efficiency assessment 

purposes can lead to greater insights and tailored future policy measures on a smaller 

scale, improving by this way the effectiveness of them and increasing the efficiency 

of budget allocation and decreasing production costs in a feasible and realistic way.  

Furthermore, there is space for incorporating the social dimension in the 

benchmarking process. This can be really useful in cases of policy implementation, 

where policy-makers want to assess the efficiency level of farms, while at the same 

time certain demographic goals should be met. Such case studies are in accordance 

to the main trend of the CAP, as societal characteristics of rural communities are of 

great importance for monitoring and evaluation. Chapter 3 provides a discrete 

methodology about embodying ordinal data, classifying information like educational 

level or annual income, to be utilized when using DEA, contributing to 1st LRG of 

Chapter 2. By applying this methodology either demographics or other characteristics 

that are difficult to be quantified, can be taken into consideration. In this case, quality 

of spraying or quality of plowing can be inserted as variables, for acquiring final 

efficiency scores. In another perspective, data quantifying the adaptation status of 

climate change mitigation actions, or the resistance of a cultivation to an external 

factor, e.g salinity or high temperatures, can be used as well. To this extend, policy 

makers could have a tool for objectively assessing the contribution of farmers towards 

sustainability.  

 Chapter 4 provides a case study of durum wheat farmers both in Italy and 

Greece that operate under the suggestions of common ADSS. As it is clearly 

displayed on Figure 4.4 and Figure 4.8 there is a clear difference between the two 

countries, where Italian farmers are focusing on minimising inputs’ usage to decrease 

production costs, while in Greece there is not clear trend towards inputs’ 

minimization usage. Apart from the above-mentioned conclusion, this case study 

underlines a proper way of data management and utilisation in the agricultural sector, 

where farmers are keeping regular records for spending and agricultural applications 

under a unified system. To this extent, amelioration points can be easier highlighted, 

setting future goals and design the cultivation for the next year. Chapter 4 analyses 

all the interactions between farmers – ADSS, highlighting a great importance of 

further adoption of similar synergistic protocols focusing on improving the 

operational status of farms. 
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The proposed methodological approach verified that despite the fact that 

participating farms operate under the same regulatory policy framework, achieved 

significantly different efficiency scores. So, there are considerable hints that 

modelling can identify factors creating obstacles for achieving homogenous 

efficiency levels, providing by this way new roles and new utilities derived from 

similar applications. Factors like farm size, influence from family and local 

community (Weltin et al., 2017), and the level of ICT adoption are the main aspects 

under which decision-making process of farmers is attempted to be explained 

(Edwards-Jones, 2006). Theory of Planned behaviour is often used to describe this 

process conceptualizing that farmers of certain attitudes can display similar 

behaviours, being though the decision-making process still an unidentified process 

(Bartkowski & Bartke, 2018). Agent-based models is another approach for modelling 

farmers’ decisions, thus this type of analysis is focusing on one specific aspect each 

time, such as land-use management, biodiversity, or transition to organic farming 

(Huber et al., 2018). DEA can be applied towards this direction, in order to create 

composite indicators that will provide more dimensions to the above-mentioned 

models (Blancard et al., 2021). Moreover, DEA can be used as a supportive tool for 

selecting the optimum cultivation strategy, in the existence of alternatives 

(Giannoulis et al., 2013). Assessing the decision-making process of farmers is a very 

significant issue for creating effective policies for the achievement of EU goals and 

promotion of sustainable rural economy (Bonisoli et al., 2018; Chrysafo-Anna et al., 

2021).  

Chapter 5 contributes on the 3rd LRG of complex methodologies as Chapter 2 

indicates. More precisely, it highlights the importance of window width selection 

when performing Window DEA and provides an appropriate methodology to estimate 

the time period in which technological level does not remain constant, but it has 

significantly increased. It is worth noticing that the ideal window width in this case 

is estimated on 7 years, which matches with the timeframe the programming period 

of CAP. This is first evidence that the policy measures being applied in every 

programming period might have a considerable impact on technological change, 

affecting positively the improvement of EU agricultural productivity. The proposed 

sensitivity analysis, when performed, can optimize further the width of time frames 

being applied in such cases. An alternative way to analyse similar cases is the 

application of Malmquist productivity index, combined with Window DEA 
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methodology, for identifying efficiency changes for each DMU on an annual basis 

(Sardar Shahraki & Aliahmadi, 2021). Window DEA is a suitable tool for assessing 

efficiency with the use of panel data, being this a common and useful tool in 

agricultural cases, where variability of the factors being involved is high. The 

proposed methodological approach follows, to a large extent, the same rational with 

the recently proposed methodology from Peykani et al. (2022) about Robust Window 

DEA. Although their case study is assessing the stock market, it can be transferred 

into the agricultural sector, as far as the Variable returns to Scale model is applied. 

6.2. Overall conclusions 

DEA has been evolved over the years in the context of agriculture, with new 

developments and applications emerging, in response to the changing needs and 

demands of the agricultural sector. As mentioned in the Introduction section, CAP 

underwent a series of reforms to reduce production costs and to promote 

competitiveness on an EU level. Market-oriented policies, as well as the elimination 

of price supports, mitigated production surpluses. Moreover, 2000s’ reform has 

introduced measures of rural support and cross compliance, indicating the need for a 

holistic approach that considers both social and environmental aspects, other than the 

economic outcome of the production process itself. Furthermore, reforms have been 

made to ensure environmental protection and rural development, while the 

introduction of knowledge and innovation in the current CAP’s programming period 

adds a new dimension in the overall assessment of agricultural performance. Overall, 

CAP’s evolution reflects the changing needs and demands of the agricultural sector 

and the wider society, as well as the ongoing efforts to create a more sustainable and 

competitive agricultural sector in the EU. 

Considering the above points, from an operational research perspective, it is 

evident that the Key Performance Indicators (KPIs) of the agricultural sector were 

considered solely economic for many decades prior to Agenda 2000. For instance, 

some of the most common KPIs were the overall production in monetary values and 

the contribution of agricultural sector to the national Gross Domestic Product. 

However, the next reforms added multiple dimensions in the overall optimization 

problem, paying attention to the environmental footprint (carbon, water and 

ecological footprints) of agricultural activity, as well as the wellbeing of farmers, 

utilizing for this as indicators the produced income per Agricultural Working Unit or 
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gender gap in rural areas. DEA has been extended to a multi-objective analysis, 

allowing the evaluation of multiple conflicting objectives, such as maximizing yield 

and minimizing environmental impacts, in agricultural production. Due to the fact 

that some of the above-mentioned societal characteristics are difficult to be accurately 

measured or quantified, Chapter 3 introduces a combination of DEA+TOPSIS 

methodology that could be considered as appropriate in such cases. To a further 

extend, this methodology could contribute on the assessment of more complex 

scenarios, where the implementation of a series of agro-ecological practices would 

be considered in the overall optimization process. 

Furthermore, another point that should be discussed is the environmental 

protection aspect. In all Chapters of this thesis (apart from Chapter 3), environmental 

dimension is assessed, either by the way it is presented in the relevant literature 

review, or by the inclusion of environmental variables in the form of undesirable 

outputs. Energy efficiency, water use, and greenhouse gas emissions are considered 

as top priority issues for the EU and through this thesis the applicability of DEA on 

mitigating the negative effects of agricultural activities is verified. It is really 

prominent that DEA can identify the best practices for reducing the environmental 

impact of a particular process and provide solutions extracted from the examined 

sample each time. 

Taking into consideration the last statement, DEA can be used to further 

promote innovative agro-ecological practices on a farm level. Providing farm specific 

instructions is considered as a complex task for agricultural experts, due to the fact 

that there are several factors affecting the overall production of a given quality. 

However, the application of DEA in the agricultural field provides two benefits that 

are often neglected or less discussed. The first one is that DEA can provide applicable 

solutions by enabling only basic variables relevant to the agricultural activity of each 

farm, assuming that the influence of external factors is equal for all farms. This can 

be considered advantageous in cases where there is lack of data regarding the 

climatic, spatial, or agricultural data of a region -which is often the case; but the 

embodiment of such data could lead to more accurate results.  

The second one stands on the fact that farmers can learn from their colleagues 

by the example-demonstration method and not by a theoretical optimum value. In 

other words, best performers of a region can act as the best-case examples and can 

contribute to the evolution of agriculture in local systems. Cristofari et al. (2018), 
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Kalule et al. (2019) and Ranjan et al. (2019) agree that farmers can change their 

practices or the way that perceive a situation, when these practices are implemented 

by someone in their region.  

This technique can find application through the Living Labs approach, a user-

centered ecosystem that aims to provide solutions for a common problem among all 

involved stakeholders. More precisely, the combination of DEA application and 

Living Labs can be used in order to optimize a given production process, taking into 

account the perspectives of multiple actors such as organizations, public authorities 

or entrepreneurs. This process can provide methodological benefits for DEA as well, 

based on the evaluation of suggested solutions in practice.  

Identification of regional disparities can be also achieved by using DEA, 

comparing the efficiency scores among regions, and assessing the additional inputs 

used. The projection of the acquired results in a geospatial information system would 

lead to a clearer overview for agricultural experts and policy makers. Chapter 4 

contains all the above-mentioned principles referring to environmental inclusion, data 

availability, identification of best performers and differences on both national and 

local level when performing DEA. However, due to the increased complexity of the 

involved factors in agricultural production, a multi-year assessment is preferred. 

Monitoring changes of agricultural performance for an extended time period 

can be achieved with the use of Window DEA, by identifying efficiency differences 

among farms or agricultural sectors. A proposed methodological approach for the 

assessment of the impact of CAP on technological change has been presented in 

Chapter 5. This could be further developed during the upcoming years, where 

multiple objectives, being introduced from SDGs’ principles, could be embodied in 

the overall optimisation process. In Chapter 5 it was pointed out that technological 

change is evident within seven years. Using the same technique, the subsequent 

impact of this CAP on the EU agricultural sectors can be assessed and potential 

differences between the two periods (before and after) of the last CAP reform can be 

highlighted.  

To a further extent, the combination of all chapters highlights the need of a 

multi-year assessment, where environmental and societal variables will be 

considered, apart from the solely economic ones, in order for the EU to reach its goals 

for achieving sustainability until 2050. Preliminary results show that this combination 

can lead to the creation of a multi-objective tool that can be used in multiple 
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application levels. For instance, this tool could be used from farmers to check their 

performance and to be exemplified by their colleagues of the same region, or 

agricultural experts that could provide tailored made solutions, considering all 

sustainability aspects. Policy makers is another potential target group that could have 

a clearer overview, and thus a more detailed and accurate design capability. 

Furthermore, as the analysis of GD.NET dataset indicated, even in cases where 

there is a close monitoring system, there is still place of improvement. Particularly, it 

was prominent that in each country there was at least 10% of efficient farmers that 

can act as good examples for the other durum wheat growers of the region. However, 

the key-points of this process are that a) durum wheat farmers can further ameliorate 

their performance by reducing the amount of the resources that they use, being guided 

by DEA results and b) by combining Window DEA, agricultural managers of Barilla 

company have the chance to monitor durum wheat cultivation in a longer time period 

than one cultivation year, providing more accurate guidance to the farmers. This leads 

to the creation of a new product that serves all three sustainability aspects. Relative 

information about the holistic strategy of the Barilla company can be displayed on the 

products packaging, to gain consumers attention.  

Considering the above-mentioned points this thesis achieved to provide new 

methodological approaches that can support a holistic assessment (economic, 

environmental, and social) of the new CAP, either on an annual or in a multiyear 

context. Even though there was a need to reduce the inputs used in the agricultural 

sector in previous years, both COVID-19 pandemic and the Russian-Ukrainian war 

have disrupted both production and distribution of agricultural products, setting as a 

priority the increased efficiency of resources used. Current structures that provide 

data regarding the agricultural activity should be amplified, with a bottom-up 

approach, meaning that focus should be given on acquiring farm specific data that 

will permit a fairer assessment for region and countries. In this way, policy makers 

will have more accurate data to propose agricultural policy modifications. 
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In the last part of the conclusion section, it is considered appropriate to answer  

point by point the research questions that has been set in the Overall contribution 

section. 

• What are the main methodological gaps when implementing DEA in the 

agricultural sector considering sustainability? 

Although the number of publications, the last decade has been increased (Figure 

1.6), 78% of the studies are using the conventional DEA models (Figure 2.6). This 

highlights the need for implementation of more complex methodologies that are 

taking into consideration, time-series data, structural characteristics of the 

agricultural activity or handling uncertainty. Moreover, the social aspect is 

underrepresented since the overall contribution of papers, that have been retrieved 

with the keywords. DEA, sustainability and agriculture, are considering all 3 

sustainability dimensions in only 24 papers out of 120 (Figure 2.9). This is the reason 

why new methodological approaches that can incorporate social variables into the 

overall optimisation process are needed. Furthermore, DEA is mostly combined with 

linear regression models, while researchers have combined with life-cycle assessment 

methodology underlying the need for the combination of DEA with geospatial 

information systems to acquire more accurate results.  

 

• Is the current infrastructure enough to support decision making on a 

national and local level? 

The enactment of SDGs from the UN in 2015 has been largely influential towards 

the main principles that have been adopted through the 10 objectives of the current 

CAP  2023-2027. Besides the fact that Eurostat was providing summarised 

information about multiple production factors per country (production, cultivated 

land, fertilisers use, labour etc.), it has recently added indicators about European 

countries performance regarding SDGs. This underlines the significance that the 

EC is giving priority to other dimensions related to the agricultural activity like 

the living standards of people in rural areas, young farmers support as well as the 

increase environmental protection standards. However, there is still lack of data 

regarding the activities that are performed in farm level, leading to less accurate 

data when it comes to national level. For this reason, the new CAP is subsidising 

precision agriculture practices to collect all the appropriate information from each 

country in farm level. By this means all the involved stakeholders (farmers, 
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agricultural managers, enterprises, and policymakers) will have the chance to 

better organise their activities and active higher performance. That was the main 

reason why in this PhD thesis an extended analysis of an ADSS was embodied a) 

to highlight the fact that the accurate data collection is leading to handful results 

and b) to showcase how a modern agricultural system including field sensors data, 

agricultural experts guidance as well as an additional step of analysis in the end 

of cultivation year should operate. 

 

• Which are the methodologies that can be combined with DEA, so as to 

provide sufficient indicators for CAP 2023-2027 performance? 

Both the introduction section and the systematic literature review process have 

indicated that DEA can be combined with several methodologies, such as linear 

regression, life-cycle assessment, sensitivity analysis, as well as the creation of 

index numbers, similar to the tool of the SAFA (Figure 1.3). However, these 

methodologies can be applied prior or after the DEA implementation stage, 

meaning that the researcher cannot acquire an overall benchmarking by including 

ordinal values in the optimisation process. Additionally, if the ordinal variables 

are not included in the benchmarking process, there is no clue about the final target 

values and the final ranking of the involved DMUs. This is the contribution of the 

DEA and TOPSIS combination, where ordinal values representing either the 

social aspect, or other variables that are difficult to be measured (e.g. quality of 

spraying, quality of tillage, hazardous level of agrochemicals used etc.) can be 

considered from the early beginning in the optimisation process. In this way, this 

combination can be implemented to assess the performance of all three 

dimensions of the current CAP 2023-2027, as well as to indicate the points that 

should be further ameliorated. 

 

• What was the long-term effect of the CAP implementation regarding the 

inputs’ use efficiency of the EU members? 

CAP has been set into action from 1962, and it is one of the most significant 

frameworks for the EU region. Several CAP revisions have been made to ensure 

the economic development and the environmental protection of the the EU 

countries. Although the EC has made a series of changes to balance regional 

disparities, it is still evident that there are efficiency differences among the 
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different EU agricultural sectors, operating under the same policy. Window DEA 

implementation is considered as an appropriate methodology to analyse time-

series data for assessing efficiency changes within a certain time-period. 

Technological influence seems to be crucial for the agricultural sector. The 

sensitivity analysis highlighted the differences in ranking when different window 

widths are selected, indicating the influence of technology at shorter periods of 

time. Considering that the EU is aiming to achieve sustainability in the agricultural 

sector, meaning that additional dimensions should be evaluated, Window DEA 

and TOPSIS combination has a great potential for providing further insights in 

this holistic assessment. 

 

6.3. Future guidelines 

In general, the greatest peculiarities of agricultural operational research, in 

comparison with other branches of operational research, are the variability of 

involved factors and uncertainty handling (Anderies et al., 2013; Mardani Najafabadi 

& Taki, 2020; Varas et al., 2021). In other words, a farm operates under the influence 

of numerous exogenous factors that have significant impact on the quantity and 

quality of the final product. All these impacts are difficult to be accurately measured 

and embodied in a DEA model, thus it is appropriate to be considered under 

confidence intervals.  

Moreover, it should be stated that as Chapter 2 concludes, there is a necessity 

for the implementation of more complex methodologies. Apart from the ones 

mentioned in the conclusion section of Chapter 2 (Network DEA, Window DEA, 

DEA and AI combination), another approach, that is less explored in agriculture, is 

the parallel hierarchical structures where the whole production procedure is set into 

the benchmarking process rather than a single inputs-outputs approach. Even though 

this methodology has been implemented in other fields like banks or energy sector 

(Azadeh et al., 2014; S. K. Lee et al., 2013; J. Liu et al., 2020) it has not been applied 

in agriculture yet. For instance, the structure of EU agricultural sectors can be 

assessed taking into consideration that each agricultural sector has a defined structure, 

like crop production, livestock production and mixed systems (Figure 6.1). In other 

words, this analysis will not only lead to efficiency estimations of each country (Level 

1) but also to the assessment of their subdivisions as well (Level 2-Level 4). In this 
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way, the excess use of resources can be identified in each level, while providing 

feasible solutions for the amelioration of inefficient points. This methodology could 

be used in the policy making process for an improved resources allocation and the 

provision of specific guidelines to each country. Similar approaches can be used on 

farms that are dedicated to the production of more than one product, to assess the 

profitability or the environmental impact of the production process of each product.  

Ideally data flow in the EU will be similar to the one proposed in Figure 6.1, 

from farm-level, to local communities, to national level, and finally to the hands of 

data analysts and policy-makers on a European level. However, adaptation of new 

agricultural technology related to the recording of agronomical and weather data on 

a farm-level, farmers’ training, data storage facilities and lack of appropriate policy-

framework, are some of the restrictions which has not been managed yet. Approaches 

that use machine learning algorithms, in combination with DEA will further decrease 

the computation time of efficiency scores with increased accuracy (up to 94%) (N. 

Zhu et al., 2021). 

Figure 6.1: Graphical example of hierarchical structure in the agricultural sector 
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Last but not least, as mentioned in the beginning of this chapter, variability 

and uncertainty handling can only be confronted with the existence of appropriate 

datasets for multiple years. Specialized ADSS for each cultivation and the upcoming 

agriculture 4.0 will contribute on this direction. It is prominent that FAO has included 

the term “efficiency” in its recently published report for transitioning to a sustainable 

agriculture, meaning that agricultural operational research field has a great potential 

for the near future (Image 6.1). 

 

Image 6.1: 10 Elements of Agroecology, Source: FAO 
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6.4. Contribution to SDGs 

As a final point of this doctoral thesis, a brief report on its contribution to the 

SDGs should be provided, so that it is in full compliance with the global guidelines 

for achieving sustainability until 2050.  

 

 

Ιmprove water quality by reducing pollution, eliminating dumping, 

and minimizing release of hazardous chemicals and materials. 

• Minimizing the excess use of agrochemicals 

• Minimizing leaching 

 

Ensure access to affordable, reliable, sustainable and modern 

energy for all 

• Minimizing energy use in agricultural systems 

• Increasing energy efficiency  

• Promote sustainable production of energy 

 

Support positive economic, social and environmental links 

between urban, peri-urban and rural areas by strengthening 

national and regional development planning 

• Ensure income for people in rural areas  

• Reduce additional expenses 

 

     Ensure sustainable consumption and production patterns 

 

• Efficient use of natural resources 

• Reducing waste of the different production processes 

• Support companies for close monitoring on their sustainable indicators 

 

13.1 Strengthen resilience 

13.2 Integrate climate change measures into national policies, 

strategies, and planning  

• Proposing resilience strategies to local municipalities  

• Promote SDGs implementation in local and national level 

 

Target 6.3 

Target 12 

Target 7 

Target 11a 

Target 13.1 & 
Target 13.2 
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Ensure the conservation, restoration and sustainable use of 

terrestrial and inland freshwater ecosystems and their services 

• Proper land use management 

Target 15.1 
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Appendix 

Table A.2.1: All the included references of the reviewed papers 

Authors 
Ap. 

Lvl 
Inputs Outputs 

Application 

System 

(Skevas & Serra, 

2016) 
L 

Capital, Labour, Land, Other costs, 

Pesticides, Fertilizers 
Production  (Euro) Arable farms 

(Pang et al., 2016) N 
Agricultural Machinery, 

Agricultural film input, Fertilizers 
Added Value 

Agricultural 

sector 

(Tian et al., 2016) N 

Agricultural film input, Agro-

chemicals, Diesel, Electricity, 

Irrigation, Labour, Organic 

Fertilizers 

Production Grapes 

(Baležentis et al., 

2016) 
N 

Energy, Labour, Real Fixed Capital 

Stock 
Added Value 

Agricultural 

sector 

(Molinos-Senante et 

al., 2016) 
L 

Energy, Labour, Pesticides, 

Fertilizers 
Production 

Agricultural 

sector 

(Ghali et al., 2016) L 
Capital, Intermediate consumption, 

Labour, Land 

Crop output, 

Livestock output, 

Other Output 

Agricultural 

sector 

(C. N. Wang et al., 

2016) 
L Equity, Liabilities, total assets 

Gross Profit, Net 

Revenue 
Agroforestry 

(Martino et al., 

2016) 
L Capital, Labour, Land, Other costs Gross Product 

Agricultural 

sector 

(Vlontzos et al., 

2017) 
I 

Agro-chemicals, Capital, Energy, 

Labour, Land 
Production  (Euro) 

Agricultural 

sector 

(C. Ren et al., 2017) L 
External hidden flow, Import water 

resources, Local water resources 

Local waste 

output, Local 

waste system 

Agricultural 

sector 

(Grados et al., 2017) P 
Agro-chemicals, Labour, 

Machinery, Seeds, Fertilizers 
Production Potato 

(Raheli et al., 2017) L 

Agro-chemicals, Diesel, Irrigation, 

Labour, Machinery, Manure, Seeds, 

Fertilizers 

Yield Tomato 

(Godoy-Durán et 

al., 2017) 
L Economic, Environmental, Social Yield Horticulture 
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(Esfahani et al., 

2017) 
L 

Electricity, Land, Manure, 

Fertilizers 
Yield Corn 

(Beltrán-Esteve et 

al., 2017) 
L Income 

Ecotoxicity, 

Eutrophication 

potential, Global 

Warming 

Potential, Human 

toxicity, Lentil, 

Ozone 

Citrus 

(Rebolledo-Leiva 

et al., 2017) 
P 

Energy, Land, Machinery, 

Pesticides, Raw materials, 

Fertilizers 

Packaging 

residues, 

Production 

Blueberry 

(P. Lee & Park, 

2017) 
L 

Agro-chemicals, Diesel, Electricity, 

Irrigation, Labour, Machinery, 

Seed, Fertilizers 

Production, straw Soybeans 

(Y. Wang et al., 

2017) 
P 

Agro-chemicals, Irrigation, 

Machinery, agricultural population, 

blue water, green water, irrigated 

area 

Production, 

Production  (Euro) 

Agricultural 

sector 

(Hassen et al., 2017) L 
Agro-chemicals, Ferilizers, Labour, 

Land, Machinery, Seeds 
Production Wheat 

(Martinho, 2017) I 
Agro-chemicals, Labour, Labour 

wages, Fertilizers, total assets 
Total Output Countries 

(Khanjarpanah et 

al., 2017) 
P 

Annual percipitation, Human 

Development Index, Irrigation, 

Land, Population, percipitation, 

temprature, unemployment index 

Production Switchgrass 

(W Kamal & 

Ilmas, 2017) 
N 

Feed, Labour, Medication, Number 

of animals, Utilities 
Production  (Euro) Broiler 

(Varela-Candamio 

et al., 2018) 
P 

Capital, Labour, Land, Shadow 

price 

Production, 

Subsidies 

Agricultural 

sector 

(Rybaczewska-

Błazejowska & 

Gierulski, 2018) 

I 

Agricultural Land Occupation, 

Climate Change, Freshwater 

Eutrophication, Freshwater 

ecotoxicity, Human toxicity, 

Ionizing radiation, Marine 

Ecotoxicity, Marine Eutrophication, 

Ozone depletion, Terrestial 

acidification, Urban Land 

Occupation, fossil depletion, metal 

depletion, natural land 

transformation, photochemical 

oxidant formation, terrestrial  

ecotoxicity, water depletion 

Gross ouput value 
Agricultural 

sector 
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(Sherzod et al., 

2018) 
L Labour, Seeds, Fertilizers Production Wheat 

(He & Zhang, 

2018) 
L 

Quality management system, 

Quality improvement plan, Relative 

price level per employee, Training 

time, Equipment Environmental 

amelioration Cost input rate of 

research funding 

Product 

qualification rate, 

Rate of return on 

total assets, Quick 

ratio, Profit 

growth rateon-

time delivery, 

Rate order 

completion Rate 

enterprise 

reputation, 

Information level, 

Strategic objective 

compatibility, 

carbon dioxide 

emission, “three 

wastes” recycling 

rate 

Agricultural 

sector 

(Supply Chain) 

(Babazadeh et al., 

2018) 
N 

Annual percipitation, Cost of 

cultivation, Human Development 

Index, Land, Number of oil 

extraction, Population, Sunlight, 

Water resources 

Production 
Rapeseed, 

Soybeans 

(Dong et al., 2018) P Area, Labour, Machinery, Nitrogen 
Added Value, 

CO2 emissions 

Agricultural 

sector 

Mutyasira 2018 L Farm Sustainability Index 

Economic, 

Environmental, 

Social variables 

Agricultural 

sector 

(Izadikhah & 

Khoshroo, 2018) 
L 

Labour, Machinery, Seed, 

Fertilizers 
Total Production Maize 

(Mu et al., 2018) L 
Land, Livestock units, Milk costs, 

fat content, protein content 

Energy use, Gross 

Margin, Land use, 

N Surplus, P 

Surplus 

Dairy farms 

(Frangu et al., 2018) P Labour, Land, insecticides Production 
Greenhouse 

Vegetables 

(Xing et al., 2018) N 

CO2 Emissions, Energy Usage, 

Exhaust emission, Hazardous 

Waste Generation, Waste water 

discharge, Water withdrawl 

Economic output 

Multiple 

Production 

Sectors 

(Abbas et al., 2018) L 

Chemicals, Diesel, Electricity, 

Human Labour, Irrigation, 

Machinery, Seed, Fertilizers 

Yield Wheat 

Institutional Repository - Library & Information Centre - University of Thessaly
30/08/2023 04:06:03 EEST - 137.108.70.14



 

206 

 

(Masuda, 2019) L 

Agro-chemicals, Buildings, 

Electricity, Land, Machinery, 

Production costs, Seeds, Fertilizers 

Yield, Yield 

(Straw) 
Rice 

(Rodrigues et al., 

2019) 
P Economic, Environmental, Social Production  (Euro) Fisheries 

(Sintori et al., 2019) L 
Feed, Labour, Land, variable capital 

cost 
Meat, Milk Sheep Farms 

(Dania et al., 2019) T.M Economic, Environmental, Social 
System 

Requirments 

Agricultural 

sector 

(Supply Chain) 

(Saputri et al., 2019) L 
Capital, Energy, Labour, Material 

and Service, Services 
Production 

GMO & non-

GMO Products 

(Tan et al., 2019) N 

Equity financing cost, Interest 

expenses, Investment in innovation, 

Main business cost, Total debt 

Economic value 

added, Return on 

asset ratio, 

Weighted average 

return 

Agricultural 

businesses 

(Liang et al., 2019) P 

Agro-chemicals, Labour, Land, 

Manure, Material and Service, 

Seeds, Fertilizers 

Gross ouput value 
Greenhouse 

Vegetables 

(Bournaris et al., 

2019) 
P 

Agro-chemicals, Area, Labour, 

Other costs, Seeds, Fertilizers 
Gross Returns 

Greenhouse 

Vegetables 

(Elhag & Boteva, 

2019) 
L 

Agro-chemicals, Diesel, Electricity, 

Irrigation, Labour, Seeds, 

Fertilizers 

Yield 
Greenhouse 

Vegetables 

(Grados & 

Schrevens, 2019) 
L 

Labour, Machiner, Ferilizers, 

Pesticides, Fungicides 
Production Potato 

(Sánchez-Zamora 

& Gallardo-Cobos, 

2019) 

P Economic, Environmental, Social 
Composite 

indicator 

Agricultural 

sector 

(Ilahi et al., 2019) P 

Chemicals, Diesel, Electricity, 

Labour, Machinery, Seeds, Water, 

Fertilizers 

Yield (Wheat 

grain) 
Wheat 

(Ozden & Ozer, 

2019) 
N 

Capital, Labour, Land, Pesticides, 

Population, cattle stock, Fertilizers 
Production  (Euro) 

Agricultural 

sector 

(Haq & Boz, 2019) L Labour, Fertilizers Production Tea 

(Y. Yang et al., 

2019) 
L 

2 models, Ferilizers, Fertilizer per 

Ha, Labour, Land, Machinery, 

Pesticide per Ha, Pesticides, Seeds 

Crop output Crop Farms 
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(L. Liu & Sun, 

2019) 
L Land, Other costs, Fertilizers 

Bamboo roots, 

Bamboo wood, 

Production, 

Production  (Euro) 

Timber 

(M. Watto & 

Mugera, 2019) 
L 

Agro-chemicals, Farm size, 

Irrigation, Labour, Seed, Fertilizers 
Yield Wheat 

(Gatimbu et al., 

2020) 
L 

Capital, Energy, Labour, Land, 

Material and Service 

Only undesirable 

outputs 
Tea 

(Gamboa et al., 

2020) 
L 

Labour, Machinery, Pesticides, 

Fertilizers 
Production Quinoa 

(Coluccia et al., 

2020) 
N 

Gross Capital, Irrigation, Labour, 

Land, Fertilizers 
Production 

Agricultural 

sector 

(Ul Haq et al., 2020) L Labour, Fertilizers Production Tea 

(Pereira Domingues 

Martinho, 2020) 
I Energy costs, Fixed assets, Labour Total Output 

Agricultural 

sector 

(Mwambo et al., 

2020) 
L 

Agricultural Services, 

Evapotranspiration, Human Labour, 

Seeds, animal Labour, Fertilizers, 

topsoil loss 

Yield Wheat 

(Ayouba & 

Vigeant, 2020) 
L 

Capital, Labour, Land, Pesticides, 

Raw materials 
Production Wheat 

(Bartova & 

Fandel, 2020) 
L Energy, Fixed assets, Labour, Land Production Wheat 

(Ashraf et al., 2020) L 
Agro-chemicals, Diesel, Electricity, 

Irrigation, Labour, Machinery, Seed 

Yield (Cereals), 

Yield (Straw) 
Wheat 

(Basavalingaiah et 

al., 2020) 
L 

Agro-chemicals, Diesel, Energy, 

Farmyard manure, Irrigation, 

Labour, Machinery, Seeds, 

Fertilizers 

Grain Yield, Yield 

(Straw) 
Rice 

(Nguyen et al., 

2020) 
L 

Crop production cost, Labour, 

Land, Other costs, Pesticides 
Production Orange 

(García-Cornejo et 

al., 2020) 
L 

Depreciation expenses, Labour, 

fixed capital cost, variable capital 

cost 

Production  (Euro) Dairy farms 

(Nguyen et al., 

2020) 
N 

Land, Family Labour, Outsourced 

Labour cost, Crop Production cost, 

Other expenditures 

Production Oranges 
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(Grausser et al., 

2021) 
N 

Aquatic ecotoxixity, Cumulative 

energy demand, Global warming 

potential, Normalized 

eutrophication 

FNI, HNVf, net 

food production-

protein 

Agricultural 

sector 

(Lucas et al., 2021) I 

Acidification, Eutrophication, Fresh 

water withdrawls, GHG emissions, 

Land Use 

Calories, 

Qualifying index 
food sector 

(Domagała, 2021) I Energy, Labour, Land, Fertilizers 
Production, net 

value added 

Agricultural 

sector 

(Papadopoulou et 

al., 2021) 
L 

Labour, Number of animals, fixed 

capital cost, variable capital cost 
Net income 

Small ruminant 

farms 

(Kord et al., 2021) P Area, Irrigation, Labour 
Production, 

Production  (Euro) 

Agricultural 

sector 

(Khoshroo et al., 

2021) 
N 

Biocides, Electricity, Energy, 

Machinery, Fertilizers 
Production  (Euro) Tomato 

(G. Singh et al., 

2021) 
L 

Agro-chemicals, Biocides, 

Electricity, Fuel, Irrigation, Labour, 

Machinery, Seeds 

Grain Yield Wheat 

(Cecchini et al., 

2021) 
L Area, Feed, Labour, Livestock units Meat, wool Sheep Farms 

(Debbarma et al., 

2021) 
L Capital, Energy, Labour Production  (Euro) 

Agricultural 

sector 

(P. Singh, Singh, 

Sodhi, & Benbi, 

2021) 

L 
Biocides, Energy, Machinery, Seed, 

Fertilizers 

Production, 

Production  (Euro) 

Rice, Wheat, 

rotation 

(M. Zhang et al., 

2021) 
I 

Ferilizers, Irrigation, Land, 

Machinery 

Agricultural 

Output, CO2 

emissions 

Agricultural 

sector 

(Streimikis et al., 

2021) 
I 

Energy consumption, Labour, Land, 

fixed consumption 

Purchasing Power 

Parity 

Agricultural 

sector 

(Payandeh et al., 

2021) 
L 

Agro-chemicals, Diesel fuel, 

Human Labour, Machinery, Oil, 

Seeds, Fertilizers 

Grain Yield, Yield 

(Straw) 
barley 

(Güney, 2021) L 
Fuel, Labour, Machinery, 

Pesticides, Seed, Fertilizers 
Production Wheat 

(Kyrgiakos et al., 

2021) 
L 

Energy, Irrigation, Labour, Land, 

PNPs, Seeds 

Production, 

Production  

(Euro), Social 

characteristics 

Cotton 
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(Basavalingaiah et 

al., 2022) 
L 

Agro-chemicals, Diesel, Ferilizers, 

Labour, Lime, Machinery, Manure 
Coffee, Yield Coffee 

(Pan et al., 2021) N 
Energy, Land, Technolgy, funds, 

resources 
Production 

Agricultural 

sector 

(Lamkowsky et al., 

2021) 
L 

Capital, Feed, Labour, Land, 

Machinery, Number of animals, 

Pesticides, Seeds, Veterinary costs, 

Fertilizers 

Dairy Sales, Other 

Sales 
Dairy farms 

(P. Singh, Singh, 

Sodhi, & Sharma, 

2021) 

L 
Biocides, Diesel, Electricity, Fuel, 

Irrigation, Labour, Seed, Fertilizers 
Production Wheat 

(Banaś et al., 2021) L 

Area, Labour, Land, Logging costs, 

Other costs, Protection costs, 

Silviculture, Standing volume 

Production Timber 

(Martinsson & 

Hansson, 2021) 
N Energy expenditures 

Contribution to 

global warming 
Dairy farms 

(Y. Zhang et al., 

2021) 
I 

CO2 Emissions, Land, Yield, food 

loses, protein supply 

Agricultural 

added value, 

import 

dependency ratio, 

irrigated area 

Agricultural 

sector 

(Nirmal Ravi 

Kumar & Babu, 

2021) 

L Manure, Seeds, gypsum Production Groundnut 

(Mwambo et al., 

2021) 
L 

Agricultural Services, 

Evapotranspiration, Human Labour, 

Seeds, animal Labour, Fertilizers, 

topsoil loss 

Yield Maize 

(J. Li et al., 2021) N 
Labour, Land, Machinery, 

Fertilizers 

Agricultural 

added value 

Agricultural 

sector 

(Bagheri, 2021) I Electricity, Labour 
CO2 emissions, 

GDP 

Agricultural 

sector 

(Seo & Umeda, 

2021) 
L Pest control cost 

Gross farm 

income, Surplus 

of working hours 

Rice 

(Tang et al., 2022) N 

Irrigation, Labour, Land, 

Machinery, Pesticides, Plastic film, 

Fertilizers 

Economic output, 

Environmental 

output, Social 

output 

Agricultural 

sector 

(P. Xu et al., 2022) N 
Agro-chemicals, Area, Electricity, 

Irrigation, Labour, Machinery 
Output value 

Agricultural 

sector 
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(Guth et al., 2022) N Capital, Labour, Land Production 
Agricultural 

sector 

(Bernard et al., 

2022) 
I Capital, Labour, Land 

Agricultural 

added value 

Agricultural 

sector 

(Ramos de Oliveira 

et al., 2022) 
N 

Diesel, Fleet condition, Fuel 

consumption, Gini index, 

Production costs, Warehouse 

capacity, photochemical oxidant 

formation, transportation matrix 

GHG emissions, 

Wheat, logistic 

cost 

Logistics 

(Streimikis et al., 

2022) 
I Capital, Energy, Labour, Land Net income 

Agricultural 

sector 

(S. Wang et al., 

2022) 
P 

Labour, Land, Blue Footprint, 

Green Footprint 
Yield 

Agricultural 

sector 

(Sharma, 2022) I Land, Seeds, Fertilizers Production Rice 

(Yan et al., 2022) L 
Agro-chemicals, Irrigation, Labour, 

Land, Machinery 
Production Grain 

(Kord et al., 2022) N Irrigation, Labour, Land Net income, Yield 
Agricultural 

sector 

(Ziętek-

Kwaśniewska et al., 

2022) 

P 
Depreciation expenses, Electricity, 

Labour, Other costs, Raw materials 
Net sales revenue Dairy farms 

(Chaubey et al., 

2022) 
P 

Area, GDP, Labour, Population, 

percipitation 
Production 

Agricultural 

sector 

(W. Li et al., 2022) N Capital, Labour, Land Net income 
Agricultural 

farms 

(L. Gao et al., 2022) N 

FamilyLabor, Hired Labour, 

Irrigation, Machinery, Manure, 

Pesticides, Seeds, Fertilizers 

Yield Rice 

(Chang et al., 2022) N 

Hired Labour, Irrigation, 

Machinery, Pesticides, Seed, Seeds, 

Fertilizers 

Production 
Agricultural 

sector 

(Ramezani et al., 

2022) 
L 

Agro-chemicals, Irrigation, Labour, 

Land, Manure, Nitrogen balance 
Yield Saffron 

(Mohammadi et al., 

2022) 
L 

Agro-chemicals, Biosides, Diesel, 

Electricity, Irrigation, Labour, 

Machinery, Seeds, Urea 

Yield Wheat 

(Abbas et al., 2022) L Biocides, Diesel, Irrigation, Labour, 

Machinery, Manure, Pesticide risk, 
Yield Cotton 
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Pesticides, Phosphorus balance, 

Seed, Fertilizers 

(Turner et al., 2022) L Feed, pullets Eggs egg farms 

(L. Yang et al., 

2022) 
P Diesel, Ferilizers, Pesticides Income, Yield Sugarcane 

(Khan & Ali, 2022) N Land Yield Clover 

(Nyamuhirwa et al., 

2022) 
L Capital, Labour Added Value 

Agricultural 

sector 

(Sui et al., 2022) P Capital, Labour, Land Yield Garlic 

(Wu et al., 2022) N 

Agricultural film input, Expected 

output, Irrigation, Labour, Land, 

Machinery, Pesticides, Fertilizers 

Carbon emissions, 

Net income, Non 

point sources, 

Output value 

Agricultural 

sector 

(Nodin et al., 2022) P 
Agro-chemicals, Capital, Labour, 

Land 
Yield Rice 

(Dania et al., 2022) L Collabotation Factors 

Economic, 

Environmental, 

Social 

Agricultural 

sector 

(Supply chain) 

(Lu et al., 2022) N (3 Stage NDEA model with circular flows) 
Agricultural 

sector 

*Applicability level: Local (L), Province (P), National (N), International (I), Theoretical Model (T.M) 
** Output section does not include undesirable outputs 

 

Table A4.1: Extended descriptive statistics of the assessed sample 

Characteristic Overall, N = 5631 G1, N = 2021 G2, N = 331 I1, N = 2291 I2, N = 991 

Seeds  

(kg/t of final 

product) 

15.00,  

46.35, 

41.50, 

157.70, 

(19.70), 

[32.50-55.90] 

27.00,  

59.30, 

56.65, 

127.50, 

(18.38), 

[45.42-67.97] 

37.20,  

44.30, 

44.50, 

56.50, 

(3.77), 

[42.80-46.90] 

15.00,  

34.71, 

31.40, 

157.70, 

(16.18), 

[27.20-36.40] 

23.30,  

47.52, 

43.30, 

123.90, 

(15.95), 

[38.35-51.55] 

Fertilizers  

(kg/t of final 

product) 

26.50,  

85.91, 

78.90, 

272.50, 

(36.37), 

[59.90-101.40] 

37.70,  

97.00, 

94.00, 

218.30, 

(35.96), 

[67.12-118.83] 

76.90,  

89.21, 

87.80, 

110.60, 

(7.24), 

[86.20-92.70] 

26.50,  

69.85, 

64.40, 

266.10, 

(31.37), 

[53.10-78.00] 

38.20,  

99.35, 

89.70, 

272.50, 

(39.78), 

[73.95-108.75] 
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Characteristic Overall, N = 5631 G1, N = 2021 G2, N = 331 I1, N = 2291 I2, N = 991 

Plant Protection 

Products  

(kg/t of final 

product) 

0.02,  

0.48, 

0.39, 

2.41, 

(0.39), 

[0.17-0.65] 

0.02,  

0.23, 

0.18, 

0.81, 

(0.15), 

[0.11-0.33] 

0.08,  

0.10, 

0.10, 

0.19, 

(0.02), 

[0.09-0.10] 

0.02,  

0.62, 

0.51, 

2.41, 

(0.39), 

[0.38-0.74] 

0.14,  

0.79, 

0.77, 

2.33, 

(0.37), 

[0.57-0.97] 

Diesel 

(L/t of final 

product) 

 

10.00,  

25.89, 

23.00, 

121.00, 

(10.73), 

[20.00-29.00] 

12.00,  

32.52, 

31.00, 

73.00, 

(9.73), 

[25.00-37.75] 

13.00,  

21.55, 

23.00, 

29.00, 

(4.53), 

[21.00-25.00] 

14.00,  

23.30, 

21.00, 

121.00, 

(10.85), 

[19.00-24.00] 

10.00,  

19.83, 

19.00, 

52.00, 

(5.91), 

[17.00-21.00] 

Labour 

(€/t of final 

product) 

7.93,  

20.02, 

18.00, 

92.66, 

(8.83), 

[14.08-23.00] 

8.83,  

23.83, 

22.16, 

62.82, 

(8.20), 

[17.70-28.06] 

12.13,  

17.65, 

17.97, 

22.77, 

(2.83), 

[15.39-19.83] 

7.93,  

16.24, 

14.26, 

92.66, 

(8.56), 

[12.26-16.93] 

9.29,  

21.78, 

20.18, 

57.61, 

(8.26), 

[16.33-24.90] 

Yield 

(t of final 

product/ha) 

1.43,  

5.43, 

5.24, 

9.64, 

(1.83), 

[3.92-6.96] 

1.78,  

4.00, 

3.84, 

7.89, 

(1.13), 

[3.16-4.71] 

4.07,  

4.97, 

5.11, 

5.38, 

(0.29), 

[4.66-5.14] 

1.43,  

6.90, 

7.07, 

9.64, 

(1.52), 

[6.20-7.89] 

2.02,  

5.10, 

5.25, 

8.20, 

(1.32), 

[4.31-5.73] 

Area 

(ha) 

0.20,  

9.25, 

5.00, 

142.00, 

(13.25), 

[3.00-10.00] 

0.50,  

7.13, 

4.59, 

62.20, 

(8.88), 

[2.86-7.50] 

0.20,  

3.91, 

2.30, 

14.00, 

(4.03), 

[1.00-5.00] 

0.38,  

6.69, 

5.00, 

48.33, 

(6.15), 

[3.00-8.00] 

2.00,  

21.31, 

13.00, 

142.00, 

(23.90), 

[7.00-25.50] 

Carbon 

Footprint  

(CO2eq/t of final 

product)  

 

0.18,  

0.42, 

0.39, 

1.32, 

0.21,  

0.46, 

0.43, 

0.95, 

0.31,  

0.47, 

0.39, 

0.77, 

0.18,  

0.36, 

0.34, 

1.32, 

0.24,  

0.48, 

0.44, 

1.17, 
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Characteristic Overall, N = 5631 G1, N = 2021 G2, N = 331 I1, N = 2291 I2, N = 991 

(0.15), 

[0.33-0.48] 

(0.13), 

[0.37-0.52] 

(0.16), 

[0.35-0.67] 

(0.14), 

[0.29-0.39] 

(0.16), 

[0.39-0.51] 

Water Footprint  

(m3/t of final 

product) 

1,036,  

1,585, 

1,394, 

3,113, 

(457.52), 

[1,201-1,950] 

1,556,  

2,089, 

2,099, 

3,113, 

(307.10), 

[1,826-2,271] 

1,502,  

1,678, 

1,539, 

2,051, 

(204.76), 

[1,517-1,882] 

1,036,  

1,181, 

1,169, 

1,738, 

(94.62), 

[1,110-1,229] 

1,235,  

1,460, 

1,356, 

2,279, 

(219.58), 

[1,317-1,563] 

Ecological 

Footprint 

(Global ha/t of 

final product) 

0.29,  

0.58, 

0.53, 

1.94, 

(0.24), 

[0.40-0.70] 

0.35,  

0.74, 

0.72, 

1.51, 

(0.22), 

[0.58-0.86] 

0.50,  

0.56, 

0.56, 

0.67, 

(0.03), 

[0.54-0.58] 

0.29,  

0.44, 

0.39, 

1.94, 

(0.19), 

[0.35-0.45] 

0.34,  

0.59, 

0.53, 

1.38, 

(0.20), 

[0.49-0.63] 

1 Minimum, Mean, Median, Maximum, (SD), IQR [25%-75%] 

 

 
Figure A4.1: Seeds used per firm. 
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Figure A4.2: Fertilizers used per firm. 

 

 

 
Figure A4.3: Plant Protection Products used per firm. 
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Figure A4.4: Diesel needs per firm. 

 

 
Figure A4.5: Labour needs per firm 
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Figure A4.6: Yield per firm 
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Figure A4.7: Water Footprint per firm 

 

 
Figure A4.8: Carbon Footprint per firm 
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Figure A4.9: Ecological Footprint per firm 
 

Table A.5.1: Descriptive statistics of Inputs and Outputs for reference period 2005–2022. 

Year  UAA L CC EN SPS PPP NFert PFert TO EM 

2005 Min 511 37.8 49.3 75.1 5.7 6.9 20,083 2743 272 1194 

 Max 29,588 2596 10,189 4438 1952 2742 2,346,289 300,652 39,435 77,314 

 Avg. 7182 492 2050 1077 383 377 417,244 54,076 7521 17,074 

2006 Min 491 37.4 58.2 75.4 5.7 7.1 22,610 3536 229 1193 

 Max 32,346 2527 32,345 4130 1929 2676 2,163,040 258,427 38,280 76,913 

 Avg. 7175 482.3 482.3 1019.7 396.0 368.2 411,693 51,577 7393 16,912 

2007 Min 498 32.9 67.4 74.4 7.4 10.1 24,982 3520 316 1251 

 Max 29,414 2299 29,413 4032 2005 2821 2,198,141 243,318 38,810 77,811 

 Avg. 7070 458 458 1002 404 375 415,116 52,235 7305 17,019 

2008 Min 492 31.2 77.0 76.4 10.6 13.2 25,039 4187 289 1309 

 Max 29,385 2299 10,320 4119 2076 3148 2,425,221 282,425 40,125 78,496 

 Avg. 7,060 447 2143 997 416 406 425,737 48,340 7743 16,916 

2009 Min 469 29.3 82.2 66.3 11.2 10.6 27,328 2471 299 1252 

 Max 35,178 2213 10,305 4206 1992 2997 2,098,801 163,851 41,119 77,674 

 Avg. 7258 433 2156 972 401 395 388,395 33,785 7798 16,664 

2010 Min 483 25.4 82.4 69.5 14.7 15.6 27,486 2671 275 1278 
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 Max 29,311 1914 10,270 4121 2016 2755 2,080,333 177,025 39,164 76,456 

 Avg. 6957 399 2165 1022 437 386 402,166 40,991 7611 16,488 

2011 Min 458 24.4 85.2 67.5 16.4 16.3 27,134 2680 311 1294 

 Max 28,853 1914 10,449 4141 2220 2754 2,332,390 218,428 40,235 75,763 

 Avg. 6927 389 2186 998 437 399 421,528 44,329 7844 16,507 

2012 Min 480 23.2 92.0 71.0 17.3 18.3 26,300 2955 348 1375 

 Max 29,001 1914 10,648 4014 2236 2951 2,024,929 189,633 39,632 75,656 

 Avg. 6882 387 2206 989 423 410 402,175 42,477 7448 16,435 

2013 Min 479 22.3 101.0 70.0 20.9 19.0 27,263 3129 352 1407 

 Max 28,976 1937 10,653 4247 2084 3125 2,143,821 217,184 39,185 75,170 

 Avg. 6878 383 2222 1008 430 430 422,080 46,067 7,745 16,568 

2014 Min 482 22.0 100.9 75.3 21.8 19.7 28,612 3775 375 1446 

 Max 28,930 1937 10,508 4185 2262 3222 2,190,930 206,798 43,218 77,204 

 Avg. 6890 376 2223 989 441 448 431,685 45,887 8264 16,860 

2015 Min 477 20.3 100.9 74.2 26.2 19.7 28,319 3522 451 1446 

 Max 29,115 1937 10,493 4211 2460 3235 2,208,168 187,054 41,554 76,992 

 Avg. 6912 369 2226 971 450 451 442,059 44,896 7997 16,927 

2016 Min 478 20.3 107.4 73.4 24.4 21.1 27,095 3444 323 1402 

 Max 29,089 1675 10,417 4086 2433 3308 2,221,231 191,677 37,653 75,753 

 Avg. 6903 367 2224 1010 456 454 438,584 45,836 7989 16,942 

2017 Min 481 20.3 111.0 72.9 29.5 21.5 27,084 3988 383 1443 

 Max 29,101 1675 10,352 4003 2357 3063 2,248,277 190,414 40,501 76,190 

 Avg. 6905 362 2223 1024 466 449 448,763 47,084 8144 17,080 

2018 Min 478 20.1 113.1 74.5 28.1 20.8 27,293 4062 315 1438 

 Max 29,020 1675 10,312 4082 2392 3093 2,141,553 190,597 40,967 74,774 

 Avg. 6918 355 2226 1111 475 443 435,668 47,694 8092 16,865 

2019 Min 480 18.9 127.8 73.8 26.7 19.4 28,048 3538 483 1457 

 Max 29,024 1675 10296 4050 2486 3092 2,130,800 185,252 40,637 74,573 

 Avg. 6946 347 2231 1134 477 442 418,517 47,456 8292 16,804 

2020 Min 482 18.8 122.1 73.2 25.2 17.7 27,219 3421 427 1472 

 Max 28,678 1643 10,240 4069 2511 3076 2,167,584 335,222 40,804 74,284 

 Avg. 6940 340 2235 1143 484.5 441.8 420,848 54,225 8334 16,779 

2021 Min 482 18.0 125.4 72.8 23.5 15.3 27,174 2602 439 1486 

 Max 28,556 1610 10,253 41,22 2535.1 3077 2,167,076 389,930 40,875 73,995 

 Avg. 6939 331.9 2242 1162 488.8 442.6 420,572 56,972 8414 16,755 
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2022 Min 482 17.2 128.7 49.3 21.8 12.9 27130 1783 451 1500 

 Max 28,434 1577 10,266 4417 2559 3078 2,166,569 444,639 40,947 73,707 

 Avg. 6938 323 2248 1180 493 443 42,0296 59,720 8494 16,730 

Table A.5.2: Window analysis results with different window width for the reference period 

2005–2019. 

 Win(4) Win(7) 

  Country Value Country Value 

1. Estonia 0.9999 Estonia 0.9998 

2. Netherlands 0.9999 Netherlands 0.9995 

3. Slovenia 0.9989 Slovenia 0.9944 

4. Greece 0.9934 Italy 0.9861 

5. Belgium 0.9887 Greece 0.9842 

6. France 0.9886 Belgium 0.9841 

7. Italy 0.9874 Denmark 0.9820 

8. Denmark 0.9873 France 0.9812 

9. Norway 0.9842 Norway 0.9759 

10. Romania 0.9792 Romania 0.9730 

11. Germany 0.9756 Germany 0.9641 

12. Spain 0.9736 Lithuania 0.9526 

13. Portugal 0.9723 Spain 0.9518 

14. Lithuania 0.9641 Portugal 0.9495 

15. Poland 0.9627 Poland 0.9494 

16. Bulgaria 0.9579 Bulgaria 0.9479 

17. Latvia 0.9425 Latvia 0.9171 

18. Slovakia 0.9325 Austria 0.9037 

19. Austria 0.9226 Slovakia 0.9020 

20. Croatia 0.9101 Croatia 0.8984 

21. Sweden 0.8750 Sweden 0.8562 

22. Ireland 0.7947 Czechia 0.7591 

23. Czechia 0.7847 Ireland 0.7589 

24. UK 0.7696 UK 0.7394 

25. Hungary 0.7629 Hungary 0.7295 

26. Finland 0.6551 Finland 0.6364 

 M(4) 0.9255 M(7) 0.9106 

1 M(x) is the mean value of acquired results for window width 4 or 7. 
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Table A.5.3: Window analysis results with different window width for the reference period 

2005–2022. 

 Win(3) Win(6) Win(9) 

  Country Efficiency Country Efficiency Country Efficiency 

1. Estonia 1.0000 Estonia 0.9999 Estonia 0.9998 

2. Netherlands 0.9999 Netherlands 0.9996 Netherlands 0.9993 

3. Slovenia 0.9994 Slovenia 0.9968 Slovenia 0.9948 

4. Greece 0.9969 Greece 0.9894 Greece 0.9851 

5. France 0.9925 France 0.9866 Italy 0.9806 

6. Italy 0.9914 Belgium 0.9846 Belgium 0.9799 

7. Norway 0.9912 Denmark 0.9830 France 0.9762 

8. Belgium 0.9909 Italy 0.9821 Denmark 0.9760 

9. Denmark 0.9902 Norway 0.9800 Romania 0.9737 

10. Romania 0.9857 Romania 0.9778 Norway 0.9711 

11. Spain 0.9841 Portugal 0.9645 Spain 0.9547 

12. Portugal 0.9819 Spain 0.9635 Lithuania 0.9525 

13. Lithuania 0.9793 Lithuania 0.9635 Portugal 0.9486 

14. Poland 0.9746 Poland 0.9562 Bulgaria 0.9441 

15. Bulgaria 0.9704 Bulgaria 0.9556 Poland 0.9427 

16. Latvia 0.9662 Germany 0.9519 Germany 0.9402 

17. Germany 0.9655 Latvia 0.9397 Latvia 0.9168 

18. Slovakia 0.9488 Slovakia 0.9216 Austria 0.8973 

19. Austria 0.9306 Austria 0.9128 Slovakia 0.8903 

20. Sweden 0.8918 Croatia 0.8696 Croatia 0.8548 

21. Croatia 0.8884 Sweden 0.8683 Sweden 0.8521 

22. Ireland 0.7830 Czechia 0.7552 Czechia 0.7297 

23. Czechia 0.7799 Ireland 0.7445 Ireland 0.7280 

24. Hungary 0.7714 Hungary 0.7341 Hungary 0.7076 

25. UK 0.7552 UK 0.7274 UK 0.7017 

26. Finland 0.6703 Finland 0.6464 Finland 0.6320 

 M(3) 0.9300 M(6) 0,9136 M(9) 0.9011 

1 M(x) is the mean value of acquired results for window width 3,6 or 9. 
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